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Lipschitz stability for an inverse hyperbolic problem of

determining two coefficients by a finite number of observations

L. Beilina * M. Cristofol S.Lit M. Yamamoto §

Abstract

We consider an inverse problem of reconstructing two spatially varying coefficients in an acoustic
equation of hyperbolic type using interior data of solutions with suitable choices of initial condi-
tion. Using a Carleman estimate, we prove Lipschitz stability estimates which ensures unique
reconstruction of both coefficients. Our theoretical results are justified by numerical studies on the

reconstruction of two unknown coefficients using noisy backscattered data.

1 Statement of the problem

1.1 Introduction

The main purpose of this paper is to study the inverse problem of determining simultaneously the

function p(x) and the conductivity p(z) in the following:
p(x)0%u — div (p(z)Vu) = 0 (1.1)

from a finite number of boundary observations on the domain 2 which is a bounded open subset of
R"™, n>1.
The reconstruction of two coefficients of the principal part of an operator with a finite number of obser-

vations is very challenging since we mix at least two difficulties, see [15] for the case of a principal matrix
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term in the divergence form, arising from anisotropic media, [25] for Lame system and [6, 13, 38, 39, 40]

for Maxwell system.

To the best knowledge of the authors, the present paper for the first time establishes the uniqueness
and the Lipschitz stability (Theorem 1.1) in determining two important physical coefficients p and p in
the conductivity equation with observed data coming from suitably chosen two initial values. Taking
into consideration the degrees of freedom of unknown coefficients and observation data, we should note
that the formulation with twice changed initial data is not over-determining. On the other hand, in [15],

w coefficients, we need to choose initial displacement w-times with spatial

for determining
dimension n, which is over-determining. Furthermore, we use the uniqueness and the Lipschitz stabil-

ity to perform numerical reconstruction with noisy observations to be more close to real-life applications.

Bukhgeim and Klibanov [19] created the methodology by Carleman estimate for proving the
uniqueness in coefficient inverse problems. After [19] increasing number of works have been published
on this topic. We refer to some of them, see [11, 12, 15, 16, 17], [26] - [28], [32] - [34], [37, 48]. In all
these works except the recent works [5, 6], only theoretical studies are presented. From the other side,
the existence of a stability theorems allows us to improve the results of the numerical reconstruction
by choosing different regularization strategies in the minimization procedure. Particularly, we refer
to Imanuvilov and Yamamoto [27] which established the Lipschitz stability for the coefficient inverse
problem for a hyperbolic equation. Our argument in this paper is a simplification of [27] and Klibanov

and Yamamoto [37].

To the authors knowledge, there exist few works which study numerical reconstruction based
on the theoretical stability analysis for the inverse problem with finite and restricted measurements.
Furthermore, the case of the reconstruction of the conductivity coefficient in the divergence form for

the hyperbolic operator induces some numerical difficulties, see [3, 7, 10, 22] for details.

In numerical simulations of this paper we use similar optimization approach which was applied
recently in works [3, 5, 6, 8, 10]. More precisely, we minimize the Tikhonov functional in order to
reconstruct unknown spatially distributed wave speed and conductivity functions of the acoustic wave
equation from transmitted or backscattered boundary measurements. For minimization of the Tikhonov
functional we construct the associated Lagrangian and minimize it on the adaptive locally refined meshes
using the domain decomposition finite element /finite difference method similar to one of [3]. Details
of this method can be found in forthcoming publication. The adaptive optimization method is imple-

mented efficiently in the software package WavES [47] in C++/PETSc [45].

Our numerical simulations show that we can accurately reconstruct location of both space-



dependent wave speed and conductivity functions already on a coarse non-refined mesh. The contrast
of the conductivity function is also reconstructed correctly. However, the contrast of the wave speed
function should be improved. In order to obtain better contrast, similarly with [2, 7, 8], we applied an
adaptive finite element method, and refined the finite element mesh locally only in places, where the a
posteriori error of the reconstructed coefficients was large. Our final results attained on a locally refined
meshes show that an adaptive finite element method significantly improves reconstruction obtained on
a coarse mesh.

The outline of this paper is as follows. In Section 2, we show a key Carleman estimate, in Section 3 we
complete the proofs of Theorems 1.1 and 1.2. Finally, in Section 4 we present numerical simulations
taking into account the theoretical observations required in Theorem 1.1 as an important guidance.

Section 5 concludes the main results of this paper.

1.2 Settings and main results

Let Q C R™ be a bounded domain with smooth boundary 9€2. We consider an acoustic equation
p(x)0%u(x,t) — div (p(z)Vu(z,t)) =0, 2€Q,0<t<T. (1.2)
To (1.2) we attach the initial and boundary conditions:
u(z,0) = a(z), Owu(z,0)=0, x€Q (1.3)

and

u(z,t) = h(x,t), (z,t) €00 x (0,T). (1.4)

By u(p, p, a, h) we denote a solution in W4 (€2 x (0, 7)) to the problem (1.2)-(1.4). For sufficiently
smooth positive coefficients p and p and initial and boundary data, we can prove the unique existence
of such a solution by a classical argument (e.g., Lions and Magenes [42]) but omit details. Functions
p, p are assumed to be positive on ) and are unknown in . They should be determined by extra data

of solutions w in €.

Throughout this paper, we set 9; = %, 0;0; = %{;_, 0? = g—;, 1<i4,5<n.
J - T J

Let w C Q2 be a suitable subdomain of €2 and T' > 0 be given. In this paper, we consider an inverse
problem of determining coefficients p = p(z) and p = p(z) of the principal term, from the interior
observations:

u(z,t), rzew 0<t<T.

In order to formulate our results, we need to introduce some notations. Henceforth (-,-) denotes
the scalar product in R™, and v = v(x) the unit outward normal vector to d€2 at z. Let the subdomain
w C  satisfy

Ow D {x e Q; ((x —xo) - v(z))) > 0} (1.5)



with some 2o € . We note that w C  cannot be an arbitrary subdomain. For example, in the case of
a ball Q, the condition (1.5) requires that w should be a neighborhood of a sub-boundary which is larger
than the half of 9. The condition (1.5) is also a sufficient condition for an observability inequality by
observations in w x (0,7T) (e.g., Ch VII, section 2.3 in Lions [41]).

We set

2

A= (sup |z — x0]? — inf |z — x0|2> . (1.6)
z€Q zeQ

We define admissible sets of unknown coefficients. For arbitrarily fixed functions ny € C%(Q), n1 €

(C?(Q))™ and constants M; > 0,0 < 0y < 1,6, > 0, we set

U = Ul g = {p € C2Qi p=mo, Vp =1 on o0 (L.7)

Iplloe < Mi, p> 01 ODQ},

u :U12\41,01 = {P € C*(QY); lolcey < My, p=61 on Q}»

(Vpp™") - (& = 20))

u :uMlﬁo,@lJ]mm,l’o = {(p7p) € Z/[l X Z/{Q; <1-— 9()7 x € Q\w}

2pp~1(x)
We note that there exists a constant My > 0 such that HV (%) HC@) < My for each (p,p) €
Ut x U2
Then we choose a constant 5 > 0 such that
MoA .
B+ \/(;Tlﬂwoel, 61 inf |z — o[> — FA® > 0. (1.8)

Here we note that such 3 > 0 exists by zo ¢ Q, and in fact 3 > 0 should be sufficiently small.

We are ready to state our first main result.

Theorem 1.1. Let ¢ € U' be arbitrarily fized and let a1,as € C3(Q) satisfy

|div (¢Vae)] >0, £=1orl=2,

_ (1.9)
((div (¢Vaz)Vay — div (¢Va1)Vaz) - (x — x0)) >0 on Q.
We further assume that
u(q, 0, ap, hy) € WH(Q x (0,T)), £=1,2
and
A
T>——. (1.10)
VB
Then there exists a constant C > 0 depending on Q,T,U,q,c and a constant My > 0 such that
2
lp = gl @) + o = oll2@) < C Y lulp, p, ar, he) — ulg, o, an, he) || 13 0,75L2 () (1.11)

{=1



for each (p,p) € U satisfying
[u(p, p, ae, he) [ wae (@x 0,7)) < Ma. (1.12)

The conclusion (1.11) is a Lipschitz stability estimate with twice changed initial displacement
satisfying (1.9). In Imanuvilov and Yamamoto [28], by assuming that p = ¢ = 1, a Holder stability
estimate is proved for p — ¢, provided that p and ¢ vary within a similar admissible set. However, in
the case of two unknown coefficients p, p, the condition (1.9) requires us to fix ¢ € U* and the theorem

gives stability only around given ¢, in general.

Remark 1. In this remark, we will show that with special choice of a1, as, the condition (1.9) can be
satisfied uniformly for ¢ € U, which guarantees that the set of a1,aq satisfying (1.9), is not empty.
We fir ay,by € C?(Q) satisfying

(Vai(z) - (x —x0)) >0, |Vbha(x)| >0, x€Q. (1.13)
We choose v > 0 sufficiently large and we set
as(z) = €702,
Then Orpag = 7(5‘kb2)67b2(m) and
Aay = (72| Vbg|? +yAby)e?b2,

and so

div (¢Vas) = qAas + Vq - Vay = (q7*|Vba|* + O(v))e™*

and

(div (¢Vaz)Vai — div (¢Va1)Vas) - (z — o))

=12 ({(q7*|Vba|* + O(7))Var — div (¢Va1)yVba}) - (z — x0)
=e72(q7°|Vhs|*(Var - (z — 0)) + O(7))

>e Mitaen 12() (420, irgg{IVbz(w)\z(Val(x) (z = 20))} +0(7))

for each ¢ € U'. Therefore, for large v > 0, by (1.13) we see that (1.9) is fulfilled. Moreover this choice
of ay,as is independent of choices of ¢ € U, and there exists a constant C > 0, which is dependent on

O, T,U, My but independent of choices (p, p), (q,0), such that (1.11) holds for each (p,p),(q,0) EU.

Without special choice such as (1.13), we consider the stability estimate by not fixing ¢. If we can
suitably choose initial values (n + 1)-times, then we can establish the Lipschitz stability for arbitrary

(p,p), (q,0) €U.



a1
Theorem 1.2. Let A := € (C3(Q))"*1 satisfy
Qp41

det (O A(x),...,0nA(x), AA(z)) #0, =z €. (1.14)

We assume (1.10). Then there exists a constant C > 0 depending on Q, T, U, ap,he, £ =1,2,...,n+1
and a constant My > 0 such that

n+1

lp—dallmr @) + llp—ollr2@) < CZ [u(p, p; ae, he) — u(q, o, ae, he) | 520,702 () (1.15)
=1

for each (p, p), (q,0) € U satisfying
||’U/(p, P, ay, h@)HW‘l’m(QX(O,T))a Hu<Q7 g,ay, hé)HW4~°°(Q><(O,T)) S M27 { = 17 27 FR + 1.

Example 1. This example illustrates how to choose initial values satisfying (1.14). In Theorem 1.1
it 1s sufficient to choose only two suitable initial values, while in Theorem 1.2 we need to choose them
(n + 1)-times. However, the condition (1.14) on the initial values can be realized more easily than the

condition (1.9).
For example, we can choose the following initial displacement ay, ..., an41. For an invertible matrix
D = (dij)i<ij<n, dij € R, we define a1, ..., an by

ae(z) = Zdzﬂk, (=1,2,...n
k=1

and assume Aay1(x) # 0 for z € Q.

Then we can easily verify that this choice ay, ..., an41 satisfies (1.14).

We note that Theorems 1.1 and 1.2 yield the uniqueness for our inverse problem in the respective

case.

2 The Carleman estimate for a hyperbolic equation
We show a Carleman estimate for a second-order hyperbolic equation. We recall that ¢/ is defined by
(1.7).

Let us set

Q=Qx(-T,7).

For xp ¢ 2 and 8 > 0 satisfying (1.8), we define the functions ¢ = ¥(x,t) and ¢ = ¢(z,t) by

Pz, t) = |z — x| — B2 (2.1)



and
p(,t) = VD (2.2)
with parameter A > 0. We add a constant Cy > 0 if necessary so that we can assume that ¥ (x,t) > 0
for (z,t) € @, so that
pla,t) =1, (2,t) €Q.
We show a Carleman estimate which is derived from Theorem 1.2 in Imanuvilov [24]. See

Imanuvilov and Yamamoto [28] for a concrete sufficient condition on the coefficients yielding a Carle-

man estimate.

Lemma 2.1. We assume (u,1) € U, and that (1.5) holds for some xo € Q. Let y € HY(Q) satisfy

Fy(w,t) —pAy=F inQ (2.3)

and
y(x,t) =0, (x,t) €9 x (-T,T), Fy(x,+T)=0, z€Q, k=0,1. (2.4)

Let
T> A (2.5)

VB

We fix X\ > 0 sufficiently large. Then there exist constants sg > 0 and C > 0 such that
T
/ (8| Veeyl? + s |y[?)e**Pdadt < C/ |F|?e*?dxdt + C’/ /(s|8ty|2 + 83|y|?)e* Pdxdt  (2.6)
Q Q T Jw
for all s > sq.

Henceforth C' > 0 denotes generic constants which are independent of choices of (p, p), (¢,0) € U
and the parameter s > 0 in the Carleman estimates, provided that s > sq.

Setting I' = {z € 99; (x — x0) - v(x) > 0}, one can prove a Carleman estimate whose second term

on the right-hand side of (2.6) is replaced by

T
/ / s|Vy - v|2e*$?dSdt,
-7Jr

and as for a direct proof, see Bellassoued and Yamamoto [18], Cheng, Isakov, Yamamoto and Zhou [20].
In Isakov [29], a similar Carleman estimate is established for supp y C @, which cannot be applied to

the case where we have no Neumann data outside of I'.

For the Carleman estimate, we have to assume that 0Fy(-,£7) = 0 in Q for k = 0,1, but
u(p, p,a, h), u(q,o,a,h) do not satisfy this condition. Thus we need a cut-off function which is defined

as follows.



By (1.10) and the definitions (2.1) and (2.2) of v, ¢, we can choose dy € R such that
o(x,0) > do, @z, £T) < dy, x €. (2.7)
Hence, for small ¢y > 0, we find a sufficiently small £; > 0 such that
p(z,t) > do+eo,  (2,1) € Ux [~e1,e1] (2.8)

and

o(x,t) < do — 0, (z,t) € AX ([T, =T + 2e1] U [T — 21, T)). (2.9)
We define a cut-off function satisfying 0 < x < 1, x € C*°(R) and

0, —TStS—T-’-{-:l, T—ElgtST,
x() = (2.10)
y —T+251§t§T—281.

Henceforth we write x/(t) = ‘C%(t), X' (t) = dz—x(t).

In view of the cut-off function, we can prove

Lemma 2.2. Let (p,p) € U and let (2.5) hold, and we fix A > 0 sufficiently large. Then there exist

constants sg > 0 and C > 0 such that

/ (8| Vsu® + s*|u)?)e*Pdrdt < C’/ |p02u — div (pVu)|*e**¥ dadt
Q Q

T
+ 053625(d°_5°)||u||?{1(@ + C/ /(s|6,gu|2 + 83|u|?)e** P dxdt (2.11)
-TJw

for all s > 5o and u € HY(Q) satisfying pdiu — div (pVu) € L*(Q) and ulsq = 0.

Proof. We notice

u=xu+(1—x)u.

Then
/ (8| Ve iul* + s%|ul?)e**? dxdt
Q
§2/ (8| Vot (xu)|? + s |xul?)e?*Pdxdt + 2/ (8| Ve (1 = x)u)[? + s3(1 — x)ul?)e?*?dadt.
Q Q

Since the second term on the right-hand side does not vanish only if T'— 2e;y < [¢| < T, that is, only if
o(x,t) < do —eo by (2.9), we obtain

/ (8| Ve cul® + s*ul?)e**?daxdt
Q

= 2/ (sIV et (xw) 2 + 8 xul)e ¢ dadt + Os*e> =) u|% . (2.12)
Q



On the other hand, we have

92 (xu) (1) = EA(xu) + 22 - V(xu) + 2x/Bu+ x"u in Q,

xulaa = 0,
OF(xu)(,£T) =0 inQ, k=0,1.

Therefore, applying Lemma 1 to (83 - %A) (xu) by regarding % - V(xu) + 2x'0u + x"u as non-

homogeneous term, and choosing s > 0 sufficiently large, we obtain
J R R R e
Q

SC’/ |K(p6t?u —div (pVu)) [2e**?dxdt
Q P

T
+C/ 12X/ Opu + X u|? e dadt + C/ /(s|8t(xu)|2 + 8% xul?)e** ¢ dadt
Q T Jw

SC/ |p02u — div (pVu)|?e**?dxdt
Q

T
+Ce2s(d°_80)\|u||%,1(@ + C/ /(s|8tu|2 + 83|ul?)e** P dxdt.
T Jw

At the last inequality, we used the same argument as the second term on the right-hand side of (2.12).
Substituting this in the first term on the right-hand side of (2.12), we complete the proof of Lemma
2.2.

O

We conclude this section with a Carleman estimate for a first-order partial differential equation.

Lemma 2.3. Let A € (CY(Q))" and B € C*(Q), and let

Qf = A(z) - Vf(z) + B(x)f, feH(Q).

We assume

(A(z) - (z —20)) #0, x€Q. (2.13)
Then there exist constants sqg > 0 and C' > 0 such that
/ 52|f|2623”($’0)daz < C’/ |Qf|2e23¢($’0)d:1c (2.14)
Q Q
for s > sg and f € H} () and
/ S+ VP 0de < © / (QfP +IV(Q)P)e* =V dx (2.15)
Q Q
for s > sg and f € H3(Q).

The proof can be done directly by integration by parts, and we refer for example to Lemma 2.4

in Bellassoued, Imanuvilov and Yamamoto [14].



3 Proofs of Theorems 1.1 and 1.2

3.1 Proof of Theorem 1.1

We divide the proof into three steps. The argument in the second step is a simplification of the
corresponding part in [27], while the energy estimate (3.16) in the third step modifies the argument
towards the Lipschitz stability in [37].

the first step: Even extension in t.

We set

y(a)(m,t) = U(p, Py a, h)(:ﬂ,t) - u(q7a, a, h)($7t)7 R(l‘,t) = u(q, g,a, h)(l’,t),

and we write y in place of y(a). We define

f(@) =p(x) —q(z), g(z)=p)-0(@), 2 0<t<T (3.1)
Then we have
p02y(x,t) — div (p(z)Vy(z,t)) = div (f(z)VR) — gd2R(x,t) in Q x (0,T), (3.2)
and
y(2,0) = y(2,0) =0, z€9Q, ylog = 0. (3.3)

We take the even extensions of the functions R(z,t), y(z,t) on t € (=T,0). For simplicity, we denote
the extended functions by the same notations R(x,t),y(z,t). Since y € W4>(Q x (0,T)), y(-,0) =
9yy(+,0) = 0 and §; VR(-,0) = 0 by dyu(q, o,a, h)(-,0) = 0 in Q, we see that (3 R)(-,0) = (9}y)(-,0) = 0
in 2, and so R € W4>(Q),
y e Wh(Q)

and

poty(x,t) — div (p(2)Vy(z,t)) = div (f(2)VR) — o R(w,t) in Q,

y(z,0) = dwy(x,0) =0, z€Q, (3.4)

y=0 ondQx (-T,T).

We set
y1 = y1(a) = dy(a), ya = y2(a) = y(a). (3.5)

Henceforth we write y; and ys in place of y1(a) and yz(a) when there is no fear of confusion. Then

div (¢Va)

1
0?R(z,0) = 0?ulq,0,a,h)(z,0) = Ediv (¢(x)Vu(g,0,a,h))|t=0 = .

10



and dyy2(z,0) = 9Py(z,0) = 0 for x € Q, because we can differentiate the first equation in (3.4) and

substitute ¢ = 0 in terms of y € W4°°(Q). Hence we have

p02y1 (z,t) — div (p(2) Vi (2, 1)) = div (f(2)VOR) — gO3R = Gy in Q,
y1(z,0) =0,

Ou(,0) = Ldiv (fVa) — g,

y1 =0 ondQx (-T,T)

and
pOZys(x,t) — div (p(x)Vya(x, 1)) = div (f(x)VIZR) — g0/ R =: G in Q,
y2(z,0) = %div(fva) _ QW»

Oy2(r,0) =0, =z €,

y2=0 on IQ x (-T,T).

(3.7)

the second step: Weighted energy estimate and Carleman estimate.

Let k = 1,2. First, by multiplying the first equations in (3.6) and (3.7) by 20;yx, we can readily

see

A (plOwyrl® + pIVyel*) — div (2p(Owyr) V) = 2(8iyk)Gr  in Q. (3.8)

Multiplying (3.8) by x(t)e*¥ and integrating by parts over £ x (—T,0), we have

0
/ / (X0 (plBu]?) + X0, (p| Vs 2) drdt
—T JQ

0 0
—/ /XeQS“"div (Qp(atyk)Vyk)dxdt:/ /XeQWGkQ(@tyk)dmdt. (3.9)
w T JQ

-T
For k = 2, by ya2|aq = 0, x(—T) = 0 and the initial condition of ys, we have

[the left-hand side of (3.9)]
0
= / [xe**? plDeyo| 1= pd — / / (X' + 25x01p)p|Osya|*e** P dudt
Q -7Jo
0
4 [ eVl gde = [ [ (4 25301000/ Vua e i
Q -1Jo
0
+/ /2sx(V<p-Vyg)Qp(atyg)eQS“’dmdt
-TJo
Z/p|Vy2(x,0)|2625“’(“"’0)dx7C/ 8| Vry2|?e**?dadt.
Q Q

Here we augmented the integral over Q x (=7,0) to Q := Q x (=T, T), and used |x' + 2sx0rp| < Cs
in @ and
125X (Vo - Vy2)Brya| < Cs|Vya||iy2] < Cs[Vayal® in Q.

Moreover

[the right-hand side of (3.9)] < C’/ |Go|?e**? dadt + C'/ 5|0y | e** P dxdt. (3.10)
Q Q

11



Therefore (3.9) and (3.10) yield
/ |Vya(z,0)] 22 @0 dz < C’/ |Go|2e**?dxdt + C'/ 8|V 1ya|2e** ¥ dadt. (3.11)
Q Q Q
Applying Lemma 2.2 to (3.7) and substituting it into (3.11), we obtain
/Q Vs (,0)Pe?#=Dd < C /Q |Ga|?e**?dadt + Cs°e* D=0 | ys|[311 ) + CD3 (3.12)
for s > sp. Here and henceforth we set
Di = eyl ey, F=1,2 (3.13)
For k = 1, we can similarly argue to have
/ |y2 (1,7 0)‘2625(‘0(m’0)d$ — / |8ty1 (.T, 0)|2623<p(x,0)daj
Q Q
<C /Q |G1[Pe**?ddt + Cs>e* (00 ||y, |31 ) + CD} (3.14)
Hence (3.12) and (3.14) imply

/(|Vy2(x,0)|2 + |y2 (2, 0)]?)e?*¢@0) gy (3.15)
Q

SO/ (IG1? + |G2[?)e**? dadt + 053625(‘1“’5”)(Hylllip(@ + llv2ll @)
Q
+C(D? + D3)

for s > sq.
the third step: Energy estimate for Hy1||%11(Q) and ||y2|\12L11(Q).

Applying a usual energy estimate to (3.6) and (3.7), in terms of the Poincaré inequality, we have
L (Ve OF + (o O )da
T
gc/(m,tyk(x,onu|yk(x,0)|2)dx+c/ / Gy Pdedt, k=1,2,
Q -1 Ja
for =T <t <T. Consequently
Ill7r @) < C/ (IVaz.tyr(, 0) > + |yn(, 0)|*)dz + C/ |G |2dxdt, k=1,2. (3.16)
Q Q
Substituting (3.16) into (3.15) and using e2*? > 1, we obtain
/<|Vy2(% 0)? + g2 (@, 0)[*)e**# = der
Q

gC/(|G1\2+ \G2|2)625(’”dxdt+053623(‘10_50)/(|Vy2(m,0)\2+|y2(x,0)|2)dx
Q Q

12



+CsPes(do—e0) /Q(|012 + |Ga)dadt + C(D? + D3),
that is,
[ (V0,0 + (o 0) )01 — Csteedoeom vt gy
< (5B e2a(do—0) / (IGL 2 + |Go[2)dudt + c/ (1G1 2 + |Gal2)e>?dudt
Q Q
+C(D? + D2),
By (2.8), choosing s > 0 sufficiently large, we have
1 — CsPe2(do—z0—9(@.0) > | _ OgB4c0s > 1
Hence
(V3.0 + s (o 0))ee# e

gcs3628<do-€o>/(|G1|2+|Gz\2)dxdt+c/(\Gl|2+|G2|2)e2wczxdt+0(pf+pg)
Q Q

for all large s > 0. By the definitions of G; and G2 in (3.6) and (3.7), we see that

2

Y IGP < CUVIE + 111 +191?) in Q.
k=1

Consequently, recalling (3.5): y1 = y1(a) and y2 = y2(a), we obtain

/ (Vyz(a)(z,0)[2e259@0) gy (3.17)
Q

<Ot e [ (VS |7 + 1o )dodt+ C [ (V4P + |2+ lgf)e* dade
Q Q
+C(D? + D3)
Substituting (3.16) into (3.14), we can similarly argue to have

/ lya(a) (2, ) 2e290) d (3.18)
Q

§053628<d0‘€°)/(|Vf|2+|f|2+|g|2>dxdt+0/<|Vf|2+|f|2+|g|2>e28“°dxdt
Q Q
+CD?

for all large s > 0.
Setting a = ay, az, by the initial condition in (3.7), we see

py2(ae)(z,0) = div (fVae) — Mg, =1,2. (3.19)

13



Then, eliminating g in the two equations in (3.19), we obtain

(div (¢Vaz)Va, —div (¢Va1)Vasz) - Vf + ((div (¢Vaz)Aay — (div (¢Var)Aasz) f

=pdiv (¢Vasz)y2(a1)(z,0) — pdiv (¢Va1)y2(az)(z,0) in Q.

Applying (2.15) in Lemma 2.3 to this first-order equation in f, by the second condition in (1.9), we

have

§2 / (VS + |f )20 gy (3.20)
Q

S/ |div (¢Vasz)y2(a1)(x,0) — div (¢Vaq )y2(az2)(z, 0)|2625“’(z’0)d$
Q

+C /Q |V (div (¢Vasz)yz(a1)(z,0) — div (¢Vay )yz(az)(x, 0))|?e252 @0 dy:

2
=C <Z(|Vy2(ae)($, 0)* + 1/2(6!@)(3770)2) 2P0 dg.
& \e=1

Moreover, assuming that the first condition in (1.9) holds with ¢ = 1 for example, we have

g

= W(div (fVay) — py2(a1)(x,0)) on Q,

9

and so

lg(@)| < C(IVF(@)] + £ ()] + [y2(ar) (z,0)]), =€ Q.

Hence, applying (3.20) and (3.17)-(3.18) for y2(a1)(x,0) and ya(az)(x,0), we obtain

/ (VA2 4 1F2 + g/2)e2#@0) da (3.21)
Q

§083€28(d0_50)/(‘Vf|2 + |f‘2 + \g|2)dx

Q

+c/ (VFP + f1? + lgP)e>*dudt + CD?.
Q

Here we used |yi(z, —t)| = |yx(z,t)|, & = 1,2 which is seen by the even extension of y(-,t) in ¢, and

recall (3.13), and we set

2
D? = Z u(p, p, ae, he) — u(q, 0, ar, he)”%l3(07T;L2(w))' (3.22)
(=1

We will estimate the second term on the right-hand side of (3.21) as follows.
J TP+ 11 o+ lgf)esedade
Q

T
=/(|Vf|2 +[fI? + |g)*)ese =0 </ eQS(ﬂP(Ivt)@(“))dt) dx.
Q

-T

14



Since

@(x7t) - QO(J),O) = eklr_zo‘z(e—)\ﬁtZ _ 1)
<= e)‘minze§|93—$o\2(1 — 6_)\Bt2) < _00(1 — e_/\ﬂtz) in Q7
we have

T T
/ e2sle@t)=e(@0) gy < / exp(—2sCy(1 — e_)"Btz))dt =0(1)
-7

=T

as s — 00, where we used the Lebesgue convergence theorem. Therefore

[ (912 11+ lgP)esedadt < o1) [ (VP +17F +1gf)e?*#=Oda
Q Q

as s — oo, and choosing s > 0 sufficiently large, we can absorb the second term on the right-hand side

of (3.21) into the left-hand side. By (2.8), we have e25¢(#:0) > ¢2s(do+20) g6 that from (3.21) we obtain
sttor) [(97P 4 |1 + lgP)de
)
<=0 [ ([Vf2 4|2 +|gf)do + CD?
Q

for all large s > 0. For large s > 0, we see that e?s(dote0) _ O g3¢25(do—20) > (), Hence fixing such s > 0,

we reach

J VIR 415 + lgese= e < OB (3.23)
Q

By the definition (3.22) of ﬁQ, the proof of Theorem 1.1 is completed.

3.2 Proof of Theorem 1.2.

Again we set

pya(ag)(x,0) = div (fVay) — Mg
n d'
:;(@w)akf + (Aag) f — Mg), 0=1,..,n+1.
that is,
> (Oran)orf — wg = pya(ag)(2,0) — (Aag)f, £=1,..,n+1. (3.24)

k=1

We rewrite (3.24) as a linear system with respect to (n 4+ 1) unknowns o1 f, ..., Onf, g:

n 81]0
day - Opa — LS (Okq)Ohar — qé%
Onf
Oansr - Onanpr —5 Sy (1) Onan sy — gL
g

15



py2(a1)(z,0) — (Aay) f

py2(an+1)(7,0) — (Aani1)f

In the coefficient matrix, multiplying the j-th column by %8jq, j=1,2,...,n and adding them to the

(n + 1)-th column, we obtain

[the determinant of the coefficient matrix]

day - Opay _qe%
=det
gAan
8la'nJrl ot ana/n+l - o +
81a1 s anal Aal
— — Lyt : : : : on Q.
o
8lan-i-l o ana/n-‘,-l Aan-i—l

Therefore by the assumption (1.14), there exists a constant C' > 0, independent of choices of (p, p) and
(g,0), such that

n+1
IVf(@)P +g(2)* < C (Z |py2(ae) (@, 0)* + If(x)|2> , TEQ,

=1
and so

n+1

/(lVfl2 + [g?)e? O d < C/ > lyalae)(@, 0)]?e* 0 da +/ |f ()P O de. (3.25)
Q Qi Q
We consider a first-order partial differential operator:
(Qof)(z) = (x —x0) - Vf(z), z€Q (3.26)
By o € €, the condition (2.13) is satisfied, and (2.14) in Lemma 2.3 yields
52/ |f(z)]2e?¢ @0 dy < O/ [((x — m) - V f(x)?e2¢ =0 dy
Q Q
SC’/ |Vf(:c)|2625“"(””’0)dz
Q
for all large s > 0. Therefore
2 2sp(x,0) c 2 2sp(x,0)
[f(@)PP e P de < = | [V f(2) ™7 P da
Q Q

for all large s > 0. Substituting this inequality into the second term on the right-hand side of (3.25) and
absorbing into the left-hand side by choosing s > 0 large, in terms of (3.18) with y2(as), £ =1,2,...,n+1,

n+1
/(IVfI2 + |2+ lg?)e? =D dadt < C/ D lya(ae)(z,0) PV dz
@ =1
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a) Q b) QFEM:QI UQg

Figure 1: a) Computational mesh used in the domain decomposition of the domain Q = QrepUQrpas.

b) The finite element mesh in Qpgy = Q1 U Qa.

<(Cs3e?s(do—20) /Q(|Vf|2 + £ + 9?)e®*? @0 dzdt

n+1

+C'/Q(|Vf|2 + |17 + |gI*)e**?dzdt + C Z s%e %y (ao) I (.02 w))
st

for all large s > 0. Similarly to (3.23), we can absorb the first and the second terms on the right-hand

side into the left-hand side, so that we can complete the proof of Theorem 1.2.

4 Numerical Studies

In this section, we present numerical simulations of the reconstruction of two unknown functions p(x)

and p(x) of the equation (1.1) using the domain decomposition method of [3].

To do that we decompose the computational domain €2 into two subregions Qpgy and Qppas
such that Q = Qpgy UQppay with two layers of structured overlapping nodes between these domains,
see Figure 1 and Figure 2 of [4] for details about communication between Qg and Qpprr. We will
apply in our computations the finite element method (FEM) in Qpgas and the finite difference method
(FDM) in Qppps. We also decompose the domain Qpgys into two different domains 4, Qs such that
Qreym = Q1 U Qs which are intersecting only by their boundaries, see Figure 1. We use the domain
decomposition approach in our computations since it is efficiently implemented in the high performance
software package WavES [47] using C++ and PETSc [45]. For further details about construction of

Qrpy and Qppyr domains as well as the domain decomposition method we refer to [3].

The boundary 992 of the domain 2 is such that 992 = 0,Q U 02 U 032 where 0:$) and 012 are,
respectively, top and bottom parts of €2, and 032 is the union of left and right sides of this domain.
We will collect time-dependent observations I'y := 9;Q x (0,T) at the backscattering side 9,2 of Q.
We also define I'y 1 := 019 % (0,t1], T'1 2 := 01Q x (t1,T), T'g := 282 x (0,T) and T's := 958 x (0,T).
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Test 1 Test 2 Test 3 Test 4

| B | Bed
Iiiiﬁf Iiﬁii?
Exact p(z)
Test 1 Test 2 Test 3 Test 4

:
[

23333
21111

s
| B
2556
230
21111
18889 18689
16667

1.4444
12222
1

16667

14444
12222
1

Figure 2:  Ezact Gaussian functions p(z) and p(x) in Q1 in different tests.

We have used the following model problem in all computations:
p(x)0%u(x,t) — div ((p(z)Vu(z,t)) =0 in Qp,
u(z,0) = a(x), w(xz,0)=0in Q,
Bnu = f(t) on 1_‘1717

(4.1)
Opu = —0uon I'y 2,
Opu = —0yu on I's,
Opu =0 on I's.

In (4.1) the function f(t) represents the single direction of a plane wave which is initialized at 9;Q in

time ¢ = [0,2.0] and is defined as

sin (wyt) , ift € (0, 3—”) ,
1) = f (12)
0, if t > 27,
wr
We initialize initial condition a(z) at the boundary 0, as
w(z,0) = fo(x) = e~ @IHTHT5) L cogt|,_g = e~ (Fitwa+ad), (4.3)

We assume that both functions p(z) = p(x) = 1 are known inside Qppas U Qs. The goal of our

numerical tests is to reconstruct simultaneously two smooth functions p(x), p(z) of the domain Q; of
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Figure 3:
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Reconstructions obtained in Tests 1-4 on a coarse mesh for different noise levels § in data.
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Figure 1. The main feature of these functions is that they model inclusions of a very small sizes what

can be of practical interest in real-life applications.

We set the dimensionless computational domain €2 in the domain decomposition as
Q={z=(r1,22) : 71 € (—1.1,1.1),z2 € (—0.62,0.62)} ,
and the domain Qrgys as
Qrepyv = {z = (r1,22) 1 21 € (—1.0,1.0), 22 € (—0.52,0.52)} .

We choose the mesh size h = 0.02 in 2 = Qpgp UQppas, as well as in the overlapping regions between

FE/FD domains.
We assume that our two functions p(x), p(z) belongs to the set of admissible parameters
M, ={p € C*(Q); 1< p(z) <10},
M, = {p € C*(Q); 1 <p(x) <5}
We define now our coefficient inverse problem which we use in computations.

Inverse Problem (IP) Assume that the functions p(x),p(x) of the model problem (4.1) are
unknown. Let these functions satisfy conditions (4.4,) and p(x) = 1,p(x) =1 in the domain Q\QpgMm-.
Determine the functions p(x),p(x) for x € Q\Qrpm, assuming that the following function u (x,t) is
known

u(x,t) =u(z,t),¥(z,t) €Ty. (4.5)

To determine both coefficients p(x),p(x) in inverse problem IP we minimize the following

Tikhonov functional

1

J(p(x),p(x)) == J(u,p,p) = 5/1“ (u — )2 25 (t)dsdt

1 1 (4.6)
+5m /Q(p —po)? da + 502 /Q(p ~po)® da.
Here, @ is the observed function u in time at the backscattered boundary 0;(2, the function u satisfy
the equations (4.1) and thus depends on p, p, po, po are the initial guesses for p, p, correspondingly, and
a;,t = 1,2, are regularization parameters. We take pg = 1,pg = 1 at all points of the computational
domain since previous computational works [3, 10, 2, 7] as well as experimental works of [43, 44] have
shown that a such choice gives good results of reconstruction. Here, z5(t) is a cut-off function chosen
as in [3, 10, 7]. This function is introduced to ensure the compatibility conditions at Q7 N {t = T} for
the adjoint problem, see details in [3, 10, 7].

To solve the minimization problem we take into account conditions (4.4) and introduce the La-

grangian
r 0%u
L(v) = J(u, p,p) + / / A(pW — div (qu)) dadt, (4.7)
aJo t
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where v = (u, A, p,p). Our goal is to find a stationary point of the Lagrangian with respect to v
satisfying Vo = (u, A, p, P)
L'(v;0) =0, (4.8)

where L'(v;-) is the Jacobian of L at v. To find optimal parameters p, p from (4.8) we use the conjugate
gradient method with iterative choice of the regularization parameters «;,j = 1,2, in (4.6). More
precisely, in all our computations we choose the regularization parameters iteratively as was proposed
in [1], such that o} = oz?(n—&— 1)7%, where n is the number of iteration in the conjugate gradient method,
g€ (0,1) and oz? are initial guesses for a;,j = 1,2. Similarly with [35] we take a; = 6¢, where § is the
noise level and ( is a small number taken in the interval (0, 1). Different techniques for the computation
of a regularization parameter are presented in works [23, 30, 31, 46], and checking of performance of
these techniques for the solution of our inverse problem can be challenge for our future research.

To generate backscattered data we solve the model problem (4.1) in time T' = [0, 2.0] with the
time step 7 = 0.002 which satisfies to the CFL condition [21]. In order to check performance of the
reconstruction algorithm we supply simulated backscattered data at 9;€ by additive, as in [3, 10, 7],
noise 6 = 3%, 10%. Similar results of reconstruction are obtained for random noise and they will be

presented in the forthcoming publication.

4.1 Test 1

In this test we present numerical results of the simultaneous reconstruction of two functions p(z) and
p(z) given by
p(x) = 1.0 + 4.0 - ¢~ (71703)%+(@2-0:8)%)/0.001
+4.0- ef(zr{’+(m270.4)2)/0.001
(4.9)
p(x) —1.0+20- e—((acl—0.3)2-1—(272—0.3)2)/0.001

+2.0- e—($§+(1'2—0.4)2)/0.0017

which are presented in Figure 2.

Figures 3 show results of the reconstruction on a coarse mesh with additive noise § = 3%, 10% in
data. We observe that the location of both functions p,p given by (4.9) is imaged correctly. We refer

to Table 1 for the reconstruction of the contrast in both functions.

To improve contrast and shape of the reconstructed functions p(x) and p(x) we run computations
again using an adaptive conjugate gradient method similar to the one of [7]. Figure 4 and Table 1 show
results of reconstruction on the three times locally refined mesh. We observe that we achieve better

contrast for both functions p(z) and p(z), as well as better shape for the function p(x).
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Table 1. Computational results of the reconstructions on a coarse and on adaptively refined meshes together with
computational errors in the mazimal contrast of p(x), p(x) in percents. Here, NZ, Ng denote the final number of iterations

in the conjugate gradient method on j times refined mesh for reconstructed functions p and p, respectively.

Coarse mesh
0 =3% 0=10%
Case maxg, p | error, % Ng Case maxg, p | error, % Ng
Test 1 | 4.13 17.4 13 Test 1 | 3.74 25.2 12
Test 2 | 4.38 12.4 15 Test 2 | 3.84 23.2 13
Test 3 | 5.14 2.8 16 Test 3 | 5.08 1.6 16
Test 4 | 4.12 17.6 14 Test 4 | 3.9 22 13
Case maxgq, p | error, % Ng Case maxgq, p | error, % Ng
Test 1 | 3.09 3 13 Test 1 | 2.9 3.33 12
Test 2 | 3.63 21 15 Test 2 | 3.16 5.33 13
Test 3 | 3.63 21 16 Test 3 | 3.74 24.67 16
Test 4 | 3.4 13.3 14 Test 4 | 3.24 8 13
Adaptively refined mesh
Case maxgq, p | error, % | N g Case maxgq, p | error, % | N. g
Test 1 | 5.2 4 Ng’ =9 Test 1 | 5.3 6 Ng’ =7
Test 2 | 5.24 4.8 N2 =6 Test 2 | 5.5 10 N2 =10
Test 3 | 5.2 4 N3 =1 Test 3 | 5.28 5.6 N3 =1
Test 4 | 5.5 10 NS’ =8 Test 4 | 5.36 7.2 NS’ =38
Case | maxgq,p | error, % | N} Case | maxgq,p | error, % | N}
Test 1 | 3.1 3.33 N} = Test 1 | 2.8 6.67 N} =1
Test 2 | 3.57 19 N = Test 2 | 3.4 13.3 N2 =9
Test 3 | 3.39 13 N} = Test 3 | 3.49 16.3 N} =1
Test 4 | 3.4 13.3 NS’ =14 Test 4 | 3.26 8.67 N;’ =10
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4.2 Test 2

In this test we present numerical results of the reconstruction of the functions p(x) and p(z) given by
three Gaussians shown in Figure 2 and given by
p(z) = 1.0 +4.0- o~ ((21-0.3)+(22-0.3)%)/0.001
+40- ef(ﬂ??+(2270.4)2)/0.001

+4.0- e—((zl+0.3)2+(m2—0.2)2)/0.001,

4.10
p(ac) =1.04+2.0- e—((xl—0.3)2+(x2—0.3)2)/0.001 ( )
4+ 2.0 o (@i+(@2-0.4)%)/0.001

+20- ef((wl+0.3)2+(w270.2)2)/0.001.

Figures 3 show results of the reconstruction on a coarse mesh with additive noise § = 3%, 10% in
data. We observe that the location of three Gaussians for both functions p, p is imaged correctly, see
Table 1 for the reconstruction of contrast in these functions.

To improve contrast and shape of the reconstructed functions p(x) and p(x) we run computations
again using an adaptive conjugate gradient method similar to the one of [7]. Figure 5 and Table 1
show results of reconstruction on the two times locally refined mesh. We observe that we achieve better
contrast for both functions p(z) and p(x), as well as better shape for the function p(x). Results on the
three times refined mesh were similar to the results obtained on a two times refined mesh, and we are

not presenting them here.

4.3 Test 3

This test presents numerical results of the reconstruction of the functions p(z) and p(z) given by four
different Gaussians shown in Figure 2 and given by
p(z) =1.0+4.0- e—((wl—0.3)2+(z2—0.3)2)/0.001
+ 4.0 - o~ (@ +(22-0.4)%)/0.001
+ 4.0 - o~ ((2140.3)?+(22-0.2)*)/0.001
+4.0- e_((ml+0.15)2+(I2—0.3)2)/0.0017
(4.11)
p(z) =1.0+20- e—((;cl—0.3)2+(x2—0.3)2)/0.001
+20- e—(w§+(m2—0.4)2)/0.001
+2.0- e*((wl+0.3)2+(x2—0‘2)2)/0.001
+ 2.0 - o~ ((21+0.15)*+(22-0.3)?)/0.001
Figures 3 show results of the reconstruction of four Gaussians on a coarse mesh with additive

noise 0 = 3%, 10% in data. We have obtained similar results as in the two previous tests: the location
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of four Gaussians for both functions p,p already on a coarse mesh is imaged correctly. However, as
follows from the Table 1, the contrast should be improved. Again, to improve the contrast and shape
of the Gaussians we run an adaptive conjugate gradient method similar to one of [7]. Figure 6 shows
results of reconstruction on the three times locally refined mesh. Using Table 1 we observe that we

achieve better contrast for both functions p(z) and p(x), as well as better shape for the function p(z).

4.4 Test 4

In this test we tried to reconstruct four Gaussians shown in Figure 2 and given by
p(x) =1.0+4.0- o~ ((£1-0.3)+(22—0.3)%)/0.001
+ 4.0 - o~ (#1+(z2-0.4)%)/0.001
1+4.0- o~ ((21+0.3)+(22-0.2)%)/0.001

4 4.0 e @iH@2-0.2)%)/0.001

4.12
—1.0+20- e—((acl—0.3)2+(x2—0.3)2)/0.001 ( )

p(x)
+2.0- e—(x§+(x2—o.4)2)/o.oo1
+92.0- e’((11+O'3)2+(12’0'2)2)/0'001

+92.0- o (@i+(x2-02)%)/0.001

We observe that two Gaussians in this example are located one under another one. Thus, backscattered
data from these two Gaussians will be superimposed and thus, we expect to reconstruct only three

Gaussians from four.

Figure 3 shows results of the reconstruction of these four Gaussians on a coarse mesh with additive
noise § = 3%, 10% in data. As expected, we could reconstruct only three Gaussians from four, see Table
1 for reconstruction of the contrast in them. Even application of the adaptive algorithm can not give

us the fourth Gaussian. However, the contrast in the reconstructed functions is improved, as in Test 3.

5 Conclusions

In this work we present theoretical and numerical studies of the reconstruction of two space-dependent
functions p(x) and p(x) in a hyperbolic problem.

In the theoretical part of this work we derive a local Carleman estimate which allows to obtain a
conditional Lipschitz stability inequality for the inverse problem formulated in section 1. This stability
is very important for our subsequent numerical reconstruction of the two unknown functions p(z) and
p(z) in the hyperbolic model (4.1).

In the numerical part we present a computational study of the simultaneous reconstruction of two
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functions p(z) and p(z) in a hyperbolic problem (4.1) from backscattered data using an adaptive
domain decomposition finite element/difference method similar to one developed in [3, 7]. In our
numerical tests, we have obtained stable reconstruction of the location and contrasts of both functions
p(x) and p(x) for noise levels 6 = 3%, 10% in backscattered data. Using results of Table 1 and Figures
4-6 we can conclude, that an adaptive domain decomposition finite element/finite difference algorithm
significantly improves qualitative and quantitative results of the reconstruction obtained on a coarse

mesh.
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