
HAL Id: hal-01714747
https://hal.science/hal-01714747v1

Preprint submitted on 21 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XVA Principles, Nested Monte Carlo Strategies, and
GPU Optimizations

Lokman A. Abbas-Turki, Stéphane Crépey, Babacar Diallo

To cite this version:
Lokman A. Abbas-Turki, Stéphane Crépey, Babacar Diallo. XVA Principles, Nested Monte Carlo
Strategies, and GPU Optimizations. 2018. �hal-01714747�

https://hal.science/hal-01714747v1
https://hal.archives-ouvertes.fr

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

XVA Principles, Nested Monte Carlo Strategies, and GPU

Optimizations

Lokman A. Abbas-Turki1, Stéphane Crépey2, Babacar Diallo1,2,3

1 Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599, Université Pierre-et-Marie Curie
2 LaMME, Univ. Evry, CNRS, Université Paris-Saclay, 91037, Evry, France
3 Quantitative Research GMD/GMT Crédit Agricole CIB, 92160 Montrouge

We present a nested Monte Carlo (NMC) approach implemented on graphics processing

units (GPU) to X-valuation adjustments (XVA), where X ranges over C for credit, F for
funding, M for margin, and K for capital. The overall XVA suite involves five compound

layers of dependence. Higher layers are launched first and trigger nested simulations on-

the-fly whenever required in order to compute an item from a lower layer. If the user is
only interested in some of the XVA components, then only the sub-tree corresponding

to the most outer XVA needs be processed computationally. Inner layers only need a
square root number of simulation with respect to the most outer layer. Some of the

layers exhibit a smaller variance. As a result, with GPUs at least, error controlled NMC

XVA computations are doable. But, although NMC is naively suited to parallelization, a
GPU implementation of NMC XVA computations requires various optimizations. This is

illustrated on XVA computations involving equities, interest rate, and credit derivatives,

for both bilateral and central clearing XVA metrics.

Keywords: X-Valuation Adjustment (XVA), Nested Monte Carlo (NMC), Graphics

Processing Units (GPU).

1. Introduction

Since the 2008 financial crisis, investment banks charge to their clients, in the form

of rebates with respect to the counterparty-risk-free value of financial derivatives,

various add-ons meant to account for counterparty risk and its capital and funding

implications. These add-ons are dubbed XVAs, where VA stands for valuation ad-

justment and X is a catch-all letter to be replaced by C for credit, D for debt, F for

funding, M for margin, or K for capital.

XVAs greatly complicate the derivative pricing equations by making them

global, nonlinear, and entity-dependent. However, in order to avoid or defer major

IT changes, many banks (but not all) tend to content themselves with the following

exposure-based approach (see e.g. Cesari, Aquilina, Charpillon, Filipovic, Lee, and

Manda (2010)): First, they compute the mark-to-market cube of the counterparty-

risk free valuation of all their contracts in any scenario and future time point. Then

they integrate in time the ensuing expected positive exposure (EPE) profile against

the hazard function of the bank implied from its CDS curve. A similar approach is

applied to DVA and FVA computations.

Unquestionably, exposure profiles, whether considered in expectation, such as

with the EPE, or at some higher quantile levels, with the potential future exposure

1

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

2

(PFE) involved in the determination of regulatory trading limits, are important.

However, an exposure-based approach is purely static, whereas a dynamic per-

spective is required for (even partial) XVA hedging purposes and for properly ac-

counting for the feedback effects between different XVAs (e.g. from the CVA into

the FVA). Moreover, an exposure-based XVA approach essentially assumes inde-

pendence between the market and credit sides of the problem: Beyond more or less

elaborate patches such as the ones proposed in Pykhtin (2012), Hull and White

(2012), Li and Mercurio (2015), or Iben Taarit (2017), it is hard to extend rigor-

ously to wrong-way risk, which is the risk of adverse dependence between the credit

risk of the counterparty and the underlying market exposure. Last but not least, an

exposure-based XVA approach comes without error control, at least whenever the

exposure is computed by global regression as done in certain banks. This is due to

the unconditional approximations involved in such global regressions.

Instead, in this paper, we explore a full simulation, nested Monte Carlo XVA

computational approach granting a O(M
− 1

2

(0)) mean square error, where M(0) is the

outer number of trajectories, optimally implemented on GPUs.

Albanese, Bellaj, Gimonet, and Pietronero (2011) advocate a supercomputer

XVA implementation, whereby risk factors are simulated forward, whereas the

backward pricing task is performed by fast matrix exponentiation in floating arith-

metics. Although extremely fast and accurate whenever applicable, this approach is

restricted to models written as piecewise time homogeneous Markov chains (for ap-

plicability of the matrix exponentiation formula) with at most three factors (unless

advanced techniques are used for circumventing the curse of dimensionality), which

may not be an option in all banks. Malliavin calculus can be used for extending

such an approach to more standard (space continuous) models (see Abbas-Turki,

Bouselmi, and Mikou (2014)), but the curse of dimensionality issue remains.

The outline of the paper is as follows. Section 2 sets the XVA stage. Section 3

presents the multi-layered dependence between the different XVA metrics and dis-

cusses their NMC implementation from a high-level perspective. Section 4 illustrates

the above by three case studies. Section 5 discusses future perspectives. Sections A

through D detail the related GPU programming optimization techniques.

As we see it, the main contributions of this work are:

• From a high-level perspective, the conceptual view of Section 3 on the

dependence between the XVA metrics, and its algorithmic counterpart in

the form of the nested Monte Carlo Algorithm 1;

• From a technical point of view, the XVA NMC GPU programming op-

timization techniques detailed in the appendix, including the innovative

Algorithm 2 for efficient value-at-risk and expected shortfall computations;

• The proof of concept, by the numerical case studies of Sect. 4, that nested

Monte Carlo XVA computations are within reach if GPU power is (prop-

erly) used (cf. Table 8).

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

3

2. XVA Guidelines

In this section we recall the XVA principles of Albanese and Crépey (2017), to which

we refer the reader for more details. See also the companion papers by Albanese,

Caenazzo, and Crépey (2017) and Armenti and Crépey (2017) for applications in

respective bilateral and centrally cleared trading setups. For other XVA frameworks,

see for instance Brigo and Pallavicini (2014) or Bichuch, Capponi, and Sturm (2017)

(without KVA) or, with a KVA meant as an additional contra-asset like the CVA

and the FVA (as opposed to a risk premium in our case), Green (2015), Green,

Kenyon, and Dennis (2014), or Elouerkhaoui (2016).

We consider a pricing stochastic basis (Ω,F,P), for a reference market filtration

(ignoring the default of the bank itself) F = (Ft)t∈R+
and a risk-neutral pricing

measure P calibrated to vanilla market quotes, such that all the processes of interest

are F adapted and all the random times of interest are F stopping times. This holds

at least after so-called reduction of all the data to F starting from a larger filtration

G including the default of the bank itself as a stopping time, supposing immersion

from F into G for simplicity in this work.

Remark 2.1. Albanese and Crépey (2017) explicitly introduce the larger filtration

G and show how to deal with the XVA equations, which are natively stated in G,

by reduction to F (denoting the reduced data with a ·′). Here we directly state the

reduced equations in F (and we do not use the ·′ notation).

The P expectation and (Ft,P) conditional expectation are denoted by E and

Et. We denote by r an F progressive OIS (overnight indexed swap) rate process,

which is together the best market proxy for a risk-free rate and the reference rate

for the remuneration of the collateral. We write β = e−
∫ ·
0
rsds for the corresponding

risk-neutral discount factor.

We consider a bank trading, in a bilateral and/or centrally cleared setup, with

risky counterparties. The bank is also default prone, with default intensity γ and

recovery rate R. We denote by T an upper bound on the maturity of all claims in

the bank portfolio, also accounting for the time of liquidating the position between

the bank and any of its clients in case of default.

By mark-to-market of a contract (or portfolio), we mean the (trade additive)

risk-neutral conditional expectation of its future discounted promised cash flows D,

ignoring counterparty risk and its capital and funding implications, i.e. without any

XVAs. In particular, we denote by MtM the mark-to-market of the overall derivative

client portfolio of the bank.

2.1. Counterparty Exposure Cash Flows

To mitigate counterparty risk, the bank and its counterparties post variation and

initial margin as well as, in a centrally cleared setup, default fund contributions.

The variation margin (VM) of each party tracks the mark-to-market of their port-

folio at variation margin call times, as long as both parties are nondefault. However,

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

4

there is a liquidation period, usually a few days, between the default of a party and

the liquidation of its portfolio. Even in the case of a perfectly variation-margined

portfolio, the gap risk of slippage of the mark-to-market of the portfolio of a de-

faulted party and of unpaid contractual cash flows during its liquidation period

justifies the need for initial margin (IM). The IM of each party is dynamically set

as a risk measure, such as value-at-risk (VaR) at some confidence level aim, of their

loss-and-profit at the time horizon of the liquidation period (sensitivity VaR in

bilateral SIMM transactions and historical VaR for centrally cleared trading). In

case a party defaults, its IM provides a buffer to absorb the losses that may arise

on the portfolio from adverse scenarios, exacerbated by wrong-way risk, during the

liquidation period.

On top of the variation and initial margins that are used in bilateral trans-

actions, a central counterparty (CCP) deals with extreme and systemic risk on a

mutualization basis, through an additional layer of protection, called the default

fund (DF), which is pooled between the clearing members. The default fund is used

when the losses exceed the sum between the VM and the IM of the defaulted mem-

ber. The default fund contribution of the defaulted member is used first. If it does

not suffice, the default fund contributions of the other clearing members are used

in turn. Under the current European regulation, the Cover 2 EMIR rule requires to

size the default fund as, at least, the maximum of the largest exposure and of the

sum of the second and third largest exposures of the CCP to its clearing members,

updated periodically (e.g. monthly) based on “extreme but plausible” scenarios.

The corresponding amount is allocated between the clearing members, typically

proportionally to their losses over IM (or to their IM itself).

2.2. Funding Cash Flows

Variation margin typically consists of cash that is re-hypothecable, meaning that

received VM can be used for funding purposes and is remunerated OIS by the re-

ceiving party. Initial margin, as well as default fund contributions in a CCP setup,

typically consist of liquid assets deposited in a segregated account, such as gov-

ernment bonds, which pay coupons or otherwise accrue in value. We assume that

the bank can invest at the OIS rate r and obtain unsecured funding for borrowing

VM at the rate (r + λ), where the unsecured funding spread λ = (1 − R)γ can be

interpreted as an instantaneous CDS spread of the bank. Initial margin is funded

separately from variation margin,a at a blended spread λ̄ that depends on the IM

funding policy of the bank.b

aSee the third paragraph of Section 3.2 in Albanese et al. (2017)
bSee Section 4.3 in Albanese et al. (2017).

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

5

2.3. Cost of Capital Pricing Approach in Incomplete Counterparty

Credit Risk Markets

In theory, a bank may want to setup an XVA hedge. But, as (especially own) jump-

to-default exposures are hard to hedge in pratice, such a hedge can only be very

imperfect. In the context of XVA computations, we assume a perfectly collateralized

back to back market hedge of its client portfolio by the bank (i.e. the bank posts

MtM as variation margin on its hedge), but we conservatively assume no XVA

hedge.

To deal with the corresponding market incompleteness issue, we follow a cost

of capital XVA pricing approach, in two steps. First, the so-called contra-assets are

valued as the expected costs of the counterparty default losses and risky funding

expenses. Second, on top of these expected costs, a KVA risk premium (capital

valuation adjustment) is computed as the cost of a sustainable remuneration of the

shareholder capital at risk which is earmarked by the bank to absorb its exceptional

(beyond expected) losses.

More precisely, the contra-asset value process (CA) corresponds to the expected

discounted future counterparty default losses and funding expenditures. Incremental

CA amounts are charged by the bank to its clients at every new deal and put in a

reserve capital account, which is then depleted by counterparty default losses and

funding expenditures as they occur.

In addition, bank shareholders require a remuneration at some hurdle rate h,

commonly estimated by financial economists in a range varying from 6% to 13%,

for the risk on their capital. Accordingly, an incremental risk margin (or KVA) is

sourced from clients at every new trade in view of being gradually distributed to

bank shareholders as remuneration for their capital at risk at rate h as time goes

on.

Remark 2.2. In practice, target return on equities are fixed by the management

of the bank every year. In the context of our XVA computations, we take h as an

exogenous constant for simplicity.

Cost of capital calculations involve projections over decades in the future. The

historical probability measure is hardly estimable on such time frames. As a conse-

quence, we do all our price and risk computations under the risk-neutral measure

P.

The uncertainty on the hurdle rate or on the historical probability measure are

left to model risk.

2.4. Contra-Assets Valuation

We work under the modeling assumption that every bank account is continuously

reset to its theoretical target value, any discrepancy between the two being instan-

taneously realized as loss or earning by the bank.

In particular, the reserve capital account of the bank is continuously reset to

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

6

its theoretical target CA level so that, much like with futures, the trading position

of the bank is reset to zero at all times, but it generates a trading loss-and-profit

process L. Our equation for the contra-assets value process CA is then derived from

a risk-neutral martingale condition on the trading loss process L of the bank, along

with a terminal condition CAT = 0. This martingale condition on L corresponds to

a bank shareholder no arbitrage condition. It results in

CA = CVA + FVA + MVA, (2.1)

for setup-dependent, but always nonnegative, CVA, FVA, and MVA processes. The

FVA corresponds to the cost of funding cash collateral for variation margin, whereas

the MVA is the cost of funding segregated collateral posted as initial margin.

We emphasize that we ignore the DVA and we only deal with nonnegative XVA

numbers, in accordance with a shareholder-centric perspective where shareholders

need be at least indifferent to a deal at a certain price for the deal to occur at that

price. In case a DVA is needed (e.g. for regulatory accounting purposes), it can be

computed much like the CVA. Regarding the funding issue, we consider an asym-

metric, nonnegative FVA, which is part of an FVA/FDA accounting framework, as

opposed to an FCA/FBA accounting framework where it is (unduly) assumed that

the bank earns its credit spread when it invests excess cash generated from trading

(see Albanese and Andersen (2014)).

Example 2.1. We consider a bank engaged into bilateral trading with a single

client, with final maturity of the portfolio T . Let Rc denote the recovery rate of the

client in case it defaults at time τc. Let PIM and RIM denote the initial margins

posted and received by the bank on its client portfolio. Then, assuming for simplicity

an instantaneous liquidation of the bank portfolio in case the client defaults, we

have, for 0 ≤ t ≤ T (counting the VM positively when received by the bank):

CVAt = Et1{t<τc≤T}β
−1
t βτc(1−Rc)

(
MtMτc +Dτc −Dτc− −VMτc − RIMτc

)+
,
(2.2)

FVAt = Et
∫ τc∧T

t

β−1t βsλs

(
MtMs −VMs − CVAs − FVAs −MVAs

)+
ds, (2.3)

MVAt = Et
∫ τc∧T

t

β−1t βsλ̄sPIMsds. (2.4)

See Albanese et al. (2017) for the extension of these equations to the case of a bank

engaged into bilateral trade portfolios with several counterparties.

Note that the jump process (Dτc − Dτc−) of the contractually promised cash

flows contributes to the CVA exposure of the bank

Q =
(
MtM +D −D− −VM− RIM

)
(2.5)

that appears in (2.2), because (Dτc−Dτc−) fails to be paid by the client if it defaults.

In most cases, however (with the notable exception of credit derivatives exposed in

Sect. 4.3), this is immaterial because Dτc = Dτc−.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

7

Remark 2.3. In the special case of a single counterparty, we also have the following

equation for the CA = CVA + FVA + MVA process:

CAt = Et
[
1{t<τc≤T}β

−1
t βτc(1−Rc)

(
MtMτc +Dτc −Dτc− −VMτc − RIMτc

)+
+

∫ τc∧T

t

β−1t βs
(
λs(MtMs −VMs − CAs)

+ + λ̄sPIMs

)
ds
]
, t ≤ t ≤ T.

(2.6)

From the nested Monte Carlo perspective developed in Sect. 3, compared with (2.2),

this equation “spares” the CVA and MVA Monte Carlo layer in the computation

of the FVA.

At the valuation time 0, assuming deterministic interest rates, the CVA (2.2)

can be rewritten as

CVA0 = (1−Rc)
∫ T

0

βtEPE(t)P(τc ∈ dt), (2.7)

where the expected positive exposure (EPE) is defined as

EPE(t) = E(Q+
s |s = τc)|τc=t.

As explained in Sect. 1, this identity is popular with practitioners as it decouples

the credit and the market sides of the problem. But it is specific to the valuation

time 0 and is only practical when the market and credit sides of the problem are

independent, so that EPE(t) = E(Q+
t). It can hardly be extended rigorously to

wrong-way risk (cf. Crépey and Song (2016)). A similar approach is commonly

applied to FVA (and DVA) computations, with analogous pitfalls.

2.5. Economic Capital and Capital Valuation Adjustment

On top of no arbitrage in the sense of risk-neutral CA valuation, bank shareholders

need be remunerated at some hurdle rate h for their capital at risk.

The economic capital (EC) of the bank is dynamically modeled as the conditional

expected shortfall (ES) at some quantile level a of the one-year-ahead loss of the

bank, i.e., also accounting for discounting:

ECt = ESat (

∫ t+1

t

β−1t βsdLs). (2.8)

As established in Albanese and Crépey (2017), Section 5.3, assuming a constant

nurdle rate h, the amount needed by the bank to remunerate its shareholders for

their capital at risk in the future is

KVAt = hEt
∫ T

t

e−
∫ s
t
(ru+h)duECsds, t ∈ [0, T]. (2.9)

This formula yields the size of a risk margin account such that, if the bank gradually

releases from this account to its shareholders an average amount

h(ECt −KVAt)dt, (2.10)

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

8

then there is nothing left on the account at time T (if T < the bank default time

τ , whereas, if τ < T , anything left on the risk margin account of the bank is

instantaneously transferred to the creditors of the bank). The “−KVAt” in (2.10)

or the “+h” in the discount factor in (2.9) reflect the fact that the risk margin is

itself loss-absorbing and as such it is part of economic capital. Hence, shareholder

capital at risk, which needs be remunerated at the hurdle rate h, only corresponds

to the difference (EC − KVA). For simplicity we are skipping here the constraint

that the economic capital must be greater than the ensuing KVA in order to ensure

a nonnegative shareholder equity SCR=EC−KVA (cf. Albanese and Crépey (2017),

Sections 5.4 and 7.2–7.3).

Remark 2.4. An alternative to economic capital in KVA computations is regula-

tory capital. Regulatory capital however is less consistent, as it loses the connection

with other XVAs, whereby the input to EC and in turn KVA computations should

be the loss and profit process L generated by the CVA, FVA, and MVA trading of

the bank (a martingale part of the CA process in (2.2)).

2.6. Funds Transfer Price

The total (or risk-adjusted) XVA is the sum of the risk-neutral CA and of the

KVA risk premium. In the context of XVA computations, derivative portfolios are

typically modeled on a run-off basis, i.e. assuming that no new trades will enter

the portfolio in the future. Otherwise the bank could be led into snowball Ponzi

schemes, whereby always more deals are entered for the sole purpose of funding

previously entered ones. Moreover, the trade-flow of a bank, which is a price-maker,

does not have a stationarity property that could allow the bank forecasting future

trades.

Of course in reality a bank deals with incremental portfolios, where trades are

added or removed as time goes on. In practice, incremental XVAs are computed

at every new (or tentative) trade, as the differences between the portfolio XVAs

with and without the new trade, the portfolio being assumed held on a run-off basis

in both cases. The ensuing pricing, accounting, and dividend policy ensures the

possibility for the bank to go into run-off, while staying in line with shareholder

interest, from any point in time onward if wished.

3. Multi-layered NMC for XVA Computations

In this section we present the multi-layered dependence between the different XVA

metrics and we discuss their nested Monte Carlo (NMC) implementation from a

high-level perspective, referring the reader to the appendix for more technical GPU

implementation and optimization developments.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

9

3.1. NMC XVA Simulation Tree

The EC (2.8) and the IM are conditional risk measures. The KVA (2.9) and the

MVA (2.4) are expectations of the latter integrated forward in time (or randomized,

i.e. sampled at a random future time point). The FVA (2.3) is the solution of a

backward SDE. The CVA (2.2) and MtM are conditional expectations.

In view of Remark 2.4 regarding the dependence of L with respect to the CVA,

the MVA, and the FVA, a full Monte Carlo simulation of all XVAs would require a

five layered NMC (six layers of Monte Carlo): The first and most inner layer would

be dedicated to the simulation of MtM, then would come the IM, over which one

would simulate the CVA and the MVA that are needed before simulating the FVA.

The FVA layer must be run iteratively in time for solving the corresponding back-

ward SDE on a coarse time grid. All previous quantities are used in the computation

of the economic capital process involved in the most outer layer that approximates

the KVA.

Figure 1 schematizes this interdependence between the simulation of MtM and

of the different XVAs. The numbers of independent trajectories that have to be re-

simulated at each level are denoted by Mkva, Mec, Mfva, Mcva, Mim, and Mmtm.

For computational feasability, MtM and all XVAs should be functions of time t

and of a Markovian risk factor vector process Z, which can generically be taken

as a Markov chain H modulated by a jump-diffusion X, where the Markov chain

component H encodes the default times τi of all the financial entities involved: cf.

the model of Section 12.2.1 in Crépey (2013) (see also Section 4.2.1 there for a

review of applications).

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

10

ECs

FVAt=s,...,s+1

CVAt, MVAt, t=s,...,s+1

IMt=s,...,s+1

 , MtMt=s,...,s+1

Depth

Mcva

Mfva

Mkva

Mec

KVA0

ECs, 0<s<T

Mim

FVAt

CVAu, MVAu, u=t,...,T

IMu=t,...,T

 , MtMu=t,...,T

CVAu, MVAu

IMv=u,...,T

 , MtMv=u,...,T

IMv

 , MtMw=v,...,v+

 , MtMw

Mmtm

.

. . . .

. . . .

. . .

. . .

. .

Fig. 1: XVA NMC simulation tree, from the most outer layer to the most inner one.

The sub-tree rooted at the left-most node (on the solid path) on each line should

be duplicated starting from each node on the right (on the dashed paths) on the

same line.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

11

Figure 1 yields the overall MtM and XVAs intra-dependency structure. However:

• If the user is only interested in some of the XVA components, then only the

sub-tree corresponding to the highest XVA of interest in the figure needs

be processed computationally;

• If one or several layers can be computed by explicit (exact or approximate)

formulas instead of Monte Carlo simulation, then the corresponding layers

drop out of the picture.

3.2. Recursive Nested vs. Iterative Proxies

The second bullet point above touches to the trade-off between iterative and re-

cursive XVA computations, where some layers of the computation can either be

recursively simulated in an NMC fashion, or iteratively pre-computed off-line and

stored for further use in higher layers.

In an NMC perspective (see Gordy and Juneja (2010) for a seminal reference),

higher layers are launched first and trigger nested simulations on-the-fly whenever

required in order to compute an item from a lower layer. At the other extreme, in

a purely iterative regression approach, the various layers are computed iteratively

from bottom to top everywhere in time space—but with a non controllable error, as

regression schemes only yield error control at the point where the regression paths

are initiated. This is due to the unconditional approximations involved in regressions

(unless advanced local regression basis techniques can be applied, cf. Gobet, Lemor,

and Warin (2005)). Things get even worse with wrong-way risk extensions of such

an approach or with its leveraging to higher order XVAs, when several regression

layers are stacked one above the other, e.g. using a one-stage simulation with the

same set of trajectories for regressing globally both MtM and some XVAs. The

corresponding biases can then amplify each other, resulting in quite unpredictable

numerical behavior.

Beyond the XVA area, such iterative vs. recursive trade-offs are an important

NMC issue. Naive parametric approximations stacked one above the other as higher

order XVAs are considered can only result in uncontrollable biases. Inner simulation

in nested Monte Carlo instead creates variance, which is more manageable. Another

alternative is the use of deterministic pricing schemes based on probability transition

matrices as in Albanese and Li (2010) and Albanese et al. (2011). These can be very

efficient and do not create any other than discretization bias, but they are restricted

to certain models as discussed in Sect. 1.

In practice, as of today, playing with the two bullet points above, banks tend

to put themselves in a position where at most one nested layer of Monte Carlo is

required. For instance, 90% at least of their trading book consists of products with

mark-to-market analytics, which spares the lowest layer in Figure 1. So far banks

mostly rely on simple proxies for the KVA, such as an RWA or a regulatory KVA in-

stead of a full-fledged economic capital based KVA (see Green, Kenyon, and Dennis

(2014)). In the context of MVA simulations, they develop various tricks such as so-

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

12

called dynamic IM mapping in order to avoid resimulating for computing the IM at

every future node (see Green and Kenyon (2015) or Anfuso, Aziz, Loukopoulos, and

Giltinan (2017)). They avoid the BSDE feature of an asymmetric FVA by switch-

ing to a symmetric FVA corresponding to a conditional expectation for a suitably

modified discount factor, which spares the iterated regressions in FVA computa-

tions (see Albanese et al. (2017, Remark 5.1), Albanese and Andersen (2014, 2015,

2015), and Andersen, Duffie, and Song (2017)). Above all, most banks are using

an exposure-based XVA approach, described Sect. 1 and in the last paragraph of

Sect. 2.4, where it is at most the determination of the mark-to-market cube that

involves (simply layered) Monte Carlo simulation(/regression).

3.3. XVA NMC Design Parameterization

Based on sufficient regularity as well as a non-exploding moments condition ex-

pressed by their Assumption 1, Gordy and Juneja (2010) show that, for balancing

the outer variance and square bias components of the mean square error in a one-

layered NMC, the number of inner trajectories M(1) must be asymptotically of the

order of the square root of the number of outer trajectories M(0). This is because,

by a classical cancellation of the first order term in the related Taylor formula, the

variance produced in the inner stage of a one-layered NMC is transformed into a

bias in the outer stage. Hence, assuming that the variance of the outer random

quantity is of the same order of magnitude as the conditional variances produced

by the inner random quantities, an M(0) ⊗M(1) = M(0) ⊗
√
M(0) NMC has the

same O(M
− 1

2

(0)) accuracy as an M(0) ⊗M(1) = M(0) ⊗M(0) NMC.

Leveraging this idea for a two-layered NMC with homogeneous variances, nested

Taylor expansions yield that an M(0) ⊗M(0) ⊗M(0) NMC has the same order of

accuracy as an M(0)⊗M(0)⊗
√
M(0) NMC, itself as accurate as an M(0)⊗

√
M(0)⊗√

M(0) NMC. In the general case of an i ≥ 1-layered NMC (e.g. i = 5 for the

overall simulation of Figure 1) and assuming the same variance created through the

different stages, M(0) ⊗M(1) ⊗ . . . ⊗M(i) = M(0) ⊗
√
M(0) ⊗ . . . ⊗

√
M(0) has the

same O(M
− 1

2

(0)) accuracy as M(0) ⊗M(0) ⊗ . . .⊗M(0).

Moreover, in practice, the variance is not homogeneous with respect to the

stages: For the VaR and ES of confidence level a that correspond to the IM and EC

layers, the asymptotic rate of convergence is still given by the square root of the

corresponding number of simulations (as in the case of an expectation), but this

may come with larger constants (proportional to (1−α)−1 in particular, see Delmas

and Jourdain (2006) and Embrechts, Klueppelberg, and Mikosch (1997)). For inner

layers involving time iterated conditional averaging (space regressions), such as with

inner FVA or Bermudan MtM computations, one may use only O(
√
M(0)/

√
Nb) or

even O(
√
M(0)/Nb) paths (depending on the regularity of the underlying cash flows,

see Abbas-Turki and Mikou (2015)) without compromising the overall O(M
− 1

2

(0)) ac-

curacy.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

13

In view of the above, we propose an XVA NMC algorithm with the follow-

ing design:

1 Input: The endowment of the bank, the credit curves of the bank

and its clients, and, possibly, a new tentative client trade ;

2 Select layers of choice in a sub-tree of choice in Figure 1 (cf.

Sect. 3.2), with corresponding tentative number of simulations

denoted by M(0), . . . ,M(i), for some 1 ≤ i ≤ 5 (we assume at least

one level of nested simulation) ;

3 By dichotomy on M(0), reach a target relative error (in the sense

of the outer confidence interval) for M(0) ⊗M(1) . . .⊗M(i) NMCs

with M(1) = . . . = M(i) =
√
M(0) ;

4 For each j decreasing from i to 1, reach by dichotomy on M(j) a

target bias (in the sense of the impact on the outer confidence

interval) for M(0) ⊗M(1) ⊗ . . .⊗M(j) ⊗ . . .⊗M(i) NMCs ;

5 Return(The time 0 XVAs of interest pertaining to the bank portfolio and,

if relevant, the incremental XVAs pertaining to a tentative trade)

Algorithm 1: XVA NMC algorithm.

Example 1. Considering the overall 5-layered NMC of Figure 1, in order to ensure

a 5% relative error (in the sense of the corresponding confidence interval) at a

95% confidence level, which we can take as a benchmark order of accuracy for

XVA computations in banks, the above approach may lead to Mmtm, Mim, and

Mcva between 1e2 and 1e3. As the FVA is obtained from the resolution of a BSDE

that involves multiple (conditional) averaging, Mfva can be even smaller than 1e2

without compromising the accuracy. Due to the approximation of the conditional

expected shortfall risk measure involved in economic capital computations, for Mkva

of the order of 1e3, Mec has to be bigger than 1e3 but usually can be smaller than

1e4.

3.4. Coarse and Fine Parallelization Strategies

Because of the wide exposure of a bank to a great number of counterparties, it

would be very complicated and inefficient to divide the overall XVA computation

into small pieces associated to local deals. In other words, it is unsuitable to dis-

tribute XVA computations: in the interest of data locality it is more appropriate

to process the overall task in parallel. In fact, unless special cases (with a great

deal of analytical tractability) are considered or crude and ad-hoc approximations

without control error are used, the XVA NMC algorithm 1 can only be run on high

performance concurrent computing architectures. Currently the most powerful ones

involve GPUs (see Figure 3 in Section D.2). As of today, a state of the art GPU com-

prises roughly 4000 streaming processors operating at 2GHz each, versus 20 physical

cores operating at 4GHz on a state of the art CPU. Hence a GPU implementation

means a potential ∼ 100 speedup with respect to a CPU implementation.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

14

However, execution time is an output not only of the number and nature of

computations (boiling down to bitsize opetrations, e.g. additions), but also of the

number and nature of memory accesses (depending on the technology of the related

physical storage capacities as well as on the distances that separate them from the

computing units on the motherboard). In practice, the main bottleneck with GPU

programming is memory and, more precisely, memory bandwidth (i.e. volume of

data retrievable per second from the memory).

For XVA applications this advocates the use of supercomputers with fewer and

fewer but bigger and bigger computing nodesc equipped with a very large memory

and several GPUs. However, thanks to the NVLink technology that improves the

communications between GPUs (cf. Nvidia (2017c)), scaling NMC from one GPU

to various GPUs on a given node has become straightforward and very efficient.

Moreover, NMC can be very well parallelized on different nodes with respect to

outer trajectories, using the message passing interface (MPI) as explained in Abbas-

Turki, Vialle, Lapreye, and Mercier (2009, 2014). Hence, nowadays, a single GPU

implementation of NMC XVA computations is easily scalable to a supercomputer.

Regarding the parallelization strategy, from a GPU locality programming prin-

ciple (see Nvidia (2017b, 2017a)):

• if only one GPU is available, then the paths should be allocated between

its streaming processors from the most inner nested layer of simulation to

the most outer one, in a fine grain stratification approach;

• if several GPUs on one single node are available, then one should allocate

between the different GPUs the most outer paths of the simulation, using a

fine grain stratification approach on each of them for the allocation of the

computational task between its streaming processors;

• if even several computing nodes (each equipped with several GPUs) are

available, then one should allocate between them the most outer paths of

the simulation and, for each of them, allocate between the corresponding

GPUs the intermediary levels of the simulation, using on each of them a

fine grain stratification approach for allocating more inner computations

between their respective streaming processors.

Remark 3.1. The first supporters of such a global procedure were Albanese et al.

(2011), in the context, at that time, of CVA computations. With the advent of sec-

ond generation XVAs in particular (MVA and KVA involving not only conditional

expectations, but also conditional risk measures), data locality is even more strin-

gent, but also much more accessible than before thanks to the large high bandwidth

memories (HBM) available on GPUs and to the non-volatile memory architecture

recently proposed by Intel. This favors the use of large memory computing nodes

with a huge GPU computing throughput. As compared with Albanese et al. (2011)

cBasically, motherboards with 1 or 2 CPUs and 1 to 8 GPUs, see e.g. www.olcf.ornl.gov/summit/.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

15

where backwardation pricing stages are treated by matrix exponentiation (in suit-

able models), the full NMC strategy of this paper is more complex, but it also more

scalable to the above technology leaps.

4. Case Studies

In this section we illustrate the above by (single) nested Monte Carlo XVA com-

putations in various markets and setups. The corresponding GPU programming

optimization techniques are detailed in the Appendix.

All our simulations are run on a laptop that has an Intel i7-7700HQ CPU and

a single GeForce GTX 1060 GPU programmed with the CUDA/C application pro-

gramming interface (API).

4.1. Common Shock Model of Default Times

Under our approach in this paper, we favor a granular simulation of all defaults

other than the default of the bank (which is treated by reduction of filtration as

explained in Remark 2.1), as opposed to working with default intensities simply.

Regarding the default times τi, i = 1, . . . , n, of the financial entities (other than

the bank) involved, we use the “common shock” or dynamic Marshall-Olkin copula

(DMO) model of Crépey, Bielecki, and Brigo (2014), Chapt. 8–10 and Crépey and

Song (2016) (see also Elouerkhaoui (2007, 2017). In this model defaults can happen

simultaneously with positive probabilities.

First, we define shocks as pre-specified subsets of the credit names, i.e. the sin-

gletons {1}, {2}, . . . , {n}, for idiosyncratic defaults, and a small number of groups

representing names susceptible to default simultaneously. For instance, a shock

{1, 2, 4, 5} represents the event that all the (non-defaulted entities among the) names

1, 2, 4, and 5 default at that time.

Given the family Y of shocks, the times τY of the shocks Y ∈ Y are modeled

as independent Cox times with intensity processes γY (posibly dependent on the

factor process X). For each credit name i = 1, . . . , n, we then set

τi = min
{Y ∈Y; i∈Y }

τY , (4.1)

i.e. the default time of the name i is the first time of a shock Y that contains i. We

write J i = 1[0,τi).

As demonstrated numerically Section 8.4 in Crépey et al. (2014), a few com-

mon shocks (beyond the idiosyncratic ones) are typically enough to ensure a good

calibration of the model to market data regarding the credit risk of the financial

entities and their default dependence (or to expert views about these).

The default model is then made dynamic, as required for XVA computations,

by the introduction of the filtration of the indicator processes of the τi.

As detailed in Section A, we use a fine time discretization {t0 = 0, . . . , tNf = T}
for the forwardation of the market risk factors and a coarse discretization {s0 =

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

16

0, . . . , sNb = T} embedded in the latter for prices backwardation. In practice banks

use adaptative time step, e.g. hk+1 = sk+1− sk, reflecting the density of the under-

lying cash flows. In our case studies we just use uniform grids, fixing the number

of time steps Nf used for a fine discretization of the factor process X (and then

in turn of the Cox times used for generating the τY) as a multiple of some coarse

discretization parameter Nb. We simulate M(0) outer stage trajectories from t0 = 0

to tNf = T . From each simulated value X̂k, on the coarse time grid k ∈ {1, . . . , Nb},
we simulate on the fine grid M(1) inner trajectories starting at sk = tkNf/Nb and

ending at tNf = T , the final maturity of the portfolio. We denote by (Ŷk) any dis-

cretization on the coarse time grid (sk) of a continuous time process (Yt), by (Ŷ jk)

independent simulations of the latter, and by Ê the empirical mean.

4.2. CVA on Early Exercise Derivatives

First we deal with CVA and the embedded MtM computations regarding a Bermu-

dan option on a trivariate Black–Scholes process X.

We consider a Bermudan derivative, with mark-to-market MtMt = P (t,Xt) for

some pricing function P = P (t, x) such that, at each pricing / exercise time sk,

P (sk, Xsk) = sup
θ∈T k

E
(
β−1sk βθφ(Xθ)|Xsk

)
, (4.2)

where φ is the payoff function and T k is the set of stopping times valued in the

coarse time subgrid {sk, . . . , sNb}.
For k = 0, . . . , Nb − 1, let

Ak =
{
βskφ(Xsk) > E

(
βsk+1

P (sk+1, Xsk+1
)
∣∣∣Xsk

)}
.

As detailed in Clément, Lamberton, and Protter (2002), we have P (0, x) =

E
(
βτ∗0 φ(Xτ∗0

)|X0 = x
)
, where τ∗0 is defined through the iteration τ∗Nb = T and,

for k decreasing from (Nb − 1) to 0,

τ∗k = sk1Ak + τ∗k+11Ack . (4.3)

The computation of MtM0 = P (0, X0 = x) can then be performed by the sim-

ulation/regression algorithm of Longstaff and Schwartz (2001), which consists in

approximating the conditional expectation involved in Ak by regression on a ba-

sis of monomial functions. Moreover, in an NMC setup, this can be extended to

the estimation of any MtMsk+1
= P (sk+1, Xsk+1

) in the obvious way, by nested

simulation rooted at (sk+1, Xsk+1
= x).

Let τ1 = τc represent the default time of a client of the bank with default

intensity equal to γc = 100bp and recovery Rc = 0 (here n = 1, i.e. there is only

one credit name involved). The process X is a three dimensional Black & Scholes

model with common volatilities σi=1,2,3 = 0.2 and pairwise correlations = 50%. The

spot value Xi=1,2,3
0 = 100 = K, where K is the strike of a Bermudan put on the

average with maturity T = 1. We assume no (variation or initial) margins.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

17

By (2.2), the time 0 CVA of the option is approximated as

CVA0 ≈
Nb−1∑
k=0

E
(
1{τc∈(sk,sk+1]}βsk+1

(1−Rc)MtM+
sk+1

)
,

which we estimate by

ĈVA0 =
1

Mcva

Mcva∑
j=1

Nb−1∑
k=0

1{τjc∈(sk,sk+1]}β̂
j
k+1(M̂tM

j

k+1)+, (4.4)

where the M̂tM
j

k+1 are computed by nested Longstaff-Schwartz algorithms as ex-

plained above.

Using the GPU optimizations presented in Sections A, B.2, and D.1 , within

less than a tenth of a second, this procedure yields the results presented in Table

1 for the computation of ĈVA0. According to Table 1, for Mcva = 4096, it is not

necessary to simulate more than Mmtm = 128 inner trajectories if one targets an

error of ±5, as the corresponding estimates for Mmtm = 128 and 256 only differ by

1.

Mmtm CVA0 value

32 348

128 334

512 333

Table 1: CVA0 for an Bermudan put of payoff (K− 1
3 (x1+x2+x3))+ : Mcva = 4096

and confidence interval 95% of ±5.

4.3. CVA and FVA on Defaultable Claims

Next we deal with CVA, FVA, and the embedded MtM computations relative to a

portfolio of credit default swaps (CDS).

In this case, τ1 = τc represents the default time of a single financial counterparty

(client) of the bank, with recovery rate Rc, and τ2, . . . , τn are the default times of

reference financial entities in credit default swaps between the bank and its client.

We consider stylized CDS contracts corresponding to cash flow processes of the

form, for i ≥ 2 and 0 ≤ t ≤ T :

Di
t = Nomi ×

(
(1−Ri)1t≥τi − Si(t ∧ τi)

)
, (4.5)

where all recoveries Ri are set to 40% and all nominals Nomi are set to 100.

A portfolio of 70 payer CDS contracts and 30 receiver CDS contracts, as well

as all the numerical parameters for the simulations, are taken as in Crépey et al.

(2014), Section 10.1.2, in the case of a client with CDS spread equal to 100bp. In

particular, no variation or initial margins are assumed.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

18

We denote by MtMi = Et[
∫ T
t
β−1t βsdD

i
s] the mark-to-market of a fees-payer

CDS on name i, so that the mark-to-market of the overall portfolio is

MtM =

∑
i pay

−
∑
i rec

MtMi. (4.6)

We also consider the pre-default pricing functions P i(t, x) such that MtMi
t =

J itP
i(t,Xt) (cf. Proposition 13.4.1 in Crépey, Bielecki, and Brigo (2014)).

The contractual spreads Si are such that the CDS contracts break even at time

0, i.e MtMi
0 = 0. Setting LGDi = (1−Ri)Nomi, we denote

∆t =
(∑
i pay

−
∑
i rec

)
(Di

t −Di
t−) =

(∑
i pay

−
∑
i rec

)
1τi=t<TLGDi,

the jump process of the cash flows priced by MtM (as explained after (2.5), the

process ∆ belongs to the CVA exposure).

In order to realistically mimic the randomness of the CDS credit spreads, we use

the affine intensity framework of Crépey et al. (2014), Section 10.1.1, for the intensi-

ties γY in the common shocks model, based on a multivariate CIR (component-wise)

factor process X = (X1, X2, X3).

4.3.1. CVA

We have the following representation for the time 0 CVA (cf. (2.2)):

CVA0≈
Nb−1∑
k=0

E
(
1{τc∈(sk,sk+1]}βsk+1

(1−Rc)×

[
(
∑
i pay

−
∑
i rec

)1{τi>sk+1}P
i(sk+1, Xsk+1

) + (
∑
i pay

−
∑
i rec

)1{τi∈(sk,sk+1]}LGDi

]+)
,

Denoting by (P̂ i,jk , τ̂ ji) simulated values of the P i(sk, Xsk), estimated using inner

trajectories, and of the τi, our estimator ĈVA0 of (4.3.1) is given by (recall τ1 = τc)

ĈVA0 =
1

Mcva

Mcva∑
j=1

Nb−1∑
k=0

1{τ̂j1∈(sk,sk+1]}β̂k+1(1−Rc)×

(
∑
i pay

−
∑
i rec

)1{τ̂ji >sk+1}P̂
i,j
k+1 + (

∑
i pay

−
∑
i rec

)1{τ̂ji ∈(sk,sk+1]}LGDi

+

.

Table 2 shows the results of a GPU implementation of the above benefiting

from the optimizations presented in Sections A and B.2. We see that, for Mcva =

1024 ∗ 100 paths, taking Mmtm = 128 is already enough: The gain in bias that

results from taking Mmtm greater is negligible with respect to the uncertainty of

the simulation (size of the confidence interval).

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

19

Mmtm CVA value CI 95% Rel. err. Exec. time (sec)

128 2358.92 ±76.47 3.24% 5.96

256 2358.46 ±76.45 3.24% 11.54

512 2367.90 ±76.49 3.23% 23.18

1024 2373.83 ±76.51 3.22% 46.12

Table 2: CVA: Mcva = 1024 ∗ 100, counterparty spread = 100bp.

4.3.2. CA BSDE

We now move to FVA computations.

Assuming no margins on client trades and an instantaneous liquidation of de-

faulted names, the BSDE (2.6) for the CA = CVA + FVA process reads as

βtCAt = Et
[
βτc1{t<τc<T}(1−Rc)(MtMτc + ∆τc)

+

+

∫ τc∧T

t

βsλ(MtMs − CAs)
+ds

]
, t ∈ [0, T].

(4.7)

For t ∈ [0, T], let

cvat = (1−Rc)
∑

Y ∈Y;1∈Y
γYt

((∑
i pay,i/∈Y

−
∑

i rec,i/∈Y

)
(MtMi

t + 1τi=t<TLGDi)
)+

ft(y) = cvat + λ(MtMt − y)+ − (rt + γct)y.

Remark 4.1. Estimating ft(y) requires a Monte Carlo simulation for evaluating

the embedded MtMi
t. Hence, in an outer simulation context, obtaining an estimate

f̂k(y) of fsk(y) requires nested simulation.

Following the approach detailed in Crépey and Song (2016), the original CA

BSDE (4.7) on [0, τc ∧ T] is equivalent to the reduced BSDE on [0, T] given by

CAt = Et
∫ T

t

fs(CAs)ds, t ∈ [0, T] , (4.8)

i.e. the solutions to (4.7) and (4.8) (both well-posed under mild technical conditions)

coincide before the client default time τc = τ1 and, in particular, at the valuation

time 0.

The reduced CA BSDE (4.8) is approximated on the coarse time grid, with

time steps denoted by hk+1 (a constant in our numerics), by CAT = 0 and, for k

decreasing from (Nb − 1) to 0,

CAsk ≈ Esk
(
CAsk+1

+ hk+1fsk+1
(CAsk+1

)
)
, (4.9)

where the conditional expectation is estimated by regression.

Remark 4.2. For dealing with FVA semilinearity, alternatives to time iterated re-

gressions in space are the marked branching diffusion approach of Henry-Labordère

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

20

(2012) ord the expansion technique of Fujii and Takahashi (2012a, 2012b): see

Crépey and Nguyen (2016) for a comparison between these approaches in a sin-

gle layer, non nested Monte Carlo setup.

As our forward factor process Z is very high-dimensional (three CIR processes X

plus the default indicator process of each CDS reference credit name), by principal

component analysis (PCA), we filter out the few eigenvectors associated with the

numerically null eigenvalues, to make the PCA numerically well-posed, and we

reduce further the dimension of the regression to accelerate it. In practice, keeping

90% to 95% of the information spectrum (total variance, i.e. sum of the eigenvalues)

is found to require no more than half of the eigenvalues, and even much less when

the time step is getting away from the maturity (cf. the right panel in Figure 8).

We denote by Ψ̂k, Λ̂k, and Γ̂k the reduced regression basis, eigenvalues vector, and

eigenvectors matrix that are used at each (coarse) regression time sk. Let

Φsk+1
= CAsk+1

+ hk+1fsk+1
(CAsk+1

)− E
(
CAsk+1

+ hk+1fsk+1
(CAsk+1

)
,

Φ̂k+1 = ĈAk+1 + hk+1f̂k+1(ĈAk+1)− Ê
(
ĈAk+1 + hk+1f̂k+1(ĈAk+1)

)
.

A centered approximation to (4.9) is given by

E
(
Φsk+1

|Zsk
)
' B̂T

k Ψ̂k,

where ·T denotes matrix transposition and

B̂k = Λ̂−1k Γ̂T
k Ê(Φ̂k+1Ẑk), Ψ̂k = Γ̂T

k Ẑk.

The ensuing CA estimator is defined by ĈANb = 0 and, for k = Nb − 1, . . . , 2,

ĈAk =
1

Mfva

Mfva∑
j=1

[ĈA
j

k+1 + hk+1f̂
j
k+1(ĈA

j

k+1)] + B̂T
k Ψ̂k,

followed by

ĈA0 =
1

Mfva

Mfva∑
j=1

(
ĈA

j

1 + h1f̂
j
1 (ĈA

j

1)
)
,

where each f̂ jk+1(ĈA
j

k+1) requires a nested simulation for evaluating the embedded

MtMsk+1
(cf. Remark 4.1).

Tables 3 and 4 show the results of a GPU implementation of the above using

the optimizations of Sections A and D.2.

Mmtm FVA value CI 95% Rel. err. Exec. time (sec)

128 1861.66 ±52.03 2.79% 81.21

256 1861.96 ±52.03 2.79% 162.12

512 1861.83 ±52.03 2.79% 324.67

dModulo the regularity issue related to Lipchitz only coefficients as discussed in Gobet and

Pagliarani (2015).

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

21

Table 3: FVA: Mfva = 128 ∗ 100, λ = 50bp, keeping 90% of the information in the

regressions for the conditional expectations.

Mmtm FVA value CI 95% Rel. err. Exec. time (sec)

128 1886.60 ±53.75 2.87% 81.41

256 1886.73 ±53.75 2.87% 162.52

512 1886.91 ±53.75 2.87% 324.97

Table 4: FVA: Mfva = 128 ∗ 100, λ = 50bp, keeping 95% of the information in the

regressions for the conditional expectations.

The third and fourth columns in Table 3 show that, when 90% of the spectrum

is kept in the regressions for the conditional expectations, Mfva = 128 ∗ 100 outer

simulations are enough to ensure a reasonable accuracy. The second column shows

that the FVA values are then already stabilized after a low number Mmtm = 128

of inner simulations.

Table 4 shows the analogous results when 95% of the information is kept in the

regressions. As the confidence interval in the previous 90% case is far greater than

the impact on the FVA estimate of switching from 90% to 95%, we conclude that

keeping 90% of the spectrum is sufficient.

4.4. KVA on Swaps

Finally we consider the time 0 KVA and the embedded EC computations in the

context of the sizing and allocation of the default fund of a CCP (see the last

paragraph in Sect. 2.1). All the lower layers in Figure 1 are analytical in the con-

sidered (Black-Scholes) model, so that the computation is simply nested. The GPU

implementation involves the optimizations presented in Sections A, B.1, and C.

We consider a CCP with (n+ 1) clearing members, labeled by i = 0, 1, 2, . . . , n.

We denote by:

• T : an upper bound on the maturity of all claims in the CCP portfolio, also

accounting for a constant time δ > 0 of liquidating the position between

the bank and any of its counterparty in case of default;

• Di
t: the cumulative contractual cash flow process of the CCP portfolio of

the member i, cash flows being counted positively when they flow from the

clearing member to the CCP;

• MtMi
t = Et[

∫ T
t
β−1t βsdD

i
s]: the mark-to-market of the CCP portfolio of the

member i;

• τi and τ δi = τi + δ: the default and liquidation times of the member i, with

nondefault indicator process J i = 1[0,τi);

• ∆i
τδi

=
∫
[τi,τδi]

β−1t βsdD
i
s: the cumulative contractual cash flows of the mem-

ber i, accrued at the OIS rate, over the liquidation period of the clearing

member i;

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

22

• VMi
t, IM

i
t ≥ 0: VM and IM posted by the member i at time t.

By contrast with the Cover 2 rule, which is purely market risk based, Armenti and

Crépey (2017) study a broader risk-based specification for the sizing of the default

fund, in the form of a risk measure of the one-year ahead loss-and-profit of the CCP

if there was no default fund—loss-and-profit as it results from the combination of

the credit risk of the clearing members and of the market risk of their portfolios.

Such a specification can be used for allocating the default fund between the clearing

members, after calibration of the quantile level adf below to the Cover 2 regulatory

size at time 0.

Specifically, we define the loss process of a CCP that would be in charge of

dealing with member counterparty default losses through a CVAccp account (earning

OIS) and capital at risk at the aggregated CCP level as, for t ∈ (0, T] (starting from

some arbitrary initial value, since it is only the fluctuations of Lccp that matter,

and denoting by δτδi a Dirac measure at time τ δi),

βtdL
ccp
t =

∑
i

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(VMi

τi + IMi
τi)
)+

δτδi (dt)

+ βt(dCVAccp
t − rtCVAccp

t)dt

(4.10)

(and Lccp constant from time T onward), where the CVA of the CCP is given as

CVAccp
t = Et

∑
t<τδi <T

β−1t
(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(VMi

τi + IMi
τi)
)+
, 0 ≤ t ≤ T.

The ensuing economic capital process of the CCP is (cf. (2.8))

ECccpt = ESadft
(∫ t+1

t

β−1t βsdL
ccp
s

)
, (4.11)

which yields the size of an overall risk based default fund at the confidence quantile

level adf . Note that, in view of (4.10), we have in (4.11):∫ t+1

t

βsdL
ccp
s =

∑
t<τδi ≤t+1

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(VMi

τi + IMi
τi)
)+

− (βtCVAccp
t − βt+1CVAccp

t+1).

(4.12)

The KVA of the CCP estimates how much it would cost the CCP to remunerate

all clearing members at some hurdle rate h for their capital at risk in the default

fund, namely, for t ≤ T (cf. (2.9)),

KVAccp
t = hEt

[∫ T

t

βse
−hsECccps ds

]
, (4.13)

which we estimate at time 0 by

K̂VA
ccp

0 =
h

Mkva

Mkva∑
j=1

Nb−1∑
k=0

β̂k+1e
−hsk+1ÊC

ccp

k+1hk+1. (4.14)

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

23

Fig. 2: Economic capital processes: ‘- -’ unconditional, ‘· · · ∗’ quantile 1%, ‘—’ mean,

‘· · · •’ quantile 99%. Left: Mkva = 256 and Mec = 32∗100. Right: Mkva = 1024 and

Mec = 32 ∗ 100.

For our simulations we consider the CCP toy model of Armenti and Crépey

(2017), Section 4, where n + 1 = 9 members are clearing foreign exchange swaps

on a Black underlying, with all the numerical parameters used there (in particular,

adf = 99%). The time 0 KVAccp in (4.14) is computed in two alternative ways:

• By a GPU nested Monte Carlo procedure using the optimized sorting pro-

cedure of Section C for the inner ÊC
ccp

k+1 computations;

• By a non-nested proxy approach where ESadft is replaced by ESadf0 in (4.11)

and ÊC
ccp

k+1 is replaced by the corresponding (deterministic) term structure,

which we denote by ẼC
ccp

k+1, in (4.14).

We refer the reader to Equation (33) and the ensuing discussion in Albanese et al.

(2017) for the detail of the second procedure, motivated by the fact that, for the

computation of the KVA, an outer (unconditional) expectation will be applied any-

way: The comparison between Tables 5 and 6–7 shows that the ensuing bias on the

resulting time 0 KVA estimate, denoted by K̃VA
ccp

0 , may be acceptable, bearing in

mind the model risk intrinsic to such quantities.

Regarding the nested computation, Table 6 shows that the variance is acceptable

already for a low number, such as Mkva = 512, of outer simulations. Table 7 shows

that this is not specific to the relatively high number Mec = 1024 × 100 of inner

simulations used in Table 6: as we can see from Table 7, for Mkva = 1024, the KVA

value is already stabilized for Mec = 128× 100.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

24

Mkva K̃VA
ccp

0

128 ∗ 100 518.44

256 ∗ 100 515.49

512 ∗ 100 512.94

1024 ∗ 100 508.96

Table 5: KVA0 estimated by deterministic projections of economic capital, without

nested simulation.

Mkva K̂VA
ccp

0 CI 95% Rel. err. Exec. time (sec)

256 493.68 ± 11.80 2.39% 0.09

512 487.53 ± 8.82 1.80% 0.17

1024 489.03 ± 6.07 1.24% 0.34

2048 490.33 ± 4.19 0.85% 0.73

4096 491.55 ± 3.01 0.61% 1.24

Table 6: KVA0 estimated by nested simulation: Mec = 32 ∗ 100.

Mec K̂VA
ccp

0 value Exec. time (sec)

8 ∗ 100 479.89 0.09

16 ∗ 100 485.81 0.21

32 ∗ 100 489.03 0.46

64 ∗ 100 490.39 1.09

128 ∗ 100 491.32 3.14

Table 7: KVA0 estimated by nested simulation: Mkva = 1024.

4.5. Speedup Table

GPU optimizations, regarding a proper use of the different available memory layers

in particular, are important for effectively benefiting from the target ∼ 100 speedup

factor when compared with an optimized CPU implementation. Table 8 summarizes

the speedups obtained in our case studies thanks to the various GPU optimizations

detailed in the appendix. The rows of the table are labeled as the corresponding

sections in the appendix.

First, the computation times also displayed in the table show that NMC com-

putations are within reach provided GPU and the related optimizations are used,

even for computations involving portfolios of one hundred credit names, time back-

wardation of nonlinearities, or conditional risk measure computations: Although

the corresponding two-stage Monte Carlos would be quite heavy to implement on

a CPU, the GPU implementations, suitably optimized, are quite fast. Additional

speedups would readily follow from the use of several GPUs as explained in Sect. 3.4.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

25

CVA FVA KVA

Time Speedup Time Speedup Time Speedup

A. Nested simulation 5.80 3.5 80.51 3.5 0.96 3.5

B.1. Sorting defaults 0.22 1.2

B.2. Listing defaults 0.06 1.4

C. VaR and ES 0.12 20

D.1. Inner regressions 0.06 2

D.2. Outer regressions 0.05 3

Other 0.1 0.64 0.11

Table 8: Execution times (in seconds) and GPU optimization speedups in the NMC

case studies of Sect. 4.2 through 4.4: CVA for Mcva = 1024 ∗ 100 and Mmtm = 128;

FVA for Mfva = 128 ∗ 100 and Mmtm = 128; KVA for Mkva = 128 and Mec =

1024 ∗ 100.

The second take-away message, which corresponds to an “horizontal reading”

of Table 8, is that the optimization speedups are quite significant, as expected. We

emphasize that we are only considering here speedups internal to a GPU implemen-

tation more or less optimized in a way or another as detailed in the appendix, we

do not report on any CPU implementation execution times (that would be much

slower) or GPU versus CPU speedups (as an optimized GPU implemetation obvi-

ously dominates an optimized CPU implementation).

Last, one should not overdue a “vertical reading” of the table to the conclu-

sion, for instance, that defaults’ listing and sorting would be less important than

the other optimizations or that the inner regression phase is much faster than the

nested simulation of paths. This is model dependent and restricted to the setup

and implementation of the case studies that underlie all numbers in Table 8. Thus,

a careful reading of Section B shows that the relative importance of the defaults’

listing and sorting optimizations strongly depends on the default structure of the

considered model. Likewise, a numerically more robust implementation of the inner

regressions on few paths (hence prone to ill-conditioning, numerical instabilities and

sensitivity to roundoff errors), based on a spectral decomposition of the covariance

matrices that are repeatedly generated along inner simulation/regression stages (see

the end of Section D.1 and cf. also Sect. 4.3.2), could easily be 10 to 20 times slower

than Cholesky that was used in the inner regression case study of Sect. 4.2. Etc..

5. Perspectives

Due to the number of market input data involved in the calibration of a real-life

XVA engine, the consideration not only of the XVAs themselves, but also of all

the corresponding bump sensitivities, may easily increase the XVA computational

burden by a factor of ∼ 1000. Hence, another interesting topic left aside in this paper

for length sake is XVA Greeks and their GPU acceleration, whether performed by

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

26

the maximum likelihood method (see Albanese and Li (2010)), by (hard to handle

memory-wise though) adjoint differentiation (see Reghai, Kettani, and Messaoud

(2015)), or through various regression techniques. As initial margins, at least in a

bilateral SIMM setup, involve a sensitivity VaR, this is also the reason why we did

not show any MVA computations in our case studies (MVA in a centrally cleared

setup however can be tackled by similar tokens as the KVA of Sect. 4.4).

By their nature, XVA computations appeal very naturally to nested Monte Carlo

computations. However, whenever non-(or less-)nested Monte Carlo schemes are

available without bias, they should be preferred to a nested alternative. In partic-

ular, the parameterized stochastic approximation or “quasi-regression” algorithme

of Crépey, Fort, Gobet, and Stazhynski (2017), initially conceived for dealing with

model uncertainty, could also be used for reconstructing a conditional risk measure

such as VaR (for IM computations) or ES (for EC computations) as a function of

the risk factors (provided their number can be kept reasonable), with global error

control (cf. Sect. 3.1). To reduce further the complexity of the NMC structure, one

might also think of multi-level techniques à la Giles (2008).

Banks can use their economic capital as a funding source for variation margin.

Accounting for this feature results in the following modified FVA formula, instead

of (2.3) :

FVAt = Et
∫ T

t

β−1t βsλs

(
MtMs −VMs − CVAs − FVAs −MVAs − ECs(L)

)+
ds,

where we recall from Sect. 2.4 that the trading loss process L is the martingale

part of the CA = CVA + FVA + MVA process. The ensuing XVA equations “of

the McKean type” are shown to be well-posed in Crépey, Élie, Sabbagh, and Song

(2017). To solve them numerically, Albanese et al. (2017) resort to a Picard iterative

scheme, where each iteration is similar in nature to Figure 1 (or part of it, cf.

Sect. 3.2), combined with a proxy approach for the ECs(L) process, replaced by

its unconditioned version as considered in Sect. 4.4. An unbiased approach to these

equations would be another topic of future research.

APPENDIX. XVA NMC GPU Programming Optimization

Techniques

Although XVA NMC computations seem naively suited to parallel architectures like

graphic programming units (GPUs), a XVA NMC GPU implementation requires

various computational complexity and memory storage optimizations, which are

essential to achieve the potential ∼ 100 speedup with respect to an optimized CPU

implementation. These XVA NMC GPU programming optimization techniques are

detailed in the remaining sections of the paper.

First, we need to provide some details on the GPU hardware/software aspects,

referring the reader to Nvidia (2017b) for a detailed documentation. Originally de-

eBorrowing the terminology from An and Owen (2001).

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

27

veloped for gaming, beginning from around 2007, GPUs became extensively used for

simulation. The most important specifications that make GPU architecture highly

suited to NMC are (see Figure 3):

• A very large number of processing units grouped in streaming multipro-

cessors (SM). These units provide the sufficient computational power to

process in parallel independent tasks;

• A large bandwidth to read/write data on the GPU random access mem-

ory (RAM) known as global memory. An important bandwidth is crucial

to Monte Carlo since the performed operations are generally light when

compared to the time spent to access to the memory;

• A cached memory space shared between (the 128) processors of the same

streaming multiprocessor. This allows a very fast memory storage of ar-

rays shared by various processors and makes possible the communication

between them.

Streaming
Multiprocessor

Registers

L1VC
ache

Constant

Texture

Shared

...
L2VCache

{
{
{

GlobalVMemory{
V

V

V

V

V

V...

MemoryVclockedVatV
theVprocessingVrate

ProcessingVunits

CachedVmemory

GPUVRAM

Streaming
Multiprocessor

Registers

L1VC
ache

Constant

Texture

Shared

Streaming
Multiprocessor

Registers

L1VC
ache

Constant

Texture

Shared

Fig. 3: A simple presentation of the Nvidia GPU architecture.

From the computational point of view, the streaming multiprocessors (SMs)

execute blocks of (less than 1024) successive tasks known as threads. Once a block is

associated to an SM, each streaming processor performs the required computations

of various threads from the block. Within a block, the threads are organized in warps

of 32 threads executed at the same time. Threads of the same warp are synchronized

automatically at the hardware level, which is together convenient (in the sense that

the programmer does not need care about it) and efficient. However, because of this

intrinsic synchronization among threads of the same warp, the programmer has to

ensure that the number of threads in a waiting state is as small as possible. Waiting

states can be caused by conditional sentences like if clauses.

From the storage point of view, the global memory plays the role of the GPU

RAM. Because it is the largest memory space on the GPU (from 1GB to 16GB),

global memory is generally used by default. However, in order to reduce the time

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

28

of reading/writing values, instead of the global memory, one should use registers

and shared memory as much as possible. As opposed to the global memory,

shared memory and registers can only be accessed by their own streaming multi-

processors. Registers are the fastest and they are generally used for local variables.

Although slower than registers, shared memory stores arrays that can be handled

by all threads of the same block.

These are the main features that have made GPUs suitable, for more than

a decade, to parallel computing and deep learning algorithms, resulting in their

extensive use for artificial intelligence (see Coates, Huval, Wang, Wu, Catanzaro,

and Andrew (2013)). We refer the reader to Nvidia (2017b) regarding further generic

benefits of GPUs architecture in terms of concurrent execution, asynchronous data

transfer between GPU and CPU, mapping the CPU memory, shuffles, tensor cores

(introduced recently), etc..

There are many optimizations that must be considered in GPU programming

but are not specific to NMC for XVA. The three most common ones consist in

• ensuring that access to the RAM is as coalescing as possible,

• reducing divergence in the code, and

• using the constant memory (cf. Figure 3), very fast as read-only, for model

parameters.

RAM access coalescence and divergence management are as important as in a stan-

dard parallel implementation on CPU and we refer to Nvidia (2017b, 2017a) for

further details. As for the constant memory requirement, it is not so important

when the model is relatively simple so that the time spent in operations dominates

the time spent to read the parameters. However, it becomes essential when the

model involves a lot of parameters, e.g. with a local volatility model based on spline

interpolation. In such cases, storing the parameters in a read-only memory consid-

erably reduces the time spent to read the parameters and the execution time as a

consequence.

In the developments that follow we mostly focus on the use of warps, registers,

shared and global memories. For each optimization, we evaluate the speedup =

Tsimp/Topti, where Topti is the execution time of the optimized part of the code and

Tsimp is the execution time of the same part of the code but without the considered

optimization.

Appendix A. Optimizations Related to the Time Grids Used in

Factors Forwardations and Prices Backwardations

In this section, we present straightforward but very important optimizations needed

for the nested simulation of any stochastic process on GPUs. Without loss of gen-

erality, let X be the univariate diffusion (local volatility model)

dXt = Xt(b(t,Xt)dt+ σ(t,Xt)dWt), X0 = x, (A.1)

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

29

where W is a Brownian motion. To compute a derivative price Y driven by X, we

first have to discretize several paths of the SDE (A.1) on a fine forwardation grid

{0 = t0, . . . , tNf = T}. Then, given a backwardation subset {0 = s0, . . . , sNb} of

{t0, . . . , tNf }, one has to approximate

Ysk = E
(
φ(XsNb

)|Xsk

)
, for every 0 ≤ k < Nb, (A.2)

for a number of payoff functions φ.

In practice, the fine discretization {t0, . . . , tNf } used for the forwardation of the

underlying risk factors can be of the order of 100 time points per year in order

to ensure an acceptable time discretization error to the underlying SDEs, whereas,

in order to spare computational time and avoid an exploding accumulation of re-

gression errors in case of FVA computations (or MtM computations for American

claims), the coarse discretization {s0, . . . , sNb} used for prices backwardation can be

of the order of 10 time points per year. Hence the coarse discretization {s0, . . . , sNb}
is Nf/Nb ∼ 10 times smaller than {t0, . . . , tNf }.

Be it for computing the European derivative price (A.2), its American version, or

even risk measures conditional on the value of Xsk , 0 ≤ k < Nb, one has first to store

various realizations {Xsk}0≤k<Nb on the GPU RAM (or even on the CPU RAM

if the GPU RAM is not sufficient). All the discretized intermediate realizations of

{Xt}t∈{t0,...,tNf }\{s0,...,sNb} should only be stored temporarily in the shared memory.

We use shared memory that is faster than global memory. Morever, it is generally

impossible to use only registers for this purpose, since one needs to store arrays of

values in the case of multidimensional models. Registers, however, contain the state

vector of the random number generator (RNG) used for simulating these temporary

realizations.

More precisely, between each successive values {Xt}t=tk=sk′ ,tk+1=sk′′ stored in

the global memory, one simulates temporarily {Xt}t∈{sk′+1,...,sk′′−1} stored in shared

memory, which supposes the generation of various uniformly distributed random

numbers stored in a register as the RNG state vector. Even though the RNG state

is given by a vector, its size is fixed and thus does not have to be stored in an array.

The RNG that we use is a CMRG which is a combination, presented in L’Ecuyer

(1996), of two multiple recursive generators (MRGs). The first adaptation of CMRG

to GPUs was proposed in Abbas-Turki et al. (2009, 2014).

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

30

Fig. 4: The speedup, benefiting to all case studies (here in the context of the CVA

and FVA case studies of Sect. 4.3.2), from using registers and shared memory during

the nested simulation of the factor process X as a function of Nf/Nb, for Nf fixed

to 128.

For Nf = 128, Figure 4 shows the speedup obtained from this strategy when

Nf/Nb = 1, . . . , 128 (i.e. Nb = 128, . . . , 1). In the right part of Figure 4, the speedup

tanks, since the application becomes less memory bound than compute bound. In

the standard situation where Nf/Nb ∼ 10, the speedup is generally greater than

3.5.

Appendix B. Optimizations Related to Default Times

Be it introduced by the XVA itself or by defaultable claims involved in the un-

derlying market exposure, indicator functions on default events {τi ∈ A} increase

the complexity of an efficient parallel implementation. For the first situation, pre-

sented in Section B.1, we aim at reducing the GPU memory occupation for limiting

memory access and thus accelerating the execution. The optimization studied in

Section B.2 shows how to reduce thread divergence in order to take advantage of

the maximum computing power of GPUs. The situation faced in both cases is

∑
i∈S

1τi∈AY
i, (B.1)

where S is a set of obligors and τi can be simulated before Y i. We keep using

registers and shared memory as often as possible for both τi and Y i simulations.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

31

B.1. Sorting Defaults for Multiple Counterparties

Here S is a set of bank clients with associated counterparty exposures φi = φi(t, x),

the set A is a bounded time interval (sk, sk′ (with k′ > k), and Y i = φi(τi, Xτi).

Hence (B.1) can be rewritten as∑
bank clients

1sk<τi≤sk′ φi(τi, Xτi). (B.2)

If we had to simulate the process X on the fine discretization grid and then read

the memory using τi, the quantity of memory needed would be quite significant,

especially with NMC in view. Consequently, it is essential to only store in the global

memory the values taken by the Xτi (such that sk < τi ≤ sk′), which can only be

done after sorting the τi. This method spares the use of the global memory and

reduces the number of writings to it. Due to the reduced number of writings, we

also speed up the execution time, in particular as long as few defaults occurred, i.e.,

given the (low) intensity models that we use for the τi, during the first time steps

of the algorithm: see the left panel in Figure 5.

Fig. 5: The speedup obtained from using: Sorting defaults (left, in the context of

the KVA case study of Sect. 4.4); Listing defaults (right, in the context of the CVA

case studies of Sect. 4.2 and Sect. 4.3.1).

B.2. Listing defaults for defaultable claims

Now S is a set of reference obligors, A = (sk,∞), and Y i = Pi(sk, Xsk) for some

coarse time sk, where Pi = Pi(t, x) is a suitable (pre-default) pricing function. The

expression (B.1) reads as ∑
i∈set of obigors

1τi>sk Pi(sk, Xsk), (B.3)

where Pi(sk, Xsk) is assumed more difficult to simulate than τi, e.g. because it

requires another Monte Carlo simulation.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

32

If we associate a thread to each realization of {τi}i∈set of obligors, then it is possible

to have some threads returning for obligor i = 1 (say) 1τ1>sk = 1 and other threads

from the same warp returning 1τ1>sk = 0. This situation creates thread divergence

within the same warp, forcing threads/processors with 1τ1>sk = 0 to wait for the

others.

To overcome this divergence, we list for each thread all the surviving obligors in

order to make all threads computing together most of the time (there is always a

small divergence due to the number of surviving obligors which is different between

threads). Thus, the simulation of (B.3) is reduced to the simulation of

∑
i∈list of surviving obigors

Pi(sk, Xsk). (B.4)

The corresponding speedup is demonstrated by the right panel in Figure 5. We see

that the benefit of this strategy increases with the time index. This can be explained

by the accumulated number of defaults that also increases with time, resulting in

more divergence unless the above optimization is in place.

Appendix C. Optimized Sorting for VaR and ES Computations

Singh, Joshi, and Choudhary (2017) present a survey of the main GPU based sorting

algorithms: radix sort, merge sort, sample sort and quick sort. However, sorting for

computing risk measures such as VaR or ES is reduced to finding the |Q| largest

values from a list of |L| values with |L|� |Q|, where | · | denotes the cardinality. This

problem is less complex than sorting the whole list L and it shares some similarities

with the problem of finding the k nearest neighbours discussed, for instance, in

Li and Amenta (2015). The latter paper is based on merge sort, with complexity

O(|L| log |L|), the parallelization of which is the most suited to GPUs (see Green,

McColl, and Bader (2012)).

Here, we present an original method that allows to find the |L̃| largest values from

a list of |L| values in very few computations, of complexity O(|L|). The sublist L̃

satisfies |Q| ≤ |L̃| ≤ 2|Q|≤|L|. It is obtained from L thanks to successive truncations

that discard all the values smaller or equal to some threshold. One can then apply

merge sort on L̃ to get Q with an overall complexity O(|L|+ |L̃| log |L̃|).
Denoting the median, mean, and standard deviation by µ, m, and dev, the main

idea for obtaining at low cost L̃ is based on Mallows inequality |µ−m| ≤ dev, which

allows using the (computationally cheap) m and dev instead of the (sort intensive)

µ in order to pre-sort L: Basically (see Algorithm 2), starting from L, the list is

truncated successively (4 or 5 times are typically enough in practice) by keeping

the values superior or equal to (m+dev), m, or (m−dev). Because we only need to

compute m and dev, which have a linear complexity, the complexity of pre-sorting

L to obtain L̃ such that |Q| ≤ |L̃| ≤ 2|Q| is O(|L|).

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

33

1 Input: A large array L of unordered values, the size |Q| of Q;

2 L̃ = L;

3 while |L̃| > 2|Q| do

4 Compute the mean m and the standard deviation dev of L̃;

5 if the number of values in L̃ that are bigger than m+ dev is ≥ |Q| then

6 New L̃ = values bigger than m+ dev of the previous L̃

7 else if the number of values in L̃ bigger than m is ≥ |Q| then

8 New L̃ = values bigger than m of the previous L̃

9 else if the number of values in L̃ bigger than m− dev is ≥ |Q| then

10 New L̃ = values bigger than m− dev of the previous L̃

11 Use merge sort on L̃ to get Q

12 Return(The array Q.)

Algorithm 2: Optimized sorting algorithm for VaR and ES computations.

When parallelized on GPUs, the operations presented in Algorithm 2 need be

synchronized between threads. As we are performing NMC with a large number of

different lists L on which we need to compute some risk measure, we dedicate one

warp of 32 threads to each list L. This solution is very convenient as threads of the

same warp are automatically synchronized at the hardware level. Moreover, this

approach is not memory intensive, hence it scales well and is not limited by the size

of the shared memory as in Li and Amenta (2015).

Figure 6 shows the speedup obtained by this approach when compared to a

straightforward implementation of complexity O(|Q|×|L|) for finding the |Q| largest

values among |L| values.

Fig. 6: The speedup obtained in the FVA case study of Sect. 4.4 by the truncation

strategy for computing the ‘- -’ 1% largest values, ‘—’ 5% largest values, or ‘· · ·’
10% largest values from a sample list L.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

34

Appendix D. Regressions

Simulation/regression methods are widely used in mathematical finance. They occur

in the context of Longstaff-Schwartz type dynamic programming (DP) algorithms

that can be used for time 0 valuation of an early exercise derivative (see e.g. Abbas-

Turki et al. (2014), Clément et al. (2002), Longstaff and Schwartz (2001)). Such

algorithms can also be used for obtaining a proxy of the totality of a European

pricing function (cf. Crépey and Rahal (2014)), but we emphasize that, as explained

in Sect. 3.1, this comes without global error control.

Simulation/regression schemes are also commonly used for the resolution of non-

linear BSDEs (see Gobet, Lemor, and Warin (2005)), such as the one that appears

in asymmetric FVA computations. Other examples in the XVA context (subject to

the same “local versus global error control” reservation as above though) include

regression schemes that may be used for capturing conditional risk measures in the

context of MVA or KVA computations (see e.g. Moran and Wilkens (2017), Green

and Kenyon (2015), Anfuso et al. (2017), Anfuso et al. (2017)).

For a good overview on the kind of convergence associated to regression methods,

we refer the reader to Gerhold (2011). As explained in Newey (1995), when the

underlying risk factor process X has a density bounded away from zero (which

can always be achieved numerically by truncation of X), the asymptotic number of

trajectories has to be of the order of the cube of the cardinality of the regression

basis, which we refer to as the cubic rule below.

D.1. Regressions on Inner Trajectories

When the XVA implementation requires a regression on inner NMC trajectories,

this typically means relatively few paths as, on one hand, the computational cost

duplicated on the inner nodes would be too large otherwise and, on the other hand,

a non-negligible inner regression error is acceptable since it will be mitigated by

outer averaging anyway.

The main ingredient relies on the resolution of a largef number of smallg random

symmetric linear systems. For instance (cf. Figure 7), in a simply nested setup, the

implementation of a Longstaff-Schwartz algorithm on the inner trajectories requires

(Nb−k−1) regressions at each coarse time sk, k = 1, . . . , Nb−1, and for each outer

trajectory l ∈ {1, . . . ,M(0)}.

fBecause of “inner” and of (even coarse) time stepping.
gBecause few regressors are typically used in finance, especially here due to the cubic rule in regard

of the (relatively small) number of (inner) trajectories.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

35

Time steps

M(i-1)

M(i)

M(i)

M(i)

Fig. 7: Inner regression, such as the ones that appear in the Bermudan put CVA

case study of Sect. 4.2, are symbolized by yellow pavings. The fine blue paths denote

inner resimulated paths.

When the systems are well conditioned, the best solutions remain Cholesky or

LDLTh factorizations. A simple parallelization strategy would be to execute one

resolution per thread. But this is far from optimal. For a system with n unknowns,

the most appropriate GPU adaptation of LDLT, presented in Abbas-Turki and

Graillat (2017), involves 1 ≤ n∗ ≤ n threads that work together to solve each

system. In Figure 8 (Left), we see a clear benefit of using n∗ > 1 threads per system

when compared to the straightforward parallelization that involves only one thread

per system. In most Longstaff-Schwartz applications, the number of regressors is

smaller than 20 and the speedup is ∼ 2.

In addition, Abbas-Turki and Graillat (2017) explain how to filter out the nu-

merically null eigenvalues of an ill-conditioned regression covariance matrix, as the

ones that arise in nested regressions based on very few inner trajectories.

D.2. Regressions on Outer Trajectories

In contrast to DP on inner trajectories, BSDE simulation on outer trajectories

requires only few resolutions (one per coarse time step) of linear systems arising

from pricing equations of the form

Ysk = E
(
Φ(Zsk+1

)|Zsk
)

(D.1)

at coarse times sk, where Z = (X,H) includes both market factors X and de-

fault indicators encoded in the Markov chain component H (see Sect. 3.1). Many

outer paths are required for the sake of accuracy, but this is doable without harm

hCholesky implementation avoiding the use of square root functions.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

36

provided the regression covariance matrices are estimated off-line based on a large

number of outer trajectories. Once the covariance matrices computed, decomposed

into eigenelements, and stored in the GPU RAM, they can be reused for any BSDE

involving the same model on the outer layer of NMC.

Moreover, once we have the eigenelements of each covariance matrix, principal

component analysis (PCA) can be used to reduce the dimensionality of the compu-

tations. Figure 8 (right) shows the speedup obtained from keeping only 90% to 95%

of the spectrum (total variance) in a linear regression involving a common shock

default model driven by three CIR processes (|X| = 3) and specifying the default of

100 obligors. As time passes, it becomes more difficult to explain most of the vari-

ance with few eigenvalues, because the structure of the likely default configurations

becomes richer (as default intensities are “small”). However, in the 90% as in the

95% case, the dimensionality reduction speedup is never below 2, meaning that it

is never necessary to use more than half of the eigenvalues, hence half of the time

of what a full computation would take, to have a regression accounting for 90% or

95% of the spectrum.

0 10 20 30 40 50 60 70
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

System size

T
_s

im
p/

T
_o

pt
i

Fig. 8: The speedup obtained from optimized regressions. Left: in the case of regres-

sions on inner trajectories, such as the ones that appear in the Bermudan put CVA

case study of Sect. 4.2, by playing optimally with the number of threads n∗ devoted

to each linear system. Right: in the case of regressions on outer trajectories, such as

the ones that appear in the FVA case study of Sect. 4.3.2, by limiting the number

of eigenvalues accounted for in the regressions. ‘- - ’ keeping 90% of the spectrum,

‘—’ keeping 95% of the spectrum.

Acknowledgements

We thank Christophe Michel and Moez Mrad, from the quantitative CA-CIB re-

search group, for their useful feedback, as well as the participants of the Deep Learn-

ing & Accélération GPU and RIO conferences (UPMC and and IMPA, November

2017), where this work was first presented, for useful questions and remarks. The

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

37

PhD thesis of Babacar Diallo is funded by a CIFRE grant from CA-CIB and French

ANRT.

References

Abbas-Turki, L. and M. Mikou (2015). TVA on American Derivatives. hal-

01142874 (working paper).

Abbas-Turki, L., S. Vialle, B. Lapreye, and P. Mercier (2009). High Dimensional

Pricing of Exotic European Contracts on a GPU Cluster, and Comparison

to a CPU Cluster. in IEEE IPDPS: Parallel and Distributed Computing in

Finance.

Abbas-Turki, L. A., A. I. Bouselmi, and M. A. Mikou (2014). Toward a co-

herent Monte Carlo simulation of CVA. Monte Carlo Methods and Applica-

tions 20 (3), 195–216.

Abbas-Turki, L. A. and S. Graillat (2017). Resolving small random symmetric

linear systems on graphics processing units. The Journal of Supercomput-

ing 73 (4), 1360–1386.

Abbas-Turki, L. A., S. Vialle, B. Lapeyre, and P. Mercier (2014). Pricing deriva-

tives on graphics processing units using Monte Carlo simulation. Concurrency

and Computation: Practice and Experience 26 (9), 1679–1697.

Albanese, C. and L. Andersen (2014). Accounting for OTC derivatives: Funding

adjustments and the re-hypothecation option. Working paper available at

https://papers.ssrn.com/sol3/papers.cfm?abstract id=2482955.

Albanese, C. and L. Andersen (2015). FVA: What’s wrong, and how to fix it.

Risk Magazine, September 54–56.

Albanese, C., L. Andersen, and S. Iabichino (2015). FVA: Accounting and risk

management. Risk Magazine, February 64–68.

Albanese, C., T. Bellaj, G. Gimonet, and G. Pietronero (2011). Coherent global

market simulations and securitization measures for counterparty credit risk.

Quantitative Finance 11 (1), 1–20.

Albanese, C., S. Caenazzo, and S. Crépey (2017). Credit, funding, margin, and

capital valuation adjustments for bilateral portfolios. Probability, Uncertainty

and Quantitative Risk 2 (7), 26 pages. Available at http://rdcu.be/tHKo.

Albanese, C. and S. Crépey (2017). XVA analysis from the balance sheet. Working

paper available at https://math.maths.univ-evry.fr/crepey.

Albanese, C. and H. Li (2010). Monte Carlo pric-

ing using operator methods and measure changes. Working paper available

at https://papers.ssrn.com/sol3/papers.cfm?abstract id=1484556.

An, J. and A. Owen (2001). Quasi-regression. Journal of Complexity 17 (4), 588–

607.

Andersen, L., D. Duffie, and Y. Song (2017). Funding value adjustments. First

revised version available at https://ssrn.com/abstract=2746010.

Anfuso, F., D. Aziz, K. Loukopoulos, and P. Giltinan (2017). A sound modelling

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

38

and backtesting framework for forecasting initial margin requirements. Risk

Magazine, May 1–6.

Armenti, Y. and S. Crépey (2017). XVA Metrics for CCP optimisation. Working

paper available at https://math.maths.univ-evry.fr/crepey.

Bichuch, M., A. Capponi, and S. Sturm (2017). Arbitrage-free XVA. Mathemati-

cal Finance. First published online on 18 April 2017 (preprint version available

at ssrn.2820257).

Brigo, D. and A. Pallavicini (2014). Nonlinear consistent valuation of CCP cleared

or CSA bilateral trades with initial margins under credit, funding and wrong-

way risks. Journal of Financial Engineering 1, 1–60.

Cesari, G., J. Aquilina, N. Charpillon, Z. Filipovic, G. Lee, and I. Manda (2010).

Modelling, Pricing, and Hedging Counterparty Credit Exposure. Springer Fi-

nance.

Clément, E., D. Lamberton, and P. Protter (2002). An analysis of a least squares

regression algorithm for American option pricing. Finance and Stochastics 17,

448–471.

Coates, A., B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew (2013).

Deep learning with COTS HPC systems. Proceedings of the 30th International

Conference on Machine Learning 28 (3), 1337–1345.

Crépey, S. (2013). Financial Modeling: A Backward Stochastic Differential Equa-

tions Perspective. Springer Finance Textbooks.

Crépey, S., T. R. Bielecki, and D. Brigo (2014). Counterparty Risk and Funding:

A Tale of Two Puzzles. Chapman & Hall/CRC Financial Mathematics Series.

Crépey, S., R. Élie, W. Sabbagh, and S. Song (2017). When capital is a fund-

ing source: The XVA Anticipated BSDEs. Preprint version available at

https://math.maths.univ-evry.fr/crepey.

Crépey, S., G. Fort, E. Gobet, and U. Stazhynski (2017). Uncertainty quantifica-

tion for stochastic approximation limits using chaos expansion. hal-01629952.

Crépey, S. and T. M. Nguyen (2016). Nonlinear Monte Carlo schemes for counter-

party risk on credit derivatives. In Challenges in Derivatives Markets, Springer

Proceedings in Mathematics, pp. 53–82. Springer.

Crépey, S. and A. Rahal (2014). Simulation/regression pricing schemes for CVA

computations on CDO tranches. Communications in Statistics–Theory and

Methods 43 (7), 1390–1408.

Crépey, S. and S. Song (2016). Counterparty risk and funding: Immersion and

beyond. Finance and Stochastics 20 (4), 901–930.

Delmas, J.-F. and B. Jourdain (2006). Modèles aléatoires. Volume 57 of

Mathématiques et Applications. Springer.

Elouerkhaoui, Y. (2007). Pricing and hedging in a dynamic credit model. Inter-

national Journal of Theoretical and Applied Finance 10 (4), 703–731.

Elouerkhaoui, Y. (2016). From FVA to KVA: including cost of capital in deriva-

tives pricing. Risk Magazine, March 70–75.

Elouerkhaoui, Y. (2017). Credit Correlation: Theory and Practice. Palgrave

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

39

Macmillan. Forthcoming.

Embrechts, P., C. Klueppelberg, and T. Mikosch (1997). Modelling extremal

events for insurance and finance. Volume 33 of Applications of Mathemat-

ics. Springer.

Fujii, M. and A. Takahashi (2012a). Analytical approximation for non-linear FB-

SDEs with perturbation scheme. International Journal of Theoretical and Ap-

plied Finance 15 (5), 1250034 (24 pages).

Fujii, M. and A. Takahashi (2012b). Perturbative expansion of FBSDE in an in-

complete market with stochastic volatility. Quarterly Journal of Finance 2 (3),

1250015 (24 pages).

Gerhold, S. (2011). The Longstaff-Schwartz algorithm for Lévy models: Results

on fast and slow convergence. The Annals of Applied Probability 21 (2), 589–

608.

Giles, M. (2008). Multilevel Monte Carlo path simulation. Operations Re-

search 56, 607–617.

Gobet, E., J.-P. Lemor, and X. Warin (2005). A regression-based Monte Carlo

method to solve backward stochastic differential equations. The Annals of

Applied Probability 15 (3), 2172–2202.

Gobet, E. and S. Pagliarani (2015). Analytical approximations of BSDEs with

nonsmooth driver. SIAM Journal on Financial Mathematics 6, 919–958.

Gordy, M. B. and S. Juneja (2010). Nested simulation in portfolio risk measure-

ment. Management Science 56 (10), 1833–1848.

Green, A. (2015). XVA: Credit, Funding and Capital Valuation Adjustments. Wi-

ley.

Green, A. and C. Kenyon (2015). MVA by replication and regression. Risk Mag-

azine, May 82–87.

Green, A., C. Kenyon, and C. Dennis (2014). KVA: capital valuation adjustment

by replication. Risk Magazine, December 82–87. Preprint version “KVA: cap-

ital valuation adjustment” available at ssrn.2400324.

Green, O., R. McColl, and D. A. Bader (2012). GPU Merge Path – A GPU

Merging Algorithm. In 26th ACM International Conference on Supercomput-

ing (ICS), pp. 25–29. The ACM Digital Library.

Henry-Labordère, P. (2012). Cutting CVA’s complexity. Risk Magazine, July 67–

73.

Hull, J. and A. White (2012). CVA and wrong way risk. Financial Analyst Jour-

nal 68, 58–69.

Iben Taarit, M. (2017). Pricing of XVA Adjustments: from Expected Exposures

to Wrong-Way risks. Ph. D. thesis, Université Paris-Est. Forthcoming.

L’Ecuyer, P. (1996). Combined multiple recursive random number generators.

Operations Research 44, 5.

Li, M. and F. Mercurio (2015). Jumping with default: wrong-way risk modelling

for CVA. Risk Magazine, November.

Li, S. and N. Amenta (2015). Brute-force k-nearest neighbors search on the GPU.

February 21, 2018 9:39 WSPC/INSTRUCTION FILE XVA-NMC-GPU-
REVISED

40

In Similarity Search and Applications, pp. 259–270. Springer.

Longstaff, F. A. and E. S. Schwartz (2001). Valuing American options by simula-

tion: A simple least-squares approach. The Review of Financial Studies 14 (1),

113–147.

Moran, L. and S. Wilkens (2017). Capturing initial margin in counterparty risk

calculations. Journal of Risk Management in Financial Institutions 10, 118–

129.

Newey, W. K. (1995). Convergence rates and asymptotic normality for series

estimators. Journal of Econometrics 79, 147–168.

Nvidia (2017a). Cuda C best practices guide.

Nvidia (2017b). Cuda C programming guide.

Nvidia (2017c). Nvidia NVLink TM high-speed interconnect: Application perfor-

mance.

Pykhtin, M. (2012). General wrong-way risk and stress calibration of exposure.

Journal of Risk Management in Financial Institution 5, 234–251.

Reghai, A., O. Kettani, and M. Messaoud (2015). CVA with Greeks and AAD.

Risk Magazine, December.

Singh, D. P., I. Joshi, and J. Choudhary (2017). Survey of GPU based

sorting algorithms. International Journal of Parallel Programming , DOI

10.1007/s10766–017–0502–5.

