
HAL Id: hal-01714440
https://hal.science/hal-01714440

Submitted on 21 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Instantiation of GGP Game Descriptions Using
Prolog with Tabling

Jean-Noël Vittaut, Jean Méhat

To cite this version:
Jean-Noël Vittaut, Jean Méhat. Fast Instantiation of GGP Game Descriptions Using Prolog with
Tabling. ECAI 2014, 21st European Conference on Artificial Intelligence, Aug 2014, Prague, Czech
Republic. �hal-01714440�

https://hal.science/hal-01714440
https://hal.archives-ouvertes.fr


Fast Instantiation of GGP Game Descriptions
Using Prolog with Tabling

Jean-Noël Vittaut 1 and Jean Méhat 2

Abstract. We present a method to instantiate game descriptions
used in General Game Playing with a Prolog interpreter using
tabling. Instantiation is a crucial step for speeding up the interpre-
tation of game descriptions and increasing the playing strength of
general players. Our method allows us to ground almost all of the
game descriptions present on the GGP servers in a time that is com-
patible with the common time settings of the GGP competition. It
instantiates more rapidly than previous published methods.

1 INTRODUCTION

General Game Playing (GGP) aims at conceiving programs capable
of playing a large variety of games without knowing the rules in ad-
vance. The Game Description Language (GDL) [3] has been used to
communicate the rules of the game to be played at the beginning of
a match in the General Game Playing competition since 2005. GDL
allows to describe combinatorial perfect information games. It has
also been extended to handle incomplete and imperfect information
games (GDL-II). It uses first order logic and is similar to Datalog
with negation as failure. Its syntax consists of Lisp S-expressions. A
game is described with a set of facts and rules; a few keywords are
reserved for logic and game-specific features [3].

Fast interpretation of GDL is important because it can significantly
improve the strength of a player. An approach to speed up a reasoner
is to ground the rules and build a Propositional Net [1].

We use the tabling engine built in a Prolog interpreter. Tabling
consists in storing answers for subgoals and reusing them whenever
the same subgoal is called again. At the cost of a modification of the
unification process, it avoids redundant sub-computations and deals
with infinite loops. We use here the tabling as implemented in the
YAP Prolog interpreter because of its performance, its availability
and our familiarity with this interpreter [4], [5].

2 INSTANTIATION OF GDL RULES

Cleaning step The instantiation starts with a cleaning step where
the explicit or operator, which has been deprecated in GDL since
2007, is removed by rewriting all the rules into a disjuctive form.

Adding input and base predicates The input and base
predicates are used to enumerate all the moves and facts that may
be used in any reachable game state. We add them to the game de-
scriptions when they are missing.

1 LIASD - University of Paris 8, France, email: jnv@ai.univ-paris8.fr
2 LIASD - University of Paris 8, France, email: jm@ai.univ-paris8.fr

These predicates are a recent addition to GDL and we suppose
they were introduced to facilitate the instantiation of game descrip-
tions. Actually, different descriptions of these predicates can lead to
dramatic differences between grounded game descriptions, for in-
stance the input predicate of the Breakthrough game description is
defined more lazily on the Tiltyard server than on the Stanford server.
It leads to a grounded description that contains 20 times more rules.

We compute them using either an iterative method equivalent to
the one used by Kissmann et al. [2] or a one step method equivalent
to the one we are describing for the instantiation. The two methods
perform similarly with a slight advantage for the second one that uses
tabling.

Eliminating not, renaming true and does We distinguish the
dynamic predicates depending on the state of the game from the re-
maining static ones, the instantiated values of which are independent
from the state of the game and can be computed once and for all upon
receiving the game description.

From each rule R, we construct a new rule g(R) by removing
every (not T) term where T is a dynamic term; renaming ev-
ery (true T) and (does T1 T2) term respectively with (base
T) and (input T1 T2).

Removing not in dynamic predicates allows us to compute any
possible instantiation without risking an elimination by the negated
term. It is a safe operation since GDL guarantees that any negated
term always has to be fully instantiated. A drawback is that the pro-
cess will produce useless grounded rules, since the not operator is
never checked. This transformation allows us to ground all the rules
in one pass.

Removing static terms Terms formed on static predicates do not
need to appear in the instantiated rules since their truth is known
regardless of the state of the game: if true they can be removed; if
false the entire rule can be discarded; conversely if they appear within
a not, they can be removed if false and the rule can be discarded if
true. Consequently, we compute a rule s(R) from the initial rule R
by removing any static term or its negation from R.

Adding the side effect and introducing a new symbol The rules
g(R) and s(R) are combined to produce the two new rules that will
be part of our final grounding program. Given a rule g(R) of the form
(<= (p U1 . . . Up) T1 . . . Tn) we derive the two new rules:

(<= p# (U1 . . . Up) T1 . . . Tn (store s(R)))
(<= (p U1 . . . Up) (p# U1 . . . Up))

where p is the original predicate symbol of the conclusion of g(R).
The store predicate has the side effect of storing the s(R) instanti-



ated rule in a data structure shared between the Prolog interpreter and
the driver program; it always evaluates as true. p# is a new unique
symbol, different for each processed rule. It is necessary to prevent
the tabling engine from tabling rules with side effects because it
would lead to missed instantiations: the rule including the side ef-
fect is not tabled while the second is. These two rules are logically
equivalent to the rule g(R).

Instantiation By querying all the solutions to the tabled predi-
cates, the store predicate inserts instantiated rules into the shared
data structure.

3 EXPERIMENTAL RESULTS
We tested the instantiation of the rules on all of the 246 games that
were active in February 2014 on the Dresden server 3. The experi-
ments were run on one core of an Intel Xeon E5-4610 2.40GHz with
520GB of RAM. We measured that our method needs about 500MB
to compute one million instantiated rules. We used YAP 6.2.2 Prolog
interpreter as a library for our driver program written in C++.

In figure 1 we plotted the time performance of our grounding
method. The time of the step computing input and base is not
taken into account but we measured that it takes less than half
the time of the whole instantiation process, demonstrating that our
method does not need these predicates to be included in game de-
scriptions. We represented the percentage of games that can be in-
stantiated within the time budget represented in the x-axis. 24% of
the games were instantiated in less than 100ms, 72% in less than one
second and 94% in less than one minute. The remaining 6% that were
grounded in more than one minute contained more than 107 rules and
facts. The processing of three games was halted after 30 minutes of
computation.

Figure 2 demonstrates that the time to ground increases almost
linearly with the size of the grounded game description when it is
greater than 104. We also observed that a significant part of the time
is used to translate the fluents from the Prolog internal representation
into the GDL representation in the shared data structure.

We compared our grounder with the GGPBase flattener, a freely
distributed GDL grounder4. The time needed by the flattener seemed
to increase at least quadratically with the size of the grounded pro-
gram whereas the time needed by our method has been established
to increasing linearly.

We also compared our method with the two approaches presented
by Kissmann and Edelkamp in [2]. They were able to instantiate
about 96 of 171 game descriptions in less than one minute with their
Prolog-based approach, and 90 of 171 with their method using de-
pendency graphs which are proportions that we attain in less than
one second. Our method appears to be of two orders of magnitude
faster when the instantiation time becomes significant.

4 CONCLUSION
We have demonstrated that it is possible to ground almost all the
game descriptions found on the GGP servers in a time span compat-
ible with the current GGP competition time settings. This relies on
the use of tabling in a Prolog interpreter.

We have also established that the new predicates input and
base can be considered as superfluous. The few game descriptions

3 The Dresden server is available at http://ggpserver.general-game-playing.de
4 The set of GGPBase Java libraries is distributed at

http://www.ggp.org/developers/players.html

in which they can be helpful have a grounded size that is so large
that building alternative representations such as Propositional Nets is
problematic. Tweaking the Game Description Language for specific
tasks is somewhat dubious since the description language should be
as agnostic as possible in relation to methods that could be used by
players.

REFERENCES
[1] Michael Genesereth and Michael Thielscher, General Game Playing,

2013. Available at http://logic.stanford.edu/ggp/chapters/cover.html.
[2] Peter Kissmann and Stefan Edelkamp, ‘Instantiating general games us-

ing prolog or dependency graphs’, in KI 2010: Advances in Artificial
Intelligence, eds., Rüdiger Dillmann, Jürgen Beyerer, UweD. Hanebeck,
and Tanja Schultz, volume 6359 of Lecture Notes in Computer Science,
255–262, Springer Berlin Heidelberg, (2010).

[3] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and
Michael Genesereth, ‘General game playing: Game description language
specification’, Technical report, (2008). Most recent version should be
available at http://games.stanford.edu/.

[4] Ricardo Rocha, Fernando Silva, and Vıtor Santos Costa, ‘A tabling en-
gine for the YAP prolog system’, in Proceedings of the 2000 APPIA-
GULP-PRODE Joint Conference on Declarative Programming (AGP
2000), La Habana, Cuba (December 2000), (2000).

[5] Ricardo Rocha, Fernando Silva, and Vı́tor Santos Costa, ‘Dynamic
mixed-strategy evaluation of tabled logic programs’, in Logic Program-
ming, 250–264, Springer, (2005).

Figure 1. Percentage of instantiated game descriptions that were grounded
within the time budget in the x-axis.

Figure 2. The number of generated rules as a function of instantiation time
for the 243 successfully instantiated games.


