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Abstract

A Com-PreLie bialgebra is a commutative bialgebra with an extra preLie product satis-
fying some compatibilities with the product and the coproduct. We here give examples of
cofree Com-PreLie bialgebras, including all the ones such that the preLie product is homo-
geneous of degree > —1. We also give a graphical description of free unitary Com-PreLie
algebras, explicit their canonical bialgebra structure and exhibit with the help of a rigid-
ity theorem certain cofree quotients, including the Connes-Kreimer Hopf algebra of rooted
trees. We finally prove that the dual of these bialgebras are also enveloping algebras of preLie
algebras, combinatorially described.
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Introduction

Com-PreLie bialgebras, introduced in [5, 6], are commutative bialgebras with an extra prelie
product, compatible with the product and coproduct: see Definition 1 below. They appeared in
Control Theory, as the Lie algebra of the group of Fliess operators [8] naturally owns a Com-
Prelie bialgebra structure, and its underlying bialgebra is a shuffle Hopf algebra. Free (non
unitary) Com-PreLie bialgebras were also described, in terms of partionned rooted trees.

We here give examples of connected cofree Com-PreLie bialgebras. As cocommutative cofree
bialgebras are, up to isomorphism, shuffle algebras Sh(V') = (T'(V),w, A), where V is the space
of primitive elements, we first characterize Com-PreLie bialgebras structures on Sh(V') in term
of operators w : T(V) @ T(V) — V, satisfying two identities, see Proposition 8. In particular,
if we assume that the obtained prelie bracket is homogeneous of degree 0 for the graduation of
Sh(V) by the length, then w is reduced to a linear map f : V — V and the obtained preLie
product is given by (Proposition 9):

n
VTl oy T, Yls ey Yn €V, xl...mmoyl...yn:Zml...xi,lf(xi)(xiﬂ...xmLLlyl...yn).
i=0

In particular, if V' = Vect(x,21) and f is defined by f(x0) = 0 and f(x1) = zo, we obtain the
Com-PreLie bialgebra of Fliess operators in dimension 1. If we assume that the obtained preLie
bracket si homogeneous of degree —1, then w is given by two bilinear products * and {—,—} on
V such that * is preLie, {—, —} is antisymmetric and for all z,y,z € V:

r*{y,z} = {z*xy,z},
{z,y}x 2z ={z*y, 2} +{z,y x 2} + {{z,y}, 2}.

This includes preLie products on V' when {—, —} = 0 and nilpotent Lie algebras of nilpotency
order 2 when * = 0, see Proposition 11.

We then extend the construction of free Com-PreLie algebras of [5] in terms of partitioned
trees (see Definition 12) to free unitary Com-PreLie algebras UC P(D), with the help of a comple-
mentary decoration by integers. We obtain free Com-PreLie algebras C'P(D) as the augmentation
ideal of a quotient of UC P (D), the right action of the unit () on the generators of UC P(D) being
arbitrarily chosen (proposition 16). Recall that partitioned trees are rooted forests with an extra
structure of a partition of its vertices into blocks; forgetting the blocks, we obtain the Connes-
Kreimer Hopf algebra Hox of rooted trees [3, 4|, which is given in this way a natural structure of
Com-PreLie bialgebra (proposition 17). Using Livernet’s rigidity theorem for preLie algebras, we
prove that the augmentation ideals of UC P(D) and C'P(D) are free as preLie algebras Theorem
28 is a rigidity theorem which gives a simple criterion for a connected (as a coalgebra) Com-
PreLie bialgebra to be cofree, in terms of the right action of the unit on its primitive elements.
Applied to CP(D) and Hcox, it proves that they are isomorphic to shuffle bialgebras, which was
already known for Heg. We also consider the dual Hopf algebras of UCP(D) and CP(D): as
these Hopf algebras are right-sided combinatorial in the sense of [12], there dual are enveloping
algebras of other preLie algebras, which we explicitly describe in Theorem 30, and then compare
to the original Com-PreLie algebras.

This text is organized as follows: the first section contains reminders and lemmas on Com-
PreLie algebras, including the extension of the Guin-Oudom extension of the prelie product
in the Com-PreLie case. The second section deals with the characterization of preLie products
on shuffle algebras. In the next section contains the description of free unitary Com-PreLie
algebras and two families of quotients, whereas the fifth and last one contains results on the
bialgebraic structures of these objects: existence of the coproduct, the rigidity theorem 28 and
its applications, the dual preLie algebras, and an application to a family of subalgebras, named



Connes-Moscovici subalgebras.

Notations 1. 1. Let K be a commutative field of characteristic zero. All the objects (vector
spaces, algebras, coalgebras, PreLie algebras...) in this text will be taken over K.

2. For all n € N, we denote by [n] the set {1,...,n}. In particular, [0] = 0.

1 Reminders on Com-PreLie algebras

Let V be a vector space.

e We denote by T'(V') the tensor algebra of V. Its unit is the empty word, which we denote
by 0. The element v; ® ... ® v, € V®" with v1,...,v, € V, will be shortly denoted by
v1...0,. The deconcatenation coproduct of T'(V') is defined by:

n
Yur,...,vp €V, A(Ul...vn):ZUI...Ui®Ui+1...Un.
i=0

The shuffle product of T'(V') is denoted by L. Recall that it can be inductively defined:
Ve,y e V, u,v e T(V), 0 wov=0, zu W yv = x(u W yv) + y(zu LW v).
For example, if vy, vo,v3,v4 € V:

V1 L UoU3V4 = V1V2V3V4 + V2V1V3V4 + V2U3V1V4 + VU304V,
V1U2 LW U304 = V10203V4 + V1V3V204 + V1V3V4V2 + V3U1V2V4 + V3U1V4V2 + V3V4V1V2,

V1U203 LU U4 = V1V2V3V4 + V1V2V4V3 + V1V2U4V3 + V1U4V2V3 + V4U1V2V3.
Sh(V) = (T(V),w,A) is a Hopf algebra, known as the shuffle algebra of V.

e S(V) is the symmetric algebra of V. It is a Hopf algebra, with the coproduct defined by:

Yv eV, Av)=v 0+ 0 ®wv.

e coS(V) is the subalgebra of (T'(V'),Lu) generated by V. It is the greatest cocommutative
Hopf subalgebra of (T'(V'),w, A), and is isomorphic to S(V') via the following algebra
morphism:

9 - (S(V)7m7A) — (COS(V)7 L, A)
’ V... U — v W. .. vg.

1.1 Definitions

Definition 1. 1. A Com-PreLie algebra [5, 6/ is a family A = (A, -, ), where A is a vector
space, - and e are bilinear products on A, such that:

Va,b e A, a-b=b-a,

Ya,b,c € A, (@a-b)-c=a-(b-c),

Va,b,ce A, (aeb)ec—ae(bec)=(aec)eb—ae(ceb) (preLie identity),
Va,b,c € A, (a-b)ec=(aec)-b+a-(bec) (Leibniz identity).

In particular, (A,-) is an associative, commutative algebra and (A, e) is a right preLie
algebra. We shall say that A is unitary if the algebra (A,-) is unitary.

2. A Com-PrelLie bialgebra is a family (A, -, e, A), such that:



(a) (A,-, ) is a Com-PreLie algebra.
(b) (A,-,A) is a bialgebra.
(c) For all a,b e A:

Alaed) =aV @a® eb+a)ebga®? . p?),
with Sweedler’s notation A(z) = () @ z(2).
Remark 1. If (A, -, e,A) is a Com-PreLie bialgebra, then for any A € K, (A4, -, Ao, A) also is.

Lemma 2. 1. Let (A,-, o) be a unitary Com-PreLie algebra. Its unit is denoted by (). For all
ac A Jea=0.

2. Let A be a Com-PreLie bialgebra, with counit €. For all a,b € A, e(aeb) = 0.
Proof. 1. Indeed, Dea=(0-0)ea= (Dea)- 0 +0-(Dea)=2(0ea),soDea=0.
2. For all a,b € A:

claeb) =(ec®¢)o

>
—
S|
[ ]
=

soc(aeb) =0. O
Remark 2. Consequently, if a is primitive:
Alaeb)=0@aeb+aebl) @b?.

The map b+ a e b is a 1-cocycle for the Cartier-Quillen cohomology [3].

1.2 Linear endomorphism on primitive elements
If A is a Com-PreLie bialgebra, we denote by Prim(A) the space of its primitive elements.
Proposition 3. Let A be a Com-PreLie bialgebra. Its unit is denoted by (.

1. If x € Prim(A), then x o) € Prim(A). We denote by fa the map:

| Prim(A) — Prim(A)
Ja: a — aelf.

2. Prim(A) is a preLie subalgebra of (A, e) if, and only if, f4 = 0.
Proof. 1. Indeed, if a is primitive:
Alaed)=a@lel+lxael+aedR0 - 0+0elxa-0=0+0x0ea+aedx(+0,
so a e () is primitive.
2. and 3. Let a,b € Prim(A).

Alaeb)=ax0eb+lxaeb+DedRa-btaedRb+DebRa+aebx(
=0aeb+aeb®@0+ fala)®b.

Hence, Prim(A) is a preLie subalgebra if, and only if, for any a,b € A, fa(a) ® b =0, that is to
say if, and only if, f4 = 0. O



1.3 Extension of the pre-Lie product
Let A be a Com-PreLie algebra. It is a Lie algebra, with the bracket defined by:

Vz,y€ A, [z,y] =vey—yex.

We shall use the Oudom-Guin construction of its enveloping algebra [13, 14]. In order to avoid
confusions, we shall denote by x the usual product of S(A) and by 1 its unit. We extend the
preLie product e into a product from S(A) ® S(A) into S(A):

1. Ifay,...,ap €A, (a1 X ... X ag) el =a; X ... X ag.

2. Ifa,aq,...,a; € A:

k—1
ao(alx...xak):(ao(al><...xak,l))oak—Zao(alx...x(aioak)x...xak,l).

i=1

3. Ifz,y,2 € S(A), (x xy)ez=(rez))x (yez2) where A(z) = 2V ® 2(? is the usual
coproduct of S(A).

Notations 2. If ¢1,...,¢cn, € Aand I = {iy,...,ix} C [n], we put:

X

Hci:cil X oo X Gy

el
Proposition 4. 1. Let A be a Com-PreLie algebra. If a,b,cq,...,cp € A:

(@ b)e(crx...xcp)= > (aoﬁc,) . (b.ﬁq).

IC[n] icl i¢l

2. Let A be a Com-PreLie bialgebra. If a,by,...,b, € A:
X X
Alae(by X ...xby)) = Z aM e (H b§1)> ® (H bgz)) a? e (H bi> .
IC[n) iel iel i¢l
Proof. These are proved by direct, but quite long, inductions on n. O
Lemma 5. Let A be a Com-PreLie bialgebra. For all a € Prim(A), k>0, by,...,b € A:
aePF x by x ... xb = fk(a)eby x...xb.

Proof. This is obvious if k = 0. Let us prove it for k£ = 1 by induction on [. It is obvious if [ = 0.
Let us assume the result at rank [ — 1. Then:

aelxbyx...xby=(ael xby x...xb_1)eb+ae(Deb) xby X...xb_
-1
+Zao®><b1><...><(biobl)x...xbl_l
i=1

-1
= (fala) by x ... xb_1) @b+ 0+ > fa(a)eby x ... x (bieb)x ... xb_y
i=1
:fA(a)ob1 X ... Xbl.
The result is proved for £ > 2 by an induction on k. O



2 Examples on shuffle algebras

2.1 Preliminary lemmas
We shall denote by 7 : T(V) — V the canonical projection.
Lemma 6. Let w : T(V)@T(V) — V be a linear map.
1. There exists a unique map o : T(V)QT(V) — T(V) such that:

(a) mToe=r1m.

(b) For all u,v e T(V):
Awev)=u @ u® ev+u® e v @y 1v?. (1)
This product e is given by:
Vu,v € T(V), uev=uBDwu? ov®)w?® we®).
2. The following conditions are equivalent:
(a) For all u,v,w € T(V):
(uwv)ew = (uew)Wv+ul (vew).
(b) For all u,v,w e T(V):
w((uwv) @w) =c(u)w(v®@w) + e(v)w(u @ w). (2)
3. Let N € Z. The following conditions are equivalent:
(a) e is homogeneous of degree N, that is to say:
Vi1 >0, Yk o VL ¢ YORHEN),
(b) For all k,1 >0, such that k +1+ N # 1, w(VE @ V&) = (0).
We use the convention V®P = (0) if p < 0.
Proof. 1. Existence. Let e be the product on T'(V') defined by:
Yu,v € T(V), uev=uBDw? ov®)w?® we?).
As w takes its values in V, for all u,v € T'(V):

m(uwev) = e(uM)w(u?® @ vM)e(u® wov?)
e(uMw(u® @ vM)e(u®)e(v?)
= w(u®v).

We denote by m the concatenation product of T'(V'). As (T'(V'), m, A) is an infinitesimal bialgebra
[10, 11], for all u,v € T'(V):
Awev) =1 @ uPwu® @ vW)(w® wv®) + vV o (w?® @ o) @ u® we®
+u © wu® @ oM we®) + 1V (w® @ o) wov®) @ u® we®
—uWm® @ v®) @ u® wo® — u® @ w@w?® @ vM)u® g v®)
= 1 @ uPo® @ vM)(W® Wwv?®) + uWo@?® @ vM)(W® we®) @ u® we®

— 0D 2 u® v+ u® eo® @ u® o®.



Unicity. Let o be another product satisfying the required properties. Let us denote that
uov = uev for any words u, v of respective lengths k& and [. If £ = 0, then we can assume that
u = (). We proceed by induction on [. If [ = 0, then we can assume that v = (. By (1), 0 ) and
() o O are primitive elements of T'(V), so belong to V. Hence:

fe)=n(0ed) =w(@x0)=nm0c0)=0c0.
If [ > 1, then, by (1):

APev)=0x0ev+Pevl+Pedv+Dev @,
ADev)=0ed@uv+Dev @0

The same computation for ¢ and the induction hypothesis on [, applied to ((},v'), imply that
ADev—0ov)=0,s0 Dev—Pov e V. Finally:

fDev—Pov=n(lev—0Pov)=w(@®v—0xv)=0.

I~f k > 1, we proceed by induction on [. If [ = 0, we can assume that v = (J; (1) implies that
A(ue)—uod) =0,s0 uel) —uol =0 and, applying =, finally ue ) = uof). If I > 1, by (1), the
induction hypothesis on k applied to (u’,v) and the induction hypothesis on [ applied to (u, ()
and (u,v’):

Aluev)=v @u" ev+uel@v+uer ®@v"
= @u" ov+uod@v+uor ®v" =Auov).

As before, uev =uow.

2. =—>. As w takes its values in V', we have:
w(uwv)@w)=w((uew)Wv+uL (vew))
=c(v)w(u®@w)+e(u)w(v @ w).
<. For all u,v,w € T(V):
(o) ew = (u woM)w((w® wo®) @ w)(W® we® ww?)
= (@)W WM w@w?® @ w)(W® we® ww®)

= (M w U(l)) (0@ @ wM) (@ wo® ww®)

(u ( @) @ wM)(W® woe® ww®)
. ONTONT w<2>))

e LU( W) g5 (12 ®w(1>)( ()LUU,@)))
uw W

@

So the compatibility between LU and e is satisfied.
3. Immediate. O
Remark 3. If (2) is satisfied, for u = v = (), we obtain:

Vw € T(V), @(f ® w) = 0.



Lemma 7. Let w : T(V)QT (V) — V, satisfying (2), and let ® be the product associated to w
in Lemma 6. Then (T'(V),w, e, A) is a Com-PreLie bialgebra if, and only if:

Vu,v,w e T(V), w(uevRw)—wu@vew)=w(uew®v) —w(uRwev). (3)

Proof. =. This is immediately obtained by applying 7 to the preLie identity, as w =m o e.

<. By lemma 6, it remains to prove that e is preLie. For any u,v,w € T'(V'), we put:
PL(u,v,w) =(uev)ew—ue(vew)— (uew)ev+ue(weuv).

By hypothesis, 7o PL(u,v,w) = 0 for any u,v,w € T(V). Let us prove that PL(u,v,w) = 0 for
any u,v,w € T(V). A direct computation using (1) shows that:

A(PL(u,v,w)) = vV @ PLu®,v,w) @ u" + PLu® oM wM) @ u® wo@ ww®. (1)
Let v € T(V). Then:
fev=0wd)ev=(0Dev)d+Dw (lev)=20euv,

so D ewv =0 for any v € T(V). Hence, for any v,w € T(V), PL((,v,w) = 0: by trilinearity of
PL, we can assume that e(u) = 0. In this case, (4) becomes:
A(PL(u,v,w)) =0 ® PL(u,v,w) + PL(u, v, wM) @ v? w w?
+ PL( oM, wWy @ o wv® ww®.
We assume that u, v, w are words of respective lengths k, [ and n, with k > 1. Let us first prove

that PL(u,v,w) = 0 if [ = 0, or equivalently if v = (), by induction on n. If n = 0, then we can
take w = ) and, obviously, PL(u,{,0) = 0. If n > 1, (4) becomes:

A(PL(u,0,w)) = 0 ® PL(u,v,w) + PL(u, 0, w") @ w®
=0 ® PL(u,v,w) + PL(u,0,w) @ 0+ PL(u, ), w') @ w".

By the induction hypothesis on n, PL(u,{,w") = 0, so PL(u,{,w) is primitive, so belongs to V.
AsmoPL =0, PL(u,},w) =0.

Hence, we can now assume that [ > 1. By symmetry in v and w, we can also assume that
n > 1. Let us now prove that PL(u,v,w) = 0 by induction on k. If £ = 0, there is nothing more
to prove. If £ > 1, we proceed by induction on [+n. If [+n < 1, there is nothing more to prove.
Otherwise, using both induction hypotheses, (4) becomes:

A(PL(u,v,w)) = PL(u,v,w) @ 0 + 0 ® PL(u,v,w).
So PL(u,v,w) € V. Asmo PL =0, PL(u,v,w) = 0. O
Consequently:

Proposition 8. Let w : T(V)®T (V) — V be a linear map such that (2) and (3) are satisfied.
The product e defined by (1) makes (T(V'),w, e, A) a Com-PreLie bialgebra. We obtain in this
way all the preLie products e such that (T(V),11,e,A) a Com-PreLie bialgebra. Moreover, for
any N € Z, e is homogeneous of degree N if, and only if:

Vk,l €N, k+1+N#1= oV o V) = (0). (5)
Remark 4. Let w: T(V) @ T(V) — V, satisfying (5) for a given N € Z. Then:
1. (2) is satisfied if, and only if, for all k,I,n € N such that k+1+n=1— N,

Vue VO v eV we Ve, w((uwov)w)=e(u)w(vw)+ev)w(u®w).



2. (3) is satisfied if, and only if, for all k,l,n € N such that k +1+mn=1—2N,

Vue Ve v e Ve we Ve, w(uev®w) - w(uvew)

=w(uew®v) —w(u®wev).

Note that (2) is always satisfied if u = () or v = (), that is to say if k =0 or I = 0.
In the next paragraphs, we shall look at N >0 and N = —1.

2.2 PreLie products of positive degree

Proposition 9. Let f be a linear endomorphism of V.. We define a product e on T'(V') in the
following way:

n
VI1, s Ty Yly e ooy Yn €V, xl...xmoyl...yn:le...xi_lf(xi)(xi_,_l...:vmI_Llyl...yn).
i=0

(6)

Then (T(V), L, e, A) is a Com-PreLie bialgebra denoted by T(V, f). Conversely, if ® is a prod-
uct on T(V), homogeneous of degree N > 0, there exists a unique f : 'V — V such that
(T(V),w, e, A) =T(V, f).

Proof. We look for all possible w, homogeneous of a certain degree N > 0, such that (2) and (3)
are satisfied.

Let us consider such a w. For any k,l € N, we denote by wj; the restriction of @ to
Ve @ VO By (5), wry = 0if k+1 # 1. As (2) implies that @ ; = 0, the only possibly nonzero
wg, is w10 : V — V, which we denote by f. Then (1) gives (6).

Let us consider any linear endomorphism f of V and consider w such that the only nonzero
component of @ is @y g = f. Let us prove (2) for u € V¥ v € VO w € VO with k+1+n =
1 — N. For all the possibilities for (k,l,n), 0 € {k,l,n}, and the result is then obvious.

Let us prove (2) for u € V& v € VO w € VO, with k +1+n =1 — 2N. We obtain two
possibilities:

e (k,l,n)=1(0,1,0) or (0,0,1). We can assume that u = (). As Qe x =0 for any = € T(V),

the result is obvious.

o (k,l,n)=(1,0,0). We can assume that v = w = (), and the result is then obvious.

Remark 5. 1. If N > 1, necessarily f =0, so e = 0.

2. With the notation of Proposition 3, fry,r) = f.

We obtain in this way the family of Com-PreLie bialgebras of [5|, coming from a problem of
composition of Fliess operators in Control Theory. Consequently, from [5]:

Corollary 10. Let k,l > 0. We denote by Sh(k,l) the set of (k,l)-shuffles, that it to say
permutations 0 € G4y such that:

o(l) <...<o(k), ok+1)<...<o(k+1).
If o € Sh(k,1), we put:
my(o) =max{i € [k] | (1) =1,...,0(i) =i},
with the convention my(c) = 0 if o(1) # 1. Then, in T(V, f), if v1,..., 0501 € V:

my (o)

V] ...V ® V] ... Vgt] = Z Z (Id®(i71) Rf® Id®(k+lii))(’l)071(1) .. .1)071(]6_’_1)). (7)
o€Sh(k,l) i=1



2.3 PreLlie products of degree —1
Proposition 11. Let x and {—, —} be two bilinear products on V' such that:

Vr,y,z €V, (x*xy)kz—xx(y*xz)=(r*xz)xy —x*(2%y), (8)

{:I"7y} = —{y,x},
zx{y,z} ={w*y,z},
{z,y}tx 2 ={z*2,y} +{z,y x 2} + {{z,y}, 2}.

We define a product e on T (V') in the following way: for all xi,...,Tm,Y1,...,Yn €V,

n
:El...:nmoyl...yn:le...xi,l(aji*yl)(miﬂ...xml_l_lyg...yn) (9)
i=1

k—1
+ Z xT1... 1‘171{332‘, le}(xHQ R e N 7 yn)
=1
Then (T(V),w, e, A) is a Com-PreLie bialgebra, and we obtain in this way all the possible preLie
products e, homogeneous of degree —1, such that (T'(V),, e, A) is a Com-PreLie bialgebra.

Proof. Let us consider a linear map w : T(V)®T'(V) — V, satisfying (5) for N = —1. Denoting
by @k = @|yergye: for any k, [, the only possibly nonzero wy; are for (k,1) = (2,0), (1,1) and
(0,2). For all z,y € V, we put:

zry=wi(r®y) {z,y} = w20(zy ©0).
(2) is equivalent to:

Vw € V&2 wo2(0 @ w) =0,
Vr,y €V, wa0((zy +yz) ®0) = 0.

Hence, we now assume that wp 2 = 0, and we obtain that (2) is equivalent to (8)-2. The nullity
of wp 2 and (1) give (9).

Let us now consider (3), with w € V¥* v ¢ VO 0w € VO k+1+n=1-2N = 3. By
symmetry between v and w, and by nullity of @ ; for all [, we have to consider two cases:

e k=Il=n=1. Weputu=ux,v=y, w=z with z,y,z € V. Then (3) is equivalent to:
(zxy)xz—xx(y*x2)=(rxz)xy —x*(2%y),
that is to say to (8)-1.

e k=1,1=2,2=0. Weput u=2x, v=yz, w=_0, with x,y,z € V. Then (3) is equivalent
to:

{.’L‘*y,Z} _x*{yvz} :()7
that is to say to (8)-3.

e k=21=1,2=0. Weput u=2ay, v=2z w=0, with x,y,z € V. Then (3) is equivalent
to:

{2yt +{z,y* 2t + {z,y}, 2} = {z,y} x 2,

that is to say to (8)-4.
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We conclude with Proposition 8. O
Remark 6. 1. In particular, % is a preLie product on V; for all z,y € V, x @y = x x y.

2. fxy,....,2; €V
m—1

T1...xme 0 = Z 21 i1 { T, Tig1 Y i - T
=1

Ezample 1. 1. If % is a preLie product on V, we can take {—, —} = 0, and (8) is satisfied.
Using the classification of preLie algebras of dimension 2 over C of [1], it is not difficult to
show that if the dimension of V' is 1 or 2, then necessarily {—, —} is zero.

2. If x =0, then (8) becomes:

vxvy € V7 {‘T7y} = *{y,x},
fovyaZEVv {{Jj)y}’z}:07

that is say (V,{—, —}) is a nilpotent Lie algebra, which nilpotency order is 2.

3. Here is a family of examples where both * and {—, —} are nonzero. Take V' 3-dimensional,
with basis (z,y, 2), a, b, ¢ be scalars, and products given by the following arrays:

e|lx|ylz {—,—} T Yy z
xlx|y|z x 0 ay+bz | cy+ (1 —a)z
y|0]0[0 Y —ay — bz 0 0
z{0]0]0 z (a—1)z—cy 0 0

Then (V, e, {—, —}) satisfies (8) if, and only if, a? — a + be = 0, or equivalently:

(20 —1)* 4+ (b+c)* —(b—c)* =1.

This equation defines a hyperboloid of one sheet.

3 Free Com-PreLie algebras and quotients

3.1 Description of free Com-PrelLie algebras

We described in [5] free Com-PreLie algebras in terms of decorated rooted partitioned trees. We
now work with free unitary Com-PreLie algebras.

Definition 12. 1. A partitioned forest is a pair (F,I) such that:

(a) F is a rooted forest (the edges of F' being oriented from the roots to the leaves). The
set of its vertices is denoted by V(F').

(b) I is a partition of the vertices of F with the following condition: if x,y are two vertices
of F' which are in the same part of I, then either they are both roots, or they have the
same direct ascendant.

The parts of the partition are called blocks.

2. We shall say that a partitioned forest F is a partitioned tree if all the roots are in the same
block. Note that in this case, one of the blocks of F' is the set of roots of F'. By convention,
the empty forest () is considered as a partitioned tree.

3. Let D be a set. A partitioned tree decorated by D is a triple (T,1,d), where (T,I) is a
partitioned tree and d is a map from the set of vertices of T into D. For any vertex x of
T, d(x) is called the decoration of x.

11



4. The set of isoclasses of partitioned trees, included the empty tree, will be denoted by PT.
For any set D, the set of isoclasses of partitioned trees decorated by D will be denoted by
PT(D); the set of isoclasses of partitioned trees decorated by N x D will be denoted by

UPT(D) = PT(N x D).

Example 2. We represent partitioned trees by the underlying rooted forest, the blocks of car-
dinality > 2 being represented by horizontal edges of different colors. Here are the partitioned

trees with < 4 vertices:

Bt VoVl oa v vovv. Voo Y YL

V.-V L=t v oV =a =1
Let us fix a set D.
Definition 13. Let T = (T,1,d) and T' = (T", J,d") € UPT (D).
1. The partitioned tree T - T" is defined as follows:
(a) As a rooted forest, T -T' is TT'.

(b) We put I = {I,..., Iy} and J = {J1,...,J;} and we assume that the block of roots
of T is Iy and the block of roots of T' is Jy. The partition of the vertices of T - T" is

{Il |_|Jl,IQ,...,Ik,JQ,...,Jl}.
(UPT(D),-) is a monoid, of unit ().
2. Let s be a vertex of T".

(a) We denote by bl(s) the set of blocks of T, children of s.
(b) Let b € bl(s) L {*}. We denote by T 53, T" the partitioned tree obtained in this way:
o Graft T' on s, that is to say add edges from s to any root of T.
e Ifbebl(s), join the block b and the block of roots of T".
(c) Letk € Z. The decoration of s is denoted by (i,d). The element T'[k]s € UPT (D)L{0}
is defined in this way:
o Ifi+ k>0, replace the decoration of s by (i + k,d).
o Ifi+k<0,T[kl, =0.

The product - is associative and commutative; its unit is the empty partitioned tree ().

Ezample 3. Let T =1, T' = .. We denote by r the root of T and by [ the leaf of T'. Then:

IOT7*.: V, IOn{l}.:v, IOZ’*.:E.

Lemma 14. Let Ay = (A4, -, o) a Com-PreLie algebra, f : Ay — Ay be a linear map such
that:
flwey) = f(z)ey+ oo f(y)

We put A= Ay @ Vect(D). Then A is given a unitary Com-PreLie algebra structure, extending
the one of Ay, by:

I
o 8 o

0 0ol
Vo € Ay, x - 0-x
T Dex



Proof. Obviously, (A,-) is a commutative, unitary associative algebra. Let us prove the PreLie
identity for z,y,z € Ay U {0}.

e Ifr =0 thenzxe(yez)=(rey)ez=ze(zey)=(rez)ey =0 Wenow assume that
CL'EA+

e If y = z = (), then obviously the PreLie identity is statisfied.

e Ify=0and z € A, then:
ze(yez) =0, (zoy)ez= f(z)ey,
re(zey)=umxe f(z), (zez)ey= f(rvez).

As f is a derivation for e, the PreLie identity is statisfied. By symmetry, it is also true if
y € Ay and z = ().

Let us now prove the Leibniz identity for z,y,z € A, U{0}. It is obviously satisfied if x = () or
y = 0; we assume that x,y € Ay. If 2 = (), then:

(x-y)ez=f(z-y), (xeoz)-y=flz) v, z-(yez)=xz-f(y)
As f is a derivation for -, the Leibniz identity is satisfied. ]

Proposition 15. Let UCP(D) be the vector space generated by UPT (D). We extend - by
bilinearity and the PreLie product e is defined by:

Z Te, . T ift+#0,

seV(t

)
> T ift = 0.
)

seV(t

VT, T € UPT(D), TeT =

Then UCP(D) is the free unitary Com-PreLie algebra generated by the the elements . (o, a), d € D.

Proof. We denote by UCP4 (D) the subspace of UCP(D) generated by nonempty trees. By
proposition 18 in [5], this is the free Com-PreLie algebra generated by the elements . 4, 4, k € N,
d € D. We define a map f : UCPL (D) — UCP4(D) by:

VT e UPT(D)\ {0}, f(T) = > T[+1]..

seV(t)

This is a derivation for both - and e; by lemma 14, UCP(D) is a unitary Com-PreLie algebra.

Observe that for all d € D, k € N:
«(0,d) ® @Xk = o (k,d)-

Let A be a unitary Com-PreLie algebra and, for all d € D, let ay € A. By proposition 18 in [5],
we define a unique Com-PreLie algebra morphism:

0_{ UCP.(D) — A
' o(k,d) — adX1;§k.

We extend it to UCP(D) by sending ) to 14, and we obtain in this way a unitary Com-PreLie
algebra from UCP(D) to A, sending .(,a to aq for any d € D. This morphism is clearly
unique. O
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Example 4. Let i,j,k € N and d,e, f € D.

i) ® (e = 1,
Gre)xr (k, f)
o (i,d) ®(j, €)= (k, )= V(zud)
X ii’?xf)
s @ 1 =108
; Gre)ap (b, f)
1 e. (kf)—}E 3 Vi dj »
o (i,d) ® (Z) = e(i+1,d);
1) o0 = 160 + 1HH",
e k, e k, +1,e k, j, e k+1,
(G, >v< D) of) — _ G >v< f) (J )v(i(,d)f) +<a )\/(i<,d) L)

3.2 Quotients of UCP(D)

Proposition 16. We put Vy = Vect(.©,a,d € D), identified with Vect(.qa,d € D). Let f :
Vo — Vo be any linear map. We consider the Com-PreLie ideal Iy of UCP(D) generated by the
elements (1.4 — f(+0,0)), d € D.

1. We denote by UPT' (D) the set of trees T € UPT (D) such that for any vertex s of T, the
decoration of s is of the form (0,d), with d € D. It is trivially identified with PT (D). Then
the family (T + If)reypr (v s a basis of UCP(D)/Iy.

2. InUCP(D)/Iy, for any d € D, (va + Iy) o0 = f(.q).

Proof. First step. We fix d € D. Let us first prove that for all £ > 0:

k) +Ir = o) + I

It is obvious if k£ = 0,1. Let us assume the result at rank £ — 1. We put f(~(0,d)) = Z@e.(o,ey
Then:

« (k) + If =.(14) .@x(k—l) + If
= Zae.(o ) .@X(k_l) +If

—Zaef +If

= "0 )+ff,

so the result holds for all k.

Second step. Let T € UPT(D); let us prove that there exists z € Vect(UPT'(D)), such that
T+ Iy =x+ 1. We proceed by induction on |T'|. If |T'| = 0, then t = () and we can take x = T.
If |T| =1, then T' = . ; 4y and we can take, by the first step, r = fk(.(07d)). Let us assume the
result at all ranks < |T'|. If T' has several roots, we can write T = T} - Ty, with |T1], |T2| < |T].
Hence, there exists z; € Vect(UPT' (D)), such that T; + Iy = x; + I for all i € [2], and we take
T = x1 - 9. Otherwise, we can write:

T:.(k,d)OTlx...XTk,

where T1,...,T, € UPT(D). By the induction hypothesis, there exists z; € Vect(UPT'(D))
such that T; + Iy = a; 4 Iy for all i € [k]. We then take z = f¥(. (o) ® m1 X ... X @}

Third step. We give CPy (D) = Vect(PT (D) \ {0}) a Com-PreLie structure by:

YT, T' € PT(D)\ {0}, TeT = Z Tes.T.
seV(t
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We consider the map:
CP.(D) — CPL(D)
F: T — fs(T),
seV(T)

where, fs(T') is the linear span of decorated partitioned trees obtained by replacing the decoration
ds of s by f(ds), the trees being considered as linear in any of their decorations. This is a
derivation for both - and e, so by lemma 14, C' P(D) inherits a unitary Com-PreLie structure
such that for any d € D:

caol=f(.a)

By the universal property of UCP(D), there exists a unique unitary Com-PreLie algebra struc-
ture ¢ : UCP(D) — CP(D), such that ¢(.(g,q)) = «a for any d € D. Then ¢(.(1 4)) = f(.a)) =
¢(f(-(0,a) for any d € D, so ¢ induces a morphism ¢ : UCP(D)/I; — CP(D). It is not
difficult to prove that for any T' € UPT' (D), ¢(T) = T. As the family PT (D) is a basis of
CP(D), the family (T' + It)peypr(p) is linearly independent in UCP(D)/Iy. By the second
step, it is a basis. O

Ezample 5. We choose f = Idy,. The product in UC’P(D)/IMVO of two elements is given by the
combinatorial product -. If T,7" € PT(D) and T" # 0, T @ T" is the sum of all graftings of 7"
over T'. Moreover:

Tel()=|T|T.
Hence, we now consider CP(D), augmented by an unit ), as a unitary Com-PreLie algebra.

Proposition 17. Let J be the Com-PreLie ideal of CP(D) generated by the elements .4 o (F} X
FQ) — g ® (F1 . FQ), with d € D and Fl,FQ € PT(D)

1. Let T and T' be two elements of PT (D) which are equal as decorated rooted forests. Then
T+ J =T +J. Consequently, if F is a decorated rooted forest, the element T' + I does
not depend of the choice of T' € UPT (D) such that T' = F as a decorated rooted forest.
This element is identified with F.

2. The set of decorated rooted forests is a basis of UCP(D)/J.

CP(D)/J is then, as an algebra, identified with the Connes-Kreimer algebra HgK of decorated
rooted trees [3, 4], which is in this way a unitary Com-PreLie algebra.

Proof. 1. First step. Let us show that for any z1,...,2, € UCP(D), .qe (z1 X ... X x,) +J =
ca®(x1-...-x,)+ J by induction on n. It is obvious if n = 1, and it comes from the definition
of J if n = 2. Let us assume the result at rank n — 1.

cae (T X ... Xxy)+J
1

n

=(ea®(T1 X...XTp_1)) 0Ty — cae (T X ... X (xjemy) X ... X xp1)+J
i=1

n—1
:(.do(:nl-...-xn,l))own—z.do(:ﬂl-...-(xioxn)-...-xn,1)+J

i=1
=(go(x1-...-Tp1))@xy — a0 ((z1-... - Tp_1)0zp) +J
=ae((z1-...-xp_1) Xxp)+J
=.q0(x1-...Tp_1-xy) +J.

So the result holds for all n.
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Second step. Let F,G € PT (D), such that the underlying rooted decorated forests are equal.
Let us prove that F +J = G + J by inductionon n = |F| = |G|. fn=0, F =G =1 and it is
obvious. If n =1, F = G = ., and it is obvious. Let us assume the result at all ranks < n.

First case. If F has k > 2 roots, we can write F =T -...- T and G = T7 -...- T}, such that,
for all ¢ € [k], T; and T] have the same underlying decorated rooted forest; By the induction
hypothesis, T; + J =T/ + J for all i, so F + J = G+ J.

Second case. Let us assume that F' has only one root. We can write F' = ., o (F} x ... x Fy)
and G = .,0(G1 x...xG;). Then Fy-...-F and Gy -...-G; have the same underlying decorated
forest; by the induction hypothesis, Fy ... - Fy+J =Gy-...-Gi+J,s0 cq@ (Fy-...- Fp)+J =
.a9(G1-...-Gy)+ J. By the first step:

FrJ=.se(Fi-... F)+J=1a0(Gi-...-G))+J =G+

2. The set RF (D) of rooted forests linearly spans CP(D)/J by the first point. Let J’ be the
subspace of C'P(D) generated by the differences of elements of PT (D) with the same underlying
decorated forest. It is clearly a Com-PreLie ideal, and RF (D) is a basis of CP(D)/J’. Moreover,
for all Fy, F» € PT(D), ca® (F1 X Fy)+ J' = ., ¢ (F1 - Fy) + J', as the underlying forests of
cae(F1 X Fy) and ., e (F} - Fy) are equal. Consequently, there exists a Com-PreLie morphism
from CP(D)/J to CP(D)/J', sending any element of RF(D) over itself. As the elements of
RF (D) are linearly independent in CP(D)/J’, they also are in CP(D)/J. O
3.3 PrelLie structure of UCP(D) and CP(D)

Let us now consider UCP(D) and CP(D) as Prelie algebras. Their augmentation ideals are
respectively denoted by UCP4 (D) and C P, (D). Note that, as a PreLie algebra, UCP, (D) =
CPy(N x D).

Let D be any set, and let T' € PT (D). Then T can be written as:

T = (‘dl.(Tl,l X ... X E751)) et ('dk.(Tk,l X ... X Tk75k)),

where dy,...,d; € D and the T; ;’s are nonempty elements of P7 (D). We shortly denote this
as:
T = Bdl,...,dk (T171 . TLSl; ces Tk,l .. -Tk,sk)-

The set of partitioned subtrees T; ; of T' is denoted by st(T').

Proposition 18. Let D be any set. One defines a coproduct 6 on C' P (D) by:

vT € PT(D), S(T)= > T\T'®T.

T’est(T)
Then, as a PreLie algebra, C Py (D) is freely generated by Ker(9).
Proof. In other words, for any T' € PT (D), writing
T =By a(Ti1- . Trse i Thr- - Ths)-

we have:

s s
5(T) = ZZBd17”'7dk(T171 .. -Tl,s1; - ;E,l .. -E,j .. 'E,Si; - ;Tlg,1 R ) Sk) ®T’i,j-

i=1 j=1
This immediately implies that ¢ is permutative [9):

(6®Id)od=(23).(6® Id)osd.
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Moreover, for any z,y € PT 4 (D), using Sweedler’s notation 6(z) = z(") ® (3, we obtain:

For any partitioned tree T € PT (D), we denote by r(T") the number of roots of 7" and we put
d(T) = r(T)T. The map d is linearly extended as an endomorphism of P7 (D). As the product
- is homogeneous for the number of roots, d is a derivation of the algebra (CP(D),-). Let us
prove that for any =,y € CP(D):

S(zoy)=dz) @y +20 ey22® + 20 @@ ey

We denote by A the set of elements of x € C'P1 (D), such that for any y € C P4 (D), the preceding
equality holds. If x1,x9 € A, then for any y € CP.(D):
(1 - 2) @ y) = 0((z1 @ y) - x2) + 6(21 - (22 0 )
= (z10y) V200 (21 09)? + (21 09) - xgl) ® xg)

(1) (2)

+ay’ (z2ey) a7 41 (220 y)(l) ® (29 @ y)(2)

=d(z1) T2y + (acgl) oY) o ®l‘g1) —|—x§1) - T ®x§2) oy
+ (21 0y)- 28 @t + 2l (20 y) © 2l?
+xz1-d(z2) @Yy + 271 - (xél) oy ® 36&2) + x1 ~x(21) ® mg) oy
=d(z1-22) Yy + (:cgl) cTo) ey ® mf) + (21 - azgl)) °oy® a:g)
+ (21 - 22) D @ (1 22)@ @y
=d(z1-22) @y + (71 - 29) Y ey @ (21 - 22) P + (21 - 22)V @ (21 - 22)P @y
So x1 - x9 € A.
Let d € D. Note that §(.4) = 0. Moreover, for any y € CP,(D):
6(ca®y) =06(Ba(y)) =-a @y,

so .qa € A. Let Ty,...,Tx € PT(D), nonempty. We consider x = By(Ty...Ty). For any
(TRS CP+(D)

k
S(zey)=06(By(Ty.. . Thy)) + > 6(Ba(Ti...(Tjey)...Tk)

J=1

~

k
:Bd(Tl...Tk)®y—|—ZDd(T1...Ti...Tky)®Ti

=1
k R k R
YN By T (Tjey.. To)®@Ti+ Y By(Ty...T,...T) @ Ty ey
i=1 j#i i=1
k R k R
=d@)®y+> Ba(Ti..T;..T,)ey®Ti+ > By(Ty...T;...Th) @ Ty ey
i=1 i=1

—dz)oy+2M ey s® 420 012 ey,

Hence, € A. As A is stable under - and contains any partitioned tree with one root,

For any nonempty partitioned tree T € PT (D), we put §'(T) = (T)(S(T). Then:
r
1
"'®1 "T) = 1 T
(0" ®Id)od'(T) r(T)2(5® d)oo(T),
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so ¢’ is also permutative; moreover, for any x,y € C Py (D):
§(zey) :x®y+x(l) oy®x(2) + 2z @ £ °y.

By Livernet’s rigidity theorem [9], the PreLie algebra C' P, (D) is freely generated by Ker(d').
For any integer n, we denote by C'P,,(D) the subspace of CP(D) generated by trees T such that
r(T) = n. Then, for all n, §(CP,(D)) € CP,(D) ® CP(D), and d|cp,(p) = n5|CP (py- This
implies that Ker(d) = Ker(d'). O

Lemma 19. In CPy (D) or UCP4+(D), Ker(5) e ) C Ker(d).
Proof. Let us work in UCPy (D). Let us prove that for any z € UCP4(D):
S(reol)=2Wehz® 20 e

We denote by A the subspace of elements x € UCPy (D) such that this holds. If z1,z9 € A,
then:

0((z1-22)@0) =0((x100) - 22) + (21 - (x2 0 0))

= @V o) 2y @™ + 2V 2y @2 '@Jr(ﬂ?l'@) M e

(2) (1) 2)

T - (:cg o)) ®@xy’ + x1 - w4 ®:L‘2 0®+:E (xzo(l))@xg
= (

+

2V z) e 42V 20l 0 )

+ (27 - xQ) @®x§)+x1 :L“gl)®x2 o(
= (x1-22) M 0 0@ (w1 - 22) D) + (21 - 29) D @ (21 - 22)?) @),

soxy-xe € A. Ifde D and Th,..., Ty € UPT (D), nonempty, if x = By(Ty...T}):

k
(5([1} ] @) = 5(Bd+1(T1 .. Tk)) + Zé(Bd(Tl - (E 0@) .. Tk)
i=1
k
= Ban(Ti... T ®T+ZZBd Tje0)...T;,...TH) @ T,
i=1 7=1 i#j
k A~
+ZBd(T1...n...Tk)®n.@
=1
k o~ o~
= By(Ty...T;... )®®T+ZBd T Tp) @ T e

=1

.
,-\ It
==

=z e @ 22 +x(1)®x()0@,

so x € A. Hence, A = UCP,(D). Consequently, if z € Ker(d), then z e () € Ker(d). The proof
is immediate for CPy (D), as for any tree ' € PT (D), T e = |T|T. O

We denote by ¢ the endomorphism of Ker(d) defined by ¢(z) = = e ).

Corollary 20. The PreLie algebra UCP(D), respectively CP(D), is generated by Ker(5) & (0),
with the relations:

0
Vo € Ker(9), 0e ; z o) =¢().



Remark 7. We give CP(D) a graduation by putting the elements of D homogeneous of de-
gree 1. A manipulation of formal series allows to compute the dimensions of the homogeneous
components of Ker(d), if |D| = d:

dim(Ker(d)1) = d,

dim(Ker(6)s) = d(d;l)’

dim(Ker(d)s) = d(QdZ—i—l)’

dim(Ker(8)4) = d(11d3+252+d+2)7

dim(Ker(5)s) = 204+ 608~ - 50— 30d+12)
dim(Ker(6)) = W2200° +89d" + lzid?’ +3d2 +4d+4)

4 Bialgebra structures on free Com-PreLie algebras

4.1 Tensor product of Com-PrelLie algebras

Lemma 21. Let Ay, As be two Com-PreLie algebras and let € : Ay — K such that:
Va,b € Ay, c(aeb) =c(bea).
Then A1 ® As is a Com-PreLie algebra, with the products defined by:

(a1 ® az)(b1 ® b) = a1b1 ® azby,
(a1 ®az) e (b1 ® b2) = a; @ by ® azby + £(b1)a; ® az @ by.

Proof. A1 ® As is obviously an associative and commutative algebra, with unit 1 ® 1. We take
A=a1®a, B=b1®by,C =1 ®cy € A1 ® As. Let us prove the PreLie identity.

(Ae.B)e.C — Ae_(Be.C)=(a;eby)ecs ®agbaca+e(ci)as @by @ (azbs) @ co
+e(b1)ar @ c1 ® (ag @ by)ca + (by)e(c1)a; ® (azbey) @ co
—aj e (by ®cy) ®asbaca —e(c1)ar @ by ® az(by e c2)
—e(c1)e(br)ar ® az @ (bz @ c2) —e(br ® c1)ar ® az @ (baca)
= ((ajob1)eci —aj e (byecy)) ® asbaco
+e(b)e(cr1)a; @ ((ag @ by) @ co —ag @ (ba @ 2))
+e(cr)ar @by ® (az @ c2)ba + c(b1)ar @ c1 @ (ag ® ba)ca
—e(by eci)a; ® ag e (baca).

As A; and As are Prelie, the first and second lines of the last equality are symmetric in B and
C; the third line is obviously symmetric in B and C'; as m is commutative and by the hypothesis
on &, the last line also is. So e, is PreLie.

(AB) e C = (a1b1) @ c1 ® agbaca + (c1)ar1by @ (agba) @ co
= ((a1 @ c1)b1 + a1(by ® c1)) ® agbaca + &(c1)arby @ ((ag @ ca)by + az(bs @ ¢2))
= (a1 0 ¢1 ®azcy +e(c1)a; ®az @ c2)(by @ ba)

+ (a1 ® az)(b1 ® ¢1 @ baca + e(c1)b1 @ by @ ¢3)

=(Ae(C)B+ A(Be().

So A1 ® Ay is Com-PreLie. O
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Remark 8. Consequently, if (A, m,e, A) is a Com-Prelie bialgebra, with counit ¢, then A is a
morphism of Com-PreLie algebras from (A, m,e) to (A ® A,m,e.). Indeed, for all a,b € A,
c(aeb) =c(bea)=0 and:

Ala) . A(D) = a e 0V @ a@bp? 4 £(bM)a) © o o b
— oW e b ©a®@p® 1 oM @ op
=A(aeb).

Lemma 22. 1. Let A, B,C be three Com-PreLie algebras, e¢4 : A — K and ep : B — K
with the condition of lemma 21. Then es @ ep : A® B — K also satisfies the condition
of lemma 21. Moreover, the Com-PreLie algebras (A® B) @ C and A® (B® C) are equal.

2. Let A, B be two Com-PreLie algebras, and € : A — K such that:
Va,b e A, e(ab) = e(a)e(b), e(aeb) =0.
Then e ® Id: A® B — B is morphism of Com-PreLie algebras.

3. Let A,A’, B, B" be Com-PreLie algebras, ¢ : A — K and & : A’ — K satisfying the
condition of lemma 21. Let f: A — A', g: B — B’ be Com-PreLie algebra morphisms
such that e’ o f =e. Then f®g: A® B— A’ ® B’ is a Com-PreLie algebra morphism.

Proof. 1. Indeed, if a1,as € A, by,bs € B:
EAR 53((a1 &® bl) ° (CLQ ® bg)) = EA(a1 ° ag)EB(blbg) + EA(al)EA(ag)EB(bl . bg)
= €A<a2 ° al)EB(bel) + EA(a2)€A(a1)€B(b2 ° bl)
=eca®ep((ag ®b2) e (a1 ®by)).
Let aj,as € A, b1,bs € B, c1,c0 € C. In (A® B)® C:
(a1 ® b1 @ c1) (a2 ® by ® c2)
= ((a1 ®b1) @ (a2 ®@b2)) ®cica + 4 @ep(az ®ba)ar @by @ c1 @ o
=aj ®ay ®biby ®cicg +ea(az)ar ® by @by @ cica +ca(az)ep(bz)ar @ by ® ¢ @ ca.
In A® (B® C):
(a1 ® b1 ®c1) @ (a2 ® b ® c2)
=ajeag ®biby ®creo + EA(CLQ)al &® ((bl X Cl) ° (bQ & 02))
=aj;®ay ®biby ®cica +e4(az)a; @by @by @ ciea +ca(az)ep(bz)ar ® by @ ¢ o ca.

So (AR B)®C =A® (B®C).

2. Let ay,a9 € A, b1,bs € B.

e ® Id((a1 ® by)(az ® b)) e®@Id((a; @ by) e (ag ® by))
= e(ajaz)bibs = (a1 ® ag)biby + £(ay)e(az)by ® be
= e(a1)e(az)bibs = e(a1)e(ag)by @ by
=e®Id((a1 ® b1)e ® Id(az ® ba), =e®Id((a1 @ by) e ® Id(az ® bs).

So e ® Id is a morphism.

3. f ® g is obviously an algebra morphism. If a1,a2 € A, b1,b2 € B:

(f®g)((a1 @b1)®(az®b2)) = (f ®g)(a; ®az @ biby + e(az)a; ® by @ ba)
= f(a1) ® f(a2) ® g(b1)g(b2) +(f(az))f(a1) ® g(b1) @ g(b2)
= (f(a1) @ g(b1)) o (f(az) ® g(b2)).

So f ® g is a Com-PreLie algebra morphism. O
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Lemma 23. Let A be an associative commutative bialgebra, and V' a subspace of A which gen-
erates A. Let e be a product on A such that:

Va,b,c € A, (ab)ec= (aec)b+a(bec).
Then A is a Com-PreLie bialgebra if, and only if, for allx € V, b,c € A:

(xeb)ec—xe(bec)=(rec)eb—ze(cebd),
Az ob) =2V @2 e b+ 21 o bM) @ 2Pp?),

Proof. =>. Obvious. <=. We consider:
B={ac A|Vbcec A (aeb)ec—ae(bec)=(aec)eb—ae(ced)}.

Copying the proof of lemma 2-1, we obtain that 1.b = 0 for all b € A. This easily implies that
1 € B. By hypothesis, V C B. Let ai,as € B. For all b,c € A:

((a1az) @b) e c — (ajaz) @ (bec)
= ((ay ob)ec)ag+ (a; ®b)(azec)+ (a1 ®c)(az ®b) +ai1((azeb)ec)
— (a1 e (bec))az —a(az e (bec))
=((apeb)ec—are(bec))as+ ai((ayeb)ec—ase(bec))
+ (a1 e b)(agec) + (a; ec)(az @ b).

As a1,ay € B, this is symmetric in b, ¢, so ajas € B. Hence, B is a unitary subalgebra of A
which contains V, so is equal to A: A is Com-PreLie. Let us now consider:

C={acA|vbeAAeb) =V a? eb+a ebV ©a@p@}
By hypothesis, V C C. Let b € B.
PoDeb+0ebM) @162 =0=A()eb),
so ) € C. Let aj,as € C. For all b € A:

A((ajaz) eb) = A((a1 ® b)ag —l— al(ag . b))

ag )aél) ® ( ) ( (1) o b™M)al ) & a§2)b(2)a§2)
(1) (1) ® (2)( 2) o ob) + ( (1) ¢ p1 )) e )aéQ)b@)
_ (Ig )aél) ® ( ) ( 1) ( )) o b ® a§2)ag2)b(2)

= (a1a2)M ® (alag)( ) o b+ (a1az) e b @ (aras) @@,

Hence, ajas € C, and C is a unitary subalgebra of A. As it contains V, C' = A and A is a
Com-PreLie Hopf algebra. O

4.2 Coproduct on UCP(D)

Definition 24. 1. Let T be a partitioned tree and I C V(T). We shall say that I is an ideal
of T if for any vertex v € I and any vertex w € V(T') such that there exists an edge from
v to w, then w € I. The set of ideals of T is denoted Zd(T).

2. Let T be partitioned forest decorated by N x I, and I € Zd(T).

e By restriction, I is a partitioned decorated forest. The product - of the trees of I is
denoted by P!(F).
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e By restriction, T'\ I is a partitioned decorated tree. For any vertexr v € T \ I, if we
denote by (i,d) the decoration of v in T, we replace it by (i + t1(v),d), where t1(v)
is the number of blocks C of T, included in I, such that there exists an edge from v
to any vertex of C'. The partitioned decorated tree obtained in this way is denoted by
RI(F).

Theorem 25. We define a coproduct on UCP(D) in the following way:

YT € PT(N x D), A(T)= Y RNT)®P(T).
I€Zd(T)

Then UC P(D) is a Com-PreLie bialgebra. Moreover, CP(D) and HZ,, are Com-PreLie bialgebra
quotients of UCP(D), and ’HgK s the Connes-Kreimer Hopf algebra of decorated rooted trees

/3, 7.

Proof. We consider:
fuvcpPD) — K
€ F — 6 F1-

By lemma 22-1, UCP(D) ®. UCP(D) is a Com-PreLie algebra. It is unitary, the unit be-
ing 1 ® 1. Hence, there exists a unique Com-PreLie algebra morphism A’ : UCP(D) —
UCP(D) ®: UCP(D), sending . q) over .(gq) ® 1 +1® .(gq) for all d € D. By lemma 22-2,
(UCP(D) ®: UCP(D)) ®e0: UPC(D) and UCP(D) ®. (UCP(D) ®: UCP(D)) are equal, and
as both (Id ® A’) o A" and (A’ ® Id) o A’ are Com-PreLie algebra morphisms sending . (g 4) over
c0) @11 +1®.09@1+1@1®.¢gq) for all d € D, they are equal: A’ is coassociative.
Moreover, (Id ®€) o A" and (¢ ® Id) o A" are Com-PreLie endomorphisms of UC' P (D) sending
- (0,q) over itself for all d € D, so they are both equal to Id: ¢ is the counit of A’. Hence, with
this coproduct A’, UCP(D) is a Com-PreLie bialgebra.

Let us now prove that A(7T) = A(T) for all T € PT(N x D). We proceed by induction on
the number of vertices n of T. If n = 0 or n = 1, it is obvious. Let us assume the result at all
ranks < n. If T has strictly more than one root, we can write T'=T" - T”, where T” and T" has
strictly less that n vertices. It is easy to see that the ideals of T" are the parts of T LIT" of the
form I" U 1", such that I’ € Zd(T") and I"” € Zd(T"). Moreover, for such an ideal of T,

RI/L’IH(T/ . T//) — RI/(T/) . RI//(T”), PI/L’I”(T/ . T//) — PI/(T/) . PIN(T//).
Hence:

A(T) _ Z RI’ (T/) . RI” (T”) ® RI/ (T/)RI” (T”)
I'eZd(T"), 1" €Zd(T")
= A(T) - A(T")
_ A’(T') . A/(T”)
_ A’(T . T”)
= A(T).

If T has only one root, we can write T'= .(;,ay ® (11 X ... x T}), where T, ..., T, € PT(N x D).
The induction hypothesis holds for 77, ...,Txy. The ideals of T" are:

e T iself: for this ideal I, P/(T) = T and R!(T) = 0.

e Ideals I; Ul ... U Iy, where I; is an ideal of T} for all j. For such an ideal I, P/(T) =
PI(Ty)-...- PI(T}). Let J = {iy,...,i,} be the set of indices i such that I; = T}, that is
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to say the number of blocks C of I such that is an edge from the root of T' to any vertex
of C. Then:

X
RUT) = .ipae [[ R5(Ty)
2
X
= fhopm)(-aa) o [ R (T))
J¢d
X
=.cae 0P xt[[RY(T))
2
=.a® RO(TY) x ... x R*(T}).
We used lemma 5 for the third equality.

By proposition 4, with a = .(;,qy and by X ... X b, =T1 X ... X T}:

s ) 1))

Ig[k] el icl i%[
x X
IC[K] i€l i€l il
:'(i,d)OTl(l)><...XTé1)®T1(2).“_.T’§2)+O

+®®-(i,d).T1 X ... XTk

= Y cwoeR"(T) x...xRMTy) @ P(TY)-...- PH(Tp) + 0T
I;€1d(Ty)

= RI(TYo PHT)+0eT
I€Td(T), I#T

= > RY(T)ePY(T)
I€Zd(T)

= A(T).

Hence, A’ = A.

For all d € D, «(0,4) — «(1,4) 18 primitive, so A(.(g.q) — +(1,0)) € I @ UCP(D)+UCP(D) ® I.
Consequently, I is a coideal, and the quotient UCP(D)/I = CP(D) is a Com-PreLie bialgebra.
Let z,y € CP(D). By proposition 4, as ., is primitive:

Alao(@xy)=.ae @V xy)@2® .y +1@.,0(xxy),
whereas, by the 1-cocycle property:
Alao(z-y)=.ae @V yM)a® 4@+ o, (@ y).
Hence:

Algo(@xy)—.ao(@y) = (e (@ xy®)— . 0@l y1) ez . y@
eJ
+1@(ae(@xy) —.ae(z y))
eJ
€ J®CP(D)+ CP(D)® J,
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so J is a coideal and CP(D)/J = HE,; is a Com-PreLie bialgebra.
Let us consider: o o
By : Hoxw — Hex
) ... T, — g1y x...x T,
where T1,...,T) are rooted trees decorated by D. In other terms, By(T}...T}) is the tree
obtained by grafting the forest T} ... T} on a common root decorated by d. By proposition 4 and
lemma 5, for all forest FF =T ...T} € ’Hg e
AoBy(F)=aoT x . xTHN@T® . TP 4+ 0400 .s0T x ... x Ty
= By(FW)® F® 4+ 0 @ By(F).
We recognize the 1-cocycle property which characterizes the Connes-Kreimer coproduct of rooted

trees, so ”HgK is indeed the Connes-Kreimer Hopf algebra. O

Ezample 6. Let i,j,k € Nand d,e, f € D. In UCP(D):
Aciy =0 @0+ 0® .60,
Al =10d 0+0@ 183 + 610 @i e
NI NGy 30 L g gy 0
10 @emn F 1) ® G0 TGtz @G —mn
NI NG G 30 4 g g9 Y 0
TG ®@cpn +HED @0 Ferna @G —mn,

Al =1

53>®@+®®£§§:73f3)+ WH @eintearra @ 1Y
In CP(D):
Ai=0a®@0+0® .q,
Al =100+0® 18 +.4® .,
AV =V @04+00V 415 @0, + 15 Qe+ ed ® cony,
AV =V 004+00V +15@ 4+ 1 e + 00 @ e,
Als =l o0l ttie., +aotl
In’HgK

Ai=a 0+ 0 ® va,
Al =15Q00+0®15 4+ .0 @ .,
AV =V 20+00V 4150+ 1 @ueted @ueny,

f f f
Aty =l eoroel +1ie +a01L.

4.3 An application: Connes-Moscovici subalgebras
Let us fix a set D of decorations. For any d € D, we define an operator N : HgK — ”Hg x by:
VxGHgK, Nd(.’IJ) =T ®.q4.

In other words, if F' is a rooted forest, Ny(F') is the sum of all forests obtained by grafting a leaf
decorated by d on a vertex of F': when D is reduced to a singleton, this is the growth operator
N of [3].

Forall kK > 1, 41,...,1; € D, we put:

X

11,000k

= Nik Oo... ONiz(-il)'

When |D| = 1, these are the generators of the Connes-Moscovici subalgebra of [3].
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Proposition 26. Let HEM be the subalgebra of "HgK generated by all the elements X;, . ;
Then ’HgM 1s a Hopf subalgebra.

P

Proof. Note that Ny is a derivation; as Ng(X;,, i) = Xi
stable under Ny for any d € D. As the X, ;

Loin,d for all iq, ... i, d € D, HgM is

. are homogenous of degree k:

Xig,in®o1l=kEX;

ket

Hence, ’HgM is stable under the derivation D : z — x e 1. We obtain:

A(Xi1,~~~7ik) = A(Xilvmvik—l ® 'ik) (10)
_ yv@® (2)
= X v @ Kigigy ® i
(1) (2) 1) (2)
+ Xi1,---7ik—1 ®.i ® Xi17---7ik—1 + Xi17---7ik—1 ) Xil,---,ik—l'ik'
An easy induction on k proves that A(X;, ) belongs to HE,, ® HE,,. O

Proposition 27. We assume that D is finite. Then ’HgM is the graded dual of the enveloping
algebra of the augmentation ideal of the Com-PreLie algebra T'(V, f), where V.= Vect(D) and
f=1Idy.

Proof. We put W = Vect(X;,,. 4, | k> 1,i1,...,9 € D). As this is the case for HEK, for any
xeW:
Alx)—z@1+10reWeHE,.

This implies that the graded dual of HgM is the enveloping of a graded algebra g; as a vector
space, g is identified with W* and its preLie product is dual of the bracket § defined on W by
(mw ® Tw o A, where my is the canonical projection on W which vanishes on (1) + (H2,,)%.
By (10), using Sweedler’s notation §(z) = 2’ ® =", we obtain:

_ v " , / ) "
5(Xi17~~~7ik+1) - Xil,...,ik ® Xil,...,ik i X1k+1 + Xil,...,ik i X'Lk:+1 ® Xi

iy T EXiy i @ Xy
We shall use the following notations. If I C [k], we put:

o m(Il) =max(i | [¢{] C I), with the convention m(I) =01if 1 ¢ I.

o Xi =X,y 1= {p1 <...<p}

An easy induction then proves the following result:

Vi, ... i, € D, §(Xiya) = Y m(DXi;, @ Xy,
PCIC(K]

We identify W* and T'(V')4 via the pairing:
Vit .otk J1s -, 01 €D, (Xt oo J1 -2 01) = 5(i17---7ik)7(j17---7jl)'

The preLie product on T'(V)4 induced by 4 is then given by:

il---ik.ik—&—l---ik—f—l = Z mk(a)ig_1(1)...Z'U—l(kH).
o€Sh(k,l)
By (7), this is precisely the preLie product of T'(V, f). O
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Remark 9. The following map is a bijection:

)

g . { Shk) — Sh(Lk)
ot o — (k+lk+1l—1...Doco(k+lk+1—1...1).

Moreover, for any o € Sh(k,l):
my(Og(0)) =min{i el e {k+1,....k+1} |o(i)=14,...,0(k+1) =0k + 1)} =my(0),

with the convention mj(c) = 0 if o(k +1) # k + 1. Then the Lie bracket associated to e is given
by:

Vil,...,ik_H €D, [7;1~~ik7ik+1--~7;k+l] = Z (mk(O')—m;(o‘))ig—l(l)...ia—l(k+l).
oeSh(k,l)

4.4 A rigidity theorem for Com-PreLie bialgebras

Theorem 28. Let (A,m,e,A) be a connected Com-PreLie bialgebra. If fo (defined in Proposi-
tion 3) is surjective, then (A,m,A) and (T (Prim(A)),w, A) are isomorphic Hopf algebras.

Proof. We put V= Prim(A).

First step. As fa is surjective, there exists g : V. — V such that fa o g = Idy. For all
x €V, we put:
{ A — A
L, :
y — glz)ey.
For all y € A:

AoLy(y)=0®g(x)ey+gx)eyV @y® =0 Ly(y) + (Id® L) o A(y).

Hence, L, is a 1-cocycle of A. Moreover, L, (1) = g(z)el = faog(x) = z. Forall zy,...,z, € V,
we define w(zy,...,z,) inductively on n by:

ifn=0
w(:vl,...,:rn):{@l ne=w

Ly (w(xa,...,zn—1))ifn>1.

In particular, w(v) = v for all v € V. An easy induction proves that:

n

A1, wn) = S W@,y 20) @ W(@ig1s - s Tn):
=0

Hence, the following map is a coalgebra morphism:

V) — A
w:
Tl Ty — w(T1,...,Tn).

It is injective: if Ker(w) is nonzero, then it is a nonzero coideal of T'(V'), so it contains
nonzero primitive elements of T'(V'), that is to say nonzero elements of V. For all v € V|
w(v) = Ly(1) = v: contradiction. Let us prove that w is surjective. As A is connected, for
any x € A, there exists n > 1 such that A (z) = 0. Let us prove that = € I'm(w) by in-
duction on n. If n =1, then x € V, so x = w(x). Let us assume the result at all ranks < n.
By coassociativity of A, A1 (z) € V¥ We put A D(z) =2, ®...®x, € V®". Then
A= () = A=Y (w(x,...,x,)). By the induction hypothesis, 2 — w(x1, ..., z,) € Im(w), so
x € Im(w).
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We proved that the coalgebras A and T'(V') are isomorphic. We now assume that A = T'(V)
as a coalgebra.

Second step. We denote by 7 the canonical projection on V' in T'(V). Let w : T4 (V) — V
be any linear map. We define:

V) — T(V)

F:
w T1...Ly — Z Z w(:cl...:z:il)...w(azi1+,_+ik_l+1...:z:n).
k=1141-+...4+ip=n

Let us prove that F, is the unique coalgebra endomorphism such that 7 o Fi, = w. First:

AFg(ry...an) = Y. A@(@r...2,) .. @i topip 1 Tn))
i1+...+ip=n

- E E w x’Ll w(xi1+...+ij71+l ... $i1+...-‘ri]‘)

i1+...+ig=n j=0

® w(xiﬁ- i+l xi1+---ij+1) s w(wi1+---+ik—1+1 s xn))
—ZF i) @ Fo(xigr ... xp)

Moreover:

ToF, Z S w@(@rmiy) . (@i 1 )

k=1i1+...+ip=n
=mow(xy...xy)+0

=w(x1...2Tp).

Let us now prove the unicity. Let F,G be two coalgebra endomorphisms such that 7o F' =
moG=w. If FF# G, let x1...x, be a word of T'(V), such that F(z1...x,) —G(z1...2y,) # 0,
of minimal length. By minimality of n:

A(F(z1...2,)) = (F@F)oA(z1...20) = (G G) o Azy...20) = A(G(x1 ... 20)).
Hence, F(z1...2p) — G(z1...2,) € Prim(T(V)) =V, so:
Fzi...2p) —G(z1...2p) =7(F(x1...20) —G(x1...2,)) =w(x1...25) —w(x1...2,) = 0.
This is a contradiction, so F' = G.

Third step. Let wi,we : T4 (V) — V and let F} = F,, F» = F, be the associated
coalgebra morphisms. Then:

WOFQOFl(.CL‘l...:Bn) = Z wg(wl(xl...:L‘il)...wl(:nil_,_“._m-kilJrl)...xn)).
t1+...+ig=n

We denote this map by ws ¢ w;. By the unicity in the second step, Iy o F1 = Figyow,. It is
not difficult to prove that for any w : T4 (V) — V, there exists @’ : T4 (V) — V, such that
w' ow = wow =7 if, and only if, @)y is invertible. If this holds, then Fiy 0 Frr = Fipr 0 iy =
Fr = Id, by the unicity in the second step. So, if @y, is invertible, then F is invertible.
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Fourth step. We denote by # the product of T'(V). Let us choose w : T4 (V) — V such
that w (T (V) * T(V)) = (0). Let F = F the associated coalgebra morphism. As () is the
unique group-like element of T'(V'), the unit of x is (). Let us prove that for all z,y € T(V),
F(zxy) = F(x) - F(y). We proceed by induction on length(x) 4 length(y) = n. As () is the
unit for both * and - and F()) = (), it is obvious if z or y is equal to (: this observation covers
the case n = 0. Let us assume the result at all rank < n. By the preceding observation on the
unit, we can assume that z,y € T4 (V). We put G = Fox and H = -o (F ® F'). They are both
coalgebra morphisms from T'(V) @ T(V) to T(V'). Moreover:

ToGx®y)=moF(rxy)=w(x*xy) =0.
As the shuffle product is graded for the length, 7 o H(z ® y) = 0. By the induction hypothesis:
AoGzey)=(GoG)oAray)=(FoF)oAlzy)=AcFz®y).
Hence, G(z ® y) — F(xz ® y) is primitive, so belongs to V. This implies:
Gzoy —Fleey) =rGzy)— Flza®y) =0—0=0.

So Flxxy) =Gzx®y) = Flx®@y) = F(z) W F(y). Hence, F is a bialgebra morphism from
(T(V),*,4) to (T(V),w, A).

By the third and fourth steps, in order to prove that (7'(V),*,A) and (T'(V),w,A) are
isomorphic, it is enough to find @ : T}.(V) — V, such that @)y, is invertible and w (7% (V) *
T4+ (V)) = (0); hence, it is enough to prove that V N (A4 x A;) = (0).

Last step. We define A : End(A) — End(A® A, A) by A(f)(z ®y) = f(x *y). We denote
by * the convolution product of End(A) induced by the bialgebra (A, x, A). Let f,g € End(A).
We assume that we can write A(f) = f1) @ f® and A(g) = g™V @ ¢(?, that is to say, for all
x,y € A

Flay) = fO(@) = fO(y), glay) = gD () * gP(y).

Then, as * is commutative:

frglexy) = @D y)x g(a® 5 y®)

= fO W) * fA " ) (2 ) )(y@))

= fW(@M) x g (@)« fO (y

= [WxgW(z) « 1V x4 (y)
Hence, A(fxg) = A(f) * A(g).

Let p be the canonical projection on A and 1 be the unit of the convolution algebra End(V).
Then 1+ p=1d. As A(Id) = Id® Id and A(1) = 1® 1, this gives:
Alp)=pR1+1®@p+pRp.

We consider:
0 n+1

Y =1In(l+p) = Z

As A is connected, for all z € A, p*™(x) = 0 if n is great enough, so ¥ exists. Moreover, as A is
compatible with the convolution product:
AW)=(11+p1+1Rp+pRp)
=In((1+p) ® (1+4p))
=In(l1+p)®@1)+In(l®(1+p))
=In(l+p)®1+1xIn(l+p)
=Y R1+1®.
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Weused (1+p)@1)x(1@(1+p) =101 +p)*x((1+p ®1)=1+p) @ (1+p) for the
third equality. Hence, for all x,y € A:

Pz y) = ¥(v)e(y) +e(@)P(y).
In particular, if z,y € Ay, Y(z+y) =0. If z € V, then p'(z) = z and if n > 2:

n

P (x) = Zp(l) x...xp(1)xp(x)*xp(1)*...xp(1) =0.
i=1

So ¢(z) = x. Finally, if x €e VN (A4 x Ay), ¥(x) =2 =0. So VN (AL xAy) = (0). O
The following result is proved for HZ- in [2] and in [7]:
Corollary 29. CP(D) and HgK are, as Hopf algebras, isomorphic to shuffle algebras.

Proof. CP(D) is a connected Com-PreLie bialgebra. Moreover, if z € CP(D), homogeneous of
degree n, x e ) = nx. Hence, as the homogeneous component of degree 0 of Prim(CP(D)) is
zero, fop(py is invertible. By the rigidity theorem, fop(p) is, as a Hopf algebra, isomorphic to
a shuffle algebra. The proof is similar for ’HgK. O

Remark 10. 1. This is not the case for UCP(D). For example, if d, e are two distinct elements
of D, it is not difficult to prove that there is no element x € UCK (D) such that:

A)=2R14+1@2+ 0.0 ® 0.0
So UCP(D) is not cofree.

2. CP(D) and HgK are not isomorphic, as Com-PreLie bialgebras, to any T'(V, f). Indeed,
in T(V, f), for any x € V such that f(r) =z, r Wz =2z e x = 2zx. In fopp) or HgK,
for any d € D, with x = .4, f(x) =x but x - x # 2z e z.

4.5 Dual of UCP(D) and CP(D)

We identify UCP(D) and its graded dual by considering the basis of partitioned trees as or-
thonormal; similarly, we identify CP(D) and HE, with their graded dual.

Let us consider the Hopf algebra (UCP(D),-,A). As a commutative algebra, it is freely
generated by the set UPT1(D) of partitioned trees decorated by N x D with one root. Moreover,
if T € UPT(D):

AT)—1®T € Vect(UPT1(D)) @ UCP(D).

Consequently, this is a right-sided combinatorial bialgebra in the sense of [12], and its graded
dual is the enveloping algebra of a PreLie algebra gycp(D). Direct computations prove the
following result:

Theorem 30. The PreLie algebra gucp(D) is the linear span of UPT1(D). For any T,T' €
UPT (D), the PreLie product is given by:

ToT = Z (T osp T')[—1]5.
seV(T),
bebl(s){*}
Ezample 7. If D = {1}, forgetting the second decoration of the vertices, in gyop(D):
o <>.]' — (1 - 57:’0)I{_1,

k . .
Howu=(1- 5j,0)§¥’1 + (1 —6;p) (J\/ilil +7VE 1) .
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Similarly, the Hopf algebra (CP(D),-,A) is, as a commutative algebra, freely generated by
the set PT1(D) of partitioned trees decorated by D with one root. Moreover, if T' € PT1(D),

A(T) —1®T € Vect(PT1(D)) @ CP(D).

Consequently, its graded dual is the enveloping algebra of a Prelie algebra gop(D), described
by the following theorem:

Theorem 31. The PreLie algebra gop(D) is the linear span of PT1(D). For any T,T' €
PT1(D), the PreLie product is given by:

ToT = Z Te,T.

seV(T),
bebl(s)Li{*}

Ezxample 8. If D = {1}, forgetting the decorations, in gop(D):
Lo =1, lo.=t+ V 4+ V.

Notations 3. Let T € PT1(D). We can write T' = .4 0 (T} x ... x T},) = By(T} ... T}), where
Ti,...,T, € PT(D). Up to a change of indexation, we will always assume that T1,...,T), €
PT1(D) and Tpy1, ..., T ¢ PT1(D). The integer p is denoted by (7).

Proposition 32. As a PreLie algebra, gop(D) is freely generated by the set of trees T € PT1(D)
such that ¢(T) = 0.

Proof. We define a coproduct on gop(D) in the following way:
s(T)
VT = By(T: ... Ty) € PT1(D), §(T)=> By(Ti...T,...Ty) ® T,
i=1

This coproduct is permutative: indeed,

(@Id)od(T)= > BaTi..T,..T;.. Ty)@T; 2T,
1<ij <¢(T)

s0 (0®1Id)od=(23).(d®Id)od. Let T = By(Ty...Ty), T' € PT1(D). Then:

k k
ToT =By(T'Ty...Ti) + Y Ba(Ty...(T;ioT) ... Ta) + > By(Ty...(T,wT')... Ty).
i=1 =1
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Hence:

<(T)
S(TRT)=By(Ty...Ti) T + > By(T'Ty...T;.. Ty) @ T,
=1
k <(T) s(T)

+3 Y By(Ty.. T .. (T;oT) .. T)@Tj+ Y Ba(Ty...T;...T}) @ Ty o T’

i=1 j=1 i=1

J#i
k <(T) R

+Y N BTy T (TwT). T @ T;

i=1 j=1

J#i

s(T) R k R
ZE:A&aﬁy“n”jm+§:&a}nn“(nof+nuﬂﬂnjw @ T;

j=1 i=1

i#]

s(T)
+§:&Uy“n“jw®nor+T®T

=1

s(T) s(T)
:E:muyunujm.T®n+§:may”ﬂnjm®EOT+T®T

[y

_ i=1
TV T T + 7O 7@ T L TR T

By Livernets’s rigidity theorem, gop(D) si freely generated, as a PreLie algebra, by Ker ().

We define:
v. [ scr(P)@gcp(P) — ger(D)
' TT — T ®(T) T,

where 7(T) is the root of T'. In other words, Y(Bg(T1...T)®@T") = Bg(T'T\ ... T}); this implies
that for any 7' € PT1(D), YT o 6(T) = <(T)T. Hence, if v = > arT € Ker(d), Tod(x) =
> ars(T)T =0, so x is a linear span of trees T such that ¢(7") = 0. The converse is trivial. [

We denote by PTl(O)(D) the set of partitioned trees 7' € PT1(D) with ¢(T)) = 0. The
(0)
preceding proposition implies that the Hopf algebras (CP(D),-, A) and <’H7CD;1 (D),m, A) are
isomorphic. We obtain an explicit isomorphism between them:

Definition 33. Let T' € PT(D) and m = {P,..., P} be a partition of V(T'). We shall write
w AT if the following condition holds:

e For alli € [k], the partitioned rooted forest Tip,, denoted by T;, belongs to "PTEO) (D).

If m <« T, the contracted graph T/m is a rooted forest (one forgets about the blocks of T'). The
vertex of T/m corresponding to P; is decorated by T;, making T /7 an element of T(PT&O)(D)).

Corollary 34. The following map is a Hopf algebra isomorphism.:

(0)
(CP(D)7 %y A) — <HZZ{—1 (D)7 ) A)
TePT(D) — > T/

T

Example 9. If D = {1}, forgetting the decorations, with a = . and b = V:

O() = -a, o(1) = 1z, (V) ="V, O(V) ="V +.,.
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4.6 Extension of the preLie product ¢ to all partitioned trees

We now extend the preLie product ¢ to the whole C'P(D):

Proposition 35. We define a product on CP(D) in the following way:

VT, T' € PT(D), ToT = Z TeyyT.
seV(T),
bebl(s)L{x}
Then (CP(D),o,-) is a Com-PreLie algebra.

Proof. Obviously, for any x,y, z € PT (D), (z-y)oz = (zoz)-x+z-(yoz). Let Ty, T, T5 € PT (D).
Then:

(TioTh)oTy= ) Yo (Tiegs To)esn Ts
81€V(T1), SQGV(Tl),
b1 Gbl(sl)u{*} b2€bl(32)u{*}

+ Z Z (Tl ®s..b1 TQ) .Sz,bg T3

s1€V(T1), s2€V (T2),
b1 Gbl(sl)u{*} bQGbl(Sg)U{*}

= Z Z (Th ®s1,b1 Ty) ®syby 13

51€V(T1), SQGV(T1)7
b1 €bl(s1)U{*} ba€bl(s2)LI{x}

+ Z Z Ty O, b, (T2 055,02 T3)

s1€EV(TY),  s2€V(T3),
b1 €bl(s1){*} bacbl(s2)U{*}

= > Y (Theg b, To) ey, Ts + Ty o (Th 0 Th).
s1€V(T1), s2€V (T1),
b1€bl(81)|_l{*} bQGbl(SQ)U{*}

Hence:

(T1 <>T2) <>T3 — T1 o (T2 <>T3) = Z Z (T1 .Sl,bl TQ) 082752 T3

s1€V(T1), s$2€V(T1),
byebl(s1)U{*} baebl(s2){*}

= Z (Tl ®s1,b1 TQ) ®s9,b2 T

s1#£82€V(Th)
brebi(s1)U{+},
bQEbl(Sz)u{*}
+ > (Tregy To) ey, T+ > (TiegpTh) e, Th
seV (1), seV (1),
by bz €bl(s)LI{x} bebl(s)L{x}

The three terms of this sum are symmetric in 75, T3, so:

(T1<>T2)<>T3 —T1<>(T2<>T3) = (T1 <>T3)<>T2 —T1<>(T3<>T2).
Finally, (CP(D),o,-) is Com-PreLie. O
Definition 36. Let T = (t,1,d) and T' = (t,I',d) be two elements of PT (D) with the same
underlying decorated rooted trees. We shall say that T < T’ is I' is a refinement of I. This
defines a partial order on PT (D).

c c b b c
Ezample 10. If a,b,c,d € D, "V <"V V4V <7
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Theorem 37. The following map is an isomorphism of Com-PreLie algebras:

(CP(D)v O, ) — (CP(D),O, )
Viq TePT(D) — > T
T'<T
Proof. As < is a partial order, W is bijective. Let Ty,Th € PT (D).
1L T <Ty-Ty, let us put T) = TAh NT" and Ty = To N T". Then, obviously, 7] < 77 and
Ty < Ty. Moreover, T = T] < Tj. Conversely, if T{ < Ty and T4 < T, then T} - T < Ty - Tb.
Hence:

VT -Ty)= Y, T'= >  T-Tp=9(T) U(Ty).
T'<T1-T> T{ <Ti, T2/<T2

2. Let s € V(T1) and T" < Ty 5. T5. We put 7] = T"NTy and Ty, = T'NT,. Then, obviously,
T] < Ty and Ty < T5. If the block of roots of T is also a block of 77, then 7" = T} ey, T5.
Otherwise, there exists a unique b € bl(s) such that 7" = T e, T5. Conversely, if T < T7,
Ty < T, s € V(T]) and b € bl(s) U {*}, then T] o5}, Ty < T} o, Tr. Hence:

\P(Tl OTQ) = Z Z T/

seV(Th) T'<Ty 5T

= Z Z Tll %0 TQI

TI<Ty, TL<Ty s€V(T!),bebl(s)Li{*}
= U(T1) © (T2).
So ¥ is a Com-PreLie algebra isomorphism. O

Ezample 11. In the nondecorated case:

v() =, w(h) =1,

U(1)=1, v(V)y=V +3V +V,
v(V)y=V +V, V)=V +V,
v(V)=V, v(V)="V.
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