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Introduction

Com-PreLie bialgebras, introduced in [START_REF] Loï C Foissy | The Hopf algebra of Fliess operators and its dual pre-Lie algebra[END_REF][START_REF]A pre-Lie algebra associated to a linear endomorphism and related algebraic structures[END_REF], are commutative bialgebras with an extra preLie product, compatible with the product and coproduct: see Definition 1 below. They appeared in Control Theory, as the Lie algebra of the group of Fliess operators [START_REF] Gray | A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback[END_REF] naturally owns a Com-PreLie bialgebra structure, and its underlying bialgebra is a shuffle Hopf algebra. Free (non unitary) Com-PreLie bialgebras were also described, in terms of partionned rooted trees.

We here give examples of connected cofree Com-PreLie bialgebras. As cocommutative cofree bialgebras are, up to isomorphism, shuffle algebras Sh(V ) = (T (V ), ¡,∆), where V is the space of primitive elements, we first characterize Com-PreLie bialgebras structures on Sh(V ) in term of operators : T (V ) ⊗ T (V ) -→ V , satisfying two identities, see Proposition 8. In particular, if we assume that the obtained preLie bracket is homogeneous of degree 0 for the graduation of Sh(V ) by the length, then is reduced to a linear map f : V -→ V , and the obtained preLie product is given by (Proposition 9): ∀x 1 , . . . , x m , y 1 , . . . , y n ∈ V, x 1 . . . x m • y 1 . . . y n = n i=0 x 1 . . . x i-1 f (x i )(x i+1 . . . x m ¡ y 1 . . . y n ).

In particular, if V = V ect(x 0 , x 1 ) and f is defined by f (x 0 ) = 0 and f (x 1 ) = x 0 , we obtain the Com-PreLie bialgebra of Fliess operators in dimension 1. If we assume that the obtained preLie bracket si homogeneous of degree -1, then is given by two bilinear products * and {-, -} on V such that * is preLie, {-, -} is antisymmetric and for all x, y, z ∈ V :

x * {y, z} = {x * y, z}, {x, y} * z = {x * y, z} + {x, y * z} + {{x, y}, z}.

This includes preLie products on V when {-, -} = 0 and nilpotent Lie algebras of nilpotency order 2 when * = 0, see Proposition 11.

Connes-Moscovici subalgebras.

Notations 1.

1. Let K be a commutative field of characteristic zero. All the objects (vector spaces, algebras, coalgebras, PreLie algebras. . .) in this text will be taken over K.

2. For all n ∈ N, we denote by [n] the set {1, . . . , n}. In particular, [0] = ∅.

1 Reminders on Com-PreLie algebras Let V be a vector space.

• We denote by T (V ) the tensor algebra of V . Its unit is the empty word, which we denote by ∅. The element v 1 ⊗ . . . ⊗ v n ∈ V ⊗n , with v 1 , . . . , v n ∈ V , will be shortly denoted by v 1 . . . v n . The deconcatenation coproduct of T (V ) is defined by:

∀v 1 , . . . , v n ∈ V, ∆(v 1 . . . v n ) = n i=0 v 1 . . . v i ⊗ v i+1 . . . v n .
The shuffle product of T (V ) is denoted by ¡. Recall that it can be inductively defined:

∀x, y ∈ V, u, v ∈ T (V ), ∅ ¡ v = 0, xu ¡ yv = x(u ¡ yv) + y(xu ¡ v).
For example, if v 1 , v 2 , v 3 , v 4 ∈ V :

v 1 ¡ v 2 v 3 v 4 = v 1 v 2 v 3 v 4 + v 2 v 1 v 3 v 4 + v 2 v 3 v 1 v 4 + v 2 v 3 v 4 v 1 , v 1 v 2 ¡ v 3 v 4 = v 1 v 2 v 3 v 4 + v 1 v 3 v 2 v 4 + v 1 v 3 v 4 v 2 + v 3 v 1 v 2 v 4 + v 3 v 1 v 4 v 2 + v 3 v 4 v 1 v 2 , v 1 v 2 v 3 ¡ v 4 = v 1 v 2 v 3 v 4 + v 1 v 2 v 4 v 3 + v 1 v 2 v 4 v 3 + v 1 v 4 v 2 v 3 + v 4 v 1 v 2 v 3 . Sh(V ) = (T (V ), ¡,∆
) is a Hopf algebra, known as the shuffle algebra of V .

• S(V ) is the symmetric algebra of V . It is a Hopf algebra, with the coproduct defined by:

∀v ∈ V, ∆(v) = v ⊗ ∅ + ∅ ⊗ v.
• coS(V ) is the subalgebra of (T (V ), ¡) generated by V . It is the greatest cocommutative Hopf subalgebra of (T (V ), ¡,∆), and is isomorphic to S(V ) via the following algebra morphism:

θ :

(S(V ), m, ∆) -→ (coS(V ), ¡,∆)

v 1 . . . v k -→ v 1 ¡ . . . ¡ v k .

Definitions

Definition 1.

1. A Com-PreLie algebra [START_REF] Loï C Foissy | The Hopf algebra of Fliess operators and its dual pre-Lie algebra[END_REF][START_REF]A pre-Lie algebra associated to a linear endomorphism and related algebraic structures[END_REF] is a family A = (A, •, •), where A is a vector space, • and • are bilinear products on A, such that:

∀a, b ∈ A, a • b = b • a, ∀a, b, c ∈ A, (a • b) • c = a • (b • c), ∀a, b, c ∈ A, (a • b) • c -a • (b • c) = (a • c) • b -a • (c • b) (preLie identity), ∀a, b, c ∈ A, (a • b) • c = (a • c) • b + a • (b • c) (Leibniz identity).
In particular, (A, •) is an associative, commutative algebra and (A, •) is a right preLie algebra. We shall say that A is unitary if the algebra (A, •) is unitary. ∆(a • b) = a (1) ⊗ a (2) • b + a (1) • b (1) ⊗ a (2) • b (2) , with Sweedler's notation ∆(x) = x (1) ⊗ x (2) .

Remark 1. If (A, •, •, ∆) is a Com-PreLie bialgebra, then for any λ ∈ K, (A, •, λ•, ∆) also is.

Lemma 2.

1. Let (A, •, •) be a unitary Com-PreLie algebra. Its unit is denoted by ∅. For all a ∈ A, ∅ • a = 0.

2. Let A be a Com-PreLie bialgebra, with counit ε. For all a, b ∈ A, ε(a • b) = 0.

Proof. 1. Indeed, ∅ • a = (∅ • ∅) • a = (∅ • a) • ∅ + ∅ • (∅ • a) = 2(∅ • a), so ∅ • a = 0.
2. For all a, b ∈ A:

ε(a • b) = (ε ⊗ ε) • ∆(a • b)
= ε(a (1) )ε(a (2) • b) + ε(a (1) • b (1) )ε(a (2) • b (2) ) = ε(a (1) )ε(a (2) • b) + ε(a (1) • b (1) )ε(a (2) )ε(b (2) 

) = ε(a • b) + ε(a • b), so ε(a • b) = 0.
Remark 2. Consequently, if a is primitive: (1) ⊗ b (2) .

∆(a • b) = ∅ ⊗ a • b + a • b
The map b → a • b is a 1-cocycle for the Cartier-Quillen cohomology [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF].

Linear endomorphism on primitive elements

If A is a Com-PreLie bialgebra, we denote by P rim(A) the space of its primitive elements. Proposition 3. Let A be a Com-PreLie bialgebra. Its unit is denoted by ∅.

1. If x ∈ P rim(A), then x • ∅ ∈ P rim(A). We denote by f A the map:

f A :
P rim(A) -→ P rim(A) a -→ a • ∅.

2. P rim(A) is a preLie subalgebra of (A, •) if, and only if, f A = 0.

Proof. 1. Indeed, if a is primitive:

∆(a • ∅) = a ⊗ ∅ • ∅ + ∅ ⊗ a • ∅ + a • ∅ ⊗ ∅ • ∅ + ∅ • ∅ ⊗ a • ∅ = 0 + ∅ ⊗ ∅ • a + a • ∅ ⊗ ∅ + 0,
so a • ∅ is primitive.

2. and 3. Let a, b ∈ P rim(A).

∆(a • b) = a ⊗ ∅ • b + ∅ ⊗ a • b + ∅ • ∅ ⊗ a • b + a • ∅ ⊗ b + ∅ • b ⊗ a + a • b ⊗ ∅ = ∅ ⊗ a • b + a • b ⊗ ∅ + f A (a) ⊗ b.
Hence, P rim(A) is a preLie subalgebra if, and only if, for any a, b ∈ A, f A (a) ⊗ b = 0, that is to say if, and only if, f A = 0.

Extension of the pre-Lie product

Let A be a Com-PreLie algebra. It is a Lie algebra, with the bracket defined by:

∀x, y ∈ A, [x, y] = x • y -y • x.
We shall use the Oudom-Guin construction of its enveloping algebra [START_REF] Oudom | On the Lie enveloping algebra of a pre-Lie algebra[END_REF][START_REF] Oudom | Sur l'algèbre enveloppante d'une algèbre pré-Lie[END_REF]. In order to avoid confusions, we shall denote by × the usual product of S(A) and by 1 its unit. We extend the preLie product • into a product from S(A) ⊗ S(A) into S(A):

1. If a 1 , . . . , a k ∈ A, (a 1 × . . . × a k ) • 1 = a 1 × . . . × a k . 2. If a, a 1 , . . . , a k ∈ A: a • (a 1 × . . . × a k ) = (a • (a 1 × . . . × a k-1 )) • a k - k-1 i=1 a • (a 1 × . . . × (a i • a k ) × . . . × a k-1 ). 3. If x, y, z ∈ S(A), (x × y) • z = (x • z (1) ) × (y • z (2)
), where ∆(z) = z (1) ⊗ z (2) is the usual coproduct of S(A).

Notations 2. If c 1 , . . . , c n ∈ A and I = {i 1 , . . . , i k } ⊆ [n],
we put:

× i∈I c i = c i 1 × . . . × c i k . Proposition 4. 1. Let A be a Com-PreLie algebra. If a, b, c 1 , . . . , c n ∈ A: (a • b) • (c 1 × . . . × c k ) = I⊆[n] a • × i∈I c i • b • × i / ∈I c i . 2. Let A be a Com-PreLie bialgebra. If a, b 1 , . . . , b n ∈ A: ∆(a • (b 1 × . . . × b n )) = I⊆[n]
a (1) •

× i∈I b (1) i ⊗ i∈I b (2) i a (2) • × i / ∈I b i .
Proof. These are proved by direct, but quite long, inductions on n.

Lemma 5. Let A be a Com-PreLie bialgebra. For all a ∈ P rim

(A), k ≥ 0, b 1 , . . . , b l ∈ A: a • ∅ ×k × b 1 × . . . × b l = f k A (a) • b 1 × . . . × b l .
Proof. This is obvious if k = 0. Let us prove it for k = 1 by induction on l. It is obvious if l = 0. Let us assume the result at rank l -1. Then:

a • ∅ × b 1 × . . . × b l = (a • ∅ × b 1 × . . . × b l-1 ) • b l + a • (∅ • b l ) × b 1 × . . . × b l-1 + l-1 i=1 a • ∅ × b 1 × . . . × (b i • b l ) × . . . × b l-1 = (f A (a) • b 1 × . . . × b l-1 ) • b l + 0 + l-1 i=1 f A (a) • b 1 × . . . × (b i • b l ) × . . . × b l-1 = f A (a) • b 1 × . . . × b l .
The result is proved for k ≥ 2 by an induction on k.

2 Examples on shuffle algebras

Preliminary lemmas

We shall denote by π : T (V ) -→ V the canonical projection.

Lemma 6. Let : T (V ) ⊗ T (V ) -→ V be a linear map.

1. There exists a unique map 2) .

• : T (V ) ⊗ T (V ) -→ T (V ) such that: (a) π • • = . (b) For all u, v ∈ T (V ): ∆(u • v) = u (1) ⊗ u (2) • v + u (1) • v (1) ⊗ u (2) ¡ v (
(

) 1 
This product • is given by:

∀u, v ∈ T (V ), u • v = u (1) (u (2) ⊗ v (1) )(u (3) ¡ v (2)
).

2. The following conditions are equivalent:

(a) For all u, v, w ∈ T (V ):

(u ¡ v) • w = (u • w) ¡ v + u ¡ (v • w).
(b) For all u, v, w ∈ T (V ):

((u ¡ v) ⊗ w) = ε(u) (v ⊗ w) + ε(v) (u ⊗ w). (2) 
3. Let N ∈ Z. The following conditions are equivalent:

(a) • is homogeneous of degree N , that is to say:

∀k, l ≥ 0, V ⊗k • V ⊗l ⊆ V ⊗(k+l+N ) . (b) For all k, l ≥ 0, such that k + l + N = 1, (V ⊗k ⊗ V ⊗l ) = (0).
We use the convention V ⊗p = (0) if p < 0.

Proof. 1. Existence. Let • be the product on T (V ) defined by:

∀u, v ∈ T (V ), u • v = u (1) (u (2) ⊗ v (1) )(u (3) ¡ v (2) ).
As takes its values in V , for all u, v ∈ T (V ):

π(u • v) = ε(u (1) ) (u (2) ⊗ v (1) )ε(u (3) ¡ v (2) ) = ε(u (1) ) (u (2) ⊗ v (1) )ε(u (3) )ε(v (2) ) = (u ⊗ v).
We denote by m the concatenation product of T (V ). As (T (V ), m, ∆) is an infinitesimal bialgebra [START_REF] Loday | Scindement d'associativité et algèbres de Hopf[END_REF][START_REF] Loday | On the structure of cofree Hopf algebras[END_REF], for all u, v ∈ T (V ): (2) .

∆(u • v) = u (1) ⊗ u (2) (u (3) ⊗ v (1) )(u (4) ¡ v (2) ) + u (1) (u (2) ⊗ v (1) ) ⊗ u (3) ¡ v (2) + u (1) ⊗ (u (2) ⊗ v (1) )(u (3) ¡ v (2) ) + u (1) (u (2) ⊗ v (1) )(u (3) ¡ v (2) ) ⊗ u (4) ¡ v (3) -u (1) (u (2) ⊗ v (1) ) ⊗ u (3) ¡ v (2) -u (1) ⊗ (u (2) ⊗ v (1) )(u (3) ⊗ v (2) ) = u (1) ⊗ u (2) (u (3) ⊗ v (1) )(u (4) ¡ v (2) ) + u (1) (u (2) ⊗ v (1) )(u (3) ¡ v (2) ) ⊗ u (4) ¡ v (3) = u (1) ⊗ u (2) • v + u (1) • v (1) ⊗ u (2) ¡ v
Unicity. Let be another product satisfying the required properties. Let us denote that u v = u • v for any words u, v of respective lengths k and l. If k = 0, then we can assume that u = ∅. We proceed by induction on l. If l = 0, then we can assume that v = ∅. By (1), ∅ • ∅ and ∅ ∅ are primitive elements of T (V ), so belong to V . Hence:

∅ • ∅ = π(∅ • ∅) = (∅ ⊗ ∅) = π(∅ ∅) = ∅ ∅.
If l ≥ 1, then, by (1):

∆(∅ • v) = ∅ ⊗ ∅ • v + ∅ • v ⊗ ∅ + ∅ • ∅ ⊗ v + ∅ • v ⊗ v , ∆(∅ • v) = ∅ • ∅ ⊗ v + ∅ • v ⊗ v .
The same computation for and the induction hypothesis on l, applied to (∅, v ), imply that 1), the induction hypothesis on k applied to (u , v) and the induction hypothesis on l applied to (u, ∅) and (u, v ):

∆(∅ • v -∅ v) = 0, so ∅ • v -∅ v ∈ V . Finally: ∅ • v -∅ v = π(∅ • v -∅ v) = (∅ ⊗ v -∅ ⊗ v) = 0. If k ≥ 1, we proceed by induction on l. If l = 0, we can assume that v = ∅; (1) implies that ∆(u • ∅ -u ∅) = 0, so u • ∅ -u ∅ = 0 and, applying π, finally u • ∅ = u ∅. If l ≥ 1, by (
∆(u • v) = u ⊗ u • v + u • ∅ ⊗ v + u • v ⊗ v = u ⊗ u v + u ∅ ⊗ v + u v ⊗ v = ∆(u v). As before, u • v = u v.

=⇒. As

takes its values in V , we have:

(u ¡ v) ⊗ w) = ((u • w) ¡ v + u ¡ (v • w)) = ε(v) (u ⊗ w) + ε(u) (v ⊗ w).
⇐=. For all u, v, w ∈ T (V ):

(u ¡ v) • w = (u (1) ¡ v (1) ) ((u (2) ¡ v (2) ) ⊗ w (1) )(u (3) ¡ v (3) ¡ w (2) ) = ε(u (2) )(u (1) ¡ v (1) ) (v (2) ⊗ w (1) )(u (3) ¡ v (3) ¡ w (2) ) + ε(v (2) )(u (1) ¡ v (1) ) (u (2) ⊗ w (1) )(u (3) ¡ v (3) ¡ w (2) ) = (u (1) ¡ v (1) ) (v (2) ⊗ w (1) )(u (2) ¡ v (3) ¡ w (2) ) + (u (1) ¡ v (1) ) (u (2) ⊗ w (1) )(u (3) ¡ v (2) ¡ w (2) ) = u ¡ v (1) (v (2) ⊗ w (1) )(v (3) ¡ w (2) ) + v ¡ u (1) (u (2) ⊗ w (1) )(u (3) ¡ w (2) ) = u ¡ (v • w) + (u • w) ¡ v. So the compatibility between ¡ and • is satisfied. 3. Immediate. Remark 3. If (2) is satisfied, for u = v = ∅, we obtain: ∀w ∈ T (V ), (∅ ⊗ w) = 0. Lemma 7. Let : T (V ) ⊗ T (V ) -→ V , satisfying (2) 
, and let • be the product associated to in Lemma 6. Then (T (V ), ¡,•,∆) is a Com-PreLie bialgebra if, and only if:

∀u, v, w ∈ T (V ), (u • v ⊗ w) -(u ⊗ v • w) = (u • w ⊗ v) -(u ⊗ w • v). (3) 
Proof. =⇒. This is immediately obtained by applying π to the preLie identity, as = π • •.

⇐=. By lemma 6, it remains to prove that • is preLie. For any u, v, w ∈ T (V ), we put:

P L(u, v, w) = (u • v) • w -u • (v • w) -(u • w) • v + u • (w • v).
By hypothesis, π • P L(u, v, w) = 0 for any u, v, w ∈ T (V ). Let us prove that P L(u, v, w) = 0 for any u, v, w ∈ T (V ). A direct computation using [START_REF] Benes | Degenerations of pre-Lie algebras[END_REF] shows that:

∆(P L(u, v, w)) = u (1) ⊗ P L(u (2) , v, w) ⊗ u (1) + P L(u (1) , v (1) , w (1) ) ⊗ u (2) ¡ v (2) ¡ w (2) . (4)

Let v ∈ T (V ). Then:

∅ • v = (∅ ¡ ∅) • v = (∅ • v) ¡ ∅ + ∅ ¡ (∅ • v) = 2∅ • v, so ∅ • v = 0 for any v ∈ T (V ).
Hence, for any v, w ∈ T (V ), P L(∅, v, w) = 0: by trilinearity of P L, we can assume that ε(u) = 0. In this case, (4) becomes: 1) , w (1) ) ⊗ v (2) ¡ w (2) + P L(u , v (1) , w (1) ) ⊗ u ¡ v (2) ¡ w (2) .

∆(P L(u, v, w)) = ∅ ⊗ P L(u, v, w) + P L(u, v ( 
We assume that u, v, w are words of respective lengths k, l and n, with k ≥ 1. Let us first prove that P L(u, v, w) = 0 if l = 0, or equivalently if v = ∅, by induction on n. If n = 0, then we can take w = ∅ and, obviously,

P L(u, ∅, ∅) = 0. If n ≥ 1, (4) becomes: 
∆(P L(u, ∅, w)) = ∅ ⊗ P L(u, v, w) + P L(u, ∅, w (1) ) ⊗ w (2) = ∅ ⊗ P L(u, v, w) + P L(u, ∅, w) ⊗ ∅ + P L(u, ∅, w ) ⊗ w .

By the induction hypothesis on n, P L(u, ∅, w ) = 0, so P L(u, ∅, w) is primitive, so belongs to V . As π • P L = 0, P L(u, ∅, w) = 0. Hence, we can now assume that l ≥ 1. By symmetry in v and w, we can also assume that n ≥ 1. Let us now prove that P L(u, v, w) = 0 by induction on k. If k = 0, there is nothing more to prove. If k ≥ 1, we proceed by induction on l + n. If l + n ≤ 1, there is nothing more to prove. Otherwise, using both induction hypotheses, (4) becomes:

∆(P L(u, v, w)) = P L(u, v, w) ⊗ ∅ + ∅ ⊗ P L(u, v, w). So P L(u, v, w) ∈ V . As π • P L = 0, P L(u, v, w) = 0.
Consequently: Proposition 8. Let : T (V ) ⊗ T (V ) -→ V be a linear map such that (2) and (3) are satisfied.

The product • defined by (1) makes (T (V ), ¡,•,∆) a Com-PreLie bialgebra. We obtain in this way all the preLie products • such that (T (V ), ¡,•,∆) a Com-PreLie bialgebra. Moreover, for any N ∈ Z, • is homogeneous of degree N if, and only if:

∀k, l ∈ N, k + l + N = 1 =⇒ (V ⊗k ⊗ V ⊗l ) = (0). (5) 
Remark 4. Let : T (V ) ⊗ T (V ) -→ V , satisfying (5) for a given N ∈ Z. Then:

1. ( 2) is satisfied if, and only if, for all k, l, n ∈ N such that k

+ l + n = 1 -N , ∀u ∈ V ⊗k , v ∈ V ⊗l , w ∈ V ⊗n , ((u ¡ v) ⊗ w) = ε(u) (v ⊗ w) + ε(v) (u ⊗ w).
2.

(3) is satisfied if, and only if, for all k, l, n ∈ N such that k

+ l + n = 1 -2N , ∀u ∈ V ⊗k , v ∈ V ⊗l , w ∈ V ⊗n , (u • v ⊗ w) -(u ⊗ v • w) = (u • w ⊗ v) -(u ⊗ w • v).
Note that (2) is always satisfied if u = ∅ or v = ∅, that is to say if k = 0 or l = 0.

In the next paragraphs, we shall look at N ≥ 0 and N = -1.

PreLie products of positive degree

Proposition 9. Let f be a linear endomorphism of V . We define a product • on T (V ) in the following way:

∀x 1 , . . . , x m , y 1 , . . . , y n ∈ V, x 1 . . . x m • y 1 . . . y n = n i=0 x 1 . . . x i-1 f (x i )(x i+1 . . . x m ¡ y 1 . . . y n ). (6) 
Then (T (V ), ¡,•,∆) is a Com-PreLie bialgebra denoted by T (V, f ). Conversely, if • is a product on T (V ), homogeneous of degree N ≥ 0, there exists a unique f : V -→ V such that

(T (V ), ¡,•,∆) = T (V, f ).
Proof. We look for all possible , homogeneous of a certain degree N ≥ 0, such that (2) and (3) are satisfied.

Let us consider such a . For any k, l ∈ N, we denote by k,l the restriction of to V ⊗k ⊗ V ⊗l . By [START_REF] Loï C Foissy | The Hopf algebra of Fliess operators and its dual pre-Lie algebra[END_REF], k,l = 0 if k + l = 1. As (2) implies that 0,1 = 0, the only possibly nonzero k,l is 1,0 : V -→ V , which we denote by f . Then (1) gives [START_REF]A pre-Lie algebra associated to a linear endomorphism and related algebraic structures[END_REF].

Let us consider any linear endomorphism f of V and consider such that the only nonzero component of is 1,0 = f . Let us prove (2) for u ∈ V ⊗k , v ∈ V ⊗l , w ∈ V ⊗n , with k + l + n = 1 -N . For all the possibilities for (k, l, n), 0 ∈ {k, l, n}, and the result is then obvious.

Let us prove (2) for u ∈ V ⊗k , v ∈ V ⊗l , w ∈ V ⊗n , with k + l + n = 1 -2N . We obtain two possibilities:

• (k, l, n) = (0, 1, 0) or (0, 0, 1). We can assume that u = ∅. As ∅ • x = 0 for any x ∈ T (V ), the result is obvious.

• (k, l, n) = (1, 0, 0). We can assume that v = w = ∅, and the result is then obvious.

Remark 5.

1. If N ≥ 1, necessarily f = 0, so • = 0.

With the notation of Proposition

3, f T (V,f ) = f .
We obtain in this way the family of Com-PreLie bialgebras of [START_REF] Loï C Foissy | The Hopf algebra of Fliess operators and its dual pre-Lie algebra[END_REF], coming from a problem of composition of Fliess operators in Control Theory. Consequently, from [START_REF] Loï C Foissy | The Hopf algebra of Fliess operators and its dual pre-Lie algebra[END_REF]:

Corollary 10. Let k, l ≥ 0. We denote by Sh(k, l) the set of (k, l)-shuffles, that it to say permutations σ ∈ S k+l such that:

σ(1) < . . . < σ(k), σ(k + 1) < . . . < σ(k + l).
If σ ∈ Sh(k, l), we put:

m k (σ) = max{i ∈ [k] | σ(1) = 1, . . . , σ(i) = i}, with the convention m k (σ) = 0 if σ(1) = 1. Then, in T (V, f ), if v 1 , . . . , v k+l ∈ V : v 1 . . . v k • v k+1 . . . v k+l = σ∈Sh(k,l) m k (σ) i=1 (Id ⊗(i-1) ⊗ f ⊗ Id ⊗(k+l-i) )(v σ -1 (1) . . . v σ -1 (k+l) ). ( 7 
)
2.3 PreLie products of degree -1

Proposition 11. Let * and {-, -} be two bilinear products on V such that:

∀x, y, z ∈ V, (x * y) * z -x * (y * z) = (x * z) * y -x * (z * y), (8) 
{x, y} = -{y, x},

x * {y, z} = {x * y, z}, {x, y} * z = {x * z, y} + {x, y * z} + {{x, y}, z}.

We define a product • on T (V ) in the following way: for all x 1 , . . . , x m , y 1 , . . . , y n ∈ V ,

x 1 . . . x m • y 1 . . . y n = n i=1 x 1 . . . x i-1 (x i * y 1 )(x i+1 . . . x m ¡ y 2 . . . y n ) (9) 
+ k-1 i=1 x 1 . . . x i-1 {x i , x i+1 }(x i+2 . . . x m ¡ y 1 . . . y n ).
Then (T (V ), ¡,•,∆) is a Com-PreLie bialgebra, and we obtain in this way all the possible preLie products •, homogeneous of degree -1, such that (T (V ), ¡,•,∆) is a Com-PreLie bialgebra.

Proof. Let us consider a linear map : T (V )⊗T (V ) -→ V , satisfying ( 5) for N = -1. Denoting by k,l = |V ⊗k ⊗V ⊗l for any k, l, the only possibly nonzero k,l are for (k, l) = (2, 0), (1, 1) and (0, 2). For all x, y ∈ V , we put:

x * y = 1,1 (x ⊗ y), {x, y} = 2,0 (xy ⊗ ∅).
(2) is equivalent to:

∀w ∈ V ⊗2 , 0,2 (∅ ⊗ w) = 0, ∀x, y ∈ V, 2,0 ((xy + yx) ⊗ ∅) = 0.
Hence, we now assume that 0,2 = 0, and we obtain that (2) is equivalent to (8)-2. The nullity of 0,2 and (1) give [START_REF] Livernet | A rigidity theorem for pre-Lie algebras[END_REF].

Let us now consider (3), with

u ∈ V ⊗k , v ∈ V ⊗l , w ∈ V ⊗n , k + l + n = 1 -2N = 3
. By symmetry between v and w, and by nullity of 0,l for all l, we have to consider two cases:

• k = l = n = 1. We put u = x, v = y, w = z, with x, y, z ∈ V . Then (3) is equivalent to: (x * y) * z -x * (y * z) = (x * z) * y -x * (z * y),
that is to say to (8)-1.

• k = 1, l = 2, z = 0. We put u = x, v = yz, w = ∅, with x, y, z ∈ V . Then (3) is equivalent to: {x * y, z} -x * {y, z} = 0,
that is to say to (8)-3.

• k = 2, l = 1, z = 0. We put u = xy, v = z, w = ∅, with x, y, z ∈ V . Then (3) is equivalent to: {x * z, y} + {x, y * z} + {{x, y}, z} = {x, y} * z,
that is to say to (8)-4.

We conclude with Proposition 8.

Remark 6. 1. In particular, * is a preLie product on V ; for all x, y ∈ V , x • y = x * y.

2. If x 1 , . . . , x m ∈ V :

x 1 . . . x m • ∅ = m-1 i=1 x 1 . . . x i-1 {x i , x i+1 }x i+2 . . . x m . Example 1.
1. If * is a preLie product on V , we can take {-, -} = 0, and ( 8) is satisfied. Using the classification of preLie algebras of dimension 2 over C of [START_REF] Benes | Degenerations of pre-Lie algebras[END_REF], it is not difficult to show that if the dimension of V is 1 or 2, then necessarily {-, -} is zero.

2. If * = 0, then (8) becomes:

∀x, y ∈ V, {x, y} = -{y, x}, ∀x, y, z ∈ V, {{x, y}, z} = 0,
that is say (V, {-, -}) is a nilpotent Lie algebra, which nilpotency order is 2.

3. Here is a family of examples where both * and {-, -} are nonzero. Take V 3-dimensional, with basis (x, y, z), a, b, c be scalars, and products given by the following arrays: 8) if, and only if, a 2 -a + bc = 0, or equivalently:

• x y z x x y z y 0 0 0 z 0 0 0 {-, -} x y z x 0 ay + bz cy + (1 -a)z y -ay -bz 0 0 z (a -1)z -cy 0 0 Then (V, •, {-, -}) satisfies (
(2a -1) 2 + (b + c) 2 -(b -c) 2 = 1.
This equation defines a hyperboloid of one sheet.

3 Free Com-PreLie algebras and quotients

Description of free Com-PreLie algebras

We described in [START_REF] Loï C Foissy | The Hopf algebra of Fliess operators and its dual pre-Lie algebra[END_REF] free Com-PreLie algebras in terms of decorated rooted partitioned trees. We now work with free unitary Com-PreLie algebras.

Definition 12.

1. A partitioned forest is a pair (F, I) such that:

(a) F is a rooted forest (the edges of F being oriented from the roots to the leaves). The set of its vertices is denoted by V (F ).

(b) I is a partition of the vertices of F with the following condition: if x, y are two vertices of F which are in the same part of I, then either they are both roots, or they have the same direct ascendant.

The parts of the partition are called blocks.

2. We shall say that a partitioned forest F is a partitioned tree if all the roots are in the same block. Note that in this case, one of the blocks of F is the set of roots of F . By convention, the empty forest ∅ is considered as a partitioned tree.

3. Let D be a set. A partitioned tree decorated by D is a triple (T, I, d), where (T, I) is a partitioned tree and d is a map from the set of vertices of T into D. For any vertex x of T , d(x) is called the decoration of x.

4. The set of isoclasses of partitioned trees, included the empty tree, will be denoted by PT .

For any set D, the set of isoclasses of partitioned trees decorated by D will be denoted by PT (D); the set of isoclasses of partitioned trees decorated by N × D will be denoted by

UPT (D) = PT (N × D).
Example 2. We represent partitioned trees by the underlying rooted forest, the blocks of cardinality ≥ 2 being represented by horizontal edges of different colors. Here are the partitioned trees with ≤ 4 vertices: ∅; q ; q q , q q ; q q q ∨ , q ∨ q q , q q q , q q q = q q q , q q q ; q q q q ∨ , q q ∨ q q = q q ∨ q q , q ∨ q q q , q q q q ∨ = q q q q ∨ , q q ∨ q q = q q ∨ q q , q q q q ∨ , q q ∨ q q , q q q q , q q ∨ q q = q q ∨ q q , q q q q = q q q q , ∨ q q q q = ∨ q q q q , q q q q , q q q q = q q q q = q q q q , q q q q .

Let us fix a set D.

Definition 13. Let T = (T, I, d) and T = (T , J, d ) ∈ UPT (D).

1. The partitioned tree T • T is defined as follows:

(a) As a rooted forest, T • T is T T .

(b) We put I = {I 1 , . . . , I k } and J = {J 1 , . . . , J l } and we assume that the block of roots of T is I 1 and the block of roots of T is J 1 . The partition of the vertices of is defined in this way:

T • T is {I 1 J 1 , I 2 , . . . , I k , J 2 , . . . , J l }. (UPT (D), •) is a monoid, of unit ∅.
• If i + k ≥ 0, replace the decoration of s by (i + k, d). • If i + k < 0, T [k] s = 0.
The product • is associative and commutative; its unit is the empty partitioned tree ∅.

Example 3. Let T = q q , T = q . We denote by r the root of T and by l the leaf of T . Then:

q q • r, * q = q q q ∨ , q q • r,{l} q = q ∨ q q , q q • l, * q = q q q . Lemma 14.

Let A + = (A + , •, •) a Com-PreLie algebra, f : A + -→ A + be a linear map such that: ∀x, y ∈ A + , f (x • y) = f (x) • y + x • f (y), f (x • y) = f (x) • y + x • f (y) We put A = A + ⊕ V ect(∅).
Then A is given a unitary Com-PreLie algebra structure, extending the one of A + , by:

∅ • ∅ = ∅, ∅ • ∅ = 0, ∀x ∈ A + , x • ∅ = x, ∅ • x = x, x • ∅ = f (x), ∅ • x = 0.
Proof. Obviously, (A, •) is a commutative, unitary associative algebra. Let us prove the PreLie identity for x, y, z ∈ A + {∅}.

•

If x = ∅, then x • (y • z) = (x • y) • z = x • (z • y) = (x • z) • y = 0.
We now assume that x ∈ A + .

• If y = z = ∅, then obviously the PreLie identity is statisfied.

• If y = ∅ and z ∈ A + , then:

x • (y • z) = 0, (x • y) • z = f (x) • y, x • (z • y) = x • f (z), (x • z) • y = f (x • z).
As f is a derivation for •, the PreLie identity is statisfied. By symmetry, it is also true if y ∈ A + and z = ∅.

Let us now prove the Leibniz identity for x, y, z ∈ A + {∅}. It is obviously satisfied if x = ∅ or y = ∅; we assume that x, y ∈ A + . If z = ∅, then:

(x • y) • z = f (x • y), (x • z) • y = f (x) • y, x • (y • z) = x • f (y).
As f is a derivation for •, the Leibniz identity is satisfied.

Proposition 15. Let U CP (D) be the vector space generated by UPT (D). We extend • by bilinearity and the PreLie product • is defined by:

∀T, T ∈ UPT (D), T • T =        s∈V (t) T • s, * T if t = ∅, s∈V (t) 
T

[+1] s if t = ∅.
Then U CP (D) is the free unitary Com-PreLie algebra generated by the the elements q (0, d), d ∈ D.

Proof. We denote by U CP + (D) the subspace of U CP (D) generated by nonempty trees. By proposition 18 in [START_REF] Loï C Foissy | The Hopf algebra of Fliess operators and its dual pre-Lie algebra[END_REF], this is the free Com-PreLie algebra generated by the elements q (k, d), k ∈ N, d ∈ D. We define a map f :

U CP + (D) -→ U CP + (D) by: ∀T ∈ UPT (D) \ {∅}, f (T ) = s∈V (t) T [+1] s .
This is a derivation for both • and •; by lemma 14, U CP (D) is a unitary Com-PreLie algebra.

Observe that for all d ∈ D, k ∈ N:

q (0, d) • ∅ ×k = q (k, d).
Let A be a unitary Com-PreLie algebra and, for all d ∈ D, let a d ∈ A. By proposition 18 in [START_REF] Loï C Foissy | The Hopf algebra of Fliess operators and its dual pre-Lie algebra[END_REF], we define a unique Com-PreLie algebra morphism:

θ : U CP + (D) -→ A q (k, d) -→ a d × 1 ×k A .
We extend it to U CP (D) by sending ∅ to 1 A , and we obtain in this way a unitary Com-PreLie algebra from U CP (D) to A, sending q (0, d) to a d for any d ∈ D. This morphism is clearly unique.

Example 4. Let i, j, k ∈ N and d, e, f ∈ D.

q (i, d) • q (j, e) = q q (i, d) (j, e) , q (i, d) • q q (j, e) (k, f ) = q ∨ (i, d) (k, f ) (j, e) q q q (i, d) • q q (j, e) (k, f ) = q q q (i, d) (j, e) (k, f ) , q q (i, d) (j, e) • q (k, f ) = q q q (i, d) (j, e) (k, f ) + q q q ∨ (i, d) (k, f ) (j, e) , q (i, d) • ∅ = q (i + 1, d) , q q (i, d) (j, e) • ∅ = q q (i + 1, d) (j, e) + q q (i, d) (j + 1, e) , q q q ∨ (i, d) (k, f ) (j, e) • ∅ = q q q ∨ (i + 1, d) (k, f ) (j, e) + q q q ∨ (i, d) (k, f ) (j + 1, e) + q q q ∨ (i, d) (k + 1, f ) (j, e) .

Quotients of U CP (D)

Proposition 16. We put 

V 0 = V ect( q (0, d), d ∈ D), identified with V ect( q d , d ∈ D). Let f : V 0 -→ V 0 be any linear map. We consider the Com-PreLie ideal I f of U CP (D) generated by the elements q (1,d) -f ( q (0,d) ), d ∈ D.
q d + I f ) • ∅ = f ( q d ).
Proof. First step. We fix d ∈ D. Let us first prove that for all k ≥ 0:

q (k,d) + I f = f k ( q (0,d) ) + I f .
It is obvious if k = 0, 1. Let us assume the result at rank k -1. We put f ( q (0,d) ) = a e q (0,e) . Then:

q (k,d) + I f = q (1,d) • ∅ ×(k-1) + I f = a e q (0,e) • ∅ ×(k-1) + I f = a e f k-1 ( q (0,e) ) + I f = f k ( q (0,d) ) + I f ,
so the result holds for all k.

Second step. Let T ∈ U P T (D); let us prove that there exists x ∈ V ect(UPT (D)), such that T + I f = x + I f . We proceed by induction on |T |. If |T | = 0, then t = ∅ and we can take x = T . If |T | = 1, then T = q (k,d) and we can take, by the first step, x = f k ( q (0,d) ). Let us assume the result at all ranks < |T |. If T has several roots, we can write

T = T 1 • T 2 , with |T 1 |, |T 2 | < |T |. Hence, there exists x i ∈ V ect(UPT (D)), such that T i + I f = x i + I f for all i ∈ [2]
, and we take x = x 1 • x 2 . Otherwise, we can write:

T = q (k,d) • T 1 × . . . × T k ,
where T 1 , . . . , T k ∈ U P T (D). By the induction hypothesis, there exists

x i ∈ V ect(UPT (D)) such that T i + I f = x i + I f for all i ∈ [k]. We then take x = f k ( q (0,d) ) • x 1 × . . . × x k .
Third step. We give CP + (D) = V ect(PT (D) \ {∅}) a Com-PreLie structure by:

∀T, T ∈ PT (D) \ {∅}, T • T = s∈V (t) T • s, * T .
We consider the map:

F :    CP + (D) -→ CP + (D) T -→ s∈V (T ) f s (T ),
where, f s (T ) is the linear span of decorated partitioned trees obtained by replacing the decoration d s of s by f (d s ), the trees being considered as linear in any of their decorations. This is a derivation for both • and •, so by lemma 14, CP (D) inherits a unitary Com-PreLie structure such that for any d ∈ D:

q d • ∅ = f ( q d ).
By the universal property of U CP (D), there exists a unique unitary Com-PreLie algebra structure φ : Hence, we now consider CP (D), augmented by an unit ∅, as a unitary Com-PreLie algebra.

U CP (D) -→ CP (D), such that φ( q (0,d) ) = q d for any d ∈ D. Then φ( q (1,d) ) = f ( q d )) = φ(f ( q (0,
Proposition 17. Let J be the Com-PreLie ideal of CP (D) generated by the elements

q d • (F 1 × F 2 ) -q d • (F 1 • F 2 ), with d ∈ D and F 1 , F 2 ∈ PT (D).
1. Let T and T be two elements of PT (D) which are equal as decorated rooted forests. Then T + J = T + J. Consequently, if F is a decorated rooted forest, the element T + I does not depend of the choice of T ∈ UPT (D) such that T = F as a decorated rooted forest. This element is identified with F .

2. The set of decorated rooted forests is a basis of U CP (D)/J.

CP (D)/J is then, as an algebra, identified with the Connes-Kreimer algebra H D CK of decorated rooted trees [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF][START_REF] Hopf Algebras | renormalization and noncommutative geometry[END_REF], which is in this way a unitary Com-PreLie algebra.

Proof. 1. First step. Let us show that for any x 1 , . . . , x n ∈ U CP (D),

q d • (x 1 × . . . × x n ) + J = q d • (x 1 • . . . • x n ) + J by induction on n. It is obvious if n = 1
, and it comes from the definition of J if n = 2. Let us assume the result at rank n -1.

q d • (x 1 × . . . × x n ) + J = ( q d • (x 1 × . . . × x n-1 )) • x n - n-1 i=1 q d • (x 1 × . . . × (x i • x n ) × . . . × x n-1 ) + J = ( q d • (x 1 • . . . • x n-1 )) • x n - n-1 i=1 q d • (x 1 • . . . • (x i • x n ) • . . . • x n-1 ) + J = ( q d • (x 1 • . . . • x n-1 )) • x n -q d • ((x 1 • . . . • x n-1 ) • x n ) + J = q d • ((x 1 • . . . • x n-1 ) × x n ) + J = q d • (x 1 • . . . x n-1 • x n ) + J.
So the result holds for all n.

Second step. Let F, G ∈ PT (D), such that the underlying rooted decorated forests are equal. Let us prove that

F + J = G + J by induction on n = |F | = |G|. If n = 0, F = G = 1 and it is obvious. If n = 1, F = G = q d and
it is obvious. Let us assume the result at all ranks < n.

First case. If F has k ≥ 2 roots, we can write

F = T 1 • . . . • T k and G = T 1 • . . . • T k , such that, for all i ∈ [k],
T i and T i have the same underlying decorated rooted forest; By the induction hypothesis, T i + J = T i + J for all i, so F + J = G + J.

Second case. Let us assume that F has only one root. We can write

F = q d • (F 1 × . . . × F k ) and G = q d • (G 1 × . . . × G l ). Then F 1 • . . . • F k and G 1 • . . . • G l have the same underlying decorated forest; by the induction hypothesis, F 1 • . . . • F k + J = G 1 • . . . • G l + J, so q d • (F 1 • . . . • F k ) + J = q d • (G 1 • . . . • G l ) + J.
By the first step:

F + J = q d • (F 1 • . . . • F k ) + J = q d • (G 1 • . . . • G l ) + J = G + J.
2. The set RF(D) of rooted forests linearly spans CP (D)/J by the first point. Let J be the subspace of CP (D) generated by the differences of elements of PT (D) with the same underlying decorated forest. It is clearly a Com-PreLie ideal, and RF(D) is a basis of CP (D)/J . Moreover, for all Let D be any set, and let T ∈ PT (D). Then T can be written as:

F 1 , F 2 ∈ PT (D), q d • (F 1 × F 2 ) + J = q s • (F 1 • F 2 ) + J , as the underlying forests of q d • (F 1 × F 2 ) and q s • (F 1 • F 2 )
T = ( q d 1 • (T 1,1 × . . . × T i,s 1 )) • . . . • ( q d k • (T k,1 × . . . × T k,s k )) ,
where d 1 , . . . , d k ∈ D and the T i,j 's are nonempty elements of PT (D). We shortly denote this as:

T = B d 1 ,...,d k (T 1,1 . . . T 1,s 1 ; . . . ; T k,1 . . . T k,s k ).
The set of partitioned subtrees T i,j of T is denoted by st(T ).

Proposition 18. Let D be any set. One defines a coproduct δ on CP + (D) by:

∀T ∈ PT (D), δ(T ) = T ∈st(T ) T \ T ⊗ T.
Then, as a PreLie algebra, CP + (D) is freely generated by Ker(δ).

Proof. In other words, for any T ∈ PT (D), writing

T = B d 1 ,...,d k (T 1,1 . . . T 1,s 1 ; . . . ; T k,1 . . . T k,s k ).
we have:

δ(T ) = s i=1 s i j=1 B d 1 ,...,d k (T 1,1 . . . T 1,s 1 ; . . . ; T i,1 . . . T i,j . . . T i,s i ; . . . ; T k,1 . . . T k,s k ) ⊗ T i,j .
This immediately implies that δ is permutative [START_REF] Livernet | A rigidity theorem for pre-Lie algebras[END_REF]:

(δ ⊗ Id) • δ = (23).(δ ⊗ Id) • δ.
Moreover, for any x, y ∈ PT + (D), using Sweedler's notation δ(x) = x (1) ⊗ x (2) , we obtain:

δ(x • y) = x (1) • y ⊗ x (2) + x • y (1)
⊗ y (2) .

For any partitioned tree T ∈ PT (D), we denote by r(T ) the number of roots of T and we put d(T ) = r(T )T . The map d is linearly extended as an endomorphism of PT (D). As the product • is homogeneous for the number of roots, d is a derivation of the algebra (CP (D), •). Let us prove that for any x, y ∈ CP + (D):

δ(x • y) = d(x) ⊗ y + x (1) • y ⊗ x (2) + x (1) ⊗ x (2) • y.
We denote by A the set of elements of x ∈ CP + (D), such that for any y ∈ CP + (D), the preceding equality holds. If x 1 , x 2 ∈ A, then for any y ∈ CP + (D):

δ((x 1 • x 2 ) • y) = δ((x 1 • y) • x 2 ) + δ(x 1 • (x 2 • y)) = (x 1 • y) (1) • x 2 ⊗ (x 1 • y) (2) + (x 1 • y) • x (1) 2 ⊗ x (2) 2 + x (1) 1 • (x 2 • y) ⊗ x (2) 1 + x 1 • (x 2 • y) (1) ⊗ (x 2 • y) (2) = d(x 1 ) • x 2 ⊗ y + (x (1) 1 • y) • x 2 ⊗ x (1) 1 + x (1) 1 • x 2 ⊗ x (2) 1 • y + (x 1 • y) • x (1) 2 ⊗ x (2) 2 + x (1) 1 • (x 2 • y) ⊗ x (2) 1 + x 1 • d(x 2 ) ⊗ y + x 1 • (x (1) 2 • y) ⊗ x (2) 2 + x 1 • x (1) 2 ⊗ x (2) 2 • y = d(x 1 • x 2 ) ⊗ y + (x (1) 1 • x 2 ) • y ⊗ x (2) 1 + (x 1 • x (1) 2 ) • y ⊗ x (2) 2 + (x 1 • x 2 ) (1) ⊗ (x 1 • x 2 ) (2) • y = d(x 1 • x 2 ) ⊗ y + (x 1 • x 2 ) (1) • y ⊗ (x 1 • x 2 ) (2) + (x 1 • x 2 ) (1) ⊗ (x 1 • x 2 ) (2) • y. So x 1 • x 2 ∈ A.
Let d ∈ D. Note that δ( q d ) = 0. Moreover, for any y ∈ CP + (D):

δ( q d • y) = δ(B d (y)) = q d ⊗ y, so q d ∈ A.
Let T 1 , . . . , T k ∈ PT (D), nonempty. We consider x = B d (T 1 . . . T k ). For any y ∈ CP + (D):

δ(x • y) = δ(B d (T 1 . . . T k y)) + k j=1 δ(B d (T 1 . . . (T j • y) . . . T k ) = B d (T 1 . . . T k ) ⊗ y + k i=1 D d (T 1 . . . T i . . . T k y) ⊗ T i + k i=1 j =i B d (T 1 . . . T i . . . (T j • y . . . T k ) ⊗ T i + k i=1 B d (T 1 . . . T i . . . T k ) ⊗ T i • y = d(x) ⊗ y + k i=1 B d (T 1 . . . T i . . . T k ) • y ⊗ T i + k i=1 B d (T 1 . . . T i . . . T k ) ⊗ T i • y = d(x) ⊗ y + x (1) • y ⊗ x (2) + x (1) ⊗ x (2) • y.
Hence, x ∈ A. As A is stable under • and contains any partitioned tree with one root, A = CP + (D).

For any nonempty partitioned tree T ∈ PT (D), we put δ (T ) = 1 r(T ) δ(T ). Then:

(δ ⊗ Id) • δ (T ) = 1 r(T ) 2 (δ ⊗ Id) • δ(T ),
so δ is also permutative; moreover, for any x, y ∈ CP + (D): (2) • y. By Livernet's rigidity theorem [START_REF] Livernet | A rigidity theorem for pre-Lie algebras[END_REF], the PreLie algebra CP + (D) is freely generated by Ker(δ ). 

δ (x • y) = x ⊗ y + x (1) • y ⊗ x (2) + x (1) ⊗ x
δ(x • ∅) = x (1) • ∅ ⊗ x (2) + x (1) ⊗ x (2) • ∅.
We denote by A the subspace of elements x ∈ U CP + (D) such that this holds. If x 1 , x 2 ∈ A, then: 

δ((x 1 • x 2 ) • ∅) = δ((x 1 • ∅) • x 2 ) + δ(x 1 • (x 2 • ∅)) = (x (1) 1 • ∅) • x 2 ⊗ x (1) + x (1) 1 • x 2 ⊗ x (2) 1 • ∅ + (x 1 • ∅) • x (1) 2 ⊗ x (2) 2 + x 1 • (x (1) 2 • ∅) ⊗ x (2) 2 + x 1 • x (1) 2 ⊗ x (2) 2 • ∅ + x (1) 1 • (x 2 • ∅) ⊗ x (2) 1 = (x (1) 1 • x 2 ) • ∅ ⊗ x (2) 1 + x (1) 1 • x 2 ⊗ x (2) 1 • ∅ + (x 1 • x (1) 2 ) • ∅ ⊗ x (1) 2 + x 1 • x (1) 2 ⊗ x (2) 2 • ∅ = (x 1 • x 2 ) (1) • ∅ ⊗ (x 1 • x 2 ) (2) + (x 1 • x 2 ) (1) ⊗ (x 1 • x 2 ) (2) • ∅, so x 1 • x 2 ∈ A. If d ∈ D and T 1 , . . . , T k ∈ UPT (D), nonempty, if x = B d (T 1 . . . T k ): δ(x • ∅) = δ(B d+1 (T 1 . . . T k )) + k i=1 δ(B d (T 1 . . . (T i • ∅) . . . T k ) = k i=1 B d+1 (T 1 . . . T i . . . T k ) ⊗ T i + k j=1 i =j B d (T 1 . . . (T j • ∅) . . . T i . . . T k ) ⊗ T i + k i=1 B d (T 1 . . . T i . . . T k ) ⊗ T i • ∅ = k i=1 B d (T 1 . . . T i . . . T k ) • ∅ ⊗ T i + k i=1 B d (T 1 . . . T i . . . T k ) ⊗ T i • ∅ = x (1) • ∅ ⊗ x (2) + x (1) ⊗ x (2) • ∅, so x ∈ A. Hence, A = U CP + (D). Consequently, if x ∈ Ker(δ), then x • ∅ ∈ Ker(δ).
∅ • ∅ = 0, ∀x ∈ Ker(δ), ∅ • x = 0, x • ∅ = φ(x
∀a, b ∈ A 1 , ε(a • b) = ε(b • a).
Then A 1 ⊗ A 2 is a Com-PreLie algebra, with the products defined by:

(a 1 ⊗ a 2 )(b 1 ⊗ b 2 ) = a 1 b 1 ⊗ a 2 b 2 , (a 1 ⊗ a 2 ) • ε (b 1 ⊗ b 2 ) = a 1 • b 1 ⊗ a 2 b 2 + ε(b 1 )a 1 ⊗ a 2 • b 2 .
Proof. A 1 ⊗ A 2 is obviously an associative and commutative algebra, with unit 1 ⊗ 1. We take

A = a 1 ⊗ a 2 , B = b 1 ⊗ b 2 , C = c 1 ⊗ c 2 ∈ A 1 ⊗ A 2 .
Let us prove the PreLie identity.

(A • ε B) • ε C -A • ε (B • ε C) = (a 1 • b 1 ) • c 1 ⊗ a 2 b 2 c 2 + ε(c 1 )a 1 • b 1 ⊗ (a 2 b 2 ) • c 2 + ε(b 1 )a 1 • c 1 ⊗ (a 2 • b 2 )c 2 + ε(b 1 )ε(c 1 )a 1 ⊗ (a 2 b• 2 ) • c 2 -a 1 • (b 1 • c 1 ) ⊗ a 2 b 2 c 2 -ε(c 1 )a 1 • b 1 ⊗ a 2 (b 2 • c 2 ) -ε(c 1 )ε(b 1 )a 1 ⊗ a 2 • (b 2 • c 2 ) -ε(b 1 • c 1 )a 1 ⊗ a 2 • (b 2 c 2 ) = ((a 1 • b 1 ) • c 1 -a 1 • (b 1 • c 1 )) ⊗ a 2 b 2 c 2 + ε(b 1 )ε(c 1 )a 1 ⊗ ((a 2 • b 2 ) • c 2 -a 2 • (b 2 • c 2 )) + ε(c 1 )a 1 • b 1 ⊗ (a 2 • c 2 )b 2 + ε(b 1 )a 1 • c 1 ⊗ (a 2 • b 2 )c 2 -ε(b 1 • c 1 )a 1 ⊗ a 2 • (b 2 c 2 ).
As A 1 and A 2 are PreLie, the first and second lines of the last equality are symmetric in B and C; the third line is obviously symmetric in B and C; as m is commutative and by the hypothesis on ε, the last line also is. So • ε is PreLie. 

(AB) • C = (a 1 b 1 ) • c 1 ⊗ a 2 b 2 c 2 + ε(c 1 )a 1 b 1 ⊗ (a 2 b 2 ) • c 2 = ((a 1 • c 1 )b 1 + a 1 (b 1 • c 1 )) ⊗ a 2 b 2 c 2 + ε(c 1 )a 1 b 1 ⊗ ((a 2 • c 2 )b 2 + a 2 (b 2 • c 2 )) = (a 1 • c 1 ⊗ a 2 c 2 + ε(c 1 )a 1 ⊗ a 2 • c 2 )(b 1 ⊗ b 2 ) + (a 1 ⊗ a 2 )(b 1 • c 1 ⊗ b 2 c 2 + ε(c 1 )b 1 ⊗ b 2 • c 2 ) = (A • C)B + A(B • C). So A 1 ⊗ A 2 is Com-PreLie. Remark 8. Consequently, if (A, m, •, ∆) is a Com-PreLie bialgebra, with counit ε, then ∆ is a morphism of Com-PreLie algebras from (A, m, •) to (A ⊗ A, m, • ε ). Indeed, for all a, b ∈ A, ε(a • b) = ε(b • a) = 0 and: ∆(a) • ε ∆(b) = a (1) • b (1) ⊗ a (2) b (2) + ε(b (1) )a (1) ⊗ a (2) • b (2) = a (1) • b (1) ⊗ a (2) b (2) + a (1) ⊗ a (2) • b = ∆(a • b).
• f = ε. Then f ⊗ g : A ⊗ B -→ A ⊗ B is a Com-PreLie algebra morphism. Proof. 1. Indeed, if a 1 , a 2 ∈ A, b 1 , b 2 ∈ B: ε A ⊗ ε B ((a 1 ⊗ b 1 ) • (a 2 ⊗ b 2 )) = ε A (a 1 • a 2 )ε B (b 1 b 2 ) + ε A (a 1 )ε A (a 2 )ε B (b 1 • b 2 ) = ε A (a 2 • a 1 )ε B (b 2 b 1 ) + ε A (a 2 )ε A (a 1 )ε B (b 2 • b 1 ) = ε A ⊗ ε B ((a 2 ⊗ b 2 ) • (a 1 ⊗ b 1 )). Let a 1 , a 2 ∈ A, b 1 , b 2 ∈ B, c 1 , c 2 ∈ C. In (A ⊗ B) ⊗ C: (a 1 ⊗ b 1 ⊗ c 1 ) • (a 2 ⊗ b 2 ⊗ c 2 ) = ((a 1 ⊗ b 1 ) • (a 2 ⊗ b 2 )) ⊗ c 1 c 2 + ε A ⊗ ε B (a 2 ⊗ b 2 )a 1 ⊗ b 1 ⊗ c 1 • c 2 = a 1 • a 2 ⊗ b 1 b 2 ⊗ c 1 c 2 + ε A (a 2 )a 1 ⊗ b 1 • b 2 ⊗ c 1 c 2 + ε A (a 2 )ε B (b 2 )a 1 ⊗ b 1 ⊗ c 1 • c 2 .
In A ⊗ (B ⊗ C):

(a 1 ⊗ b 1 ⊗ c 1 ) • (a 2 ⊗ b 2 ⊗ c 2 ) = a 1 • a 2 ⊗ b 1 b 2 ⊗ c 1 c 2 + ε A (a 2 )a 1 ⊗ ((b 1 ⊗ c 1 ) • (b 2 ⊗ c 2 )) = a 1 • a 2 ⊗ b 1 b 2 ⊗ c 1 c 2 + ε A (a 2 )a 1 ⊗ b 1 • b 2 ⊗ c 1 c 2 + ε A (a 2 )ε B (b 2 )a 1 ⊗ b 1 ⊗ c 1 • c 2 . So (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C). 2. Let a 1 , a 2 ∈ A, b 1 , b 2 ∈ B. ε ⊗ Id((a 1 ⊗ b 1 )(a 2 ⊗ b 2 )) ε ⊗ Id((a 1 ⊗ b 1 ) • (a 2 ⊗ b 2 )) = ε(a 1 a 2 )b 1 b 2 = ε(a 1 • a 2 )b 1 b 2 + ε(a 1 )ε(a 2 )b 1 • b 2 = ε(a 1 )ε(a 2 )b 1 b 2 = ε(a 1 )ε(a 2 )b 1 • b 2 = ε ⊗ Id((a 1 ⊗ b 1 )ε ⊗ Id(a 2 ⊗ b 2 ), = ε ⊗ Id((a 1 ⊗ b 1 ) • ε ⊗ Id(a 2 ⊗ b 2 ). So ε ⊗ Id is a morphism. 3. f ⊗ g is obviously an algebra morphism. If a 1 , a 2 ∈ A, b 1 , b 2 ∈ B: (f ⊗ g)((a 1 ⊗ b 1 ) • (a 2 ⊗ b 2 )) = (f ⊗ g)(a 1 • a 2 ⊗ b 1 b 2 + ε(a 2 )a 1 ⊗ b 1 • b 2 ) = f (a 1 ) • f (a 2 ) ⊗ g(b 1 )g(b 2 ) + ε(f (a 2 ))f (a 1 ) ⊗ g(b 1 ) • g(b 2 ) = (f (a 1 ) ⊗ g(b 1 )) • (f (a 2 ) ⊗ g(b 2 )).
So f ⊗ g is a Com-PreLie algebra morphism.

Lemma 23. Let A be an associative commutative bialgebra, and V a subspace of A which generates A. Let • be a product on A such that:

∀a, b, c ∈ A, (ab) • c = (a • c)b + a(b • c).
Then A is a Com-PreLie bialgebra if, and only if, for all x ∈ V , b, c ∈ A: (2) .

(x • b) • c -x • (b • c) = (x • c) • b -x • (c • b), ∆(x • b) = x (1) ⊗ x (2) • b + x (1) • b (1) ⊗ x (2) b
Proof. =⇒. Obvious. ⇐=. We consider:

B = {a ∈ A | ∀b, c ∈ A, (a • b) • c -a • (b • c) = (a • c) • b -a • (c • b)}.
Copying the proof of lemma 2-1, we obtain that 1.b = 0 for all b ∈ A. This easily implies that

1 ∈ B. By hypothesis, V ⊆ B. Let a 1 , a 2 ∈ B.
For all b, c ∈ A:

((a 1 a 2 ) • b) • c -(a 1 a 2 ) • (b • c) = ((a 1 • b) • c)a 2 + (a 1 • b)(a 2 • c) + (a 1 • c)(a 2 • b) + a 1 ((a 2 • b) • c) -(a 1 • (b • c))a 2 -a 1 (a 2 • (b • c)) = ((a 1 • b) • c -a 1 • (b • c))a 2 + a 1 ((a 2 • b) • c -a 2 • (b • c)) + (a 1 • b)(a 2 • c) + (a 1 • c)(a 2 • b).
As a 1 , a 2 ∈ B, this is symmetric in b, c, so a 1 a 2 ∈ B. Hence, B is a unitary subalgebra of A which contains V , so is equal to A: A is Com-PreLie. Let us now consider:

C = {a ∈ A | ∀b ∈ A, ∆(a • b) = a (1) ⊗ a (2) • b + a (1) • b (1) ⊗ a (2) b (2) }. By hypothesis, V ⊆ C. Let b ∈ B. ∅ ⊗ ∅ • b + ∅ • b (1) ⊗ 1b (2) = 0 = ∆(∅ • b), so ∅ ∈ C. Let a 1 , a 2 ∈ C. For all b ∈ A: ∆((a 1 a 2 ) • b) = ∆((a 1 • b)a 2 + a 1 (a 2 • b)) = a (1) 1 a (1) 
2 ⊗ (a

(2) 1 • b)a (2)
2 + (a

(1) 1 • b (1) )a (1) 2 ⊗ a (2) 1 b (2) a (2) 2 a (1) 1 a (1) 2 ⊗ a (2) 1 (a (2) 2 • b) + a (1) 1 (a (1) 2 • b (1) ) ⊗ a (2) 1 a (2) 2 b (2) = a (1) 1 a (1) 2 ⊗ (a (2) 1 a (2) 2 ) • b + (a (1) 1 a (1) 2 ) • b (1) ⊗ a (2) 1 a (2) 2 b (2) = (a 1 a 2 ) (1) ⊗ (a 1 a 2 ) (2) • b + (a 1 a 2 ) (1) • b (1) ⊗ (a 1 a 2 ) (2) b (2) .
Hence, a 1 a 2 ∈ C, and C is a unitary subalgebra of A. As it contains V , C = A and A is a Com-PreLie Hopf algebra.

Coproduct on U CP (D)

Definition 24.

1. Let T be a partitioned tree and I ⊆ V (T ). We shall say that I is an ideal of T if for any vertex v ∈ I and any vertex w ∈ V (T ) such that there exists an edge from v to w, then w ∈ I. The set of ideals of T is denoted Id(T ).

2. Let T be partitioned forest decorated by N × I, and I ∈ Id(T ).

• By restriction, I is a partitioned decorated forest. The product • of the trees of I is denoted by P I (F ).

• By restriction, T \ I is a partitioned decorated tree. For any vertex v ∈ T \ I, if we denote by (i, d) the decoration of v in T , we replace it by (i + ι I (v), d), where ι I (v) is the number of blocks C of T , included in I, such that there exists an edge from v to any vertex of C. The partitioned decorated tree obtained in this way is denoted by R I (F ).

Theorem 25. We define a coproduct on U CP (D) in the following way:

∀T ∈ PT (N × D), ∆(T ) = I∈Id(T )
R I (T ) ⊗ P I (T ).

Then U CP (D) is a Com-PreLie bialgebra. Moreover, CP (D) and H D CK are Com-PreLie bialgebra quotients of U CP (D), and H D CK is the Connes-Kreimer Hopf algebra of decorated rooted trees [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF][START_REF] Foissy | Finite-dimensional comodules over the Hopf algebra of rooted trees[END_REF].

Proof. We consider:

ε : U CP (D) -→ K F -→ δ F,1
.

By lemma 22-1, U CP (D) ⊗ ε U CP (D) is a Com-PreLie algebra.
It is unitary, the unit being 1 ⊗ 1. Hence, there exists a unique Com-PreLie algebra morphism ∆ :

U CP (D) -→ U CP (D) ⊗ ε U CP (D), sending q (0,d) over q (0,d) ⊗ 1 + 1 ⊗ q (0,d) for all d ∈ D. By lemma 22-2, (U CP (D) ⊗ ε U CP (D)) ⊗ ε⊗ε U P C(D) and U CP (D) ⊗ ε (U CP (D) ⊗ ε U CP (D)
) are equal, and as both (Id ⊗ ∆ ) • ∆ and (∆ ⊗ Id) • ∆ are Com-PreLie algebra morphisms sending q (0,d) over

q (0,d) ⊗ 1 ⊗ 1 + 1 ⊗ q (0,d) ⊗ 1 + 1 ⊗ 1 ⊗ q (0,d) for all d ∈ D, they are equal: ∆ is coassociative. Moreover, (Id ⊗ ε) • ∆ and (ε ⊗ Id) • ∆ are Com-PreLie endomorphisms of U CP (D) sending q (0,d)
over itself for all d ∈ D, so they are both equal to Id: ε is the counit of ∆ . Hence, with this coproduct ∆ , U CP (D) is a Com-PreLie bialgebra.

Let us now prove that ∆(T ) = ∆ (T ) for all T ∈ PT (N × D). We proceed by induction on the number of vertices n of T . If n = 0 or n = 1, it is obvious. Let us assume the result at all ranks < n. If T has strictly more than one root, we can write T = T • T , where T and T has strictly less that n vertices. It is easy to see that the ideals of T are the parts of T T of the form I I , such that I ∈ Id(T ) and I ∈ Id(T ). Moreover, for such an ideal of T ,

R I I (T • T ) = R I (T ) • R I (T ), P I I (T • T ) = P I (T ) • P I (T ).
Hence:

∆(T ) = I ∈Id(T ), I ∈Id(T ) R I (T ) • R I (T ) ⊗ R I (T )R I (T ) = ∆(T ) • ∆(T ) = ∆ (T ) • ∆ (T ) = ∆ (T • T ) = ∆(T ).
If T has only one root, we can write

T = q (i, d) • (T 1 × . . . × T k ), where T 1 , . . . , T k ∈ PT (N × D).
The induction hypothesis holds for T 1 , . . . , T N . The ideals of T are:

• T iself: for this ideal I, P I (T ) = T and R I (T ) = ∅.

• Ideals I 1 . . . I k , where I j is an ideal of T j for all j. For such an ideal I, P I (T ) = P I 1 (T 1 ) • . . . • P I k (T k ). Let J = {i 1 , . . . , i p } be the set of indices i such that I i = T i , that is to say the number of blocks C of I such that is an edge from the root of T to any vertex of C. Then:

R I (T ) = q (i + p, d) • × j / ∈J R I j (T j ) = f l U CP (D) ( q (i, d)) • × j / ∈J R I j (T j ) = q (i, d) • ∅ ×p × t × j / ∈J R I j (T j ) = q (i, d) • R I 1 (T 1 ) × . . . × R I k (T k ).
We used lemma 5 for the third equality.

By proposition 4, with a = q (i, d) and b

1 × . . . × b n = T 1 × . . . × T k : ∆ (T ) = I⊆[k] q (i, d) • × i∈I T (1) i ⊗ i∈I T (2) i ∅ • × i / ∈I T i + I⊆[k] ∅ • × i∈I T (1) i ⊗ i∈I T (2) i q (i, d) • × i / ∈I T i = q (i, d) • T (1) 1 × . . . × T (1) 
k ⊗ T (2) 1 • . . . • T (2) 
k + 0 + ∅ ⊗ q (i, d) • T 1 × . . . × T k = I j ∈Id(T j ) q (i, d) • R I 1 (T 1 ) × . . . × R I k (T k ) ⊗ P I 1 (T 1 ) • . . . • P I k (T k ) + ∅ ⊗ T = I∈Id(T ), I =T R I (T ) ⊗ P I (T ) + ∅ ⊗ T = I∈Id(T ) R I (T ) ⊗ P I (T ) = ∆(T ). Hence, ∆ = ∆. For all d ∈ D, q (0,d) -q (1,d) is primitive, so ∆( q (0,d) -q (1,d) ) ∈ I ⊗ U CP (D) + U CP (D) ⊗ I.
Consequently, I is a coideal, and the quotient U CP (D)/I = CP (D) is a Com-PreLie bialgebra.

Let x, y ∈ CP (D). By proposition 4, as q d is primitive:

∆( q d • (x × y)) = q d • (x (1) × y (1) ) ⊗ x (2) • y (2) + 1 ⊗ q d • (x × y),
whereas, by the 1-cocycle property:

∆( q d • (x • y)) = q d • (x (1) • y (1) ) ⊗ x (2) • y (2) + ⊗ q d • (x • y).
Hence:

∆( q d • (x × y) -q d • (x • y)) = ( q d • (x (1) × y (1) ) -q d • (x (1) • y (1) )) ∈J ⊗x (2) • y (2) + 1 ⊗ ( q d • (x × y) -q d • (x • y)) ∈J ∈ J ⊗ CP (D) + CP (D) ⊗ J, so J is a coideal and CP (D)/J = H D CK is a Com-PreLie bialgebra.
Let us consider:

B d : H D CK -→ H D CK T 1 . . . T k -→ q d • T 1 × . . . × T k ,
where T 1 , . . . , T k are rooted trees decorated by D. In other terms, B d (T 1 . . . T k ) is the tree obtained by grafting the forest T 1 . . . T k on a common root decorated by d. By proposition 4 and lemma 5, for all forest F = T 1 . . . T k ∈ H D CK :

∆ • B d (F ) = q d • T (1) 1 × . . . × T (1) 
k ⊗ T (2) 1 . . . T (2) 
k + 0 + ∅ ⊗ q d • T 1 × . . . × T k = B d (F (1) ) ⊗ F (2) + ∅ ⊗ B d (F ).
We recognize the 1-cocycle property which characterizes the Connes-Kreimer coproduct of rooted trees, so H D CK is indeed the Connes-Kreimer Hopf algebra.

Example 6. Let i, j, k ∈ N and d, e, f ∈ D. In U CP (D):

∆ q (i, d) = q (i, d) ⊗ ∅ + ∅ ⊗ q (i, d), ∆ q q (i, d) (j, e) = q q (i, d) (j, e) ⊗ ∅ + ∅ ⊗ q q (i, d) (j, e) + q (i + 1, d) ⊗ q (j, e), ∆ q q q ∨ (i, d) (k, f ) (j, e) = q q q ∨ (i, d) (k, f ) (j, e) ⊗ ∅ + ∅ ⊗ q q q ∨ (i, d) (k, f ) (j, e) + q q (i + 1, d) (j, e) ⊗ q (k, f ) + q q (i + 1, d) (k, f ) ⊗ q (j, e) + q (i + 2, d) ⊗ q q (j, e) (k, f ), ∆ q ∨ (i, d) (k, f ) (j, e) q q = q ∨ (i, d) (k, f ) (j, e) q q ⊗ ∅ + ∅ ⊗ q ∨ (i, d) (k, f ) (j, e) q q + q q (i, d) (j, e) ⊗ q (k, f ) + q q (i, d) (k, f ) ⊗ q (j, e) + q (i + 1, d) ⊗ q q (j, e) (k, f ), ∆ q q q (i, d) (j, e) (k, f ) = q q q (i, d) (j, e) (k, f ) 
⊗ ∅ + ∅ ⊗ q q q (i, d) (j, e) (k, f ) + q q 
(i, d)

(j + 1, e) ⊗ q (k, f ) + q (i + 1, d) ⊗ q q (j, e) (k, f ) 
.

In CP (D):

∆ q d = q d ⊗ ∅ + ∅ ⊗ q d , ∆ q q d e = q q d e ⊗ ∅ + ∅ ⊗ q q d e + q d ⊗ q e , ∆ q q q ∨ d f e = q q q ∨ d f e ⊗ ∅ + ∅ ⊗ q q q ∨ d f e + q q d e ⊗ q f + q q d f ⊗ q e + q d ⊗ q q e f, ∆ q ∨ d f e q q = q ∨ d f e q q ⊗ ∅ + ∅ ⊗ q ∨ d f e q q
+ q q d e ⊗ q f + q q d f ⊗ q e + q d ⊗ q q e f, ∆ q q q d e f = q q q d e f ⊗ ∅ + ∅ ⊗ q q q d e f + q q d e ⊗ q f + q d ⊗ q q e f .

In H D CK :

∆ q d = q d ⊗ ∅ + ∅ ⊗ q d , ∆ q q d e = q q d e ⊗ ∅ + ∅ ⊗ q q d e + q d ⊗ q e , ∆ q q q ∨ d f e = q q q ∨ d f e ⊗ ∅ + ∅ ⊗ q q q ∨ d f e + q q d e ⊗ q f + q q d f ⊗ q e + q d ⊗ q e q f , ∆ q q q d e f = q q q d e f ⊗ ∅ + ∅ ⊗ q q q d e f + q q d e ⊗ q f + q d ⊗ q q e f .

An application: Connes-Moscovici subalgebras

Let us fix a set D of decorations. For any d ∈ D, we define an operator

N d : H D CK -→ H D CK by: ∀x ∈ H D CK , N d (x) = x • q d .
In other words, if F is a rooted forest, N d (F ) is the sum of all forests obtained by grafting a leaf decorated by d on a vertex of F : when D is reduced to a singleton, this is the growth operator N of [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF]. For all k ≥ 1, i 1 , . . . , i k ∈ D, we put:

X i 1 ,...,i k = N i k • . . . • N i 2 ( q i 1 ).
When |D| = 1, these are the generators of the Connes-Moscovici subalgebra of [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF]. Hence, H D CM is stable under the derivation D : x → x • 1. We obtain:

∆(X i 1 ,...,i k ) = ∆(X i 1 ,...,i k-1 • q i k ) (10) 
= X

(1)

i 1 ,...,i k-1 ⊗ X (2) i 1 ,...,i k-1 • q i k + X (1) i 1 ,...,i k-1 • q i k ⊗ X (2) i 1 ,...,i k-1 + X (1) i 1 ,...,i k-1 • ∅ ⊗ X (2) i 1 ,...,i k-1 q i k .
An easy induction on k proves that ∆(X i 1 ,..., k ) belongs to

H D CM ⊗ H D CM .
Proposition 27. We assume that D is finite.Then H D CM is the graded dual of the enveloping algebra of the augmentation ideal of the Com-PreLie algebra T (V, f ), where V = V ect(D) and f = Id V .

Proof. We put W = V ect(X i 1 ,...,i k | k ≥ 1, i 1 , . . . , i k ∈ D). As this is the case for H D CK , for any

x ∈ W : ∆(x) -x ⊗ 1 + 1 ⊗ x ∈ W ⊗ H D CM .
This implies that the graded dual of H D CM is the enveloping of a graded algebra g; as a vector space, g is identified with W * and its preLie product is dual of the bracket δ defined on W by (π W ⊗ π W • ∆, where π W is the canonical projection on W which vanishes on (1) + (H D CM ) 2 + . By [START_REF] Loday | Scindement d'associativité et algèbres de Hopf[END_REF], using Sweedler's notation δ(x) = x ⊗ x , we obtain:

δ(X i 1 ,...,i k+1 ) = X i 1 ,...,i k ⊗ X i 1 ,...,i k • X i k+1 + X i 1 ,...,i k • X i k+1 ⊗ X i 1 ,...,i k + kX i 1 ,...,i k ⊗ X i k+1 .
We shall use the following notations. If I ⊆ [k], we put:

• m(I) = max(i | [i] ⊆ I), with the convention m(I) = 0 if 1 / ∈ I. • X i I = X ip 1 ,...ip l if I = {p 1 < . . . < p l }.
An easy induction then proves the following result:

∀i 1 , . . . , i k ∈ D, δ(X i 1 ,...,i k ) = ∅ I⊆[k] m(I)X i I ⊗ X i [k]\I .
We identify W * and T (V ) + via the pairing: ∀i 1 , . . . , i k , j 1 , . . . , j l ∈ D, X i 1 ,...,i k , j 1 . . . j l = δ (i 1 ,...,i k ),(j 1 ,...,j l ) .

The preLie product on T (V ) + induced by δ is then given by:

i 1 . . . i k • i k+1 . . . i k+l = σ∈Sh(k,l) m k (σ)i σ -1 (1) . . . i σ -1 (k+l) .
By [START_REF] Foissy | Finite-dimensional comodules over the Hopf algebra of rooted trees[END_REF], this is precisely the preLie product of T (V, f ).

Remark 9. The following map is a bijection:

θ k,l : Sh(k, l) -→ Sh(l, k) σ -→ (k + l k + l -1 . . . 1) • σ • (k + l k + l -1 . . . 1).
Moreover, for any σ ∈ Sh(k, l):

m l (θ k,l (σ)) = min{i ∈ l ∈ {k + 1, . . . , k + l} | σ(i) = i, . . . , σ(k + l) = σ(k + l)} = m l (σ),
with the convention m l (σ) = 0 if σ(k + l) = k + l. Then the Lie bracket associated to • is given by: Proof. We put V = P rim(A).

∀i 1 , . . . , i k+l ∈ D, [i 1 . . . i k , i k+1 . . . i k+l ] = σ∈Sh(k,l) (m k (σ) -m l (σ))i σ -1 (1) . . . i σ -1 (k+l) .
First step. As f A is surjective, there exists g : V -→ V such that f A • g = Id V . For all x ∈ V , we put:

L x : A -→ A y -→ g(x) • y.
For all y ∈ A:

∆ • L x (y) = ∅ ⊗ g(x) • y + g(x) • y (1) ⊗ y (2) = ∅ ⊗ L x (y) + (Id ⊗ L x ) • ∆(y).
Hence, L x is a 1-cocycle of A. Moreover, L x (1) = g(x)•1 = f A •g(x) = x. For all x 1 , . . . , x n ∈ V , we define ω(x 1 , . . . , x n ) inductively on n by:

ω(x 1 , . . . , x n ) = ∅ if n = 0, L x 1 (ω(x 2 , . . . , x n-1 )) if n ≥ 1.
In particular, ω(v) = v for all v ∈ V . An easy induction proves that:

∆(ω(x 1 , . . . , x n )) = n i=0 ω(x 1 , . . . , x i ) ⊗ ω(x i+1 , . . . , x n ).
Hence, the following map is a coalgebra morphism:

ω : T (V ) -→ A x 1 . . . x n -→ ω(x 1 , . . . , x n ).
It is injective: if Ker(ω) is nonzero, then it is a nonzero coideal of T (V ), so it contains nonzero primitive elements of T (V ), that is to say nonzero elements of V . For all v ∈ V , ω(v) = L v (1) = v: contradiction. Let us prove that ω is surjective. As A is connected, for any x ∈ A + , there exists n ≥ 1 such that ∆(n) (x) = 0. Let us prove that x ∈ Im(ω) by induction on n. If n = 1, then x ∈ V , so x = ω(x). Let us assume the result at all ranks < n. By coassociativity of ∆, ∆(n-1) (x) ∈ V ⊗n . We put ∆(n-1) (x) = x 1 ⊗ . . . ⊗ x n ∈ V ⊗n . Then ∆(n-1) (x) = ∆(n-1) (ω(x 1 , . . . , x n )). By the induction hypothesis, x -ω(x 1 , . . . , x n ) ∈ Im(ω), so x ∈ Im(ω).

We proved that the coalgebras A and T (V ) are isomorphic. We now assume that A = T (V ) as a coalgebra.

Second step. We denote by π the canonical projection on V in T (V ). Let : T + (V ) -→ V be any linear map. We define:

F :      T (V ) -→ T (V ) x 1 . . . x n -→ n k=1 i 1 +...+i k =n (x 1 . . . x i 1 ) . . . (x i 1 +...+i k-1 +1 . . . x n ).
Let us prove that F is the unique coalgebra endomorphism such that π • F = . First:

∆(F (x 1 . . . x n )) = i 1 +...+i k =n ∆( (x 1 . . . x i 1 ) . . . (x i 1 +...+i k-1 +1 . . . x n )) = i 1 +...+i k =n k j=0 (x 1 . . . x i 1 ) . . . (x i 1 +...+i j-1 +1 . . . x i 1 +...+i j ) ⊗ (x i 1 +...+i j +1 . . . x i 1 +...i j+1 ) . . . (x i 1 +...+i k-1 +1 . . . x n )) = n i=0 F (x 1 . . . x i ) ⊗ F (x i+1 . . . x n ) = (F ⊗ F ) • ∆(x 1 . . . x n ).
Moreover:

π • F (x 1 . . . x n ) = n k=1 i 1 +...+i k =n π( (x 1 . . . x i 1 ) . . . (x i 1 +...+i k-1 +1 . . . x n )) = π • (x 1 . . . x n ) + 0 = (x 1 . . . x n ).
Let us now prove the unicity. Let F, G be two coalgebra endomorphisms such that π • F = π • G = . If F = G, let x 1 . . . x n be a word of T (V ), such that F (x 1 . . . x n ) -G(x 1 . . . x n ) = 0, of minimal length. By minimality of n:

∆(F (x 1 . . . x n )) = (F ⊗ F ) • ∆(x 1 . . . x n ) = (G ⊗ G) • ∆(x 1 . . . x n ) = ∆(G(x 1 . . . x n )). Hence, F (x 1 . . . x n ) -G(x 1 . . . x n ) ∈ P rim(T (V )) = V , so: F (x 1 . . . x n ) -G(x 1 . . . x n ) = π(F (x 1 . . . x n ) -G(x 1 . . . x n )) = (x 1 . . . x n ) -(x 1 . . . x n ) = 0. This is a contradiction, so F = G. Third step. Let 1 , 2 : T + (V ) -→ V and let F 1 = F 1 , F 2 = F 2 be the associated coalgebra morphisms. Then: π • F 2 • F 1 (x 1 . . . x n ) = i 1 +...+i k =n 2 ( 1 (x 1 . . . x i 1 ) . . . 1 (x i 1 +...+i k-1 +1 ) . . . x n )).
We denote this map by 2 1 . By the unicity in the second step, F 2 • F 1 = F 2 1 . It is not difficult to prove that for any : T + (V ) -→ V , there exists

: T + (V ) -→ V , such that = = π if, and only if, |V is invertible. If this holds, then F • F = F • F = F π = Id,
by the unicity in the second step. So, if |V is invertible, then F is invertible.

Fourth step. We denote by * the product of T (V ). Let us choose : T + (V ) -→ V such that (T + (V ) * T + (V )) = (0). Let F = F the associated coalgebra morphism. As ∅ is the unique group-like element of T (V ), the unit of * is ∅. Let us prove that for all x, y ∈ T (V ), F (x * y) = F (x) • F (y). We proceed by induction on length(x) + length(y) = n. As ∅ is the unit for both * and • and F (∅) = ∅, it is obvious if x or y is equal to ∅: this observation covers the case n = 0. Let us assume the result at all rank < n. By the preceding observation on the unit, we can assume that x, y ∈ T + (V ). We put G = F • * and H = • • (F ⊗ F ). They are both coalgebra morphisms from T (V ) ⊗ T (V ) to T (V ). Moreover:

π • G(x ⊗ y) = π • F (x * y) = (x * y) = 0.
As the shuffle product is graded for the length, π • H(x ⊗ y) = 0. By the induction hypothesis:

∆ • G(x ⊗ y) = (G ⊗ G) • ∆(x ⊗ y) = (F ⊗ F ) • ∆(x ⊗ y) = ∆ • F (x ⊗ y).
Hence, G(x ⊗ y) -F (x ⊗ y) is primitive, so belongs to V . This implies:

G(x ⊗ y) -F (x ⊗ y) = π(G(x ⊗ y) -F (x ⊗ y)) = 0 -0 = 0. So F (x * y) = G(x ⊗ y) = F (x ⊗ y) = F (x) ¡ F (y). Hence, F is a bialgebra morphism from (T (V ), * , ∆) to (T (V ), ¡,∆).
By the third and fourth steps, in order to prove that (T (V ), * , ∆) and (T (V ), ¡,∆) are isomorphic, it is enough to find

: T + (V ) -→ V , such that |V is invertible and (T + (V ) * T + (V )) = (0); hence, it is enough to prove that V ∩ (A + * A + ) = (0). Last step. We define ∆ : End(A) -→ End(A ⊗ A, A) by ∆(f )(x ⊗ y) = f (x * y).
We denote by the convolution product of End(A) induced by the bialgebra (A, * , ∆). Let f, g ∈ End(A). We assume that we can write ∆(f ) = f (1) ⊗ f (2) and ∆(g) = g (1) ⊗ g (2) , that is to say, for all x, y ∈ A:

f (xy) = f (1) (x) * f (2) (y), g(xy) = g (1) (x) * g (2) (y).
Then, as * is commutative: ) ) * f (2) (y (1) ) * g (1) (x (2) ) * g (2) (y (2) ) = f (1) (x (1) ) * g (1) (x (2) ) * f (2) (y (1) ) * g (2) (y (2) ) = f (1) g (1) (x) * f (1) g (2) (y).

f g(x * y) = f (x (1) * y (1) ) * g(x (2) * y (2) ) = f (1) (x ( 1 
Hence, ∆(f g) = ∆(f ) ∆(g).

Let ρ be the canonical projection on A + and 1 be the unit of the convolution algebra End(V ). Then 1 + ρ = Id. As ∆(Id) = Id ⊗ Id and ∆(1) = 1 ⊗ 1, this gives:

∆(ρ) = ρ ⊗ 1 + 1 ⊗ ρ + ρ ⊗ ρ.
We consider:

ψ = ln(1 + ρ) = ∞ n=1 (-1) n+1 n ρ n .
As A is connected, for all x ∈ A, ρ n (x) = 0 if n is great enough, so ψ exists. Moreover, as ∆ is compatible with the convolution product:

∆(ψ) = ln(1 ⊗ 1 + ρ ⊗ 1 + 1 ⊗ ρ + ρ ⊗ ρ) = ln((1 + ρ) ⊗ (1 + ρ)) = ln(1 + ρ) ⊗ 1) + ln(1 ⊗ (1 + ρ)) = ln(1 + ρ) ⊗ 1 + 1 ⊗ ln(1 + ρ) = ψ ⊗ 1 + 1 ⊗ ψ. We used ((1 + ρ) ⊗ 1) (1 ⊗ (1 + ρ)) = (1 ⊗ (1 + ρ)) ((1 + ρ) ⊗ 1) = (1 + ρ) ⊗ (1 + ρ)
for the third equality. Hence, for all x, y ∈ A: ψ(x * y) = ψ(x)ε(y) + ε(x)ψ(y).

In particular, if x, y ∈ A + , ψ(x * y) = 0. If x ∈ V , then ρ 1 (x) = x and if n ≥ 2:

ρ * n (x) = n i=1 ρ(1) * . . . * ρ(1) * ρ(x) * ρ(1) * . . . * ρ(1) = 0. So ψ(x) = x. Finally, if x ∈ V ∩ (A + * A + ), ψ(x) = x = 0. So V ∩ (A + * A + ) = (0).
The following result is proved for H D CK in [START_REF] Broadhurst | Towards cohomology of renormalization: bigrading the combinatorial Hopf algebra of rooted trees[END_REF] and in [START_REF] Foissy | Finite-dimensional comodules over the Hopf algebra of rooted trees[END_REF]: Remark 10. 1. This is not the case for U CP (D). For example, if d, e are two distinct elements of D, it is not difficult to prove that there is no element x ∈ U CK(D) such that:

Corollary
∆(x) = x ⊗ 1 + 1 ⊗ x + q (0, d) ⊗ q (0, e).
So U CP (D) is not cofree.

CP (D) and H D

CK are not isomorphic, as Com-PreLie bialgebras, to any

T (V, f ). Indeed, in T (V, f ), for any x ∈ V such that f (x) = x, x ¡ x = 2x • x = 2xx. In f CP (D) or H D CK , for any d ∈ D, with x = q d , f (x) = x but x • x = 2x • x.

Dual of U CP (D) and CP (D)

We identify U CP (D) and its graded dual by considering the basis of partitioned trees as orthonormal; similarly, we identify CP (D) and H D CK with their graded dual.

Let us consider the Hopf algebra (U CP (D), •, ∆). As a commutative algebra, it is freely generated by the set UPT 1 (D) of partitioned trees decorated by N × D with one root. Moreover,

if T ∈ UPT 1 (D): ∆(T ) -1 ⊗ T ∈ V ect(UPT 1 (D)) ⊗ U CP (D).
Consequently, this is a right-sided combinatorial bialgebra in the sense of [START_REF] Loday | Combinatorial Hopf algebras[END_REF], and its graded dual is the enveloping algebra of a PreLie algebra g U CP (D). Direct computations prove the following result:

Theorem 30. The PreLie algebra g U CP (D) is the linear span of UPT 1 (D). For any T, T ∈ UPT 1 (D), the PreLie product is given by:

T T = s∈V (T ), b∈bl(s) { * } (T • s,b T )[-1] s .
Example 7. If D = {1}, forgetting the second decoration of the vertices, in g U CP (D): q i q j = (1 -δ i,0 ) q q i -1 j , q q i j q k = (1 -δ j,0 ) q q q i j -1 k + (1 -δ i,0 ) q q q ∨ i -1 k j + q ∨ i -1 , m, ∆ are isomorphic. We obtain an explicit isomorphism between them: Definition 33. Let T ∈ PT (D) and π = {P 1 , . . . , P k } be a partition of V (T ). We shall write π T if the following condition holds:

• For all i ∈ [k], the partitioned rooted forest T |P i , denoted by T i , belongs to PT (0) 1 (D). If π T , the contracted graph T /π is a rooted forest (one forgets about the blocks of T ). The vertex of T /π corresponding to P i is decorated by T i , making T /π an element of T (PT Example 9. If D = {1}, forgetting the decorations, with a = q and b = q ∨ q q : Θ( q ) = q a , Θ( q q ) = q q a a , Θ( q q q ∨ ) = q q q ∨ a a a , Θ( q ∨ q q ) = q q q ∨ a a a + q b .

Extension of the preLie product to all partitioned trees

We now extend the preLie product to the whole CP (D): The three terms of this sum are symmetric in T 2 , T 3 , so: Example 10. If a, b, c, d ∈ D, q ∨ q q q a d c b q q ∨ q q a d c b , q q ∨ q q a d b c

(T 1 T 2 ) T 3 -T 1 (T 2 T 3 ) = (T 1 T 3 ) T 2 -T 1 (T 3 T 2 ).
, q q ∨ q q a c b d q q q q ∨ a Proof. As is a partial order, Ψ is bijective. Let T 1 , T 2 ∈ PT (D).

1. If T T 1 • T 2 , let us put T 1 = T 1 ∩ T and T 2 = T 2 ∩ T . Then, obviously, T 1 T 1 and T 2 T 2 . Moreover, T = T 1 T 2 . Conversely, if T 1 T 1 and T 2 T 2 , then T 1 • T 2 T 1 • T 2 . Hence: So Ψ is a Com-PreLie algebra isomorphism.

Ψ(T 1 • T 2 ) = T T 1 •T 2 T = T 1 T 1 , T 2 T 2 T 1 • T 2 = Ψ(T 1 ) • Ψ(T 2 ).
Example 11. In the nondecorated case: Ψ( q ) = q , Ψ( q q q ) = q q q , Ψ( q q ) = q q , Ψ( q q q q ∨ ) = q q q q ∨ + 3 q q ∨ q q + q ∨ q q q , Ψ( q q q ∨ ) = q q q ∨ + q ∨ q q , Ψ( q q ∨ q q ) = q q ∨ q q + q ∨ q q q , Ψ( q ∨ q q ) = q ∨ q q , Ψ( q ∨ q q q ) = q ∨ q q q .

2 .

 2 A Com-PreLie bialgebra is a family (A, •, •, ∆), such that: (a) (A, •, •) is a Com-PreLie algebra. (b) (A, •, ∆) is a bialgebra. (c) For all a, b ∈ A:

2 .

 2 Let s be a vertex of T . (a) We denote by bl(s) the set of blocks of T , children of s. (b) Let b ∈ bl(s) { * }. We denote by T • s,b T the partitioned tree obtained in this way: • Graft T on s, that is to say add edges from s to any root of T . • If b ∈ bl(s), join the block b and the block of roots of T . (c) Let k ∈ Z. The decoration of s is denoted by (i, d). The element T [k] s ∈ UPT (D) {0}

1 .

 1 We denote by UPT (D) the set of trees T ∈ UPT (D) such that for any vertex s of T , the decoration of s is of the form (0, d), with d ∈ D. It is trivially identified with PT (D). Then the family (T + I f ) T ∈U PT (D) is a basis of U CP (D)/I f . 2. In U CP (D)/I f , for any d ∈ D, (

  d) ) for any d ∈ D, so φ induces a morphism φ : U CP (D)/I f -→ CP (D). It is not difficult to prove that for any T ∈ UPT (D), φ(T ) = T . As the family PT (D) is a basis of CP (D), the family (T + I f ) T ∈U P T (D) is linearly independent in U CP (D)/I f . By the second step, it is a basis. Example 5. We choose f = Id V 0 . The product in U CP (D)/I Id V 0 of two elements is given by the combinatorial product •. If T, T ∈ PT (D) and T = ∅, T • T is the sum of all graftings of T over T . Moreover: T • ∅ = |T |T.

  are equal. Consequently, there exists a Com-PreLie morphism from CP (D)/J to CP (D)/J , sending any element of RF(D) over itself. As the elements of RF (D) are linearly independent in CP (D)/J , they also are in CP (D)/J.3.3 PreLie structure of U CP (D) and CP (D) Let us now consider U CP (D) and CP (D) as PreLie algebras. Their augmentation ideals are respectively denoted by U CP + (D) and CP + (D). Note that, as a PreLie algebra, U CP + (D) = CP + (N × D).

  For any integer n, we denote by CP n (D) the subspace of CP (D) generated by trees T such that r(T ) = n. Then, for all n, δ(CP n (D)) ⊆ CP n (D) ⊗ CP + (D), and δ |CPn(D) = nδ |CPn(D) . This implies that Ker(δ) = Ker(δ ). Lemma 19. In CP + (D) or U CP + (D), Ker(δ) • ∅ ⊆ Ker(δ). Proof. Let us work in U CP + (D). Let us prove that for any x ∈ U CP + (D):

  The proof is immediate for CP + (D), as for any tree T ∈ PT (D), T • ∅ = |T |T . We denote by φ the endomorphism of Ker(δ) defined by φ(x) = x • ∅. Corollary 20. The PreLie algebra U CP (D), respectively CP (D), is generated by Ker(δ) ⊕ (∅), with the relations:

Lemma 22. 1 .

 1 Let A, B, C be three Com-PreLie algebras, ε A : A -→ K and ε B : B -→ K with the condition of lemma 21. Then ε A ⊗ ε B : A ⊗ B -→ K also satisfies the condition of lemma 21. Moreover, the Com-PreLie algebras (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C) are equal. 2. Let A, B be two Com-PreLie algebras, and ε : A -→ K such that: ∀a, b ∈ A, ε(ab) = ε(a)ε(b), ε(a • b) = 0. Then ε ⊗ Id : A ⊗ B -→ B is morphism of Com-PreLie algebras. 3. Let A, A , B, B be Com-PreLie algebras, ε : A -→ K and ε : A -→ K satisfying the condition of lemma 21. Let f : A -→ A , g : B -→ B be Com-PreLie algebra morphisms such that ε

4. 4 A

 4 rigidity theorem for Com-PreLie bialgebras Theorem 28. Let (A, m, •, ∆) be a connected Com-PreLie bialgebra. If f A (defined in Proposition 3) is surjective, then (A, m, ∆) and (T (P rim(A)), ¡,∆) are isomorphic Hopf algebras.

BBB

  ⊗ T ) = B d (T 1 . . . T k ) ⊗ T + ς(T ) i=1 B d (T T 1 . . . T i . . . T k ) ⊗ T i d (T 1 . . . T j . . . (T i T ) . . . T k ) ⊗ T j + ς(T ) i=1 B d (T 1 . . . T i . . . T k ) ⊗ T i T d (T 1 . . . T j . . . (T i ¡ T ) . . . T k ) ⊗ T j T 1 . . . T j . . . T k ) + k i=1 i =j B d (T 1 . . . T j . . . (T i T + T i ¡ T ) . . . T k ) d (T 1 . . . T i . . . T k ) ⊗ T i T + T ⊗ T = ς(T ) j=1 B d (T 1 . . . T j . . . T k ) • T ⊗ T j + ς(T ) i=1 B d (T 1 . . . T i . . . T k ) ⊗ T i T + T ⊗ T = T (1) T ⊗ T (2) + T (1) ⊗ T (2) T + T ⊗ T .By Livernets's rigidity theorem, g CP (D) si freely generated, as a PreLie algebra, by Ker(δ).We define:Υ : g CP (D) ⊗ g CP (D) -→ g CP (D) T ⊗ T -→ T • r(T ), * T , where r(T ) is the root of T . In other words, Υ(B d (T 1 . . . T k ) ⊗ T ) = B d (T T 1 . . . T k ); this implies that for any T ∈ PT 1 (D), Υ • δ(T ) = ς(T )T . Hence, if x = a T T ∈ Ker(δ), Υ • δ(x) = a T ς(T )T = 0, so x is a linear span of trees T such that ς(T ) = 0. The converse is trivial. We denote by P T (0) 1 (D) the set of partitioned trees T ∈ PT 1 (D) with ς(T ) = 0. The preceding proposition implies that the Hopf algebras (CP (D), •, ∆) and H PT

  Corollary 34. The following map is a Hopf algebra isomorphism:

Proposition 35 . 3 +s 1 3 =s 1 3 +s 1 3 =s 1 3 +

 35313131313 We define a product on CP (D) in the following way: ∀T, T ∈ PT (D), T T = s∈V (T ), b∈bl(s) { * } T • s,b T . Then (CP (D), , •) is a Com-PreLie algebra. Proof. Obviously, for any x, y, z ∈ PT (D), (x•y) z = (x z)•x+x•(y z). Let T 1 , T 2 , T 3 ∈ PT (D).Then:(T 1 T 2 ) T 3 = s 1 ∈V (T 1 ), b 1 ∈bl(s 1 ) { * } s 2 ∈V (T 1 ), b 2 ∈bl(s 2 ) { * } (T 1 • s 1 ,b 1 T 2 ) • s 2 ,b 2 T ∈V (T 1 ), b 1 ∈bl(s 1 ) { * } s 2 ∈V (T 2 ), b 2 ∈bl(s 2 ) { * } (T 1 • s 1 ,b 1 T 2 ) • s 2 ,b 2 T ∈V (T 1 ), b 1 ∈bl(s 1 ) { * } s 2 ∈V (T 1 ), b 2 ∈bl(s 2 ) { * } (T 1 • s 1 ,b 1 T 2 ) • s 2 ,b 2 T ∈V (T 1 ), b 1 ∈bl(s 1 ) { * } s 2 ∈V (T 2 ), b 2 ∈bl(s 2 ) { * } T 1 • s 1 ,b 1 (T 2 • s 2 ,b 2 T 3 ) = s 1 ∈V (T 1 ), b 1 ∈bl(s 1 ) { * } s 2 ∈V (T 1 ), b 2 ∈bl(s 2 ) { * } (T 1 • s 1 ,b 1 T 2 ) • s 2 ,b 2 T 3 + T 1 (T 2 T 3 ).Hence:(T 1 T 2 ) T 3 -T 1 (T 2 T 3 ) = s 1 ∈V (T 1 ), b 1 ∈bl(s 1 ) { * } s 2 ∈V (T 1 ), b 2 ∈bl(s 2 ) { * } (T 1 • s 1 ,b 1 T 2 ) • s 2 ,b 2 T =s 2 ∈V (T 1 ) b 1 ∈bl(s 1 ) { * }, b 2 ∈bl(s 2 ) { * } (T 1 • s 1 ,b 1 T 2 ) • s 2 ,b 2 T s∈V (T 1 ), b 1 =b 2 ∈bl(s) { * } (T 1 • s,b 1 T 2 ) • s,b 2 T 3 + s∈V (T 1 ), b∈bl(s) { * } (T 1 • s,b T 2 ) • s,b T 3 .

Finally,

  (CP (D), , •) is Com-PreLie.Definition 36. Let T = (t, I, d) and T = (t, I , d) be two elements of PT (D) with the same underlying decorated rooted trees. We shall say that T T is I is a refinement of I. This defines a partial order on PT (D).

.

  Theorem 37. The following map is an isomorphism of Com-PreLie algebras:D), •, •) -→ (CP (D), , •) T ∈ PT (D) -→ T TT .

2 . 1 T 1 and T 2 T 2 .

 2122 Let s ∈ V (T 1 ) and T T 1 • s, * T 2 . We putT 1 = T ∩ T 1 and T 2 = T ∩ T 2 . Then, obviously, T If the block of roots of T 2 is also a block of T , then T = T 1 • s, * T 2 . Otherwise, there exists a unique b ∈ bl(s) such that T = T 1 • s,b T 2 . Conversely, if T 1 T 1 , T 2 T 2 , s ∈ V (T 1 ) and b ∈ bl(s) { * }, then T 1 • s,b T 2 T 1 • s, * T 2 . Hence: Ψ(T 1 • T 2 ) = s∈V (T 1 ) T T 1 •s, * T 2 T = T 1 T 1 , T 2 T 2 s∈V (T 1 ),b∈bl(s) { * } T 1 • s,b T 2 = Ψ(T 1 ) ψ(T 2 ).

  Remark 7. We give CP (D) a graduation by putting the elements of D homogeneous of degree 1. A manipulation of formal series allows to compute the dimensions of the homogeneous components of Ker(δ), if |D| = d:

	dim(Ker(δ) 1 ) = d,	
	dim(Ker(δ) 2 ) =	d(d + 1) 2	,
	dim(Ker(δ) 3 ) =	d(2d 2 + 1) 3	,
	dim(Ker(δ) 4 ) =	d(11d 3 + 2d 2 + d + 2) 8	,
	dim(Ker(δ) 5 ) =	d(203d 4 + 60d 3 -5d 2 -30d + 12) 60	,
	dim(Ker(δ) 6 ) =	d(220d 5 + 89d 4 + 16d 3 + 3d 2 + 4d + 4) 24	.
	4 Bialgebra structures on free Com-PreLie algebras
	4.1 Tensor product of Com-PreLie algebras

).

Lemma 21. Let A 1 , A 2 be two Com-PreLie algebras and let ε : A 1 -→ K such that:

  Proposition 26. Let H D CM be the subalgebra of H D CK generated by all the elements X i 1 ,...,i k . Then H D CM is a Hopf subalgebra. Proof. Note that N d is a derivation; as N d (X i 1 ,...,i k ) = X i 1 ,...,i k ,d for all i 1 , . . . , i k , d ∈ D, H D CM is stable under N d for any d ∈ D. As the X i 1 ,...,i k are homogenous of degree k: X i 1 ,...,i k • 1 = kX i 1 ,...,i k .

  29. CP (D) and H D CK are, as Hopf algebras, isomorphic to shuffle algebras. Proof. CP (D) is a connected Com-PreLie bialgebra. Moreover, if x ∈ CP (D), homogeneous of degree n, x • ∅ = nx. Hence, as the homogeneous component of degree 0 of P rim(CP (D)) is zero, f CP (D) is invertible. By the rigidity theorem, f CP (D) is, as a Hopf algebra, isomorphic to a shuffle algebra. The proof is similar for H D CK .

Similarly, the Hopf algebra (CP (D), •, ∆) is, as a commutative algebra, freely generated by the set PT 1 (D) of partitioned trees decorated by D with one root. Moreover, if

Consequently, its graded dual is the enveloping algebra of a PreLie algebra g CP (D), described by the following theorem:

Theorem 31. The PreLie algebra g CP (D) is the linear span of PT 1 (D). For any T, T ∈ PT 1 (D), the PreLie product is given by:

Example 8. If D = {1}, forgetting the decorations, in g CP (D): q q = q q , q q q = q q q + q q q ∨ + q ∨ q q . Notations 3. Let T ∈ PT 1 (D). We can write

Up to a change of indexation, we will always assume that T 1 , . . . , T p ∈ PT 1 (D) and T p+1 , . . . , T k / ∈ PT 1 (D). The integer p is denoted by ς(T ).

Proposition 32. As a PreLie algebra, g CP (D) is freely generated by the set of trees T ∈ PT 1 (D) such that ς(T ) = 0.

Proof. We define a coproduct on g CP (D) in the following way:

This coproduct is permutative: indeed,