
HAL Id: hal-01714624
https://hal.science/hal-01714624v1

Preprint submitted on 13 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regularized hazard estimation for age-period-cohort
analysis

Grégory Nuel, Olivier Bouaziz, Vivien Goepp

To cite this version:
Grégory Nuel, Olivier Bouaziz, Vivien Goepp. Regularized hazard estimation for age-period-cohort
analysis. 2018. �hal-01714624�

https://hal.science/hal-01714624v1
https://hal.archives-ouvertes.fr


Regularized hazard estimation for age-period-cohort analysis

Vivien Goepp1, Grégory Nuel2, and Olivier Bouaziz1

1MAP5 (Department of mathematics, 45, rue des Saints-Pères, 75006 Paris)
2LPMA (Department of mathematics, 4, Place Jussieu, 75005 Paris)

December 2017

Abstract

In epidemiological or demographic studies, with variable age at onset, a typical quantity of
interest is the incidence of a disease (for example the cancer incidence). In these studies, the
data are usually reported in the form of registers which contain the number of observed cases
and the number of individuals at risk to contract the disease. These data are usually highly
heterogeneous in terms of dates of birth (the cohort) and with respect to the calendar time (the
period) and appropriate estimation methods are needed. In this article a new estimation method
is presented which extends classical age-period-cohort analysis by allowing interactions between
age, period and cohort effects. In order to take into account possible overfitting issues, a penalty
is introduced on the likelihood of the model. This penalty can be designed either to smooth the
hazard rate or to enforce consecutive values of the hazards to be equal, leading to a parsimonious
representation of the hazard rate. The method is evaluated on simulated data and applied on the
E3N cohort data of breast cancer.

Introduction

In epidemiological or demographic studies, with variable age at onset, a typical quantity of interest
is the incidence or the hazard rate of a disease (for example the cancer incidence). In these studies,
individuals are recruited and followed up during a long period of time, usually from birth. The
data are then reported in the form of registers which contain the number of observed cases and the
number of individuals at risk to contract the disease. These types of studies are of great interest
for the statistician, especially when the event of interest will tend to occur at late ages, such as in
cancer studies. However, these data are usually highly heterogeneous in terms of dates of birth and
with respect to the calendar time. In epidemiological and demographic studies, it is therefore very
important to take into account the variability of the age, the cohort effect (date of birth) and the period
effect (the calendar time) in the hazard rate estimation. This is usually done using age-period-cohort
estimation methods [see Yang and Land, 2013, and citations therein].

The standard approach in age-period-cohort analysis is to fit the effects of age, period and cohort
as factor variables in a regression model where the output is the logarithm of the hazard rate. One
can use the full model which includes all three effects as factor variables. However, this induces an
identifiability problem due to the relationship: period = age + cohort. One solution is to use instead
a reduced model where only two of the age, period and cohort effects are modeled. These models
are identifiable and since they have fewer parameters than there are variables, they are regularizing.
But they are also restrictive because they assume that one effect does not depend on the other effect’s
value. Different constraints have then been proposed to make the age-period-cohort model identifi-
able. However, when no a priori knowledge is assumed on the data, these proposed constraints are
absolutely arbitrary [Heuer, 1997, p 162]. Osmond and Gardner [1982] proposed to compute each
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submodel and use a weighting procedure to measure which has the best goodness of fit, in order to
choose the best constraint to add to the model. On the other hand, without additional constraints, the
age, period, and cohort effects are identifiable only up to a linear trend. Therefore, Holford [1983]
proposed to directly estimate the linear trends of each effect, a procedure leading to results that are
difficult to interpret. The package apc [Kuang et al., 2008, Nielsen et al., 2015] offers to estimate
the second order derivatives of the effects . Carstensen [2007] provides a detailed discussion of the
identifiability problem of the age-period-cohort model. Namely, the author offers to first fit one sub-
model (say age-cohort) and then to fit the period effect over the residuals of the first model. Fitting
two models sequentially is different from fitting the three effects at once, but the result is believed
to be close to the maximum likelihood estimate. Moreover, this method offers a simple and conve-
nient solution to the nonidentifiability problem. The function apc.fit from the R package Epi
[Carstensen et al., 2017, Plummer and Carstensen, 2011] implements this method and provides esti-
mates of the age, period, and cohort effects. Each effect is smoothed using one-dimensional splines.
Finally, it is important to stress that both modeling approaches (models with two effects and the full
model) assume a simplistic effect of age, period and cohort as no interaction terms are allowed. In
other words, these models assume a same effect of the age for every cohort and period, a same effect
of cohort for every age and period and a same effect of period for every age and cohort.

Another approach consists in considering the hazard rate as a function of age and either period
or cohort and to estimate this function in a non-parametric setting. No specific structure is assumed
on the effect of age, period and cohort on the hazard rate, however non-parametric approaches will
suffer from overparametrization for moderate sample sizes. As a consequence, regularized methods
have been proposed in order to avoid overfitting in this non-parametric context. A kernel-type esti-
mator was proposed by McKeague and Utikal [1990] where the cumulative hazard is smoothed using
a kernel function. Non-parametric methods for survival analysis over the Lexis diagram have been
initiated by Beran [1981]. A spline method was proposed by Heuer [1997], estimating the age and
period effects using restricted cubic splines (natural splines). Finally, Ogata and Katsura [1988] pro-
posed a penalized likelihood estimator. The likelihood is penalized using the integral of the squared
second order derivatives and the proximity between spline regression and penalized likelihood is ex-
plicited. The authors make use of the Bayesian interpretation of the penalized likelihood to propose
a Bayes procedure to adjust the values of the penalty constants. See [Keiding, 1990] for a thorough
discussion of methods for inference of the hazard for age-period-cohort analysis.

In this article, we propose a new model for age-period-cohort analysis. As the aforementioned
non-parametric approaches, this model considers the estimation of the hazard rate with respect to
two variables, i.e. either age-cohort, age-period, or period-cohort, without assuming any specific
structure on the effect of age, period and cohort. All effects can be retrieved using the relationship:
period = age + cohort. We emphasize that there is no need to directly model the three effects (and as
a consequence add supplementary constraints on the model), since all effects can be retrieved from
the original modelization. Interestingly, our model can be seen as a direct extension of the standard
age-period-cohort models since interactions terms between the three effects of age, period and cohort
are allowed in our modeling approach. Finally, in order to take into account the issue of overfitting,
a general penalization procedure is introduced. The penalty can be specified either as a L2 penalty
or as an approximated L0 penalty. The latter uses an approximation of the L0 norm which was first
introduced by Frommlet and Nuel [2016] and which is computationally tractable. We show that
in our case, the likelihood maximization is made computationally feasible even for small age and
cohort step sizes using the inversion of bandmatrices. Both approaches are of interest depending of
the objective of the study: the L2 penalty provides a smooth estimate of the hazard rate while the L0

penalty provides a segmented estimate, leading to a parsimonious representation of the hazard rate.
In Section 1, after presenting a review of some of the existing models for age-period-cohort anal-

ysis our two new models are introduced. The two different regularization methods are then presented
in Section 2: the L2 penalty, which leads to a smoothed hazard, and the L0 penalty, which leads to
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a segmented hazard estimate. In Section 3, the penalty term selection problem is discussed and in
Section 4, we explain how to construct confidence intervals for the L0 penalty type estimator using a
bootstrap procedure. Finally, the performance of our models is illustrated through a simulation study
in Section 5 and on the breast cancer data from the MGEN French registry in Section 6.

1 Modeling strategy in the age-period-cohort setting

In the age-period-cohort setting, the date of birth (the cohort) U of each individual is available and
the variable of interest is a time to event variable of this individual denoted T . The data are subject
to censoring and they are represented as tabulated data over the J cohort intervals and the K age
intervals [c0, c1), [c1, c2), . . . , [cJ−1, cJ) and [d0, d1), [d1, d2), . . . , [dK−1, dK) respectively, with the
convention c0 = d0 = 0 and cK = dK = ∞. These points of discretization are often evenly
spaced and, in the case of registered data, they are imposed by the data. On a sample of size n,
the available data can then be rewritten in terms of the exhaustive statistics O = (O1,1, . . . , OJ,K),
R = (R1,1, . . . , RJ,K), where for j = 1, . . . , J , k = 1, . . . ,K, Oj,k represents the number of
observed events that occurred in the j-th cohort interval [cj−1, cj) and k-th age interval [dk−1, dk)
and Rj,k represents the total times individuals were at risk in this j-th cohort and k-th age interval.
See for instance Carstensen [2007] for an example of such data. The aim is to use the available data
to provide an estimator of the hazard rate, defined in the age-cohort setting as:

λ(t, u) = lim
dt→0

1

dt
P(t < T < t+ dt|T > t, U = u),

in the situation where λ(t, u) is assumed to be piecewise constant. That is, we assume that

λ(t, u) =
J∑
j=1

K∑
k=1

λj,k1[cj−1,cj)×[dk−1,dk)(t, u),

and inference is made over the J ×K dimension parameter λ = (λ1,1, . . . , λJ,K). Note that the haz-
ard can be equivalently defined as a function of age and period or as a function of period and cohort
where the period is defined as the calendar time, that is: period = cohort + age. For illustration, the
change of coordinates between the age-period and age-cohort diagrams is represented in Figure 1. In
our models, the hazard will be considered as a function of solely age and cohort since the influence
of any of the two elements of age, period or cohort can be retrieved using this reparametrization.

Following [Aalen et al., 2008, p. 224] the negative log-likelihood takes the form

`n(λ) =
J∑
j=1

K∑
k=1

λj,kRj,k −Oj,k log (λj,k) . (1)

The authors also noticed that this log-likelihood is equivalent to a log-likelihood arising from a Pois-
son model. However, note that no distribution assumptions are made on the data and in particular
the Oj,k are not assumed to be Poisson distributed [Carstensen, 2007, for a discussion on the “Pois-
son” model]. Minimizing `n yields an explicit maximum likelihood estimator λ̂mle

j,k = Oj,k/Rj,k
which is well known in the age-period-cohort literature. However, for moderate sample sizes this
estimator will suffer from overfitting, especially in places of the age-cohort plane where few events
are recorded. In the following, we first discuss some existing models and then we present two new
approaches to analyze these types of age-period-cohort data.

1.1 Existing Age-Cohort and Age-Period-Cohort models

In the classical literature of age-period-cohort analysis, the focus is on modeling a specific effect of
the age, period and cohort on the hazard rate. To this end, mainly two different parametrizations have
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been used, leading to two different models. In the following, α = (α1, . . . , αJ), β = (β1, . . . , βK)
and γ = (γ1, . . . , γJ+K−1) represent the vectors of the age, cohort, and period effects respectively.

1. In the AGE-COHORT model, it is assumed that

log λj,k = µ+ αj + βk, (2)

with the convention α1 = β1 = 0. Note that this model contains only J + K − 1 parameters
instead of the initial JK values of γ. As a consequence, this model is highly regularizing and
it also assumes a strong a priori on the structure of the hazard. Inference is made by using the
Newton-Raphson algorithm to minimize `n(λ). See Clayton and Schifflers [1987a] for more
information on these types of modeling approaches.

2. In the AGE-PERIOD-COHORT model, it is assumed that

log λj,k = µ+ αj + βk + γj+k−1,

where γ is the vector of parameters estimating the period effect. Since age + cohort = period,
this model is not identifiable as such, and the age, period and cohort effects are only identified
up to a linear trend. See Clayton and Schifflers [1987b] for more information of this model.
Discussions over the choice of the best constraints to add to make this model identifiable can
be found for instance in Carstensen [2007].

Other approaches have been proposed. In particular regularized non-parametric estimators have been
considered such as splines [Eilers and Marx, 1996, pp. 82-83] or kernel estimators [McKeague and
Utikal, 1990]. In [Eilers and Marx, 1996], spline smoothing is done by projecting the hazard rate
on a family of B-spline functions. Instead of choosing the number and positions of spline knots, the
authors propose to use a relatively large number of knots and to penalize on the differences between
coefficients of adjacent B-splines.

Knorr [1984] used a more straightforward smoothing method, sometimes referred to as gradu-
ation: the authors first estimate the maximum likelihood estimator λ̂mle as the parameter that min-
imizes `n(λ), defined in (1), then they smooth it using a Whittaker-Henderson-type penalization
:

λ̂ = arg min
λ

∑
j,k

Wj,k(λj,k − λ̂mle
j,k )2 +

∑
j,k

(∆2λj,k)
2,

where Wj,k are scalar weights that represent the importance given to the (j, k)-th hazard rate value
and ∆2 represents the second order difference operator. In this equation, the first term represents the
estimate’s goodness of fit to the data and the second term (the square of the derivative) represents its
smoothness, such that the estimator achieves a compromise between model fit and smoothness of the
estimate. The author presents this method in the general multidimensional setting.

On the other hand, in McKeague and Utikal [1990], the cumulative hazard is estimated and then
smoothed using a kernel function. With this method, the type of kernel and the bandwidth need to be
chosen by the user.

In the following, we present our model, which provides a different regularization approach than
the spline or kernel methods.

1.2 The Age-Cohort-Interaction (ACI) Model

In the two previous models, no interactions between age, period and cohort are allowed. For instance,
Model (i) imposes the age effect to be the same for every cohort and the cohort effect to be the same
for every age. Model (ii) also captures the period effect but at the cost of introducing a cumbersome
constraint on the model parameters.
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In order to capture interaction effects and to avoid complex constraints on the model parameters,
we define the new AGE-COHORT-INTERACTION (ACI) model as

log λj,k = µ+ αj + βk + δj,k, (3)

where δ1,k = δj,1 = α1 = β1 = 0 such that there are JK freely varying parameters (1 parameter
for µ, J − 1 parameters for the αs, K − 1 parameters for the βs and (J − 1)(K − 1) parameters
for the δs). The age and cohort effects are fitted with α and β as in the age-cohort model (2) but the
hazard is allowed to deviate from this model using an extra parameter δ = (δ1,1, . . . , δJ,K), called
the interaction term. This model can be seen as a direct extension of Models (i) and (ii). In particular,
even though only two effects (age and cohort) are modeled, any other combination of effects can be
retrieved using the simple relation: age = period + cohort.

In order to avoid overfitting in the case where n is not large enough as compared to the number of
parameters JK, a penalization strategy is considered for the estimation procedure. First, we rewrite
the model in the following form:

log λj,k = ηj,k, (4)

where the ηj,ks are JK freely varying parameters and the model parameter is denoted η =
(η1,1, . . . , ηJ,K). The correspondance between Equations (3) and (4) is made through the following
relations:

µ = η1,1

αj = ηj,1 − µ
βk = η1,k − µ
δj,k = ηj,k − µ− αj − βk.

Penalization of the ACI model will then be performed on the differences between adjacent values
of the log-hazard. Using the parametrization (4), this amounts to penalize the ηj,ks in the following
way:

`κn(η) = `n(η) +
κ

2

J−1∑
j=1

K∑
k=1

vj,k (ηj+1,k − ηj,k)2 +
κ

2

J∑
j=1

K−1∑
k=1

wj,k (ηj,k+1 − ηj,k)2 , (5)

where `n(η) was defined in (1), κ is a penalty constant used as a tuning parameter, and v =
(v1,1, . . . , vJ−1,K),w = (w1,1, . . . , wJ,K−1) are constant weights of respective dimensions (J−1)K
and J(K − 1). Note that the case κ = 0 corresponds to the maximum likelihood estimation and the
case κ = ∞ corresponds to a hazard uniformly constant over the age and cohort intervals. The
parameter κ needs to be chosen in an appropriate way in order to obtain a compromise between these
two extreme situations.

This model does not attempt to estimate the age, period and cohort effect as parameter vectors.
Instead, it performs a regularized estimation of λ that has no age-period-cohort-type a priori. As
such, it does not answer the question of quantifying the age, period and cohort effects but rather
provides an accurate estimation of the hazard rate which takes into account potential overfitting. Two
choices for the weights v andw will be presented in the next section: one will lead to a smooth hazard
rate and the other to a segmented hazard rate. The choice of the optimal value for κ is addressed in
Section 3.

Minimization of `κn is performed using the Newton-Raphson algorithm (see Algorithm 1). Let
Uκn (η,v,w) = ∂`κn/∂η be the score vector and Iκn(η,v,w) = ∂Uκn (η,v,w)/∂ηT be the Hessian
matrix. For 1 ≤ j, j′ ≤ J and 1 ≤ k, k′ ≤ K, we have
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∂`n
∂ηj,k

(η) = exp (ηj,k)Rj,k −Oj,k,
∂2`n(η)

∂ηj′,k′∂ηj,k
= 1j=j′,k=k′ exp (ηj,k)Rj,k, and

∂`κn
∂ηj,k

(η) =
∂`n(η)

∂ηj,k
+ κ [−vj,k (ηj+1,k − ηj,k) + vj−1,k (ηj,k − ηj−1,k)]

+ κ [−wj,k (ηj,k+1 − ηj,k) + wj,k−1 (ηj,k − ηj,k−1)] ,

∂2`κn(η)

∂ηj′,k′∂ηj,k
=

∂2`n
∂ηj′,k′∂ηj,k

(η) + κ
[
1j=j′,k=k′

(
vj′,k′ + vj′−1,k′ + wj′,k′ + wj′,k′−1

)
− vj′,k′1j=j′+1,k=k′ − vj′−1,k′1j=j′−1,k=k′

−wj′,k′1j=j′,k=k′+1 − wj′,k′−11j=j′,k=k′−1

]
.

As a consequence, the Hessian matrix can be written

Iκn(η,v,w) =
∂2`n(η)

∂η∂ηT
+ κB(η),

where B(η) is a band matrix of bandwidth equal to min(J,K)− 1. Thus the Hessian matrix has
the same structure asB(η) and the calculation of Iκn(η,v,w)−1Uκn (η,v,w) has aO(min(J,K)JK)
complexity instead of O(J3K3). Inversion of the Hessian matrix is performed with the C++ imple-
mented function bandsolve (see https://github.com/Monneret/bandsolve).

Other types of penalization strategies that directly use the paramatrization (3) could have been
considered. In particular, it could be of interest to introduce a similar penalty on the δj,k instead of
directly penalizing the log-hazard. These types of penalties will not be studied in the present paper.

Algorithm 1 Newton-Raphson Procedure with constant weights

1: function NEWTON-RAPHSON(O,R, κ,v,w)
2: η← 0
3: while not converge do
4: ηnew← η − Iκn(η,v,w)−1Uκn (η,v,w)
5: η← ηnew

6: end while
7: return η
8: end function

2 Choice of the regularization parameters v and w

In this section, two different expressions of the weights v and w are proposed which correspond to
two different types of regularization of the hazard rate. The first one yields a smooth estimate. The
second one uses an iterated adaptation of the weights to approximate an L0 penalization of the first
order differences.

1. A ridge-type penalization is performed when setting v = w = 1. In this case the penalization
corresponds to the square of the first-order differences of δ. In the penalized estimation model,
this choice of weights yields a globally smooth estimator of the hazard rate. Note that our
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penalized maximum likelihood model will yield similar results as the spline method of Ogata
and Katsura [1988] presented in Section 1.1. In our method the penalization is performed over
the first order differences of the parameter while in the spline method it is performed over the
second order differences. This means that for arbitrarily large values of the penalty constant,
the regularized hazard will be a constant function instead of a linear function. This model will
be referred to as L2 regularized estimation and we will use the abbreviation “L∆

2 model” to
emphasize that the penalization is performed on the differences of the log-hazard.

2. Following the work from Frommlet and Nuel [2016] an adaptive ridge procedure is performed
when the weights are updated at each iteration of the Newton-Raphson algorithm. For example,
in the penalized maximum likelihood model, at the m-th iteration of the Newton-Raphson
algorithm the weights are computed from the following formulas:


v

(m)
j,k =

((
η

(m)
j+1,k − η

(m)
j,k

)2
+ ε2

v

)−1

, 1 ≤ j ≤ J − 1, 2 ≤ k ≤ K,

w
(m)
j,k =

((
η

(m)
j,k − η

(m)
j,k−1

)2
+ ε2

w

)−1

, 2 ≤ j ≤ J, 1 ≤ k ≤ K − 1,

where εv and εw are constants negligible compared to 1 (in practice one typically chooses
εv = εw = 10−6). We iterate between minimizing `κn for fixed weights and reevaluat-
ing the weights such that at the m-th step, v(m)

j,k (η
(m)
j+1,k − η

(m)
j,k )2 ' ‖η(m)

j+1,k − η
(m)
j,k ‖0 and

w
(m)
j,k (η

(m)
j,k+1 − η

(m)
j,k )2 ' ‖η(m)

j,k+1 − η
(m)
j,k ‖0. In other words, this adaptive ridge procedure ap-

proximates the L0 norm regularization over the differences of ηj,k and yields a segmentation
of ηj,k into piecewise constant areas. As with other classical penalized methods (e.g. LASSO,
ridge) and as pointed out in Frommlet and Nuel [2016], the adaptive ridge penalization scheme
induces a shrinkage bias. Therefore, this algorithm will be used to select the piecewise con-
stant areas but we use the unpenalized maximum likelihood estimate to infer the value of the
hazard over each constant area. More precisely, when the adaptive ridge algorithm converges,
vj,k (ηj+1,k − ηj,k)2 are very close to 1 if the adjacent values ηj+1,k and ηj,k have been esti-
mated to have different values and to 0 if they have been estimated to have the same value – and
similarly for wj,k (ηj,k+1 − ηj,k)2. We typically use a threshold of ε = 10−8, so that values
smaller than ε are set to 0 and values larger than 1− ε are set to 1. Then one creates the graph
whose vertices are the JK discretization cells and whose edges are the connexion between ad-
jacent cells that have a difference close to 0. Each connex component of this graph is a different
area over which the hazard has been estimated to be constant. The extraction of connex com-
ponents from the graph is done using the package igraph [Csardi and Nepusz, 2006]. The
log-hazard η(r) of the r-th constant area is such that ∀[cj−1, cj)× [dk−1, dk) ∈ r, ηj,k = η(r).
The values of η(r) are not estimated using the results of the adaptive ridge algorithm, but by
unpenalized maximum likelihood estimation: η̂(r) = O(r)/R(r) where O(r) is the number of
events in the r-th constant area and R(r) is the time at risk in the r-th constant area.

This method is illustrated through the toy-example of Figure 2 and the adaptive ridge procedure
is summarized in Algorithm 2. This estimation method will be called L0 regularized estimation
and will shorten into L∆

0 model. See also [Bouaziz and Nuel, 2017] for an implementation of
this adaptive ridge procedure in a similar context of hazard rate estimation.

3 Choice of the penalty constant κ

In practice, the hazard rate needs to be estimated for a set of penalty constants and the choice of
κ is determined as the penalty that provides the best compromise between model fit and reduced

7



Algorithm 2 Adaptive Ridge Procedure

1: function ADAPTIVE-RIDGE(O,R, κ)
2: η← 0
3: v← 1
4: w← 1
5: while not converge do
6: ηnew← NEWTON-RAPHSON(O,R, κ,v,w)

7: vnew
j,k ←

((
ηnew
j+1,k − ηnew

j,k

)2
+ ε2

v

)−1

8: wnew
j,k ←

((
ηnew
j,k − ηnew

j,k−1

)2
+ ε2

w

)−1

9: η← ηnew

10: end while
11: Compute (Onew, Rnew) for selected (η,vnew,wnew)
12: ηnew←Onew/Rnew

13: return ηnew

14: end function

variability of the hazard rate estimate. For the L∆
0 model, different values of the penalty constant

lead to different segmentations of the ηj,k. As a consequence, the problem of choosing the optimal
penalty constant can be rephrased as the problem of choosing the optimal model among a set of
models M1, . . . ,MM , where each of these models corresponds to a different segmentation of the
ηj,k andM is the maximum number of different models. In this section we propose different methods
to select the optimal model. Comparison of the efficiency of the different methods will be analyzed
in Section 5 on simulated data.

We recall that R and O are the exhaustive statistics (i.e. the data) and η is the parameter
to be estimated in our two models. Bayesian criteria attempt to maximize the posterior proba-
bility P(Mm|R,O) ∝ P(R,O|Mm)π(Mm), where P(R,O|Mm) is the integrated likelihood
and π (Mm) is the prior distribution on the model. This problem is equivalent to minimizing
−2 log P(Mm|R,O). By integration

P(R,O|Mm) =

∫
η

P(R,O|Mm,η)π(η)dη,

where P (R,O|Mm,η) is the likelihood and π(η) is the prior distribution of the parameter,
which is taken constant in the following. Thus Bayesian criteria are defined as the right-hand side of
the approximation

−2 log (P(Mm|R,O) = 2`n(η̂m) + qm log n− 2 log π(Mm) +OP(1),

where qm is the dimension of the modelMm i.e., the number of constant areas selected by the
adaptive ridge algorithm.

The BIC [Schwarz et al., 1978] corresponds to the Bayesian criterion obtained when one neglects
the term π(Mm), which is equivalent to having a uniform prior on the model:

BIC(m) = 2`n(η̂m) + qm log n (6)

As explained by Żak-Szatkowska and Bogdan [2011], a uniform prior on the model is equivalent
to a binomial prior on the model dimension B(JK, 1/2). When the true model’s dimension is much
smaller than the maximum possible dimension JK, the BIC tends to give too much importance to
models of dimensions around JK/2, which will result in underpenalized estimators. To this effect,
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Chen and Chen [2008] have developed an extended Bayesian information criterion called EBIC. One
can write π(Mm) = P(Mm|Mm ∈ M[qm])P(Mm ∈ M[qm]) where M[qm] is the set of models
of dimension qm. The EBIC0 criterion is defined by setting P(Mm|Mm ∈ M[qm]) = 1/

(
JK
qm

)
and

P(Mm ∈M[qm]) =
(
JK
qm

)s
for some constant s ∈ [0, 1]. Thus

π(Mm) =

(
JK

qm

)1−s

and

EBICs(m) = 2`n(η̂m) + qm log n− 2 log

(
JK

qm

)1−s
. (7)

Note that for s = 0, P(Mm ∈ M[qm]) = 1, that is the EBICs=0 assigns the same a priori
probability to all models of same dimension. Therefore, when the true model’s dimension is not close
to JK/2 the EBICs=0 will be able to select this model more easily. Namely, when the true model’s
dimension is very small the EBICs=0 will tend to choose very sparse models. In the following we
will only consider the case s = 0 for the EBIC0 criterion.

The last criterion that will be used is the Akaike Information Criterion [Akaike, 1998], or AIC,
defined as AIC(m) = 2`n(η̂m) + 2qm. This criterion is known for performing better than the BIC in
terms of mean squared error, however the BIC will tend to select sparser models than the AIC.

Note that Bayesian criteria and the AIC can only be used for the L∆
0 estimation only, since the

L∆
2 does not perform a model selection. An alternative to performing model selection is to use the

L-fold cross validation. With this method, the data are split at random into L parts.
The estimated parameter obtained when the l-th part is left out is noted η̂−l(κ) and the cross-

validated score is defined as

CV(κ) =

L∑
l=1

`κ,ln (η̂−l),

where `κ,ln is the negative log-likelihood evaluated on the l-th part of the data. This score evaluates
how well the model learned on one part of the data explains the other part of the data. The optimal
penalty constant is obtained by minimizing CV(κ) with respect to κ. The L-fold cross validation
method can be used for both the L∆

0 estimation and the L∆
2 estimation. However, this method is

numerically time consuming as the estimator has to be computed L times while Bayesian criteria
or the AIC provide direct methods to perform model selection from the original estimator. In the
simulation studies and data analysis, L will be set to 10.

4 An Ensemble method for the adaptive ridge estimator

The adaptive ridge regularization provides a piecewise constant estimate of the hazard. While this
might be useful in practice in order to obtain a parsimonious estimate, visualization of plots of the
adaptive ridge hazard estimate can be hard to interpret, especially if the number of segmented areas
is large. On the opposite, the ridge procedure provides nice plots of the hazard but the information
contained in these plots can be hard to summarize. An alternative method consists in providing a
smooth estimation of the hazard rate which also includes some few segmented areas corresponding
to areas of the hazard which have very different values of the rest of the plot (typically areas which
are highly peaked at some localized regions or areas with a very different level of hazard). This new
type of estimation can be implemented using a resampling strategy of the adaptive ridge estimator.
We compute bootstrapped samples of the original data and calculate the adaptive ridge estimator
for each of these samples. Then, taking the median of all the bootstrapped estimators will lead to
a new estimator, called the ensemble adaptive ridge estimator. This estimator represents a relaxed
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version of the adaptive ridge segmentation. Moreover, the bootstrapped estimators can easily be
used to compute pointwise confidence intervals: for example, removing the 2.5% largest and 2.5%
smallest estimates values at a given time point will provide a 95% confidence interval at this point.
Interestingly, these confidence intervals also take into account uncertainty about the choice of the
segmentation since each bootstrapped estimate is allowed to have a different segmentation chosen by
the adaptive ridge procedure than the original estimate. This ensemble method can be used directly
for estimation of the hazard rate or of other related functions such as the survival function. This
technique will be illustrated in Section 6 on real data.

5 Simulation study

5.1 Data simulated from a smooth hazard model

In this section, data are simulated using the true hazard presented in Figure 3 (a) and (b). To be
more specific, we set J = 10 equally spaced age intervals and K = 10 equally spaced cohort inter-
vals. The age intervals are defined as [0, 10), . . . , [90, 100] and the cohorts intervals are defined as
[1900, 1910), . . . , [1990, 2000]. The true hazard is generated using the age-cohort-interaction model
(3) with µ = log(10−2) and α and β are arithmetic sequences such that α2 = 0, αJ = 2.5, β2 = 0,
and βK = 0.3. The interaction term δj,k is defined as 10 times the Gaussian function with mean
(45, 1945) and with a diagonal variance-covariance matrix with diagonal equal to (50, 50). This true
hazard displays a sharp increase for high values of the age, which implies that few events will be
recorded in this region. It also features a peak around (45, 1945) which we will try to recover using
our estimation methods.

This true hazard will be referred to as smooth in opposition to the next simulation scenario (Sec-
tion 5.2), where the hazard is piecewise constant. In order to simulate a dataset, the cohorts are first
sampled on K = 10 cohort group intervals of 10 years length ranging from 1900 to 2000. Censoring
is then simulated as a uniform distribution over the age interval [75, 100] for all cohorts such that all
observed events are comprised in the age interval [0, 100]. Since in practice one does not know the
appropriate discretization in advance, a different discretization was used for the estimation procedure
: the age and cohort intervals were defined as 5-year length intervals instead of 10 for the true hazard.
As a result, a total of 20× 20 parameters need to be estimated.

In the following, we first simulate 100 datasets of sample size equal to 4000 which corresponds
to an average of 9.6 observed events per 5 × 5 age-cohort square unit. Estimation is performed
using the standard age-cohort model presented in Section 1.1 and compared with our new penalized
estimator presented in Section 1.2. The adaptive ridge procedure is performed using the different
AIC, BIC, EBIC0 and cross-validation criteria to select the penalty constant. For the ridge procedure,
the penalty constant is chosen using the cross validation criterion. Perspectives plots of the median
hazard estimations over the 100 datasets are presented in Figures 3 (c)-(d).

Figure 3 (c) represents the estimated hazard using the age-cohort model (2). The resulting esti-
mate is smooth and relatively accurate except for the area of cohort 1945 and age 45 where a peak
occurs for the true hazard rate. Since the age-cohort model has an outer product structure (no inter-
action terms between age and cohort is allowed), the hazard singularity cannot be detected using this
model. Figure 3 (d) represents the estimated hazard using the L∆

2 estimation method. The resulting
estimator shrinks all adjacents values of the hazard and is consquently biased for high age values.
However, the central bump is accurately estimated, which is not the case with the AGE-COHORT

model.
The adaptive ridge estimations for our ACI model are displayed in figures 4 (a)-(d). They pro-

vide a comparable regularization effect with more flexibility on the model, since the singularity is
also accurately estimated. Among the different methods implemented to choose the regularization
parameter, the AIC seems to provide the best fit, followed by the BIC. The EBIC0 (see Figure 4 (c))
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turns out to be too penalizing for a hazard rate with strong variations as it is the case here. Interest-
ingly, adaptive ridge segmentation with cross validation (see Figure 4 (d)) seems to be as regularizing
as the EBIC0. As a conclusion, the segmented hazard estimate with AIC selection can be considered
a better overall estimate than the smooth estimate, since it performs almost as well in a case where
the true hazard is smooth. More sparse criteria than the AIC perform slightly worse in this case, but
not significantly so.

We then looked at the performance of the previous different estimation methods in terms of mean
squared error. We considered samples of size 4000 where each sample was replicated 100 times and
the Mean Squared Error (MSE) between the true model and the estimations was used as a criterion
for estimation performance. The true hazard used for the simulations is the same as before (see
Figures 3(a)-(b)). The ridge estimator (L∆

2 with CV in the figure) and the adaptive ridge estimator
with EBIC0 seem to provide very similar results. The three other methods are significantly less
performant in terms of MSE, all three yielding similar results. Other samples sizes were considered.
The performance of our methods were similar and are therefore not shown here.

Simulations were also performed with a higher level of censoring. The resulting estimations
showed a similar trend with a slightly worse performance of the estimation.

5.2 Data simulated from a piecewise constant hazard model

The data are now simulated using a piecewise constant hazard with four constant areas over the
age-cohort square [0, 100] × [1900, 2000]. The shape of the true hazard is displayed in Figure 6
(a) and (b). As previously, the median of the hazard over 100 simulations with sample size 4000
are computed for each estimation method. The results are shown in Figures 6 (c)-(d) for the AGE-
COHORT model and L∆

2 model and in Figures 7 (a)-(d) for the adaptive ridge estimation methods. The
AGE-COHORT model performs as poorly as is expected from the fact that the true hazard is quite far
from having an age-cohort outer product structure. The L∆

2 model provides a smoothed estimate of
the true hazard, which in this case makes him perform poorly. Interestingly, amongst the L∆

0 models,
the most parsimonious estimate is provided by the cross-validation, followed by EBIC0, BIC and
AIC. The regularizing power of EBIC0 and, to some extent, BIC allows the estimated hazard to be
regularized for high values of the age, whereas this region is poorly estimated by AIC. The AIC is
the only criterion to correctly estimate the central bump.

Finally, mean squared errors are compared as in the previous section. Simulations were replicated
100 times for samples of sizes 100, 400, 1000 and 4000 using the same true hazard rate. The results
in terms of MSE are presented for sample size 4000, on the log scale, in Figure 8. Since the true
hazard is a piecewise constant hazard with only four different regions, the most performant criteria
are the ones providing the most sparse estimation. In particular, EBIC0 is seen to perform almost
as well as CV. As in the previous simulation, the EBIC0 displays many outlying values of the MSE.
We suspect that this comes from the fact that the criterion grants importance to models with small or
large dimensions, which can make it sensible to sampling outliers.

6 Application to the French E3N cohort study

In this section we apply our estimation methods to the E3N dataset from the MGEN (Mutuelle
Générale de l’Éducation Nationale) which is the French national health security for teachers. In this
cohort women insured by the MGEN were followed through questionnaires in order to estimate breast
cancer incidence. The cohort comprised n = 98, 995 female participants who were born between
1925 and 1950. In the current dataset, the period starts in June 1990 and finishes in January 2010.
Questionnaires were sent approximately every 2 − 3 years. For more information about the E3N
dataset, see Clavel-Chapelon and Group [2014]. The discretization was made on the year scale, such
that there are J = 26 cohorts (from year of birth 1925 to 1950) and K = 46 different ages (from age
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40 to 85). On average, there are 92 observed events on each 1 × 1 age-cohort square, but there are
way fewer events for the older cohorts than for the most recent cohorts. Visualization of the observed
breast cancers and censored events can be seen in the period-cohort plane or age-cohort plane in
Figure 9. For the sake of simplicity, inference is made in the age-cohort plane, but visualization
of the estimates can be made on any two-dimensional plane (age-cohort plane, age-period plane or
period-cohort plane) by applying the same linear transformation that transforms Figure 9 (a) into
Figure 9 (b). In the following, visualization is made in the period-cohort plane.

In Figure 10 estimation is performed using different models. The unpenalized maximum likeli-
hood estimator λ̂mle is represented in Figure 10 (a) for the sake of comparison. This estimate clearly
suffers from overfitting. Both the ridge and the adaptive ridge procedures are implemented. Follow-
ing the results of the simulation section, the AIC and EBIC0 criteria are chosen for the penalty term of
the adaptive ridge procedure and cross validation is used for the ridge procedure. The estimates ob-
tained with the adaptive ridge method yield a segmented hazard, which are visually hard to interpret
but allow to identify breakpoint changes in the hazard rate. As explained in Section 4, compromise
between the ridge and the piecewise constant estimators can be derived using an ensemble method.
These estimators were also implemented and are also represented in Figures 10 (e)-(f).

Ridge regularized estimation appears as an appealing solution to overfitting as illustrated in Fig-
ure 10 (b). However, the information can be hard to summarize from this smoothed plot. On the
other hand, the EBIC0 criterion selects a very sparse segmentation of the data which provides a sim-
ple message: the risk of developing breast cancer is higher for women living between 1995 and 2005
who were born between 1935 and 1945 (see Figure 10 (d)).

The decrease of the hazard rate for large values of the cohort and small values of the period is also
more clearly identifiable than in the two previous models. The AIC criterion (Figure 10 (c)) selects a
less sparse model than EBIC0, which in turn is more difficult to interpret even though this estimator
should achieve the best bias and variance tradeoff as shown in the simulation section. For the AIC,
the ensemble method provides a median hazard rate that is only partially smooth. Many peaks are
present and the hazard rate is difficult to interpret. The ensemble method estimate with EBIC0 is the
most interesting one, since it seems to yield a simple yet complete visualization of the features of the
hazard. Namely, it allows to identify some of the peaks present in Figure 10 (c) as well as the plateau
present in Figure 10 (d). It also displays a somewhat important variation in the hazard for smaller
values of the cohort.

Ensemble methods allow to provide empirical confidence intervals of the pointwise estimates of
the hazard. Since the survival function can be computed from the hazard rate, confidence intervals
can also be inferred for the survival function. As an illustration, we have computed the survival func-
tions as a function of age only, and for different cohort intervals. Figure 11 represents two survival
functions with cohort intervals [1935, 1936) and [1942, 1943) estimated using the ensemble method
adaptive ridge estimates with AIC. The pointwise median value of the survival over all bootstrapped
samples is represented with solid lines and the lower and upper bounds of the 95% confidence in-
tervals are represented with dotted lines. The two survival curves are similar, with a slightly better
survival for the cohort [1935, 1936) where for instance the survival at age 65 is equal to 0.96 while
it is equal to 0.94 for the other cohort at the same age. Results for other selection criteria have also
been computed and showed similar results.

Conclusion

In this article, we have introduced a new estimation method to deal with age-period-cohort analysis.
In this model no specific structure of the effects of age and cohort on the hazard rate is assumed
and the likelihood is directly maximized without estimating the effects. In order to take into account
possible overfitting issues, a penalty is used on the likelihood to enforce similar consecutive values
of the hazards to be equal. Two different types of penalty terms were introduced. One leads to a ridge
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type regularization while the other leads to a L0 type regularization. Different selection methods of
the penalty parameter were also introduced. To our knowledge, a segmented estimation model of this
kind has never been introduced in this context.

Using simulated data, it has been shown that the cross validated ridge estimator and the EBIC0

adaptive ridge estimator were the most performant, in terms of MSE . On the other hand, when
the interest lies in obtaining nice visualization of hazard plots we advocate the use of ensemble
methods for the adaptive ridge estimator which provide a good compromise between a parsimonious
representation of the hazard and smooth estimation on some selected areas of the hazard. Among all
proposed methods, the cross validation criterion was shown to provide the best fit of the hazard rate,
but it is the most computationally intensive method of all. Among the other criteria, the EBIC0 was
shown to outperform the AIC and the BIC criteria in the context of segmentation, while if the true
hazard is a smooth function then the AIC seemed to provide the best fit of the hazard rate. This brings
us to recommend the L∆

0 method with AIC as an alternative to the ridge regularized model when no
piecewise constant areas in the data are expected and the L∆

0 method with EBIC0 piecewise when
constant segmentation is desired. Overall, these different criteria have shown to provide interesting
results when applied to the E3N Cohort breast cancer data. Notably, segmented hazard estimation
has permitted to highlight interesting features in the cancer incidence: the AIC selection exhibits the
presence of a precise hazard peak and the EBIC0 selection exhibits two change-of-regime moments in
the breast cancer hazard rates. Both of these informations could not be conveyed using standard age-
period-cohort models, the unpenalized maximum likelihood estimator, existing smooth estimators
such as splines, kernel estimators or using our ridge estimator.

The method could be directly extended to a different discretization of the age-period-cohort
plane, such as 1 × 1 × 1-year triangles that are represented in dark gray in Figure 1 (see section
3 of Carstensen [2007] for an example of this discretization). This could yield a more adapted dis-
cretization that is non preferential with respect to the three effects (age, period and cohort). Another
extension would be to consider other types of penalizations. In particular, penalizing the second or-
der differences (instead of the first order) could generalize this current work in the sense that κ =∞
would correspond to a linear hazard instead of a constant hazard.

Finally, a similar type of penalization could be implemented using the parametrisation (3), which
seperates the effects of age, cohort, and the interaction term. With this parametrization, the penalty
could be applied to the δj,ks only using the same type of L∆

0 or L∆
2 penalty. This would yield a

different model, where the case κ = 0 corresponds to the MLE and the case κ = ∞ corresponds to
the AGE-COHORT model. A detailed analysis of this model is left for future work.
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(a) Lexis diagram: Age-Period iagram (b) Age-Cohort diagram

Figure 1: Diagram representing the lives of individuals: in the age-period plane (a) – called Lexis
diagram – and in the age-cohort plane (b). Solid lines represent lives of individuals until occurrence
of the time of interest. The same age, cohort, and period intervals are displayed in light gray. The
intersections of two intervals form either a rectangle or a parallelogram. The intersections of three
intervals form a triangle.
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Figure 2: Representation of the method used to select the constant areas from the adaptive ridge
procedure. In this example, J = K = 3. In the Panel (a), the circles represent the values of the
differences vj,k (ηj+1,k − ηj,k)2 and wj,k (ηj,k+1 − ηj,k)2: empty circles correspond to the value 0
and filled circles correspond to the value 1. Panel (b) represents the graph that is generated from these
values. Adjacent nodes whose difference is null are connected by a vertice. Panel (c) represents
the last step, where the connex components of the graph are extracted. Each connex component
corresponds to one constant area. The numbering is arbitrary.
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Figure 3: Smooth true hazard and estimations using the AGE-COHORT model and the ridge penal-
ization estimation for 100 simulations. The estimations are performed in the age-cohort plane and
with different methods. Figure (a) is a heatmap of the true hazard used to generate the data. Figure
(b) represents the same hazard in a perspective plot. Figure (c) represents the hazard estimated us-
ing the AGE-COHORT model 2. Figure (d) represents the estimated hazard with ridge penalization
estimation.
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Figure 4: Median value of hazard estimates over 100 simulations and with a smooth true hazard.
The estimations are performed in the age-cohort plane with the L∆

0 method using different criteria.
Figure (a) represents the AIC criterion, Figure (b) represents the BIC criterion, Figure (c) represents
the EBIC0 criterion, and Figure (d) represent the estimate selected using cross-validation.
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Figure 6: Piecewise constant true hazard and estimations using the AGE-COHORT model and the ridge
penalization estimation for 100 simulations. The estimations are performed in the age-cohort plane
and with different methods. Figure (a) is a heatmap of the true hazard used to generate the data, on
which the hazard values are annotated on each constant area. Figure (b) represents the same hazard
in a perspective plot. Figure (c) represents the hazard estimated using the AGE-COHORT model 2.
Figure (d) represents the estimated hazard with ridge penalization estimation.
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Figure 7: Median value of hazard estimates over 100 simulations and with a piecewise constant true
hazard. The estimations are performed in the age-cohort plane with the L∆

0 method using different
criteria. Figure (a) represents the AIC criterion, Figure (b) represents the BIC criterion, Figure (c)
represents the EBIC0 criterion, and Figure (d) represent the estimate selected using cross-validation.
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Figure 8: Mean squared errors of hazard estimation methods, with a piecewise constant true hazard
and for different criteria. The boxplot represents 100 simulations over the same true hazard with
sample size 4000.
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(a) In the period-cohort plane (b) In the age-cohort plane

Figure 9: Visualization of the E3N breast cancer data. Each point is an individual’s breast cancer
occurrence or the last time the person has been checked on being cancer-free, whichever comes first.
The data is represented (a) in the period-cohort plane and (b) in the age-cohort plane. Many censoring
points are almost aligned because updates are made periodically, every two or three years.
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Figure 10: Hazard estimates of the breast cancer incidence in E3N data with different models. Infer-
ence is made in the age-cohort plane but the hazard is represented in the period-cohort plane. Figure
(a) represents the unpenalized maximum likelihood estimate and Figure (b) represents the ridge regu-
larized estimate. Figures (c) and (d) represent the adaptive ridge model with criteria AIC and EBIC0.
Finally, Figures (e) and (f) represent the same estimates using the ensemble method.
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Figure 11: Survival functions of the breast cancer hazard rate in the E3N Cohort study from the
ensemble method L∆

0 estimate with the AIC criterion. The survival functions are represented as a
function of age and for two cohort intervals : [1935, 1936) and [1942, 1943). Ensemble method
provides a set of 100 survival estimates. The solid lines represent the median value of these estimates
and the dotted lines represent the lower and upper bound of the 95% confidence intervals around the
median value.
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