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Enhanced interfacial deformation in a Marangoni flow: a measure of the dynamical surface tension

We investigate the flows and deformations resulting from the deposition of a water soluble surfactant at a bare oil/water interface. Once the surfactant is deposited, we show that the oil/water interface is deformed with a water bump rising upward into the oil. For a given oil, the maximal deformation -located at the surfactant deposition point -decreases with the oil layer thickness. We also observe a critical oil layer thickness below which the deformation becomes as large as the oil layer, leading to the rupture of this layer and an oil-water dewetting. Experimentally, it is found that this critical thickness depends on the oil density and viscosity.

We then provide an analytical modelization which explain quantitatively all these experimental features. In particular, our analysis allows us to derive a analytical relationship between the vertical profile of the oil-water interface and the in-plane surface tension profile. Therefore, we propose that the monitoring of the interface vertical shape can be used as a new spatially-resolved tensiometry technique.

INTRODUCTION

As a consequence of a surface tension gradient, a bulk flow emerges to compensate this tangential stress : this is known as the Marangoni effect [START_REF] Marangoni | Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen[END_REF][START_REF] Scriven | The Marangoni effects[END_REF]. In practice, various actions can be used to trigger a non-uniform interfacial tension. For instance, a spatially-limited heating of the interface decreases locally the interfacial tension, which consequently creates thermocapillary flows [START_REF] Bratukhin | Thermocapillary convection in a fluid filling a half-space[END_REF][START_REF] Longtin | Laser-induced surface-tension-driven flows in liquids[END_REF][START_REF] Schatz | Experiments on thermocapillary instabilities[END_REF][START_REF] Mizev | Experimental investigation of thermocapillary convection induced by a local temperature inhomogeneity near the liquid surface[END_REF][START_REF] Chraïbi | Thermocapillary flows and interface deformations produced by localized laser heating in confined environment[END_REF]. As well, by depositing a small amount of amphiphilic molecules (or surfactant) at an interface between two phases, a gradient of concentration is created, and so a gradient of surface tension. In the simplest case of a water-air interface and for insoluble surfactants, the spreading of the monolayer at the interface is accompanied by a sharp deformation of the interface and a front which propagates away from the source. Experiments and simulations have especially focused on the scaling regimes describing the position of this front with time [START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF][START_REF] Warner | Fingering phenomena associated with surfactant spreading on thin liquid films[END_REF][START_REF] Dussaud | Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment[END_REF][START_REF] Matar | Dynamics of surfactantassisted spreading[END_REF].

In the case of soluble surfactants, the situation is more complex, though more relevant if one considers many natural and industrial processes. Here, the concentration close to the interface is a dynamical quantity, governed by the convection-diffusion equation. This concentration sets the local value of the surface tension, and thus the viscous tangential stress at the interface, which is the driving force for the flow. This coupling between bulk and interface leads to a large variety of dynamical behaviors, all associated to a surfactant supply at a liquid interface, such as spreading [START_REF] Suciu | The spreading of liquids on liquids[END_REF][START_REF] Halpern | Dynamics and transport of a localized soluble surfactant on a thin film[END_REF][START_REF] Jensen | The spreading of heat or soluble surfactant along a thin liquid film[END_REF][START_REF] Lee | Spreading of surfactant solutions over thin aqueous layers at low concentrations: influence of solubility[END_REF][START_REF] Roché | Marangoni flow of soluble amphiphiles[END_REF][START_REF] Le Roux | Soluble surfactant spreading: How the amphiphilicity sets the Marangoni hydrodynamics[END_REF], self-propulsion [START_REF] Pimienta | Self-propulsion on liquid surfaces[END_REF][START_REF] Nakata | Physicochemical design and analysis of self-propelled objects that are characteristically sensitive to environments[END_REF], oscillation [START_REF] Stocker | Spontaneous oscillations of a sessile lens[END_REF], dynamical dewetting [START_REF] Hernández-Sánchez | Marangoni spreading due to a localized alcohol supply on a thin water film[END_REF], instabilities [START_REF] Troian | Fingering instability in thin wetting films[END_REF][START_REF] Warner | Fingering phenomena created by a soluble surfactant deposition on a thin liquid film[END_REF][START_REF] Hamraoui | Fingering phenomena during spreading of surfactant solutions[END_REF] or droplets emission [START_REF] Keiser | Marangoni bursting: Evaporation-induced emulsification of binary mixtures on a liquid layer[END_REF]. In fact, there are many issues on such surfactant-assisted Marangoni flows which need to be tackle. For instance, to understand these various behaviors, accurate measurements of the interfacial and bulk concentration fields are required; in particular, local and direct measurements of the outof-equilibrium surface tension are still lacking.

In this article, our goal is to go beyond the usual liquidgas interface, by replacing the infinite top air layer by a finite viscous oil one. This is motivated by fundamental aspects, but also to better understand dynamical effects occurring within emulsions and in confined multiphasic flows (like in microfluidic chips). Therefore, we focus here on the dynamics induced when a drop of a concentrated solution of water-soluble surfactant is deposited at a stable interface between oil and pure water. Macroscopic features, easily visible with the naked eye, are then triggered. The oil/water interface is strongly deformed, and we show that the interface deformation decreases with the oil layer thickness. Experimentally, we also find a critical thickness, separating situations where the deformation is big enough to pierce the oil layer, from situations where the water layer remains covered by oil. Then we propose a model quantitatively explaining our observations ; experiments with different oil properties also allow us to determine the limit of the model, in agreement with its assumptions. Interestingly, we show that the height of the oil/water interface at any given point is related to the value of the surface tension at the same point by a simple analytical expression. We evidence that, for all the oil layer thicknesses we tested, the maximal height reached by the oil/water interface at the injection point is in quantitative agreement with this expression, computed using the surface tension imposed locally by the drop, which is known. Our model can then be used to deduce the local surface tension from the interface deformation, anywhere on the interface. In our geometry, we thus propose a new spatially-resolved tensiometry technique based on the optical measurement of the interface deformation, that may be suited to other steady Marangoni flows.

EXPERIMENTAL SETUP

The experiment is performed in a parallelepipedic tank (25.5×45.5×25 cm 3 ) initially filled with several liters of ultra pure water (Millipore range), leading to a water layer thickness H of the order of 10 cm.

A controlled volume of sunflower oil is then poured to produce an oil film of thickness d in the range [START_REF] Bratukhin | Thermocapillary convection in a fluid filling a half-space[END_REF][START_REF] Longtin | Laser-induced surface-tension-driven flows in liquids[END_REF][START_REF] Schatz | Experiments on thermocapillary instabilities[END_REF][START_REF] Mizev | Experimental investigation of thermocapillary convection induced by a local temperature inhomogeneity near the liquid surface[END_REF][START_REF] Chraïbi | Thermocapillary flows and interface deformations produced by localized laser heating in confined environment[END_REF][START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF][START_REF] Warner | Fingering phenomena associated with surfactant spreading on thin liquid films[END_REF][START_REF] Dussaud | Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment[END_REF][START_REF] Matar | Dynamics of surfactantassisted spreading[END_REF][START_REF] Suciu | The spreading of liquids on liquids[END_REF][START_REF] Halpern | Dynamics and transport of a localized soluble surfactant on a thin film[END_REF] mm at the surface of the water. The oil and water phases are denoted respectively by phase 1 and phase 2 in the following. Complementary experiments are also done with a silicone oil (V10) and with hexadecane, for comparisons to the sunflower oil results, to check the role of the water/oil density and viscosity ratio.

For the sunflower oil, the surface tensions γ OA and γ OW , respectively at the oil/air and oil/water interfaces, are measured by the pendant drop technique, and given in Tab. I. The spreading coefficient of the oil on water is S = γ W A -(γ OA + γ OW ) = 15 mN/m, with γ W A = 72 mN/m the surface tension of pure water. This coefficient is positive, which is consistent with the spontaneous spreading of the oil experimentally observed, for every oil thicknesses (as for the two other oils).

The spreading coefficient is still positive when surfactant is added in the water phase, and the oil layer is thus always thermodynamically stable. The oil density ρ 1 is smaller than the water density ρ 2 , as shown is Tab. I, so the two liquid layers are stable in the gravity field.

The experiment consists in the deposition of a drop of a concentrated aqueous solution of Sodium Dodecyl Sulfate (SDS) just above the oil/water interface, without initial velocity. The drop volume is 20 µL, unless otherwise specified, and the concentration is c = 15 cmc (where cmc is the critical micellar concentration, and equal to 8 mM for SDS). After a small delay, the drop coalesces with the pure water phase and suddenly sets the system in an out of equilibrium state. The SDS concentration in the water close to the drop coalescence point becomes larger than the cmc, which locally lowers the oil/water surface tension to its minimal value. Using a pendant drop apparatus, an independent measurement of this surface tension above the cmc provides γ 0 = 1 mN/m. The shape of the oil/water interface is recorded at 125 images/s with a Photron Fastcam set on the side of the tank, and mounted with a 50 mm Nikon camera lens. The system is lighted in transmission with a Phlox light covered by a diffusing sheet (see Fig. 1a). The oil/water interface deformation is then determined by image processing. In some cases, both phases have been seeded with particles to observe qualitatively the velocity fields (see the movie in Sup. Mat.). Additional images have been recorded with a different angle to see the oil/air interface from the top (see Fig. 1b). 

EXPERIMENTAL RESULTS

Time evolution of the oil-water interface

The most striking observation is that the oil/water interface is strongly deformed once the drop has coalesced: a bump of water rises up into the oil phase (see Fig. 1a).

Successive bump shapes are shown in Fig. 2. Note that after a transient during which the bump is growing, its shape eventually remains almost steady for several seconds, before vanishing in typically 1 s. The figure 3 presents this specific dynamics in more details.

The system remains axisymmetric and the oil/water deformation can be described with cylindrical coordinates by the function h 2 (r, t), with r the distance from the drop injection point, and t = 0 when the drop coalesces with the water layer. The reference value at t <0, as well as for large values of r, is h 2 (r, t) = 0. The height h 2 (0, t) at the point of drop deposition is plotted in Fig. 3 (top) as a function of time t, for different oil layer thicknesses. The error bar on this maximal value of h 2 (r, t) is 0.25 mm, corresponding to one pixel size. The bump is higher for thinner oil layers, and a well defined plateau is obtained for a few seconds. t FIG. 2. Successive shape of the bump at the water/oil interface. The delay between the images is 800 ms. In that case the oil layer is thick enough (d=9.5 mm) so that no dewetting occurs.

In Fig. 3 (bottom), we show the bump radius as a function of time for the same experiments. This typical radius is defined as the largest value of r for which a height variation is observable. As the transition is rather smooth, this value has a large uncertainty, of the order of 10%. The plateau is not as stable as for h 2 , but the relative variation remains small during few seconds.

Another important result is that if the oil layer is thinner than a critical thickness d c , the top of the bump reaches the oil/air interface. In that case a dynamically enforced dewetting is observed, as seen in Fig. 1b. The behavior at short times is similar for d > d c and d < d c , but in this latter case the bump height is limited by the oil layer thickness. Dewetting has been reproducibly obtained for d = 6.9 mm and has never been obtained for d = 8.7 mm. We thus define the experimental value of the critical oil layer thickness leading to the dewetting transition as d exp c = 8 ± 1 mm. The velocity field has been qualitatively observed in both phases (see Sup. Mat). The surface tension gradient at the oil/water interface induces an outward flow in the oil and in the water, close to the interface. In steady state, the mass conservation imposes a pressure-driven counter flow in both phases and annular vortices are thus visible around the bump. The typical velocities are of the order of U 1 = 10 -2 m.s -1 in the oil phase, and of the order of U 2 = 5.10 -3 m.s -1 in the water phase.

Steady state for d > dc

In the following we focus on the steady state obtained in absence of dewetting. All the dynamical quantities discussed below are implicitely considered at a time t st in the middle of the steady regime. Especially, h 1 (r) = h 1 (r, t st ) and h 2 (r) = h 2 (r, t st ).

As long as the droplet is not entirely spread, it main- tains the interfacial surfactant concentration at its cmc value close to the coalescence point and the interface is locally saturated with surfactants. At large r, in contrast, the surfactant has diffused in the bulk and the interface is still bare. The driving force, i.e. the surface tension difference along the oil/water interface, is thus constant in time and, after a transient, induces a steady velocity flow and a steady interface deformation.

An example of such steady interface profile, obtained for d = 8.7 mm, is plotted in Fig. 4. It is rather flat in the middle and can be fitted by the phenomenological law

h 2 (r) = h 2,max 2 1 -tanh r -r 0 α , (1) 
with h 2,max the maximal value of h 2 (r), α the characteristic lateral extension of the transition between h 2 = h 2,max and h 2 = 0, and r 0 the lateral extension of the bump, close to the steady experimental value of R (see Fig. 3bottom). For a given oil, our main control parameter is the oil layer thickness d, and the value of h 2,max is reported as a function of d in Fig. 5. This height increases when the oil layer height decreases, and thus becomes equals to d at a critical thickness d = d c . This is at the origin of the dewetting transition corresponding to h 2,max = d c . 2,max of eq. 20 without adjustable parameters; dot-dashed line: line h2,max = d obtained is case of dewetting (systematic dewetting is obtained for d=6.9 mm) ; dashed line: critical value dc leading to the dewetting transition, given by eq. 21 (and by the intersection of the solid and dot-dashed lines).
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MODELIZATION

The balance between surfactant injection by the droplet, convection by the interface velocity, and diffu-sion toward the water bulk determines a steady concentration field, and thus the local surface tension, as already observed in [START_REF] Roché | Marangoni flow of soluble amphiphiles[END_REF]. In this two fluid layers set-up, the surface tension is directly coupled to the deformation of the oil/water interface.

We developed an axisymmetric model to predict the relationship between this interface deformation and the surface tension in the steady regime. The notations we use are given in Fig. 6. The relevant physico-chemical quantities and geometrical characteristics are summarized in Table I, as well as the order of magnitude of the control parameters and dynamical quantities used to justify the assumptions of the model. The characteristic velocities have been obtained by a simple observation of particles seeded in the flow (see Supp. Mat.). FIG. 6. Scheme of the studied system.

Flow in the oil phase

The flow in the oil phase occurs in a very flat domain of typical height d ∼ 10 -3 m and typical lateral extension R ∼ 10 -2 m. This justifies the use of the lubrication equation:

η 1 ∂ 2 v 1 ∂z 2 = ∂p 1 ∂r .
(

) 2 
In this quasi-parallel flow, the vertical pressure gradient is only controlled by the gravity force and ∂ z p 1 = ρ 1 g. The deformation of the oil/air interface is much smaller than the deformation of the oil/water interface and h 1 is at most of the order of 1 mm. The Laplace pressure jump at the interface scales as γ OA h 1 /R 2 ∼ 10 -2 Pa and is negligible in comparison with the hydrostatic pressure. The pressure at the position z = h 1 (r) is thus the atmospheric pressure, taken as the reference pressure. We deduce p 1 (z, r) = ρ 1 g (h 1 (r)-z) and ∂ r p 1 = ρ 1 g dh 1 /dr, so

η 1 ∂ 2 v 1 ∂z 2 = ρ 1 g dh 1 dr . (3) 
The tangential stress continuity at the two interfaces imposes:

η 1 ∂v 1 ∂z = 0 for z = h 1 , (4) 
dγ dr + η 1 ∂v 1 ∂z -η 2 ∂v 2 ∂z = 0 for z = -d + h 2 . (5) 
At the oil/water interface, v 2 = v 1 = v i ∼ 10 -2 m/s. In the oil phase, the velocity gradient scales as v i /d (or larger close to the dewettting transition) so η 1 ∂v 1 /∂z ∼ 5 10 -2 Pa. In the water phase, a viscous boundary layer is generated by the interfacial velocity, with a typical thickness w = η 2 R/(ρ 2 v i ) ∼ 1 mm. We thus have η 2 ∂v 2 /∂z ∼ η 2 v i / w ∼ 5 10 -3 Pa, which is much smaller than the stress in the oil phase. Neglecting this last contribution we get

dγ dr + η 1 ∂v 1 ∂z = 0 for z = -d + h 2 . (6) 
This assumption allows to decouple the flows in both phases and to solve analytically the problem. It limits the validity domain of the model to viscous oils, as discussed in the next section.

By successive integrations of eq. 3, we obtain the velocity field and the radial flux q 1 , using the boundary condition eq. 4:

∂v 1 ∂z = ρ 1 g η 1 dh 1 dr (z -h 1 ) , (7) 
v 1 = ρ 1 g 2 η 1 dh 1 dr (z -h 1 ) 2 + K , (8) 
q 1 = h1 h2-d v 1 dz = ρ 1 g 6 η 1 dh 1 dr δ 3 + Kδ . (9) (10) 
with δ = h 1 -h 2 +d and K = -ρ 1 gd r h 1 δ 2 /(6 η 1 ) an integration constant, determined with the mass conservation condition in steady state q 1 = 0. Additionally, the boundary condition at the oil/water interface eq. 6 provides a relation between the surface tension gradient and the height gradient:

ρ 1 g dh 1 dr δ = dγ dr . ( 11 
)
This relation provides the profile h 1 as a function of the local surface tension and the local film thickness δ. We find that h 1 is negative and of order of magnitude h 1,max = ∆γ/(ρ 1 g(d -h 2 )) = 0.5mm. From eq.8 and 11 we can express the oil velocity as a function of the surface tension gradient

v 1 = 1 6 δ η 1 dγ dr 3 (z -h 1 ) 2 -δ 2 , ( 12 
)
and the interface velocity at the oil/water interface

v i = 1 3 η 1 dγ dr δ . ( 13 
)
This velocity is of the order of 1 cm/s, consistently with the experimental observations. To summarize, the oil is pulled outward along the oil/water interface by the Marangoni force. In steady state, the oil/air interface is sufficiently deformed so that the hydrostatic pressure induces an inward counter flux that just balances the Marangoni flux. The resulting velocity field is shown in Fig. 6.

Profile of the water/oil interface

The profile h 2 (r) in the steady regime is much larger than h 1 (r). It can be deduced from the circulation of the pressure gradients along the closed loop depicted in Fig. 6. Following this loop, we get

-ρ 2 g(L + h 2 (r)) + ∆P dyn AB + ∆P cap B -ρ 1 gδ + ∆P cap C + ρ 1 gd + ρ 2 gL + ∆P dyn GH + ∆P dyn HA = 0 , (ρ 1 -ρ 2 )gh 2 (r) -ρ 1 gh 1 (r) + ∆P dyn + ∆P cap = 0 , (14) 
with ∆P dyn the viscous and inertial contributions to the pressure in the water phase, along the different segments.

We only consider segments in water, as the dynamical contribution of the pressure in the oil phase has been shown to be negligible in the previous section. ∆P cap is the global contribution of the Laplace pressure jumps. The orders of magnitude determined below show that both ∆P dyn and ∆P cap are negligible. The radial flux (per unit length in the orthoradial direction) in the water phase boundary layer scales as q = v i w ∼ 10 -5 m 2 /s. Further away from the interface, an inwards counter flow ensures the mass conservation of the water phase. Its relevant vertical characteristic length 2 can be either the water layer thickness H = 10 cm or the bump radius R ∼ 5 cm. As they are of the same order, we assume 2 = R in the following. As the inward radial flux q in = U 2 2 must balance q we get U 2 of the order of the mm/s as expected. The Reynolds number associated to this counter flow is Re= ρ 2 RU 2 /η 2 ∼ 250, so the dynamical pressure at the origin of the flow scales as ∆P dyn ∼ ρ 2 U 2 2 ∼ 10 -2 Pa. Finally, h 1 (r) is of the order of 0.5 mm so the order of magnitude of ∆P cap can be estimated as

∆P cap C ∼ -γ OA h 1 /R 2 ∼ 2.5 10 -4 Pa and ∆P cap B ∼ γ 0 h 2 /R 2 ∼ 10 -4 Pa.
These values must be compared with the gravitational contribution ρ 1 gh 1 ≈ 5 Pa, which is much larger. The dynamical and capillary terms are thus negligible and eq. 14 becomes

h 2 (r) = - ρ 1 ρ 2 -ρ 1 h 1 (r) . (15) 
These results express the fact that, in our experimental regime, the water motion is driven by negligible forces. The oil/water interface thus simply follows the oil/air interface deformation, imposed by the Marangoni flows in the oil phase, in order to maintain the hydrostatic pressure field in the water phase. Consequently, the oil/water interface deformation is an inverted image of the oil/air interface deformation, with a magnification coefficient ρ 1 /(ρ 2 -ρ 1 ) ∼ 10.

Inserting eq. 15 in eq. 11 we obtain

∂γ ∂r = ρ 1 2ρ 2 ∆ρg ∂ ∂r d - ρ 2 ρ 1 h 2 2 , (16) 
γ(r) = γ OW - ρ 1 2ρ 2 ∆ρg d 2 -d - ρ 2 ρ 1 h 2 (r) 2 . (17) 
This expression predicts that the local, out of equilibrium, surface tension can be measured by the simple observation of the interface deformation, of centimetric order. Such relation has also been established for Marangoni flows driven by thermal gradient in [START_REF] Robert De Saint | Optical flow focusing: Light-induced destabilization of stable liquid threads[END_REF][START_REF] Rivière | Ecoulements thermogravitaires et thermocapillaires induits par chauffage laser dans des couches liquides[END_REF] in a different experimental geometry. Equivalently, eq. 17 can be inverted to obtain a prediction for h 2 (r) as a function of the local surface tension:

h 2 (r) = ρ 1 ρ 2 d -d 2 -(γ OW -γ(r)) 2ρ 2 gρ 1 ∆ρ 1/2 . ( 18 
)
For small enough deformations, a Taylor expansion leads to the simpler expression:

h 2 (r) = γ OW -γ(r) gd∆ρ (19) 
At the position r = 0, the surface tension is the one of the injected drop, i. e. γ 0 , and the height of the bump is maximal:

h 2,max = ρ 1 ρ 2 d -d 2 - 2∆γρ 2 gρ 1 ∆ρ 1/2 . ( 20 
)
At large d, a simplified expression is h 2,max ≈ ∆γ/(gd∆ρ), consistently with eq. 19.

Dewetting occurs when h 2,max reaches its critical value h 2,max = d + h 1 (0). Using eq. 15, this leads to h 2,max = d ρ 1 /ρ 2 . From eq. 20 we obtain the critical oil layer thickness for dewetting

d theo c = 2∆γρ 2 gρ 1 ∆ρ . (21) 
Finally, the outcomes of this model are the quantitative predictions of a small deformation downward of the upper oil/air interface h 1 , and a large deformation upward of the oil/water interface h 2 , which is simply the inverted image of h 1 , with a magnification factor ρ 1 /(ρ 2 -ρ 1 ). This factor can become very large if the density of the two phases are close enough, and makes the deformation of the water/oil interface much easier to observe than the one of the oil/air interface. If the oil phase is viscous enough, the local surface tension at the oil/water interface is related to this deformation by a simple analytical expression.

COMPARISON WITH EXPERIMENTS

First, the modelization provides predictions which are qualitatively in agreement with our observations and explains these non-intuitive behaviors. The fact that the water bump is rising upward turns out to be a direct consequence of the small downward deformation of the oil-air interface. As well, the magnification factor ρ 1 /(ρ 2 -ρ 1 ) is crucial as it allows to easily visualize h 2 , while h 1 is impossible to see with eyes.

Quantitatively, we can first compare the critical oil layer thickness leading to the dewetting transition. For the sunflower oil, all the physical quantities in the right hand side of eq. 21 have been measured, and their values are reported in Table I. Using these values we get the prediction d theo c = 8.2 mm, in good agreement with our experimental observation d c = 8 ± 1 mm.

For further comparisons, complementary experiments have been performed with different oils. With V10 of viscosity η V 10 = 10 mPa•s, we obtained d c /d theo c = 0.95, again in good agreement. However, with hexadecane of viscosity η hex = 3 mPa•s, a significant difference between theoretical and experimental results occurs. Indeed we get d c /d theo c = 0.6. It then seems that the critical oil viscosity below which the flow decoupling assumed in eq. 6 is no longer valid is thus of the order of few mPa•s.

We also increased the drop volume, and checked that the critical thickness is independent of this parameter. However, if the drop becomes too small, or not concentrated enough, the dewetting transition occurs for a smaller oil thickness value. This is consistent with a lower value of ∆γ, if the drop does not insure a local concentration above the CMC.

For oil thicknesses above the critical value d c , we can also test eq. 20 which provides a prediction for the maximal deformation height as a function of d. This prediction is plotted in Fig. 5 and is in a quantitative agreement with the experimental data. Note that the fitting is done with no adjustable parameters.

Following the agreement between the data and the model shown in Fig. 5, our more general prediction (eq. 18) can therefore be tested to determine the dynamical surface tension profile over the whole oil/water interface, using its reciprocal form eq. 17. This prediction assumes that the surface tension at large r is at its equilibrium value γ OW and deduces the surface tension at any other radial position from the oil/water interface deformation. We present in Fig. 7 the surface tension distribution obtained from the interface profile shown in Fig. 4.

As already proved by Fig. 5, the predicted value for the oil-water surface tension at r = 0 agrees with the lowest possible value of the surface tension γ 0 (the one found above the cmc, and independently measured). The other surface tension values, at intermediate r cannot be compared to other experimental data: it is impossible to accurately resolve in space the dynamical surface tension with conventional techniques, as we have done here with this new approach. 4, using eq. 17. The error bar is given by the vertical distance between the red dots. The black line is obtained from the smooth fit of the interface profile eq. 1, whereas the red dots are obtained from the raw data.
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CONCLUSION

We present a surfactant spreading experiment at the oil/water interface. Under the Marangoni stress, we measure and explain that a water bump rises oppositely to the gravity, with a vertical amplitude which depends on the oil layer thickness. In the case of no dewetting, we provide an analytical expression relating the vertical oil/water interface deformation to the in-plane local surface tension. The dynamical surface tension generated by a flow in a diphasic system with surfactants is almost impossible to measure with conventional techniques. Our set-up allows to have an indirect, but simple, optical measurement of the out-of-equilibrium surface tension, for steady or quasi-steady regimes. More importantly, this technique takes advantage of a magnification effect scaling as ρ/∆ρ (∆ρ being the density difference between the two phases), which amplifies the oil/water interface deformation. This density difference can be adjusted to very small values in order to measure tiny surface tension variations. The model can be extended to the case of surface tension gradients created at the oil/air interface and leads to the same conclusions. Preliminary tests with an oil soluble surfactant deposited at the oil/air interface have indeed evidenced a rising bump at the water/oil interface. We thus believe that this two fluid layers set-up may be used as an efficient tensiometry technique for a large class of steady Marangoni flows. Finally, for small thicknesses, the water bump grows so much that it pierces the oil layer, inducing a Marangoni-driven liquid-liquid dewetting. The hole open in the oil layer can last up to hours. The origins of this stability, linked to the trapping of insoluble species at the water-air interface, and other properties and perspective of this experimental configuration will be discussed in a forthcoming paper.

FIG. 1

 1 FIG. 1. a) Side view of the oil/water interface after the injection of a 50 µL SDS drop at 15 CMC, with a oil layer of thickness d = 9 mm. b) Top view of the oil/air interface, showing the dewetting of the oil layer on a centimetric disc (d = 5 mm, 20 µL SDS drop at 15 CMC).
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 63 FIG. 3. Evolution of the oil/water interface shape as a function of time for different oil layer thicknesses d, for d > dc (no dewetting). From top to bottom (and blue to green on line) d = [8.7; 9.5; 10.4; 11.3; 12.1; 13] mm. (Top) Maximal height of the bump h2(0, t) ; (Bottom) Bump radius R.
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 6485 FIG. 4. Steady interface profile h2(r) for an oil layer thickness d = 8.7 mm. The error bar is 0.25 mm, given by the pixel size. The black line is a phenomenological fit (eq. 1) with h2,max = 5.2 mm, α = 8.5 mm and r0 = 3.15 cm.
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 257 FIG.7. Surface tension profile deduced from the interface deformation shown in Fig.4, using eq. 17. The error bar is given by the vertical distance between the red dots. The black line is obtained from the smooth fit of the interface profile eq. 1, whereas the red dots are obtained from the raw data.