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A GRADIENT FLOW APPROACH TO RELAXATION RATES FOR THE

MULTI-DIMENSIONAL CAHN-HILLIARD EQUATION

L. DE LUCA, M. GOLDMAN, AND M. STRANI

Abstract. The aim of this paper is to study relaxation rates for the Cahn-Hilliard equation
in dimension larger than one. We follow the approach of Otto and Westdickenberg based on
the gradient flow structure of the equation and establish differential and algebraic relationships
between the energy, the dissipation, and the squared Ḣ−1 distance to a kink. This leads to a

scale separation of the dynamics into two different stages: a first fast phase of the order t
−

1

2

where one sees convergence to some kink, followed by a slow relaxation phase with rate t
−

1

4

where convergence to the centered kink is observed.
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1. Introduction

In this paper we consider the Cahn-Hilliard equation on the strip S := Q × R ⊆ R
d with

1 ≤ d ≤ 5

(1.1)

{
ut −∆(G′(u)−∆u) = 0 x ∈ S, t > 0
u(0) = u0,

where Q is the (d−1)-dimensional torus defined by Q := R
d−1/Zd−1 and G is the standard double

well potential G(u) := (1−u2)2

4 .
As first observed in [6], (1.1) can be seen as the gradient flow of the energy functional

E(u) :=

∫

S

1

2
|∇u|2 +G(u) dx

with respect to the Ḣ−1 norm. Motivated for instance by the theory of phase transition, a very
important class of stationary solutions to (1.1) is given by the so-called kink states or planar
transition fronts defined as the one-dimensional functions

(1.2) K := {vc(·) = v0(· − c) : c ∈ R} ,

where v0(z) := tanh
(

z√
2

)
is the solution of

(1.3) −v0zz +G′(v0) = 0 v0 → ±1 as z → ±∞, v0(0) = 0 .

These are minimizers of the energy E(u) under the condition that u(x′, z) → ±1 as z → ±∞.
Indeed, for any w ∈ C∞(R) with w(z) → ±1 as z → ±∞, using the Modica-Mortola trick, we
have

Ez(w) :=

∫

R

1

2
|wz|

2 +G(w) dz ≥ Ez(v) =

∫ 1

−1

√
2G(s) ds =: m0 ,

so that the functions in K are the only minimizers of Ez among the functions with ±1 boundary
conditions at ±∞. Moreover, for any function u ∈ C∞(S) with u(x′, z) → ±1 as z → ±∞ and
for any v ∈ K,

E(u) =

∫

Q

∫

R

1

2
|∇u|2 + G(u) dx′ dz ≥

∫

Q

∫

R

1

2
|∂zu|

2 + G(u) dx′ dz ≥

∫

Q

Ez(v) dx
′ = m0 ,

1
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so that the kink states are also minimizers of E . The aim of this paper is to prove asymptotic
stability of these states together with optimal convergence rates. We thus extend to higher di-
mensions previously known results in the 1d case (see [16] and references therein).
In our analysis we assume that the initial condition u0 satisfies

(1.4)

∫

S

(u0 − v0) dx = 0 .

Our main result states that solutions of (1.1) with initial data which are close enough to a kink
state converge to v0 at two different time-scales: a faster time-scale on which the solution u to
(1.1) converges to the L2 closest kink vc(t) defined by

(1.5) vc(t) ∈ argmin{‖u(t)− v‖L2 : v ∈ K} ,

and a slower time-scale on which vc(t) converges to v0. Roughly speaking, in the first step the
convergence is driven by the energy decay while in the latter the mass conservation plays a role
through the assumption (1.4) .

Before precisely stating the main theorem we introduce the three relevant quantities, the rela-
tions among which will allow us to prove the desired decay rates. These quantities are the energy
gap, the dissipation and the squared distance defined respectively by

E(u) := E(u)−m0(1.6)

D(u) :=

∫

S

|∇(∆u−G′(u))|2 dx(1.7)

H(u) := inf
F∈L2(S)

divF=u−v0

∫

S

|F |2 dx = ‖u− v0‖
2
Ḣ−1

,(1.8)

where we have adopted the usual convention that if the set {F ∈ L2(S) : divF = u−v0} is empty,
then H(u) = +∞. To shorten the notation, we set E0 := E(u0), D0 := D(u0) and H0 := H(u0) .
Notice that if H0 < ∞ then necessarily (1.4) holds.

We are now in a position to state our main result.

Theorem 1.1. Let 1 ≤ d ≤ 5. For every H, E > 0, there exists δ0 > 0 such that for every

u0 ∈ L∞(S) with H0 ≤ H, E0 ≤ E and ‖u0 − v‖L∞ ≤ δ0, there exists a unique solution u =
u(t, x) ∈ C∞((0,+∞)× S) of (1.1).
Moreover, u(t) ∈ L∞(S) ∩ (vc(t) +H1(S)) and

(1.9)
‖u(t)− vc(t)‖H1 . G

1

2

0 t
− 1

2 ,

‖u(t)− v0‖H1 . G
1

2

0 t
− 1

4 ,

where G0 := H0 + E0 + E7
0 .

Let us observe that the discussion in [16] indicates that the relaxation rates obtained in (1.9) are
optimal. The proof closely follows the strategy laid in the case d = 1 by Otto and Westdickenberg
in [16]. It consists of a non-linear energy-based method which builds on the gradient flow structure
of (1.1) and combines algebraic and differential relationships between E , H and D together with
an ODE argument. This scheme has been successfully implemented to obtain convergence rates to
equilibrium in various related problems [5, 2] and has recently proven pivotal to study coarsening
rates for the Cahn-Hilliard equation (see [17]). However, since all these results deal with one
dimensional systems and since some of the central arguments used in [16] are one dimensional by
nature, it was unclear if their strategy could be extended to higher dimensional problems. The
main difference with the proof of [16] lies in the linearized energy gap and dissipation estimates
where we replace the arguments of [16] by the use of the Lassoued-Mironescu trick [14]. Another
main difference is that one of the most technical point in the analysis of [16] is to prove that the
energy gap controls the L∞ distance of the solution to the kink. This allows the authors to make
a Taylor expansion of the energy around the kink which is at the basis of most of the arguments.
Unfortunately, in higher dimension this cannot be the case since having finite energy does not even
guarantee to be bounded. For this reason, we need to assume that the initial data is close in L∞
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to some kink and must prove that this property is preserved during the evolution. We thus obtain
a perturbative result as opposed to the one in [16] where the only requirement besides H0 < ∞
is that E0 < 2m0. Let us point out that since we assume somewhat a priori L∞−closeness to a
kink, we can relax the requirement on the energy gap and merely assume that it is finite. The
restriction on the dimension comes from the fact that as already underlined, we need to be able to
prove that the L∞ distance to a kink remains small under the evolution which by the non-linear
dissipation estimate and the Gagliardo-Nirenberg inequality is possible if d ≤ 5 (see (3.2) and
(3.3)). Even though the literature on the Cahn-Hilliard is very vast (see for instance [18, 3, 15]),
we were not able to find an existence result of classical solutions suiting our needs. Therefore,
although it might be well-known to the experts, we decided to include a global existence result
(see Theorem 5.3) for (1.1). The proof is inspired by [15] and is based on a Banach fixed point
theorem in weighted Hölder spaces.

We now briefly recall the (few) results in the literature about the stability of planar wave
solutions of related models in higher dimensional domains. We refer again to [16] for a more
detailed discussion. In the whole space case R

d with d ≥ 3, Korvola, Kupiainen, and Taskinen
[13] established the asymptotics of the solution under the assumption that the initial datum is
close to a kink state in a weighted L∞ norm. In such a case, the translation of the front tends
to zero as the time tends to infinity but the perturbation does not decay in the standard diffusive

t
1

2 fashion (as it is the case for us) but with a t
1

3 scaling. The method used by the authors is
very different from our variational approach and is based on a careful analysis of the semi-group
generated by the linearization. A similar method has been used by Howard in [9] to extend this
stability result to R

2. The analysis by Howard makes use of pointwise estimates on the Green’s
function for the linearized operator in order to locate the shifts of the planar wave, through the
local tracking method. This analysis has been extended by the same author to the non-linear case
[10, 11] as well as to systems [12].
Let us mention that a similar (in spirit) result to ours has been obtained by Carlen and Orlandi
in [1]. There, the authors study the stability of planar fronts for a non-local equation on the strip
S ⊆ R

d, where d = 2, 3 . They prove that if the initial datum is L2-close to a front and localized,
then the solution relaxes to another front in the L1-norm. They also provide relaxation rates for
the L2-norm as well as rate of decrease for the free energy. However, as already pointed out in
[16] the method of [1] cannot give optimal rates.

The paper is organized as follows:

• In Section 2 we prove some preliminary results which are used throughout the paper.
• Section 3 is devoted to the energy gap E and dissipation D estimates.
• In Section 4 we prove the main relaxation result Proposition 4.1. It is obtained by
combining algebraic and differential relations between E , H , D and c together with an
ODE argument.

• Finally, in Section 5, we prove the first part of Theorem 1.1, namely the global existence
and uniqueness of smooth solutions to (1.1). We first obtain a local existence and
uniqueness result (Theorem 5.1) and then, using the estimates obtained in Section 3
and in Section 4, we show that the solution can be extended for any positive time.

Acknowledgments: We warmly thank J.F. Babadjian, F. Cacciafesta and G. De Philippis for
very useful discussions related to the local existence result Theorem 5.1. The hospitality of the
Université Paris-Diderot and the Università di Roma “Sapienza” where part of this research was
done are gratefully acknowledged. In the early stage of this work, LDL was funded by the DFG
Collaborative Research Center CRC 109 “Discretization in Geometry and Dynamics”. Part of this
work was carried out while LDL was visiting Università di Roma “Sapienza” and Università di
Milano “Bicocca”, thanks to the program “Global Challenges for Women in Math Science”. MG
was partially supported by the PGMO project COCA. MS was supported in the early stage of
this work by the INdAM Fellowiship in Mathematics for Experienced Researchers cofounded by
Marie Curie actions.
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Notation Let Q := R
d−1/Zd−1 be the (d − 1)−dimensional torus. We will always work in

the strip S := Q × R. For any x = (x1, . . . , xd−1, xd), we use the notation x = (x′, z) where
x′ := (x1, . . . , xd−1) and z := xd. We denote by ∇′ the gradient operator with respect to the
variable x′ = (x1, . . . , xd−1) and set ∇ := (∇′, ∂z). Moreover, for the distributional derivatives
of a function w = w(t, x), we will sometimes use the shorthand notation wxl

:= ∂xl
w (for any

l = 1, . . . , d − 1) as well as wz := ∂zw and wt := ∂tw. Also, with a little abuse of notation
and whenever the context is not ambiguous, w(t) will denote the function w(t, x) seen a function
depending only on the space variable x. Finally, we write A . B if there exists a universal constant
C < ∞ such that A ≤ C B. We define & analogously and say A ∼ B if B . A . B. We will also
occasionally use the notation ≪ or ≫. For instance, A(x) ≪ B for x ≫ 1 means that for every
δ > 0 there exists M < ∞ such that x ≥ M implies A(x) ≤ δ B.
As mentioned in the introduction, for any function u ∈ L2(S), we define the shifted kink vc(z) :=
v0(· − z) as an L2 projection of u onto the set K defined in (1.2), i.e.,

(1.10) vc ∈ argmin{‖u− v‖L2 : v ∈ K}

and we set fc := u− vc . As a consequence, vc satisfies the Euler-Lagrange equation

(1.11)

∫

S

fcvcz =

∫

S

(u− vc)vcz dx = 0 .

Finally, for u = u(t) we set vc(t) := vc .

2. Preliminaries

In this section we gather a few simple observations and technical results which will be used
later on in the paper.

We first point out that, as in [16, Remark 3], if E(u) < ∞ and H(u) < ∞, then f0 ∈ H1(S)
and u satisfies the right boundary conditions at infinity.

Lemma 2.1. Let u be such that E(u) < ∞ and H(u) < ∞, then f0 := u − v0 ∈ H1(S) and for

a.e. x′ ∈ Q, u(x′, z) → ±1 as z → ±∞.

Proof. If u is such that E(u) < ∞ and H(u) < ∞, then

‖∇f0‖
2
L2 =

∫

S

|∇f0|
2 dx .

∫

S

|∇u|2 dx+

∫

S

|∇v0|
2 dx

≤ E(u) + E(v0)

and then, by interpolation,

‖f0‖
2
L2 =

∫

S

f2
0 dx . ‖f0‖Ḣ−1‖∇f0‖L2 . H(u)(E(u) + E(v0))

1

2 ,

so that f0 is bounded in H1. As a consequence,
∫

Q

sup
z≥M

f2
0 dx′ ≤

∫

Q

dx′
∫ ∞

M

(f2
0 + |∇f0|

2) dz → 0 as M → ∞ .

Therefore sup|z|≥M f2
0 (·, z) converges to zero in L1(Q), and, since it is monotonically decreasing,

it converges also a.e. to zero. �

Our second observation is that, as in the proof of [16, Lemma 1.3], closeness in L∞ to some
kink implies closeness to vc.

Lemma 2.2. If vc is the minimizer of (1.10) for u, then for every c̄ ∈ R,

(2.1) ‖fc‖L∞ . ‖fc̄‖L∞ .

Proof. By triangle inequality, we have

‖fc‖L∞ ≤ ‖fc̄‖L∞ + ‖vc − vc̄‖L∞ . ‖fc̄‖L∞ +min(|c− c̄|, 1).
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Now from (1.11),

min(|c− c̄|, 1) .

∣∣∣∣
∫

R

(vc − vc̄)vcz dz

∣∣∣∣ =
∣∣∣∣
∫

S

(u − vc̄)vcz dx

∣∣∣∣ . ‖fc̄‖L∞ ,

from which (2.1) follows. �

Combining Fourier arguments together with integration by parts, it is classically seen that the
following holds.

Lemma 2.3. Let g ∈ L2(S) with ∆g ∈ L2(S); then g ∈ H2(S) with

(2.2) ‖∆g‖L2(S) = ‖∇2g‖L2(S) and ‖∇g‖2L2(S) . ‖g‖L2(S) ‖∇
2g‖L2(S).

The last ingredient is a Hardy type inequality, completely analogous to [16, Lemma 2.1].

Lemma 2.4. For any fc ∈ H1(S) such that

(2.3)

∫

S

fcvcz dx = 0,

it holds ∫

S

1

(z − c)2 + 1
f2
c dx .

∫

S

|∇fc|
2 dx.

Proof. The proof resembles the one in [16, Lemma 2.1] with the slight difference that one needs
also to control the transversal variable x′.
Up to a translation, we may assume that vc = v0 =: v. Moreover, set fc = f0 =: f , the claim
becomes

(2.4)

∫

S

1

z2 + 1
f2 dx .

∫

S

|∇f |2 dx.

By the triangle inequality and the fact that
∫
R

1
z2+1 dz < ∞, we have

∫

S

1

z2 + 1
f2 dz .

∫

S

1

z2 + 1

(
f −

∫

Q

f(y′, z) dy′
)2

dx

+

∫

S

1

z2 + 1

(∫

Q

f(y′, z) dy′ −

∫

Q

f(y′, 0) dy′
)2

dx+

(∫

Q

f(y′, 0) dy′
)2

.

The first term on the right-hand side can be estimated thanks to Poincaré inequality on Q as

(2.5)

∫

S

1

z2 + 1

(
f −

∫

Q

f(y′, z) dy′
)2

dx .

∫

S

1

z2 + 1
|∇′f |2 dx .

∫

S

|∇′f |2 dx .

Using Jensen’s inequality and Hardy inequality in R, we can estimate the second term as

(2.6)

∫

S

1

z2 + 1

(∫

Q

f(y′, z)− f(y′, 0) dy′
)2

dx .

∫

Q

∫

R

1

z2 + 1
(f(x′, z)− f(x′, 0))

2
dz dx′

=

∫

Q

∫

R

z2

z2 + 1

(
1

z

∫ z

0

∂zf(x
′, ζ) dζ

)2

dz dx′

.

∫

S

|∂zf(x
′, z)|2 dx .

We are left with estimating the last term. For this we observe that (2.3) and the fact that∫
S
vz dx = 2 imply

∫

Q

f(y′, 0) dy′ = −
1

2

∫

S

(
f −

∫

Q

f(y′, 0) dy′
)
vz dx .

Using Cauchy-Schwarz inequality together with |vz| .
1

1+z2 , we obtain

(∫

Q

f(y′, 0) dy′
)2

.

∫

S

1

1 + z2

(
f −

∫

Q

f(y′, 0) dy′
)2

,
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which using the triangle inequality (2.5) and (2.6) can be estimated by
∫
S |∇f |2 dx . This concludes

the proof of (2.4). �

3. The energy and dissipation estimates

In this section we prove the desired non-linear energy gap and dissipation estimates. As in [16]
these are crucial ingredients in the proof of the relaxation rates in Proposition 4.1. We recall that
fc = u− vc where vc is a minimizer of the problem (1.10) and hence solves (1.11).

Proposition 3.1. There exists δ > 0 such that if fc ∈ H3(S) and ‖fc‖L∞ ≤ δ, then

(3.1) E ∼

∫

S

f2
c + |∇fc|

2 dx,

and

(3.2) D ∼

∫

S

|∇fc|
2 + |∇2fc|

2 + |∇3fc|
2 dx.

As in [16], these estimates are proven by obtaining first similar bounds for the corresponding
linearized quantities and then using the smallness of ‖fc‖L∞ to make a Taylor expansion. It is in
the proofs of the linear estimates that we depart the most from the one dimensional arguments
used in [16]. Let us point out that a direct consequence of Proposition 3.1 and Gagliardo-Nirenberg
inequalities is the following L∞ bound.

Corollary 3.2. There exists δ > 0 such that if fc ∈ H3(S) and ‖fc‖L∞ ≤ δ, then for 2 ≤ d ≤ 5

(3.3) ‖fc‖L∞ . E
1

2
− d′

12D
d′

12 ,

where d′ := max(3, d).

Proof. For d = 2, (3.3) is a consequence of Proposition 3.1 and of the Gagliardo-Nirenberg in-
equality

‖fc‖L∞ . ‖fc‖
1

2

L2‖∇
2fc‖

1

2

L2 .

For 3 ≤ d ≤ 5, (3.3) follows from Proposition 3.1 and another Gagliardo-Nirenberg inequality,
namely

‖fc‖L∞ . ‖fc‖
1−d

6

L2 ‖∇3fc‖
d
6

L2 .

�

3.1. Linear estimates. Given vc ∈ K, we define the linearized energy gap of a function f ∈ H1(S)
as

Eℓ(f) :=

∫

S

|∇f |2 +G′′(vc)f
2 dx

and the linearized dissipation as

Dℓ(f) :=

∫

S

|∇(−∆f +G′(vc)f)|
2 dx .

In order to prove Proposition 3.1, we start by showing the analogous estimates for the linearized
quantities (see Lemma 3.6 and Lemma 3.7 below). In the one-dimensional case, such estimates
rely on a rigidity argument developed in [16, Lemma 3.4]. Since the proof of this result does not
seem to extend easily to the higher dimensional setting, we adopt a different approach (see Lemma
3.5 below) and use the Lassoued-Mironescu trick [14] (see also [7, 8] for applications of this idea
in different contexts). Since vcz > 0, we can always write f = vczg for some function g. Let

us point out that if f ∈ C∞
c (S) (respectively f ∈ H1(S)), then g := f

vcz
∈ C∞

c (S) (respectively

g ∈ H1
loc(S)).

Lemma 3.3. For any f ∈ H1(S), it holds

(3.4) Eℓ(f) =

∫

S

v2cz|∇g|2 dx ≥ 0 .
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Proof. We assume without loss of generality that vc = v0 =: v .
We first show that (3.4) holds for f ∈ C∞

c (S). By differentiating (1.3), we see that

(3.5) −∆vz +G′′(v)vz = 0 ,

which, multiplying by a test function ϕ ∈ C∞
c (S) and integrating by parts, yields

∫

S

∇vz · ∇ϕ+G′′(v)vzϕdx = 0 .

By choosing ϕ := vzg
2 (which is in C∞

c (S) since f is), we obtain

(3.6)

∫

S

g2|∇vz |
2 + 2vzg∇vz · ∇g +G′′(v)v2zg

2 dx = 0 ,

whence (3.4) follows, noticing that

Eℓ(f) =

∫

S

v2z |∇g|2 + g2|∇vz|
2 + 2vzg∇vz · ∇g +G′′(v)v2zg

2 dx

=

∫

S

v2z |∇g|2 dx .

In order to show (3.4) for f ∈ H1(S), we adopt the following approximation argument. Let
f ∈ H1(S) and let {fn} ⊆ C∞

c (S) be such that ‖fn − f‖H1 → 0 as n → ∞. By (3.4), we have

(3.7)

∫

S

v2z |∇gn|
2 dx = Eℓ(fn) → Eℓ(f) as n → ∞ .

Since |vzz| . |vz |, we have

lim
n→∞

∫

S

|vz∇gn − vz∇g|2 dx . lim
n→∞

∫

S

|∇(vzgn)−∇(vzg)|
2 dx+

∫

S

|vzz(gn − g)|2 dx

. lim
n→∞

∫

S

|∇fn −∇f |2 dx+

∫

S

|fn − f |2 dx

= 0 .

Therefore by (3.7)

Eℓ(f) = lim
n→∞

Eℓ(fn) = lim
n→∞

∫

S

v2z |∇gn|
2 dx =

∫

S

v2z |∇g|2 dx .

�

We can now use (3.4) to prove that up to a multiplicative factor, the only critical point of Eℓ

is vcz .

Lemma 3.4. Let vc ∈ K. If f ∈ H1(S) is a solution of

(3.8) −∆f +G′′(vc) f = 0 ,

then f = αvcz for some α ∈ R.

Proof. Before starting the proof, let us point out that by elliptic regularity, any weak solution of
(3.8) is actually a smooth classical solution of this equation.
We assume without loss of generality that vc = v0 =: v. We preliminarily notice that, by (3.5)
and integration by parts, Eℓ(αvz) = 0 for any α ∈ R . We first show the claim assuming that f
minimizes Eℓ in H1(S). Indeed, by Lemma 3.3, we have

Eℓ(f) =

∫

S

v2z |∇g|2 dx ≥ 0 = Eℓ(vz) ,

which implies that Eℓ(f) =
∫
S
v2z |∇g|2 dx = 0 and, in turns, that f = α vz for some α ∈ R.

We thus only need to prove that if f is a solution of (3.8) in H1(S), then f is a minimizer of
Eℓ in H1(S), i.e. f satisfies

(3.9) Eℓ(f + ϕ) ≥ Eℓ(f) for any ϕ ∈ H1(S) .



8 L. DE LUCA, M. GOLDMAN, AND M. STRANI

Consider first ϕ ∈ C∞
c (S). Integrating by parts, we get

Eℓ(f + ϕ) =

∫

S

|∇(f + ϕ)|2 +G′′(v)(f + ϕ)2 dx

= Eℓ(f) + 2

∫

S

∇f · ∇ϕ+G′′(v)fϕdx+ Eℓ(ϕ)

= Eℓ(f) + 2

∫

S

(−∆f +G′′(v)f)ϕdx + Eℓ(ϕ) = Eℓ(f) + Eℓ(ϕ) ≥ Eℓ(f) ,

where in the last line we have used (3.8) and (3.4). The general case ϕ ∈ H1(S) then follows by
approximation. �

We can now prove the desired rigidity lemma.

Lemma 3.5. Let f be such that ∇f ∈ L2(S) and ∇2f ∈ L2(S) and let vc ∈ K be such that

(3.10)

∫

S

fvcz dx = 0

and

(3.11) −∆f +G′′(vc)f = λ

for some λ ∈ R. Then f = 0.

Proof. As above, by elliptic regularity, every solution f of (3.11) is smooth. Again we assume
vc = v0 =: v .
Set h(z) :=

∫
Q f(x′, z) dx′. Then, integrating (3.11) and (3.10) with respect to x′, we get

−hzz +G′′(v)h = λ and

∫

R

hvz dz = 0 ,

where in the first equation we have used that for every z ∈ R ,
∫

Q

−∆′f(x′, z) dx′ = 0 .

Therefore, [16, Lemma 3.4] applies and h = αvz for some α ∈ R . Since
∫
R
hvz dz = 0 , this implies

that α = 0, and, in turns, that h = 0 and λ = 0. By Poincaré inequality on Q and the fact that
h = 0, for every z ∈ R, ∫

Q

f2(x′, z) dx′ .

∫

Q

|∇′f(x′, z)|2 dx′,

which after integration gives ∫

S

f2 dx .

∫

S

|∇f |2 dx

so that f ∈ H2(S). Therefore, in view of (3.11), we may apply Lemma 3.4 and conclude that
f = α′vz for some α′ ∈ R. Since h = 0, we must have f = α′vz = 0. �

With this rigidity result in hand, we can prove a linear gap estimate, which is the analog of [16,
Lemma 3.1].

Lemma 3.6. For every f ∈ H1(S) and vc ∈ K satisfying (3.10), there holds

(3.12) Eℓ(f) &

∫

S

f2 dx.

Proof. We argue by contradiction assuming that there exists a sequence {fn} ⊆ H1(S) satisfying
(3.10),

(3.13)

∫

S

f2
n dx = 1

and

(3.14) lim
n→∞

Eℓ(fn) = 0.
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Since fn is uniformly bounded in H1, up to a subsequence, fn ⇀ f in H1, for some f ∈ H1(S)
satisfying (3.10). Moreover, the lower semicontinuity of Eℓ, (3.14) and Lemma 3.3 imply that
Eℓ(f) = 0. Hence, in view of Lemma 3.3, f is a minimizer of Eℓ in H1(S) and using Lemma 3.4
together with (3.10) we obtain f = 0.
We finally prove that ‖fn‖L2 → 0, which provides a contradiction to (3.13). For this purpose, we
first show that

(3.15) lim
n→∞

∫

S

|G′′(1)−G′′(vc)|f
2
n dx = 0 .

Let Z > 0 to be fixed. Since Q × (−Z,Z) is bounded, fn → f ≡ 0 strongly in L2(Q × (−Z,Z)).
Therefore on the one hand

lim
n→∞

∫ Z

−Z

∫

Q

|G′′(1)−G′′(vc)|f
2
n dx′ dz = 0 .

On the other hand, since G′′(vc(z)) → G′′(1) as z → ±∞, from (3.13), we get
∫

|z|≥Z

∫

Q

|G′′(1)−G′′(vc)|f
2
n dx′ dz ≤ sup

|z|≥Z

|G′′(1)−G′′(vc)|

which tends to zero as Z → +∞ uniformly in n. This proves (3.15). Finally, by (3.15) and (3.13),
we obtain

0 = lim
n→+∞

∫

S

(G′′(1)−G′′(vc))f
2
n dx+ Eℓ(fn) = lim

n→+∞

∫

S

|∇fn|
2 +G′′(1)f2

n dx ,

and, since G′′(1) > 0, this implies ∫

S

f2
n dx → 0,

thus concluding the proof of Lemma 3.6. �

We now turn to the dissipation estimate (see [16, Lemma 3.2]).

Lemma 3.7. For any f ∈ H3(S) satisfying (3.10), it holds

Dℓ(f) &

∫

S

|∇f |2 dx.

Proof. Once again, we may assume without loss of generality that vc = v0 =: v.
We argue by contradiction and assume that there exists a sequence of functions fn ∈ H3(S)

such that (3.10),

(3.16)

∫

S

|∇fn|
2 dx = 1

and

(3.17) Dℓ(fn) → 0

hold. First of all, we claim that (3.16) improves to

(3.18)

∫

S

1

z2 + 1
f2
n + |∇fn|

2 + |∇2fn|
2 + |∇3fn|

2 dx . 1 .

Indeed, by Lemma 2.4

(3.19)

∫

S

1

z2 + 1
f2
n dx .

∫

S

|∇fn|
2 dx .

Furthermore, by (3.17), we have
∫

S

|∇∆fn|
2 dx .

∫

S

|∇(∆fn −G′′(v)fn)|
2
dx+

∫

S

|∇(G′′(v)fn)|
2 dx

= Dℓ(fn) +

∫

S

|∇(G′′(v)fn)|
2 dx

. 1 +

∫

S

|∇(G′′(v)fn)|
2 dx .
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Using that |G(3)(v)vz | .
1

1+z2 and applying Lemma 2.4, we obtain
∫

S

|∇(G′′(v)fn)|
2 dx .

∫

S

(
G(3)(v)vzfn

)2
dx+

∫

S

|G′′(v)∇fn|
2
dx

.

∫

S

|∇fn|
2 dx .

This fact, together with Lemma 2.3, implies

(3.20)

∫

S

|∇3fn|
2 dx =

∫

S

|∇∆fn|
2 dx . 1 +

∫

S

|∇fn|
2 dx .

Finally, by applying Lemma 2.3 to g = ∇fn, we get

(3.21)

∫

S

|∇2fn|
2 dx .

∫

S

|∇fn|
2 dx .

By summing (3.19), (3.20) and (3.21), and recalling (3.16), formula (3.18) follows.
In light of (3.18) and (3.17), fn weakly converges, up to subsequences, to a function f ∈ H3

loc(S)
satisfying (3.10), ∫

S

|∇f |2 + |∇2f |2 + |∇3f |2 dx . 1,

and Dℓ(f) = 0. It follows that
∇(−∆f +G′′(v)f) = 0,

and hence, by Lemma 3.5, we get f = 0. Arguing as in the proof of Lemma 3.6, it can be proven
that ‖∇fn‖L2 → 0, thus obtaining a contradiction.

�

3.2. Proof of the non-linear estimates. We can now prove Proposition 3.1. We start with the
non-linear energy gap estimate (3.1). We recall that fc = u− vc with vc solving (1.11) and

(3.22) E(u) =

∫

S

1

2
|∇u|2 +G(u) dx−

∫

S

1

2
|∇vc|

2 +G(vc) dx .

Lemma 3.8. There exists δ > 0 such that if ‖fc‖L∞ ≤ δ, then

(3.23) E ∼

∫

S

|fc|
2 + |∇fc|

2 dx.

Proof. We may assume that ‖fc‖L∞ . 1. We start by proving that

(3.24) E .

∫

S

|fc|
2 + |∇fc|

2 dx.

Indeed, by (3.22) and using that

0 =

∫

S

(−vczz +G′(vc))fc dx =

∫

S

(−∆vc +G′(vc))fc dx =

∫

S

∇vc · ∇fc +G′(vc)fc dx ,

we have

(3.25) E =

∫

S

1

2
|∇fc|

2 +G(u)−G(vc)−G′(vc)fc dx .

Now since ‖fc‖L∞ . 1, by Taylor expansion we have

|G(u)−G(vc)−G′(vc)fc| . |fc|
2,

so that

(3.26)

∫

S

|G(u)−G(vc)−G′(vc)fc| dx .

∫

S

|fc|
2 dx .

Combining this with (3.25) yields (3.24).
In order to prove that

(3.27) E &

∫

S

|fc|
2 + |∇fc|

2 dx ,
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we first show that

(3.28)

∫

S

|fc|
2 dx . E .

Using again the hypothesis ‖fc‖L∞ . 1 and a Taylor expansion, we get

E =
1

2

∫

S

|∇fc|
2 +G′′(vc)f

2
c dx+

∫

S

G(u)−G(vc)−G′(vc)fc −
1

2
G′′(vc)f

2
c dx

& Eℓ(fc)− ‖fc‖L∞

∫

S

f2
c dx .

Using (3.12) we obtain that (3.28) holds if ‖fc‖L∞ is small enough.
Finally, by (3.25), (3.26), and (3.28), we immediately have

∫

S

|∇fc|
2 dx . E +

∫

S

|G(u)−G(vc)−G′(vc)fc| dx

. E +

∫

S

|fc|
2 dx

. E ,

which proves (3.27) and concludes the proof of the lemma. �

We end this section by proving the non-linear dissipation estimate (3.2). Let us recall that

D =

∫

S

|∇(∆u −G′(u))|2 dx .

Lemma 3.9. There exists δ > 0 such that if fc ∈ H3(S) and ‖fc‖L∞ ≤ δ, then

(3.29) D ∼

∫

S

|∇fc|
2 + |∇2fc|

2 + |∇3fc|
2 dx .

Proof. We may assume that ‖fc‖L∞ . 1. We start by proving that

(3.30) D .

∫

S

|∇fc|
2 + |∇2fc|

2 + |∇3fc|
2 dx .

Using the identity

(3.31) ∇(−∆u+G′(u)) = −∇∆fc +∇(G′(u)−G′(vc)) ,

by Lemma 2.3 and by integration by parts, we have

(3.32)

D =

∫

S

|∇(∆u −G′(u))|2 dx

≤

∫

S

|∇∆fc|
2 + |∇(G′(u)−G′(vc))|

2 dx

=

∫

S

|∇3fc|
2 + |∇(G′(u)−G′(vc))|

2 dx .

By Taylor expansion and by the assumption ‖fc‖L∞ . 1, we have

(3.33)
|∇(G′(u)−G′(vc))|

2 = |(G′′(u)−G′′(vc))∇vc +G′′(u)∇fc|
2

. |vcz|
2|fc|

2 + |∇fc|
2.

Using Lemma 2.4 and the exponential decay of vcz, we get

(3.34)

∫

S

|∇(G′(u)−G′(vc))|
2 dx .

∫

S

|vcz|
2|fc|

2 + |∇fc|
2 dx

.

∫

S

|∇fc|
2 dx ,

which combined with (3.32) yields (3.30).
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We now prove that

(3.35) D &

∫

S

|∇fc|
2 + |∇2fc|

2 + |∇3fc|
2 dx .

First of all, we show that

(3.36) D &

∫

S

|∇fc|
2 dx .

Indeed, by (3.31) and the triangle inequality, we have

(3.37)

D =

∫

S

|∇(∆fc −G′(u)−G′(vc))|
2 dx

&

∫

S

|∇(∆fc −G′′(vc)fc)|
2 dx−

∫

S

|∇(G′(u)−G′(vc)−G′′(vc)fc)|
2 dx

&

∫

S

|∇fc|
2 dx−

∫

S

|∇(G′(u)−G′(vc)−G′′(vc)fc)|
2 dx ,

where the last inequality is an immediate consequence of Lemma 3.7. Moreover, arguing as in
(3.33), we get

|∇(G′(u)−G′(vc)−G′′(vc)fc)|
2 = |(G′′(u)−G′′(vc)−G(3)(vc)fc)∇vc + (G′′(u)−G′′(vc))∇fc|

2

. |fc|
4|vcz |

2 + |fc|
2|∇fc|

2

. ‖fc‖
2
L∞(|fc|

2|vcz|
2 + |∇fc|

2) ,

from which, using again Lemma 2.4 and the exponential decay of vcz, we obtain

(3.38)

∫

S

|∇(G′(u)−G′(vc)−G′′(vc)fc)|
2 dx . ‖fc‖

2
L∞

∫

S

v2czf
2
c + |∇fc|

2 dx

. ‖fc‖
2
L∞

∫

S

|∇fc|
2 dx .

Assuming that ‖fc‖L∞ ≤ δ for some δ sufficiently small, (3.35) follows by (3.37) and (3.38). Finally
we show that (3.36) improves to (3.35). Indeed, by the definition of D, (3.31),(3.34), and (3.36),
we have ∫

S

|∇∆fc|
2 dx .

∫

S

|∇(−∆u+G′(u))|2 dx+

∫

S

|∇(G′(u)−G′(vc))|
2 dx

. D +

∫

S

|∇fc|
2 dx . D .

Using (2.2), this proves (3.35). �

4. The main relaxation estimate

The aim of this section is to prove the following result, which gives the relaxation rates to
equilibrium.

Proposition 4.1. Let δ be given by Proposition 3.1 and let T > 0 be fixed. Then, every smooth

solution u of (1.1) in (0, T ) × S such that H(u(t)) < ∞, fc(t) ∈ Hj(S) for every j ≥ 0 and

‖fc(t)‖L∞ ≤ δ for every t ∈ (0, T ), satisfies

E(u(t)) ≤ E0 ,(4.1)

E(u(t)) . G0t
−1 ,(4.2)

c2(t) . G
1

2

0 E
1

2

0 ,(4.3)

c2(t) . G0t
− 1

2 ,(4.4)

H(u(t)) . G0 ,(4.5)

D(u(t)) . (G0 + G2
0 + E0 G

6

6−d′

0 t−
2d′−6

6−d′ )t−2 ,(4.6)

where G0 := H0 + E0 + E7
0 and d′ := max(3, d).
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Remark 4.2. We note that Proposition 4.1 and Lemma 4.3 below imply (1.9). Indeed, (3.1) and
(4.2), yield

(4.7) ‖u(t)− vc(t)‖H1 = ‖fc(t)‖H1 ∼ E
1

2 (u(t)) . G
1

2

0 t
− 1

2 ,

which is exactly the first estimate in (1.9).
Moreover, by (4.7) and (4.4), we get

‖u(t)− v0‖H1 ≤ ‖u(t)− vc(t)‖H1 + ‖vc(t) − v0‖H1

. G
1

2

0 t
− 1

2 + |c(t)|

. G
1

2

0 t
− 1

4 ,

which coincides with the second estimate in (1.9).

As in [16, Theorem 1.2], the proof of Proposition 4.1 is based on the combination of algebraic
and differential relations between E , D, H and c together with an ODE argument.

First, arguing almost verbatim as in [16], and using Proposition 3.1 and Lemma 2.4 the following
result can be proven (we refer the reader to [16, Lemma 1.3] for the proof).

Lemma 4.3. Let δ̄ be given by Proposition 3.1 and let u ∈ vc +H3(S) be such that H(u) < ∞
and ‖fc‖L∞ ≤ δ̄, then

c2 . (H(u)E(u))1/2 + (|c|+ 1)E(u),(4.8)

E(u) . (H(u)D(u))1/2 + (|c|+ 1)2D(u).(4.9)

We remark that the assumptions of Lemma 4.3 imply that E(u) < ∞.

We now turn to the differential relations. The proof follows the lines of the proof of [16, Lemma
1.4] with some additional difficulties coming from the transversal directions.

Lemma 4.4. Let δ̄ be given by Proposition 3.1 and let T > 0 be fixed. Let u = u(t, x) be a

smooth solution of (1.1) in S × (0, T ) with H(u(t)), E(u(t)) < ∞ and u(t) ∈ vc(t) + H3(S) for

every t ∈ [0, T ) . If ‖fc(t)‖L∞ ≤ δ for every t ∈ [0, T ], then u satisfies

dE

dt
= −D,(4.10)

dH

dt
. ((|c| + 1)c2D)

1

2 + E
3

2
− d′

12 D
d′

12 ,(4.11)

dD

dt
. D

3

2 + E1− d′

6 D1+ d′

6 ,(4.12)

where d′ := max(3, d).

Remark 4.5. Notice that if E . 1 and d ≤ 3, (4.11) and (4.12) are exactly the estimates of [16,
Lemma 1.4]. Moreover, if we still assume that E . 1 but that d = 4, 5, we expect that D ≪ 1
after a time of order one, and hence (4.11) and (4.12) give very similar bound to the ones in [16,
Lemma 1.4].

Proof of Lemma 4.4. Identity (4.10) is a direct consequence of the definitions of E and D and of
the fact that ∇u ∈ H2(S).

Step 1: Proof of (4.11).
By definition of f0 and fc, we have

(4.13) ∂tf0 −∆(G′(vc + fc)−G′(vc)−∆fc) = 0 .

We first show that (4.13) implies

(4.14) ∂tF0 −∇ (G′(vc + fc)−G′(vc)−∆fc) = 0 ,
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where F0 ∈ L2(S) is a solution of the minimum problem in (1.8), i.e.,

(4.15) divF0 = f0 and H =

∫

S

F 2
0 dx .

Notice that (4.14) in particular shows that under the assumptions of the lemma, H is differentiable
in time.
Let F ∈ L2(S) with divF = f0. Setting ξ = (ξ′, ξz) ∈ Z

d−1 × R, and writing F and f0 in Fourier
space, we get

F (x) =
∑

ξ′∈Zd−1

∫

R

F̂ (ξ′, ξz)e
2iπξ·x dξz and f0(x) =

∑

ξ′∈Zd−1

∫

R

f̂0(ξ
′, ξz)e

2iπξ·x dξz ;

therefore, the constraint divF = f0 can be rewritten as 2iπF̂ · ξ = f̂0, which, together with
Plancherel Theorem, implies

(4.16) ‖f0‖
2
H−1 = min

F̂∈L2

2iπF̂ ·ξ=f̂0

∑

ξ′∈Zd−1

∫

R

|F̂ (ξ)|2 dξz .

Now, if F̂0 is a minimizer of (4.16), by Pythagoras for every ξ 6= 0, F̂0(ξ) ∈ Rξ and hence

(4.17) F̂0(ξ) =
f̂0(ξ)

2iπ

ξ

|ξ|2
.

Set g := G′(vc + fc)−G′(vc)−∆fc, by (4.13) we have

∂tF̂0(ξ) =
∂tf̂0(ξ)

2iπ

ξ

|ξ|2
= 2iπĝ(ξ)ξ ,

whence (4.14) follows by taking the Fourier inverse. By (4.14) and integrating by parts, we have

1

2

d

dt

∫

S

F 2
0 dx =

∫

S

F0 ∂tF0 dx

=

∫

S

F0 · ∇ (G′(vc + fc)−G′(vc)−∆fc) dx

divF=f0
= −

∫

S

f0 (G
′(vc + fc)−G′(vc)−∆fc) dx

= −

∫

S

(fc + vc − v0) (G
′(vc + fc)−G′(vc)−∆fc) dx

≤ −

∫

S

|∇fc|
2 +G′′(vc)f

2
c dx

−

∫

S

(G′(vc + fc)−G′(vc)−G′′(vc)fc) fc dx

+

∫

S

(v0 − vc) (G
′(vc + fc)−G′(vc)) dx+

∫

S

|(v0 − vc)z | |∇fc| dx

≤ −

∫

S

(G′(vc + fc)−G′(vc)−G′′(vc)fc) fc dx

+

∫

S

(v0 − vc) (G
′(vc + fc)−G′(vc)) dx+

∫

S

|(v0 − vc)z ||∇fc| dx

=: A+B + C.

where the last inequality follows directly by the positivity of the linearized energy gap proved in
Lemma 3.6.

We first estimate A. Using Taylor expansion, boundedness of ‖fc‖L∞ , and (3.3), we have

(4.18) A .

∫

S

|fc|
3 dx ≤ ‖fc‖L∞

∫

S

|fc|
2 dx . E

3

2
− d′

12D
d′

12 .
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The estimates of B and C are obtained exactly as in [16]. For the reader’s convenience, let us
give the proofs. Concerning B, using again Taylor expansion, the boundedness of ‖fc‖L∞ , and by
Cauchy-Schwarz inequality, we obtain

B .

∫

S

|v0 − vc||fc| dx .

(∫

S

((z − c)2 + 1)(v − vc)
2 dx

∫

S

1

(z − c)2 + 1
f2
c dx

) 1

2

.

It is not hard to see that (see [16, formula (2.12)])
∫

S

((z − c)2 + 1)(v − vc)
2 dx . (|c|+ 1)c2

so that applying Lemma 2.4 and (3.2), we obtain

(4.19) B . ((|c|+ 1)c2 D)
1

2 .

Finally, for C, by Cauchy-Schwarz inequality and (3.2), we get

C ≤

(∫

S

|v0z − vcz|
2 dx

∫

S

|∇fc|
2 dx

) 1

2

.

(∫

S

|v0z − vcz |
2 dxD

) 1

2

,

which combined with
∫

S

|v0z − vcz|
2 dx ≤ min

{
4

∫

S

|v0z |
2 dx, |c|2

∫

S

|v0zz|
2 dx

}
. min{c2, 1} . (|c|+ 1)c2,

yields

(4.20) C . ((|c|+ 1)c2 D)
1

2 .

In conclusion, summing (4.18), (4.19) and (4.20), we obtain (4.11).

Step 2: Proof of (4.12) .
We set

(4.21) g := ∆u−G′(u),

so that D =
∫
S
|∇g|2 dx and the Cahn-Hilliard equation (1.1) can be rewritten as

(4.22) ut = −∆g .

Moreover, set

(4.23) h := ∆g = −ut .

By differentiating, integrating by parts and using (4.22), we have

1

2

dD

dt
=

∫

S

∇(−∆u+G′(u)) · ∇(−∆ut +G′′(u)ut) dx

=

∫

S

∆g(−∆+G′′(u))ut dx

=

∫

S

∆g∆2g dx−

∫

S

|∆g|2G′′(u) dx

= −

∫

S

|∇∆g|2 dx−

∫

S

|∆g|2G′′(u) dx

= −

∫

S

|∇h|2 +G′′(vc)h
2 dx−

∫

S

(G′′(u)−G′′(vc))h
2 dx

= −I − II .(4.24)

We now decompose h as

(4.25) h = h0 + αvcz ,
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where

(4.26) α :=

∫

S

h vcz dx
∫

S

v2cz dx

,

implying
∫
S h0vcz dx = 0. For further use, we notice that

(4.27) |α| ≤

∫

S

|∇g|vczz dx
∫

S

v2cz dx

≤

(∫

S

|∇g|2 dx

) 1

2

(∫

S

v2czz dx

) 1

2

∫

S

v2cz dx

. D
1

2 .

Moreover, by differentiating the first equation in (1.3) we obtain that G′′(vc)vcz = vczzz, whence,
integrating by parts we deduce

(4.28)

∫

S

v2czz +G′′(vc)v
2
cz dx =

∫

R

v2czz +G′′(vc)v
2
cz dz = 0 .

Furthermore by integration by parts again,

(4.29)

∫

S

∇h0 · ∇vcz +G′′(vc)h0 vcz dx = 0 .

Let us estimate I in (4.24). As a consequence of (4.28) and (4.29), by applying Lemma 3.6 to h0

and using that G′′(vc) ≥ −1, we obtain

(4.30)

I =

∫

S

|∇h0|
2 +G′′(vc)h

2
0 dx

= (1− β)

[∫

S

|∇h0|
2 +G′′(vc)h

2
0 dx

]
+ β

[∫

S

|∇h0|
2 +G′′(vc)h

2
0 dx

]

≥ C(1 − β)

[∫

S

h2
0

]
+ β

[∫

S

|∇h0|
2 − h2

0 dx

]

&

∫

S

|∇h0|
2 + h2

0 dx,

where β > 0 is chosen such that C(1− β)− β > 0.

We now turn our attention to the term II of (4.24). By boundedness of fc, the decomposition
of h in (4.25), and Young inequality, we get

(4.31)

|II| ≤

∫

S

|G′′(u)−G′′(vc)|h
2 dx

.

∫

S

|fc|h
2 dx

.

∫

S

|fc|h
2
0 dx+ α2

∫

S

|fc| v
2
cz dx

=: A+B .

In order to bound A, we use (3.3), which yields

(4.32) A ≤ ‖fc‖L∞

∫

S

h2
0 dx . E

1

2
− d′

12D
d′

12

∫

S

h2
0 dx .
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Moreover, by using - in order of appearance - (4.25), (4.23), Cauchy-Schwarz inequality, and (4.27),
we obtain ∫

S

h2
0 dx =

∫

S

h0(h− αvcz) dx

≤

∣∣∣∣
∫

S

h0 ∆g dx

∣∣∣∣+ |α|

∣∣∣∣
∫

S

h0vcz dx

∣∣∣∣

≤

∣∣∣∣
∫

S

∇h0 · ∇g dx

∣∣∣∣+ |α|

(∫

S

h2
0 dx

∫

S

v2cz dx

) 1

2

.

(∫

S

|∇h0|
2 dx

∫

S

|∇g|2 dx

) 1

2

+ |α|

(∫

S

h2
0 dx

) 1

2

. D
1

2

(∫

S

|∇h0|
2 + h2

0 dx

) 1

2

,

which, together with (4.32), implies

(4.33) A . E
1

2
− d′

12D
1

2
+ d′

12

(∫

S

|∇h0|
2 + h2

0 dx

) 1

2

.

As for the term B, by using – in order of appearance – Cauchy-Schwarz inequality, the exponential
decay of vcz, Lemma 2.4, and (3.2), we obtain

(4.34)

B ≤ α2

(∫

S

f2
c v

2
cz dx

∫

S

v2cz dx

) 1

2

. α2

(∫

S

f2
c

(z − c)2 + 1
dx

) 1

2

. α2

(∫

S

|∇fc|
2 dx

) 1

2

. DD
1

2 = D
3

2 .

Thus, by (4.31), (4.33), and (4.34), we end up with

(4.35) |II| . E
1

2
− d′

12D
1

2
+ d′

12

(∫

S

|∇h0|
2 + h2

0 dx

) 1

2

+D
3

2 .

Finally, by (4.24), (4.30), (4.35) and by Young inequality, we get for ε small enough

dD

dt
. −

∫

S

|∇h0|
2 + h2

0 dx+ E
1

2
− d′

12D
1

2
+ d′

12

(∫

S

|∇h0|
2 + h2

0 dx

) 1

2

+D
3

2

. −

∫

S

|∇h0|
2 + h2

0 dx+
1

ε
E1− d′

6 D1+ d′

6 + ε

∫

S

|∇h0|
2 + h2

0 dx+D
3

2

. −

∫

S

|∇h0|
2 + h2

0 dx+D
3

2 + E1− d′

6 D1+ d′

6

. D
3

2 + E1− d′

6 D1+ d′

6 ,

which concludes the proof of (4.12). �

The last ingredient is an ODE argument using the relations obtained in Lemma 4.3 and Lemma
4.4. This is described in the following lemma, which is the counterpart of [16, Lemma 1.5].

Lemma 4.6. For 3 ≤ d ≤ 5 and c⋆ ≥ 1, let E, D, H and c be positive quantities related in a time

interval [0, t⋆] by the differential relations

(4.36)
dE

dt
= −D,

dH

dt
. c

1

2

⋆ ((c
2D)

1

2 + E
3

2
− d′

12D
d′

12 ),
dD

dt
. D

3

2 + E1− d′

6 D1+ d′

6 ,
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where d′ := max(d, 3) and by the algebraic relations

(4.37) E . (HD)
1

2 + c2⋆D and c2 . (HE)
1

2 + c⋆E ;

Then, letting G0 := H0 + c2⋆(1 + E2
0 )E0, it holds

E(t) ≤ E0(4.38)

E(t) . G0t
−1,(4.39)

c2(t) . G
1

2

0 E
1

2

0(4.40)

c2(t) . G0t
− 1

2(4.41)

H(t) . G0(4.42)

D(t) .

(
G0 + G2

0 + E0 G
6

6−d′

0 t−
2d′−6

6−d′

)
t−2.(4.43)

We refer the reader to [16, Theorem 1.2] for the derivation of Proposition 4.1 from Lemma 4.3,
Lemma 4.4 and Lemma 4.6 (and in particular for better understanding the role of c⋆).

Remark 4.7. Notice that if E0 . 1, all the estimates besides (4.43) coincide with those obtained
in [16, Lemma 1.5]. Still assuming E0 . 1, also (4.43) reduces to its counterpart in [16] provided
t is larger than a suitable constant (depending only on d′, H0, E0 and c⋆).

Proof of Lemma 4.6. Estimate (4.38) is a direct consequence of dE
dt = −D ≤ 0. Moreover, (4.39),

(4.40) and (4.41) follow exactly as in [16, Lemma 1.5] replacing c2⋆ by c2⋆(1 + E2
0 ) in the proofs.

Let us show (4.42). Since E is decreasing in time, we can make the change of variable t ↔ E which
in light of the first equation in (4.36) gives − d

dE = D−1 d
dt so that plugging the second inequality

of (4.37) into the second one in (4.36) we get

−
dH

dE
. c

1

2

⋆

(
(HE)

1

4D− 1

2 + (c⋆E)
1

2D− 1

2 + E
3

2
− d′

12D
d′

12
−1
)
.

Using that the first estimate in (4.37) implies that D−1 . HE−2 + c2⋆E
−1, this gives

−
dH

dE
. c

1

2

⋆

(
H

3

4 E− 3

4 + c⋆H
1

4 E− 1

4 + c
1

2

⋆ H
1

2 E− 1

2 + c
3

2

⋆

+c
2−d′

6

⋆ E
1

2 + E
d′

12
− 1

2H1− d′

12

)

. c
1

2

⋆

(
H

3

4 E− 3

4 + c
3

2

⋆ + E
1

2

0

(
c
2− d′

6

⋆ +
(
H

1

4 E− 1

4

)4− d′

3

))
,(4.44)

where we used Young inequality together with (4.38). Notice that 0 < 4− d′

3 ≤ 3 and 0 < 2− d′

6 ≤ 3
2

since 3 ≤ d′ ≤ 5 . Therefore we can use again Young inequality together with c⋆ ≥ 1 to get

c
2− d′

6

⋆ +
(
H

1

4 E− 1

4

)4− d′

3

. c
3

2

⋆ +H
3

4 E− 3

4 + 1 . c
3

2

⋆ +H
3

4 E− 3

4 ,

which plugged into (4.44) implies

−
dH

dE
≤ C0c

1

2

⋆

(
1 + E

1

2

0

)(
H

3

4 E− 3

4 + c
3

2

⋆

)

for some constant C0 > 0 . From this we deduce as in [16] that

−
d

dE

(
H + C0 c

2
⋆

(
1 + E

1

2

0

)
E
) 1

4

≤ C0

(
1 + E

1

2

0

) d

dE
(c2⋆E)

1

4 ,

which after integration gives

H . H0 + (1 + E
1

2

0 )c
2
⋆E + c2⋆(1 + E

1

2

0 )
4E0 . H0 + c2⋆(1 + E2

0 )E0 = G0
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and (4.42) is proven.

We finally prove (4.43). To ease notation set γ := E
1− d′

6

0 . Using (4.38) and the fact that E ≤ E0,
the last estimate in (4.36) can be rewritten as

(4.45) −
d

dt



 1

max
(
γD

d′

6 , D
1

2

)



 . 1.

Fix T ∈ (0, t⋆). Integrating (4.45) between s and T (with 0 < s < T ) we find

(4.46) max
(
γD

d′

6 (s), D
1

2 (s)
)
&

max
(
γD

d′

6 (T ), D
1

2 (T )
)

1 + max
(
γD

d′

6 (T ), D
1

2 (T )
)
(T − s)

.

Let t ∈ (0, T ). By the first equality in (4.36) and by (4.39), we have

(4.47)

∫ T

t

D(s) ds . G0t
−1.

Assume first that γ & D(T )−
d′−3

6 and let A := {s ∈ [t, T ] : γ & D(s)−
d′−3

6 }. Combining (4.47)
with (4.46), we obtain

G0t
−1 & D(T )

∫ T

t

χA
1

(
1 + γD

d′

6 (T )(T − s)
) 6

d′

ds

+ γ2D
d′

3 (T )

∫ T

t

χAc

1
(
1 + γD

d′

6 (T )(T − s)
)2 ds

Using once again that γ & D(T )−
d′−3

6 so that γ2D
d′

3 (T ) & D(T ), and that

min

(
1

(1 + x)
6

d′

,
1

(1 + x)2

)
& χ[0,1](x) for x ≥ 0 ,

we deduce

G0t
−1 & D(T )

∫ T

t

χ[0,1](γD
d′

6 (T )(T − s)) ds

& γ−1D1− d′

6 (T )

∫ γD
d′

6 (T )(T−t)

0

χ[0,1](x) dx & min(γ−1D1− d′

6 (T ), D(T )(T − t)) ,

where the second inequality follows from the change of variable x = γD
d′

6 (T )(T − s) . Taking
t = T

2 we get

D(T ) .
G0 + γ

6

6−d′ G
6

6−d′

0 T− 2d′−6

6−d′

T 2
,

which using that γ = E
1− d′

6

0 gives

(4.48) D(T ) .
G0 + E0 G

6

6−d′

0 T− 2d′−6

6−d′

T 2
.

Arguing analogously in the case γ . D(T )−
d′−3

6 , for any 0 < t < T one can show

G0t
−1 & min(D(T )(T − t), D

1

2 (T ))

from which we deduce

(4.49) D(T ) .
G0 + G2

0

T 2
.

In conclusion (4.43) follows by summing (4.48) and (4.49). �
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5. Global existence

In this section we prove global existence and uniqueness for solutions of the Cahn-Hilliard
equation (1.1) under the assumptions of Theorem 1.1. We start by stating a local-in-time existence
and uniqueness result, whose proof is postponed to the end of this section.

Theorem 5.1. Let δ > 0 be given. For any T > 0, there exists δ = δ(T ) > 0 such that for every

v ∈ K and u0 ∈ L∞(S) ∩ (v +H1(S)) with ‖u0 − v‖L∞ ≤ δ, the problem

(5.1)

{
ut −∆(G′(u)−∆u) = 0
u(0) = u0

admits a unique C∞ solution u on [0, T ]. Moreover,

(5.2) ‖u(t)− vc(t)‖L∞ ≤ δ̄ ∀ t ∈ [0, T ] ,

where vc(t) is given by (1.10) and u(t) ∈ vc(t) +Hj(S) for every j ∈ N ∪ {0} and t ∈ (0, T ] .

Remark 5.2. We point out that our local-in-time existence result holds in any space dimension.

We now prove that thanks to the relaxation estimates established in Proposition 4.1, we can
pass from a local to a global existence result for solutions of (5.1).

Theorem 5.3. Let 2 ≤ d ≤ 5 and let δ be given by Proposition 3.1. For every H > 0 and

E > 0, there exists δ > 0 such that for every u0 with E0 := E(u0) ≤ E, H0 := H(u0) ≤ H and

‖u0 − v0‖L∞ ≤ δ, equation (5.1) admits a unique global smooth solution u with

(5.3) ‖u(t)− vc(t)‖L∞ ≤ δ, ∀ t ≥ 0 .

Moreover, for every t > 0 and for every j ≥ 0, there holds: u(t) ∈ (vc(t) +Hj(S)) ,

(5.4) E(u(t)) < ∞, H(u(t)) < ∞.

Proof. Let us start by proving that if a solution u exists with u(t) ∈ (vc(t) +H4(S)), then (5.4)
holds true. We first point out that since d ≤ 5, by Gagliardo-Nirenberg inequality (see the proof
of (3.3)), u(t) ∈ L∞(S), and hence u(t) − vc(t) ∈ L∞(S). By arguing as in (3.25) and (3.26), we
get

E(u(t)) . ‖u(t)− vc(t)‖
2
H1 < ∞ .

As a consequence, using that u(t) ∈ (vc(t) +H4(S)) solves (5.1), the energy gap E(u(t)) is differ-
entiable with respect to t and

(5.5) E(u0)− E(u(t)) =

∫ t

0

‖∇ (G′(u(s))−∆u(s)) ‖2L2 ds .

We now turn to H(u). Since

H(u) = ‖u(t)− v0‖
2
Ḣ−1

. ‖u(t)− u0‖
2
Ḣ−1

+H(u0),

we only need to prove that ‖u(t)− u0‖
2
Ḣ−1

is finite.

By (5.5) and (5.1), using also the definition of the Ḣ−1 norm and Jensen inequality, we get

‖u(t)− u0‖
2
Ḣ−1

=

∥∥∥∥
∫ t

0

ut(s) ds

∥∥∥∥
2

Ḣ−1

=

∥∥∥∥
∫ t

0

∆(G′(u(s))−∆u(s)) ds

∥∥∥∥
2

Ḣ−1

≤

∫

S

∣∣∣∣
∫ t

0

|∇(G′(u(s))−∆u(s))| ds

∣∣∣∣
2

dx

≤ t

∫ t

0

ds

∫

S

|∇(G′(u(s)) −∆u(s))|2 dx

= t(E(u0)− E(u(t))),

which immediately implies that H(u) < ∞.
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We can now turn to the global existence result. Let δ1 := min{δ(1), δ̄}, where δ(1) is given by
Theorem 5.1 for T = 1. Let moreover T ≫ 1 be such that

(5.6) E
1

2
− d′

12

0

(
G0 + G2

0

) d′

12 T−d′

6 ≪ δ1,

with G0 = H0 + E0 + E7
0 , and let δ := δ(T ) be given by Theorem 5.1.

By Lemma 2.1, using that E0 < ∞ and H0 < ∞, we get that u0 ∈ (v0 + H1(S)). Therefore,
assuming that ‖u0 − v0‖L∞ ≤ δ, by Theorem 5.1, there exists a unique smooth solution u = u(t)
to (5.1)in [0, T ], with u(t) ∈ (vc(t) +Hj(S)) for any j ≥ 0 and for any t ∈ (0, T ], and

(5.7) ‖u(t)− vc(t)‖L∞ ≤ δ̄ ∀t ∈ [0, T ] .

It follows that u satisfies the assumptions of Proposition 4.1 in [0, T ] with T ≫ 1, and hence (4.6)
gives

(5.8) D(u(T )) . (G0 + G2
0 )T

−2 .

Using Corollary 3.2, (4.1), (5.8) and (5.6) we obtain

(5.9)

‖u(T )− vc(T )‖L∞ . E
1

2
− d′

12 (u(T ))D
d′

12 (u(T ))

. E
1

2
− d′

12

0

(
G0 + G2

0

) d′

12 T−d′

6

≪ δ1 .

We can thus apply once again Theorem 5.1 with u0 replaced by u(T ) and v = vc(T ) in order to
extend the solution u to the interval [0, T + 1]. Using (4.6) and arguing as above we get

‖u(T + 1)− vc(T+1)‖L∞ . E
1

2
− d′

12

0

(
G0 + G2

0

) d′

12 (T + 1)−
d′

6 ≤ E
1

2
− d′

12

0

(
G0 + G2

0

) d′

12 T−d′

6

(5.9)
≪ δ1 ,

and we can now iterate this procedure in order to obtain a global solution.
�

We may now turn to the proof of Theorem 5.1. For this we will use Duhamel formula for
constructing the solution and then apply Banach fixed point Theorem. This strategy is inspired
by [15]. We first need some estimates on the fundamental solution of the parabolic bi-harmonic
equation

(5.10) ∂tu+∆2u = 0 in S .

We first fix some notation. For any l > 0 we denote by Ql the d − 1 dimensional torus with
sidelength l and we set Sl := Ql × R, with the convention that Q := Q1 and S := S1. The set
S(Rd) denotes the Schwartz class.
Using Fourier transform in the last variable and Fourier series in the variables in Q, we can write

u(t, x′, xd) =

∫

R

∑

ξ′∈Zd−1

cξd(t, ξ
′)e2iπξ·x dξd,

so that (5.10) implies

ċξd = −(2π)4|ξ|4cξd ,

and thus

cξd(t, ξ
′) = cξd(0, ξ

′)e−|2πξ|4t.

The fundamental solution of (5.10) is thus

(5.11) k(t, x) :=

∫

R

∑

ξ′∈Zd−1

e−|2πξ|4te2iπξ·x dξd,

In order to prove L1 estimates on the kernel k and its derivatives, we will need the following
lemma.
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Lemma 5.4. Let u ∈ S(Rd). Then
∫

Rd

∣∣∣∣
∫

Rd

u(η)e2iπη·y dη

∣∣∣∣ dy < ∞

and for any t > 0

(5.12)

∫

S
t
−

1

4

∣∣∣∣∣∣∣

∫

R

t
d−1

4

∑

η′∈(t
1

4 Z)d−1

u(η)e2iπη·y dηd

∣∣∣∣∣∣∣
dy ≤

∫

Rd

∣∣∣∣
∫

Rd

u(η)e2iπη·y dη

∣∣∣∣ dy.

Proof. Since u ∈ S(Rd), also its Fourier transform is in the Schwartz class and thus
∫

Rd

∣∣∣∣
∫

Rd

u(η)e2iπη·y dη

∣∣∣∣ dy < ∞ .

For any ηd ∈ R, we set gηd
(·) := u(·, ηd) which is then also in the Schwartz class. Therefore, for

any y′ ∈ R
d−1, by Poisson summation formula, we have

(5.13) t
d−1

4

∑

η′∈(t
1

4 Z)d−1

gηd
(η′)e2iπη

′·y′

=
∑

ζ′∈(t−
1

4 Z)d−1

ǧηd
(ζ′ + y′),

where ǧηd
(·) denotes the inverse Fourier transform of gηd

(·) defined by

(5.14) ǧηd
(ζ′) =

∫

Rd−1

gηd
(η′)e2iπζ

′·η′

dη′.

By (5.13), Fubini and the change of variables ỹ′ = y′ + ζ′, we have

∫

S
t
−

1

4

∣∣∣∣∣∣∣

∫

R

t
d−1

4

∑

η′∈(t
1

4 Z)d−1

u(η′, ηd)e
2iπη·y dηd

∣∣∣∣∣∣∣
dy

=

∫

S
t
−

1

4

∣∣∣∣∣∣∣

∫

R

∑

ζ′∈(t−
1

4 Z)d−1

ǧηd
(ζ′ + y′) e2iπηd·yd dηd

∣∣∣∣∣∣∣
dy

≤

∫

R




∑

ζ′∈(t−
1

4 Z)d−1

∫

Q
t
−

1

4

∣∣∣∣
∫

R

ǧηd
(ζ′ + y′) e2iπηd·yd dηd

∣∣∣∣ dy
′


 dyd

=

∫

R




∑

ζ′∈(t−
1

4 Z)d−1

∫

−ζ′+Q
t
−

1

4

∣∣∣∣
∫

R

ǧηd
(ỹ′) e2iπηd·yd dηd

∣∣∣∣ dỹ
′


 dyd

=

∫

R

∫

Rd−1

∣∣∣∣
∫

R

ǧηd
(ỹ′)e2iπηd·yd dηd

∣∣∣∣ dỹ
′ dyd

=

∫

Rd

∣∣∣∣
∫

Rd

u(η)e2iπη·y dη

∣∣∣∣ dy ,

where the last equality follows directly from the definition of gηd
and (5.14). �

We may now prove L1 bounds for the kernel k and its derivatives.

Proposition 5.5. For every j ∈ N, there exists γj > 0 such that for any t > 0,

(5.15) ‖∇jk(t)‖L1(S) ≤ γj t
− j

4 .

Proof. Since for l = 1, . . . , d and αl ∈ N,

∂αl
xl
k(t, x) =

∫

R

∑

ξ′∈Zd−1

e−|2πξ|4te2iπξ·x(2iπ ξl)
αl dξd
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by the change of variables ξ = t−
1

4 η and x = t
1

4 y, we have for every (α1, . . . , αd), with
∑

l αl = j

∫

S

∣∣∂α1

x1
. . . ∂αd

xd
k(t, x)

∣∣ dx = (2π)j
∫

S

∣∣∣∣∣∣

∫

R

∑

ξ′∈Zd−1

e−|2πξ|4t ξα1

1 . . . ξαd

d e2iπξ·x dξd

∣∣∣∣∣∣
dx

= (2π)j
∫

S
t
−

1

4

∣∣∣∣∣∣∣∣

∫

R

t
d−1

4

∑

η′∈
(

t
1

4 Z

)d−1

e−|2πη|4 t−
α1

4 ηα1

1 . . . t−
αd
4 ηαd

d e2iπη·y dηd

∣∣∣∣∣∣∣∣
dy

= (2π)jt−
j

4

∫

S
t
−

1

4

∣∣∣∣∣∣∣∣

∫

R

t
d−1

4

∑

η′∈
(

t
1

4 Z

)d−1

e−|η|4ηα1

1 . . . ηαd

d e2iπη·y dηd

∣∣∣∣∣∣∣∣
dy.

Estimate (5.15) follows form Lemma 5.4 applied to

u(η) = e−|η|4ηα1

1 . . . ηαd

d .

�

We finally prove Theorem 5.1.

Proof of Theorem 5.1. Let δ and T > 0 be given. For u0 ∈ L∞(S), set f0 := u0 − v and define
the operator

T f(t, x) :=

∫

S

k(t, x− y)f0(y) dy

+

∫ t

0

ds

∫

S

∆k(t− s, x− y)(G′(f(s, y) + v(y))−G′(v(y))) dy .

We divide the proof into three steps.
Step 1: Existence of a classical solution u to (5.1) satisfying (5.2).

Let T0 > 0 and set

Π := {(t, x) : t ∈ [0, T0], x ∈ S} .

Consider

(5.16) C :=
{
f ∈ C1,4(Π) :

4∑

j=0

‖t
j

4∇jf‖L∞(Π) + ‖t ∂tf‖L∞(Π) ≤ 1
}

equipped with the natural weighted norm

(5.17) ‖f‖C :=

4∑

j=0

‖t
j

4∇jf‖L∞(Π) + ‖t ∂tf‖L∞(Π) .

We prove that T is a contraction in C for ‖f0‖L∞(S) +T0 small enough. We start by proving that

T leaves C invariant. If f is in C, it is standard to check that T f ∈ C1,4(Π) and that

(5.18) ∂tT f +∆2T f = ∆(G′(f + v)−G′(v)).

We refer for instance to [4] for a similar computation in the case of the heat equation. For f ∈ C,
using that ‖v‖L∞(S), ‖f‖L∞(Π) ≤ 1 we have

(5.19) |G′(f + v)−G′(v)| . |f |,
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which, combined with (5.15), implies that for any t ∈ [0, T0]

(5.20)

‖T f(t)‖L∞(S) . ‖k(t)‖L1(S)‖f
0‖L∞(S) +

∫ t

0

‖∆k(t− s)‖L1(S)‖f(s)‖L∞(S)

. ‖f0‖L∞(S) +

∫ t

0

(t− s)−
1

2 ‖f(s)‖L∞(S) ds

. ‖f0‖L∞(S) + t
1

2 ‖f‖L∞(Π)

. ‖f0‖L∞(S) + T
1

2

0 ‖f‖C .

and, analogously,

(5.21)

‖t
1

4∇T f(t)‖L∞(S) . t
1

4 ‖∇k(t)‖L1(S)‖f
0‖L∞(S)

+ t
1

4

∫ t

0

‖∇∆k(t− s)‖L1(S)‖G
′(f(s) + v)−G′(v)‖L∞(S) ds

. ‖f0‖L∞(S) + t
1

4

∫ t

0

(t− s)−
3

4 ‖f(s)‖L∞(S) ds

. ‖f0‖L∞(S) + T
1

2

0 ‖f‖C .

Moreover, again by (5.15), we get

‖t
1

2∇2T f(t)‖L∞(S) . t
1

2 ‖∇2k(t)‖L1(S)‖f
0‖L∞(S)

+ t
1

2

∫ t

0

‖∇∆k(t− s)‖L1(S)‖∇(G′(f(s) + v)−G′(v))‖L∞(S) ds

. ‖f0‖L∞(S)

+ t
1

2

∫ t

0

(t− s)−
3

4 ‖(G′′(f(s) + v)−G′′(v))∇(f(s) + v) +G′′(v)∇f(s)‖L∞(S) ds.

Since, for f ∈ C,

(5.22) ‖(G′′(f(s) + v)−G′′(v))∇(f(s) + v) +G′′(v)∇f(s)‖L∞(S)

. ‖f(s)‖L∞(S)[s
− 1

4 (s
1

4 ‖∇f(s)‖L∞(S)) + 1] + s−
1

4 (s
1

4 ‖∇f(s)‖L∞(S)) . s−
1

4 ‖f‖C

we have

(5.23) ‖t
1

2∇2T f(t)‖L∞(S) . ‖f0‖L∞(S) + t
1

2 ‖f‖C

∫ t

0

(t− s)−
3

4 s−
1

4 ds

. ‖f0‖L∞(S) + t
1

2 ‖f‖C

∫ 1

0

(1− s)−
3

4 s−
1

4 ds . ‖f0‖L∞(S) + t
1

2 ‖f‖C ,

which yields as above

‖t
1

4∇T f‖L∞(Π) . ‖f0‖L∞(S) + T
1

2

0 ‖f‖C .

By using again (5.15), for j = 3, 4, we get

(5.24)

‖t
j
4∇jT f(t)‖L∞(S) . t

j
4 ‖∇jk(t)‖L1(S)‖f

0‖L∞(S)

+ t
j

4

∫ t

0

‖∇∆k(t− s)‖L1(S)‖∇
j−1(G′(f(s) + v)−G′(v))‖L∞(S) ds

. ‖f0‖L∞(S)

+ t
j

4

∫ t

0

(t− s)−
3

4 ‖∇j−1(G′(f(s) + v)−G′(v))‖L∞(S) ds .

By expanding the derivatives of G′(f(s) + v) and arguing as in (5.22), it is straightforward to
check

(5.25) ‖∇j−1(G′(f(s) + v)−G′(v))‖L∞(S) . s−
j−1

4 ‖f‖C
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which together with (5.24) yields

(5.26) ‖t
j

4∇jT f(t)‖L∞(S) . ‖f0‖L∞(S) + T
1

2

0 ‖f‖C.

for j = 3, 4 and t ∈ [0, T0] . By summing (5.20), (5.21), (5.23) and (5.26) we get

4∑

j=0

‖t
j
4∇jT f(t)‖L∞(S) . ‖f0‖L∞(S) + T

1

2

0 ‖f‖C.

Finally, by (5.18) and by (5.25), for t ∈ [0, T0] we obtain

‖t∂tT f(t)‖L∞(S) . ‖t∇4T f(t)‖L∞(S) + ‖t∆(G′(f(t) + v)−G′(v))‖L∞(S) . ‖f0‖L∞(S) +T
1

2

0 ‖f‖C .

We conclude that for ‖f0‖L∞(S) + T0 small enough,

‖T f‖C ≤ C
(
‖f0‖L∞(S) + T

1

2

0 ‖f‖C
)
≤ 1.

The contractivity of T for T0 small enough is obtained similarly. Therefore, there exists a unique
fixed point f in C. Set u(t, x) := f(t, x)− v(x), we immediately have that u is a classical solution
of (5.1) in the interval [0, T0].

Moreover, by (5.20) we have

max
t∈[0,T0]

‖f(t)‖L∞(S) . ‖f0‖L∞(S) + T
1

2

0 max
t∈[0,T0]

‖f(t)‖L∞(S),

so that, for T0 small enough,

(5.27) max
t∈[0,T0]

‖f(t)‖L∞(S) .
‖f0‖L∞(S)

1− CT
1

2

0

. ‖f0‖L∞(S) .

By dividing the interval [0, T ] in intervals of length T0 and iterating the procedure above, we
obtain that the solution f can be extended to the interval [0, T ] and that

(5.28) max
t∈[0,T ]

‖f(t)‖L∞(S) . ‖f0‖L∞(S)e
cT .

Recalling that u(t) := f(t)− v, by (5.28) and Lemma 2.2, we get that there exists δ := δ(T ) > 0
such that if ‖f0‖L∞(S) ≤ δ, then

‖u(t)− vc(t)‖L∞(S) ≤ δ for any t ∈ [0, T ] .

Step 2: u(t)− vc(t) ∈ Hj(S) for every t ∈ (0, T ] and for every j ∈ N ∪ {0} .
We preliminarily notice that, by the very definition of vc(t) in (1.10) and by the fact that vc(t) ∈

Ḣj(S), in order to get the claim it is enough to show that for every t0 ∈ (0, T ) and for every
j ∈ N ∪ {0} there holds

(5.29) sup
t∈(t0,T ]

‖∇jf(t)‖L2(S) ≤ Cj

where Cj is a positive constant depending on f0, t0, T , and j .
To this purpose, we first show, by induction on j, that for every t0 ∈ (0, T ) and for every j ∈ N∪{0},

(5.30) sup
t∈(t0,T ]

‖∇jf(t)‖L∞(S) ≤ C′
j

with C′
j positive and depending on f0, t0, T , and j . By (5.28), (5.30) holds true for j = 0. Let us

assume now that it holds up to j − 1. Since for t ∈ (t0, T ),

(5.31) f(t, x) =

∫

S

k(t, x−y)f(t0, y) dy+

∫ t

t0

∫

S

∆k(t−s, x−y)(G′(f(s, y)+v(y))−G′(v(y))) dy ds,
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using Young inequality, the inductive assumption, (5.15) and (5.28), we get

‖∇jf(t)‖L∞(S) . ‖∇jk(t)‖L1(S)‖f(t0)‖L∞(S)

+

∫ t

t0

‖∇∆k(t− s)‖L1(S)‖∇
j−1(G′(f(s) + v) −G′(v))‖L∞(S) ds

. γj t
− j

4 ‖f(t0)‖L∞(S) + C′
j−1

∫ t

t0

(t− s)−
3

4 ds

. γj t
− j

4

0 ‖f0‖L∞(S)e
cT + C′

j−1T
1

4 ,

which proves (5.30).
With (5.30) in hand, we can prove that (5.29) holds true. We proceed once again by induction on
j. As for j = 0, by using in order of appearance (5.31), (5.19), Minkowski and Young inequalities
and (5.15), for any 0 < t < T0, we obtain

‖f(t)‖L2(S) . ‖k(t)‖L1(S)‖f
0‖L2(S) +

∫ t

0

‖∆k(t− s)‖L1(S)‖G
′(f(s) + v)−G′(v)‖L2(S) ds

. ‖f0‖L2(S) +

∫ t

0

(t− s)−
1

2 ‖f(s)‖L2(S) ds

. ‖f0‖L2(S) + T
1

2

0 max
t∈[0,T0]

‖f(t)‖L2(S),

which, by arguing as in (5.27) and (5.28) yields

(5.32) max
t∈[0,T ]

‖f(t)‖L2(S) . ‖f0‖L2(S) e
cT ,

thus proving (5.29) for j = 0.
Let us prove a similar bound for ∇f(t). By arguing as above and using (5.32) we have

‖∇f(t)‖L2(S) . ‖k(t)‖L1(S)‖∇f0‖L2(S) +

∫ t

0

‖∇∆k(t− s)‖L1(S)‖G
′(f(s) + v) −G′(v)‖L2(S) ds

. ‖∇f0‖L2(S) +

∫ t

0

(t− s)−
3

4 ‖f(s)‖L2(S) ds

.‖∇f0‖L2(S) + ‖f0‖L2(S)

∫ t

0

(t− s)−
3

4 ecs ds

. ‖∇f0‖L2(S) + ‖f0‖L2(S)T
1

4 ecT ,

This proves (5.29) for j = 1.
Let us assume that it holds up to j − 1. By (5.31), (5.19), (5.15), the inductive assumption and
(5.32), we have

‖∇jf(t)‖L2(S) ≤ ‖∇jk(t)‖L1(S)‖f(t0)‖L2(S)

+

∫ t

t0

‖∇∆k(t− s)‖L1(S)‖∇
j−1(G′(f(s) + v)−G′(v))‖L2(S) ds

. γjt
− j

4 ‖f(t0)‖L2(S) + Cj−1

∫ t

0

(t− s)−
3

4 ds

. γjt
− j

4

0 ‖f0‖L2(S)e
cT + Cj−1

(
t
− j

4

0 + T
1

4

)
,

thus concluding the proof of (5.29).
Step 3: C∞ regularity of the solution u .

The regularity of u follows by a bootstrap argument. We briefly sketch it. Let f := u − v where
u satisfies (5.1), namely f satisfies

(5.33)

{
ft +∆2f = ∆(G′(f + v)−G′(v))
f(0) = f0
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and set g := G′′(f + v). Let t0 > 0 and h0 ∈ L2(S) ∩ L∞(S). Consider the problem

(5.34)

{
ht +∆2h = ∆(gh) in S
h(t0) = h0

and note that formally h = ft for t ≥ t0 . We first show that (5.34) admits a unique classical
solution h. This would imply in particular that h ∈ C1,4 so that f ∈ C2,4((0, T )× S).
Let T0 > 0 and

Π′ := {(t, x) : t ∈ [t0, T0], x ∈ S}

C′ :=
{
h ∈ C1,4(Π) :

4∑

j=0

‖t
j

4∇jh‖L∞(Π′) + ‖t ∂th‖L∞(Π′) ≤ M‖h0‖L∞(S)

}
,

with M > 0 to be determined. Let moreover ‖ · ‖C′ be defined as in (5.17) by replacing Π with Π′.
By arguing as in Step 1, one can show there exists M > 0 and a unique classical solution h to the
problem (5.34) in the interval [t0, T0]. Moreover, by arguing as in (5.27) and (5.28), one can see
that the solution h can be extended to the interval [t0, T ]. The iteration of the argument above
applied to all the derivatives in space-time of f yields the desired result. �

References

[1] E. A. Carlen, E. Orlandi: Stability of planar fronts for a non-local phase kinetics equation with a conservation
law in D ≤ 3, Rev. Math. Phys., 24 (2012), 1250009.

[2] O. Chugreeva, F. Otto, M.G. Westdickenberg: Optimal relaxation to a planar interface in the Mullins-Sekerka
problem, preprint 2017, arXiv: 1709.04833v2.

[3] C.M. Elliott, Z. Songmu: On the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 96 (1986), no. 4,
339–357.

[4] L.C. Evans: Partial Differential Equations, Second edition. Graduate Studies in Mathematics, 19. American
Mathematical Society, Providence, RI, 2010.

[5] E. Esselborn: Relaxation rates for a perturbation of a stationary solution to the thin-film equation, SIAM J.

Math. Anal. 48 (2016), no. 1, 349–396.
[6] P. C. Fife: Dynamical aspects of the Cahn-Hilliard equation, Barrett Lectures, University of Tennessee, Spring

1991.
[7] M. Goldman, B. Merlet: Phase Segregation for Binary Mixtures of Bose-Einstein Condensates, SIAM J. Math.

Anal., 49 (2017), no. 3, 1947–1981.
[8] M. Goldman, B. Merlet, V. Millot: A Ginzburg-Landau model with topologically induced free discontinuities,

preprint 2017, arXiv:1711.08668.
[9] P. Howard: Asymptotic behavior near planar transition fronts for the Cahn-Hilliard equation, Phys. D, 229

(2007), 123–165.
[10] P. Howard: Spectral analysis of planar transition fronts for the Cahn-Hilliard equation, J. Differential Equa-

tions, 245 (2008), 594–615.
[11] P. Howard: Spectral analysis for transition front solutions in multidimensional Cahn-Hilliard systems, J.

Differential Equations, 257 (2014), 3448–3465.
[12] P. Howard: Stability of Transition Front Solutions in Multidimensional Cahn-Hilliard Systems, J. Nonlinear

Sci., 26 (2016), no. 3, 619–661.
[13] T. Korvola, A. Kupiainen, J. Taskinen: Anomalous scaling for three-dimensional Cahn-Hilliard fronts, Comm.

Pure Appl. Math., 58 (2005), 1077–1115.
[14] L. Lassoued, P. Mironescu: Ginzburg-Landau type energy with discontinuous constraint, J. Anal. Math., 77

(1999), 1–26.
[15] S. Liu, F. Wang, H. Zhao: Global existence and asymptotics of solutions of the Cahn-Hilliard equation, J.

Differential Equations, 230 (2007), 426–469.
[16] F. Otto, M.G. Westdickenberg: Relaxation to equilibrium in the one-dimensional Cahn-Hilliard equation,

SIAM J. Math. Anal. 46 (2014), no. 1, 720–756.
[17] S. Scholtes, M.G. Westdickenberg: Metastability of the Cahn-Hilliard equation in one space dimension,

preprint 2017, arXiv:1705.10985.
[18] R. Temam: Infinite-dimensional dynamical systems in mechanics and physics. Second edition. Applied Math-

ematical Sciences, 68. Springer-Verlag, New York, 1997. xxii



28 L. DE LUCA, M. GOLDMAN, AND M. STRANI

(Lucia De Luca) Via Bonomea 265, 34136 Trieste, Italy

E-mail address, L. De Luca: ldeluca@sissa.it
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