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The composition of ultra-high energy cosmic rays is still poorly known and constitutes a very important topic in the field of high-energy astrophysics. Detection of ultra-high energy cosmic rays is carried out via the extensive air showers they create after interacting with the atmosphere constituents. The secondary electrons and positrons within the showers emit a detectable electric field in the kHz-GHz range. It is possible to use this radio signal for the estimation of the atmospheric depth of maximal development of the showers X max , with a good accuracy and a duty cycle close to 100%. This value of X max is strongly correlated to the nature of the primary cosmic ray that initiated the shower. We show in this paper the importance of using a realistic atmospheric model in order to correct for systematic errors that can prevent a correct and unbiased estimation of X max .

Introduction

Recently a lot of efforts have been put into determining the mass composition of cosmic rays using the radio signal [START_REF] Bezyazeekov | Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex[END_REF]2,[START_REF] Gaté | X max reconstruction from amplitude information with AERA[END_REF]. Several methods exist by now with different approaches but the goal is the same: reconstructing the atmospheric depth of the shower maximum, X max , where the number of particles is maximum. This atmospheric depth is highly correlated to the mass of the primary cosmic ray. To be competitive, the uncertainty on its estimation should be close to or better than that achieved with the fluorescence technique (∼ 20 g/cm 2 , see [START_REF] Abraham | Measurement of the Depth of Maximum of Extensive Air Showers above 10 18 eV[END_REF]). The composition of the highest-energy cosmic rays (above 1 EeV) is still poorly known, since it is difficult to measure composition using a surface detector that only samples the shower at ground level. Besides, the fluorescence light technique, more apt for composition measurements, has a duty cycle of the order of 14% [START_REF] Abraham | The Fluorescence Detector of the Pierre Auger Observatory[END_REF], making it difficult to provide X max measurements for a large number of showers at the highest energies. The radio technique, consisting in the measurement of the electric field induced by the extensive air showers created by cosmic rays, could be an excellent alternative to obtain the X max with an almost 100% duty cycle. Extracting the X max using the radio signal relies on an atmospheric model. The electric field emission is highly beamed towards the direction of propagation of the shower and the shape of its distribution at the ground level depends on the distance between the point of maximum emission and the shower core. This property can be exploited to reconstruct X max from the radio signal. However, to make this method accurate, one needs to know the atmospheric depth corresponding to a given distance with precision. The electric field measured by the antennas strongly depends on the characteristics of the atmosphere in which secondary shower particles evolve: air density, air refractive index at radio frequencies, temperature, pressure and humidity. For a long time, simulation codes computing this electric field assumed a standard atmosphere. Nowadays, with high precision measurements on large radio arrays running continuously such as AERA [START_REF] Glaser | Results and perspectives of the auger engineering radio array[END_REF], it has become important to refine this atmospheric model. Indeed, it is clear that the atmospheric characteristics vary significantly with time (day/night effect and seasonal variations) and these variations are responsible for systematic uncertainties that can prevent an accurate estimation of the X max . Ideally, we need to know the atmospheric state at the time a shower is detected. This is possible using the Global Data Assimilation System [START_REF][END_REF] (GDAS) data. In this paper, we show how we use these data together with a standard atmospheric model for the highest altitudes to compute an accurate air density model as a function of altitude at the time of the detection of the event. The knowledge of the air density and humidity ratio also allows to compute the realistic air refractive index which is needed for the amplitude and time structure of the signal. Several descriptions of the atmosphere are in use in different simula-tion codes such as SELFAS [START_REF] Marin | Simulation of radio emission from cosmic ray air shower with SELFAS2[END_REF], ZHAireS [START_REF] Alvarez Muñiz | Monte carlo simulations of radio pulses in atmospheric showers using zhaires[END_REF] and CoREAS [START_REF] Huege | Full Monte Carlo simulations of radio emission from extensive air showers with CoREAS[END_REF]. We show that the choice of the atmospheric model induces uncertainties in the atmospheric depths up to some tens of g/cm 2 which is comparable to the uncertainty on the X max obtained with the fluorescence data. The paper is organized as follows. In section 2, we briefly present the geometrical description of the shape of the Earth and its atmosphere and the atmospheric depths computations. In section 3 we describe the GDAS data and its use to build a realistic atmospheric model that we will use to calculate the atmospheric depths and the air refractive index. We compare the results with those obtained assuming the basic US Standard model [11]. In section 4 we quantify the influence of the air refractive index and air density profiles calculated with the GDAS data on the produced electric fields. Then, in section 5 we study the case of a simulated shower which develops in the atmospheric conditions of a sample day. We show that using the US Standard model on the X max estimation leads to biased results, unless we use the same atmospheric conditions than those of the day and time of the detected (here simulated) event. In this paper, we will note V the shower axis and B the geomagnetic field.

Geometry of the atmosphere

Usually, the shape of the atmosphere is taken as flat or spherical. The spherical shape is taken into account when dealing with inclined showers, typically for zenith angles θ 60 • . In Fig. 1, we present both descriptions. The atmospheric depth at distance from observer O and corresponding to an elementary path d is given by dX slant = ρ(z( )) d , where ρ is the air density and z the altitude above sea level. In the flat approximation dz = d cos θ where θ is the zenith angle -between the vertical at O and (OM ) -so that dX slant = ρ(z) dz/ cos θ = dX v / cos θ, where dX v is the vertical elementary atmospheric depth. After integration we obtain:

X slant ( ) = X v (z( ))/ cos θ. (1) 
X v (z) represents the vertical atmospheric depth; it is known as the Linsley's parameterization when considering the US Standard model and provides the integrated atmospheric depth traversed vertically from "infinity" (i.e. where ρ is negligible, before entering the atmosphere) to altitude z. The flat approximation is thus correct for vertical showers but considering the accuracy that radio methods intend to achieve, a comparison to a spherical description is necessary for inclined showers. The expression of the atmospheric depth in Eq. 1 does not apply when θ = 0 because the atmospheric layers are curved. Moreover at a position M , the zenith angle θ is not the same than the angle θ at O (see Fig. 1 right). We consider an observer O at the altitude h. The radius of the Earth is denoted R. A point M on the shower axis is located at an altitude z (above the sea level). The zenith angle at M depends on its position along the shower axis: it is θ for M = O (corresponding to an observer located at an altitude h). A simple geometrical calculation gives:

= (R + z) 2 -(R + h) 2 sin 2 θ -(R + h) cos θ z = 2 + (R + h) 2 + 2 (R + h) cos θ -R cos θ = 1 - R + h R + z 2 sin 2 θ
The atmospheric slant depth is calculated numerically by integrating the atmosphere density along the shower axis:

X slant ( ) = ∞ ρ(z( )) d (2) 
Where ρ(z( )) is the air density at a given altitude z corresponding to a particle-to-observer distance along the shower axis. A comparison is made between the two descriptions in Fig. 2: we choose an observer O at sea level and a shower with a zenith angle θ. The atmopheric depth crossed by the shower from outer space up to a distance to the observer along the axis is computed either with the flat approximation or the spherical description. Both descriptions give equal results for a vertical shower (θ = 0 • ). Using the flat approximation leads to errors of the order of 10 g/cm 2 for zenith angles larger than 60 • . In the seek of accuracy, we should be very cautious with the flat approximation, even for not too inclined showers. In SELFAS, we always use the spherical description, independently of the zenith angle.

Apart from the atmospheric depths, we also checked the effect on the electric field computations. We found that one really needs to consider the spherical shape only for inclined showers (θ 60 • ).

Physico-chemical aspects of the atmosphere

The variations of the meteorological conditions are studied for the CO-DALEMA experiment. In the following sections, only data for the location of Nançay, France, are presented.

The GDAS data

The characteristics of the atmosphere that are needed for computing the electric field emitted by air showers are the air refractive index (η) and density (ρ) at any altitude z. These parameters depend on relative humidity (R h ), temperature (T ) and total pressure (P ) that vary on a daily basis.

As an illustration, we present in Fig. 3 the relative humidity as a function of the altitude from the GDAS data on March 18, 2014. We see that at a given altitude, the variations are very important according to the time of the day and consecutively, the same holds for the air density and index values. In Fig. 4, we show the same plot but for the temperature (top) and pressure (bottom). For temperature, above an altitude of 3 -4 km the variations are negligible as a function of time. The pressure is not varying significantly over time at fixed altitude and can also be taken as constant with time. However the latter quantities can vary more importantly over longer timescales. In this example of a single day, we can conclude that the precise knowledge of the pressure, temperature and relative humidity is mandatory in order to accurately compute the air index and density profiles. The values displayed in Figs. 3 and4 were obtained from the GDAS which provides a database of measurements of physicochemical characteristics of the atmosphere. Each GDAS file contains a week of data and one must extract the ones corresponding to the desired location. The files contain measurements for every 3 hours at the surface and 23 geopotential heights up to an altitude of z GDAS max = 26 km above sea level.

The results of the simulation of the EAS-induced electric field depend on the air index and density models of the atmosphere in which the shower develops. The adopted approach to provide SELFAS with realistic air profiles along with a proper geometrical description of the atmospheric layers from the GDAS data is explained in the next sections. Detailed comparisons between the US Standard model and the GDAS profiles, as well as the consequences on the X max reconstruction will be presented. Among all the available parameters provided by the GDAS, we use the pressure P in hPa, the geopotential height Z g in gpm 1 , the temperature T in K and the relative humidity R h in %. As the GDAS provides data at given geopotential meters one must convert them into meters above sea level. The conversion formula is provided in the Appendix.

Air density profile

The air density as a function of the altitude is computed from the ideal gas law, taking into account the relative humidity:

ρ(z) = p d (z(Z g , φ))M d + p v (z(Z g , φ))M v R T (z(Z g , φ)) , (3) 
where z(Z g , φ) is the altitude above sea level corresponding to the geopotential altitude Z g at a latitude φ, p d and p v are the partial pressures of dry air and water vapor, M d and M v are the molar masses of dry air and water vapor, T (in K) is the temperature and R is the universal gas constant. The formula used to calculate the saturation vapor pressure p sat can be found in [START_REF] Buck | Buck research cr-1a user's manual[END_REF] and is a modification of a previous parameterization explained in [START_REF] Buck | New equations for computing vapor pressure and enhancement factor[END_REF]:

p d = P -p v with p v = R h p sat and
p sat = 6.1121 exp 18.678 -T 234.5

T 257.14 + T (T in • C) ( 4 
)
This formula is accurate in the range [-80; +50] • C which is suitable in our case if we refer to Fig. 5 that shows the temperature profiles as a function of the altitude in Nançay for the year 2014. The minimum temperature during that year in the range [0; z GDAS max ] km is -75 • C and the maximum is 40 • C. We compare the temperature profiles from sea level to an altitude of z GDAS max = 26 km as Eqs. 3 and 4 are only used up to this altitude. In SELFAS we need to know the air density profile up to an altitude of 100 km, well above the GDAS limit because showers can start to develop well above z GDAS max . Between sea level and z GDAS max , we obtain the air density at any altitude by interpolation of the 23 GDAS data points. Above z GDAS max , we use the US Standard air density profile as described in [11] with a scaling factor (f B ) to ensure continuity with the GDAS data, calculated as:

f B = ρ GDAS (z GDAS max ) ρ USstd (z GDAS max ) (5) 
The US Standard profile can be retrieved easily from [14] up to 100 km of altitude but as a function of geopotential meters that one has to convert again in geometric altitude. After this procedure, the air density profile is known from sea level to an altitude of 100 km:

• if z( ) > z GDAS max : ρ(z( )) = ρ USstd (z( )) × f B • if z( ) < z GDAS max : ρ(z( )) = ρ GDAS (z( )) (6) 
In order to estimate the seasonal and day/night systematics, a comparison is made for every possible GDAS profiles for the year 2014 (i.e. one profile every 3 hours along the year).

The extrema and standard deviation of the relative differences in the air density between all profiles from GDAS available in 2014 and the US Standard model are shown in Fig. 6 (bottom). We show the differences up to z GDAS max (26 km) for better visibility, the differences being constant beyond this altitude (see Eqs. 6). One can see that the relative difference in air density during year 2014 can reach ±8% below 8 km, up to 15% in the range [10; 20] km. These deviations affect the atmospheric depths and the air refractive index.

In order to accurately compute the atmospheric depth we have to use the spherical description together with the realistic estimation of the air density. This means that for a shower arriving from "infinity" (out of the atmosphere, where ρ = 0) up to a distance from the observer measured along the shower axis (see Fig. 1), the total atmospheric depth is given by:

• if z( ) > z GDAS max : X slant ( ) = f B ∞ (z GDAS max ) ρ USstd (z( )) d • if z( ) < z GDAS max : X slant ( ) = f B ∞ (z GDAS max ) ρ USstd (z( )) d + (z GDAS max ) ρ GDAS (z( )) d (7) 
where f B is the scaling factor ensuring continuity between US standard and GDAS at altitude z GDAS max . Considering the deviations between the GDAS air density profiles and the US Standard model (see Fig. 6), relatively important differences are expected for the calculation of the atmospheric depth.

These differences are quantified as a function of the geometric distance to the observer for various zenith angles and with a spherical description.

As depicted in Fig. 2 (left) the air density is integrated from the limit of the atmosphere (ρ = 0) up to the geometrical distance to an observer located at O, at sea level and along the shower axis. The integrations are performed following Eqs. 7.

The maximum differences in the obtained crossed atmospheric depths using the GDAS profiles (up to z GDAS max and the corrected US Standard profile beyond z GDAS max ) and the US Standard model are shown in Fig. 7 (top) for different zenith angles. The standard deviations of these differences are displayed in Fig. 7 (bottom).

We see that for a vertical shower the difference can be as high as 30 g/cm 2 with a standard deviation of 10 g/cm 2 . It means that if one wants to reconstruct its X max (assuming a maximum emission at an altitude of 6 km), using the US Standard model can induce systematic variations in atmospheric depths as high as 30 g/cm 2 . This is the most favorable case as these deviations are much larger for higher zenith angles and can reach 150 g/cm 2 at 80 • . The aim of the radio method is to provide an accurate X max estimation and such systematic deviations must be corrected for. The use of a completely coherent description of both the atmospheric density and air refractive index is now mandatory for such analysis. 

Air refractive index

The air index η at the emission point is necessary to compute the amplitude and arrival time of the electric field emitted by secondary particles. It depends on the air density according to the commonly used Gladstone and Dale law:

η(z(l)) = 1 + κ ρ(z( )) with κ = 0.226 cm 3 /g (8) 
We also have to compute the mean air refractive index along the line of sight (between the position of the emission point and the observer's location). This is needed to estimate the arrival time of the electric field at the antenna. This mean value is given by integrating on the line of sight with total length :

< η(z( )) >= 1 + κ 0 ρ(z( )) d
However, the Gladstone-Dale constant κ depends on the characteristics of the gas and the frequency of the light propagating in the medium. The constant κ that was used in SELFAS and in other simulation codes like CoREAS has been determined for optical wavelengths [START_REF] Merzkirch | Flow Visualization[END_REF] and is not suited to our studies in the MHz range (λ = 7.5 m at 40 MHz). As described in [START_REF] Gerson | Variations in the index of refraction of the atmosphere[END_REF] the refractive index for dry air is almost constant from visible to radio wavelengths. A more consistent approach must use a description that takes into account the humidity ratio of the atmosphere. The recent formula introduced in [START_REF] Freeman | Radio System Design for Telecommunications[END_REF] proposes such a description:

η = 1 + 10 -6 N with N = 77.6 T P + 4810 p v T T in K, ( 9 
)
where N is the refractivity. This equation is parameterized for the high and very high radio frequency range (MHz to GHz) and is suitable to our studies. In this formula, if water vapor is present, its partial pressure p v becomes dominant in the calculation of the refractive index of air. GDAS data allow to calculate the air index up to z GDAS max . Beyond this altitude, data for temperature and relative humidity are not available. However the air relative humidity beyond z GDAS max can be taken as null: the highest clouds very rarely reach 24 km of altitude (usually no clouds are observed above 12 km). Thus Eq. 3 can be simplified for z > z GDAS max :

p v = 0, P = p d , T = P d M d Rρ so that N = 77.6 R ρ M d with ρ = f B ρ US .
Thus we can calculate the refractivity from ground level up to 100 km using both the GDAS data in [0; z GDAS max ] km and the corrected mean US Standard values in [z GDAS max ; 100] km. Using the Gladstone-Dale law as written in Eq. 8 is correct if we consider that the atmosphere is dry (R h = 0), as shown in Fig. 8, where the relative differences between the cases N GDAS GD and N GDAS HF,dry are smaller than 1.5%. In order to check the importance of the choice of the air refractivity model, we consider several cases:

• the less refined and historic case, N US GD : Gladstone-Dale law (Eq. 8) with ρ US , used in most of the simulation codes;

• a bad case, N GDAS GD : Gladstone-Dale law with ρ GDAS ;

• the best case, N GDAS HF : high frequency law with water vapor (P, T, R h ) GDAS .

In Fig. 9 Table 1: Relative differences of the refractivity (N ) and the refractive index (η) between several GDAS-based and US Standard-based models for several altitudes of interest for air showers physics. For GDAS-based models all the data of the year 2014 at Nançay were used to compute the mean along the year. The errors show the standard deviation at each altitude.

For the GDAS cases, we used the average GDAS values of the year 2014 for P , T , R h as a function of the altitude. We observe that taking into account the mean water vapor fraction (see Fig. 9 red line for N GDAS HF ) changes significantly the value of the refractivity. This is true in the region where the water vapor is not negligible, i.e. below ∼ 10 km.

The maximum errors on the refractivity that can be induced when using N US GD instead of the more realistic N GDAS HF can be as large as 35% close to the ground and around 15% (see Fig. 10, bottom) at altitudes of interest for the shower development (below ∼ 20 km). These values are computed for the year 2014 but the orders of magnitude should be stable over the years. The main results of the comparison, between sea level and 20 km of altitude are summarized in Tab. 1. In all columns, the relative difference using the mean of the GDAS data is displayed and the ± limits correspond to the standard deviations from the mean of the GDAS data.

Tab. 1 implies that if we choose the most refined model N GDAS HF , at each altitude there is a mean difference with N US GD of a few percent at the altitudes where the bulk of the shower particles lies. Since showers develop along a large range of altitudes, each layer has an impact on the travel times of the wave, which accumulates as the wave goes through each layer. These differences change the arrival time of the electric fields at the antenna, which modifies the coherence and will in turn modify also the amplitude of the electric field. Therefore, the refractive index model chosen will present different arrival times, coherence and amplitude, but with differences of a few percent (as shown in Tab. 1): we do not expect a drastic change.

Influence of atmospheric conditions on the electric field

In this section, all the simulated electric field distributions correspond to a shower initiated by a 1 EeV proton, with a first interaction depth of 27 g/cm 2 (X max = 727 g/cm 2 ), with an a arrival direction (θ, φ) = (30, 45) • and with the geomagnetic field corresponding to Nançay. The simulated antennas are located along 16 directions around the shower core at ground level, there are 150 antennas in each direction with a spacing of 2 meters. The one dimensional LDFs are shown as a function of the relative distance to the shower axis along the late-early direction, i.e. from the South-West to the North-East line, which is the direction having the same azimuth as the incoming shower. The positive axis distances correspond to early positions relative to the shower core and the negative values correspond to late positions.

Air density profile

The influence of the atmospheric model is explicit in the total electric field amplitude, i.e. the lateral distribution function (LDF) in [20; 80] MHz and [120; 250] MHz, as shown in Fig. 11. The LDF is calculated as the maximum of quadratic sum of the three polarizations.

In this figure, we simulated a shower using both the US Standard model (in blue) and the GDAS realistic conditions of March 18, 2014 at noon (in red). We observe that the relative difference between the two LDFs varies as a function of the distance to the shower axis. This implies that the maximum emission occurs at lower altitude when using the GDAS profile. This leads to a systematic error when trying to reconstruct the X max using a model with a constant atmosphere. 

⇢ GDAS ⇢ US ⇢ GDAS ⇢ US

Air refractive index

In order to quantify the differences in the electric fields induced by a change in the refractive index, the time traces for the three polarizations have been simulated with SELFAS for March 18, 2014 at noon, for different antenna axis distances.

We have used three different air indexes, namely, the GDAS HF model N GDAS HF , the same model with a 10% increase in the refractive index (N GDAS HF + 10%) and with a 20% increase (N GDAS HF + 20%), while the air density profiles have been kept identical and have been calculated using Eq. 7. The showers are completely identical, the same seed has been used in SELFAS to draw the energy, position and speed of the secondary particles. The results, filtered in the [20; 80] MHz band, are shown in Fig. 12. The amplitudes have been multiplied by a factor indicated at the bottom of each plot for better visibility. We see that for the inspected antennas, in the [20; 80] MHz band, differences in the maximum amplitude are of a few percent but vary as a function of the axis distance: 0% to +6% between N GDAS HF and N GDAS HF + 10% and +2% to +8% between N GDAS HF and N GDAS HF + 20%. Differences are of a few ns in the arrival time of the maximum: +1 ns between N GDAS HF and N GDAS HF + 20%, for the EW and NS polarizations and +4 ns for the vertical polarization at an axis distance of 150 m. The different amplitudes predicted by the three models imply that the footprints on the ground may be different. The variation of the relative differences of the LDFs as a function of the axis distance can affect the shower maximum reconstruction, as discussed in section 5.1. An absolute (overall) time shift in the pulses is generally not important, as one uses relative timings. Relative time differences between antennas may, and do in fact, occur, although they are not relevant for the present work's estimation of the shower maximum, as one uses the amplitudes only. The picture changes if we increase the observation frequency. We show in Fig. 13 the same plot than in Fig. 12, but filtered in the [120; 250] MHz band. In this case, the differences between the three refractivity profiles are more pronounced. At these frequencies, we chose antennas closer to the axis as the electric field is no longer emitted coherently beyond 100 meters.

We show in Fig. 14 the LDF for the maximum of the electric field calculated with the three different refractive indexes. We check that, in the [20; 80] MHz band (Fig. 14, left), differences for an increase of even 20% in the refractive index amounts to an amplitude error of ∼ 5%. However, we find that for a higher frequency band ([120; 250] MHz, see Fig. 14 (right)) differences in the electric field maximum amplitude can reach up to 40%. Besides, the asymmetry on the LDF both sides of the shower axis is remarkable.

Plotting the two-dimensional distribution of the maximum of the electric field, as we do in Fig. 15, confirms that the distribution for differences of 10% and 20% in the refractive index amounts to a feeble difference that is almost imperceptible with the naked eye in the [20; 80] MHz band. The Cherenkov ring in this frequency band is not expected to behave as a typical Cherenkov ring, since even for low frequencies the lateral extension of the shower is important for the calculation of the arrival times and field coherence [START_REF] Alvarez-Muñiz | Radio emission in UHECR atmospheric showers in the MHz to GHz frequency range using ZHAireS[END_REF]. That is why a 20% difference in the refractive index does not appreciably change the Cherenkov ring at low frequency. The two-dimensional lateral distribution functions in the [120; 250] MHz band are shown in Fig. 16 where not only the Cherenkov ring is evident (as expected at these frequencies), but also it moves when we change the refractive index. The ground distribution of the electric field presents an elliptical asymmetry created by the intersection of the Cherenkov cone with the ground plane. We can affirm, then, that a change of even 20% in the refractive index propagates into a difference of a few percent in the amplitude of electric field in the [20; 80] MHz band, while in the [120; 250] MHz band the changes become quite drastic (tens of percent). We conclude that lower frequencies seem to be less sensitive to changes in the refractive index. It means that if one measures the electric field at high frequencies, caution must be taken with the air index model.

X [m] X [m] X [m] Y [m]
For the N GDAS HF model in the [120; 250] MHz band (Fig. 16, left), the Cherenkov ring is located at a distance of 72 m from the shower core in the ground reference frame, towards the late direction; the ring radius increases to 79 m for N GDAS HF + 10% and to 89 m for N GDAS HF + 20%. These radii of the Cherenkov rings are obtained by fitting the LDF with a 1D gaussian function in the late direction (along the long axis of the Cherenkov ellipse). As a sanity check, we compare the obtained values with a simple modeling of the Cherenkov radius in the late direction. The angle θ C , with respect to the shower axis, at which the Cherenkov emission occurs is given by: θ C = acos(1/(ηβ)). In the ground reference frame, the Cherenkov radius in the late direction of the shower is thus given by R C = D max (cos θ tan(θ + θ C )sin θ), where θ = 30 • and D max 4150 m, is the distance between X max and the shower core in our example. The refractive index N GDAS HF 200 corresponds to the altitude of h Xmax = 3700 m. We must always be aware that an EAS possesses a lateral extension, as well as a shower front thickness, so a onedimensional model will not suffice, in general, to calculate the footprint on the ground, and in particular, the size of the Cherenkov ring. However, if we fix an observation frequency large enough so that only the particles near the shower axis contribute coherently to the electric field, we can expect better agreement between a one-dimensional model and the simulations. Let us take an observation frequency equal to 300 MHz, which implies a coherent contribution of the particles at a distance of less than 1 m from the shower axis as done in [START_REF] Alvarez-Muñiz | Radio emission in UHECR atmospheric showers in the MHz to GHz frequency range using ZHAireS[END_REF]. We show the results for the maximum of the LDF at 300 MHz in Tab. 2, that indicate that the one-dimensional model and the simulation are in agreement at high frequency (better than ∼ 6% for this case).

5. Influence of atmospheric conditions on the X max estimation

Example with one reconstructed event

In this section we show the importance to consider the actual atmospheric experimental conditions to reconstruct X max from the radio signal. The method is based on the comparison of the LDF actually sampled by an array of antennas such as CODALEMA to a set of simulated LDFs. The electric field is strongly beamed towards the direction of propagation of the shower so that the overall shape of the LDF depends on X max . Thus each simulated LDF is induced by a shower with a particular X max and the comparison of the experimental LDF to the simulated set allows the determination of X max giving the best agreement. To illustrate this method, an event is simulated using the conditions of the CODALEMA experiment at noon on March 18, 2014 using the GDAS data: air density profile given by ρ GDAS and air refractivity profile given by N GDAS HF . The shower is initiated by a 1 EeV proton, its arrival direction is (θ, φ) = (30 • , 90 • ) and X max = 702 g/cm 2 (X 1 = 15 g/cm 2 ). This simulated event is considered as a test event which is compared to three simulated data sets composed of showers induced by protons and iron nuclei, with the same arrival direction and energy but random X max :

• the first set uses (ρ US , N US GD ) • the second set uses (ρ GDAS , N GDAS The agreement between each simulated LDF to the test event is quantified through a χ 2 test on the overall shape of the full 2D LDF (see [START_REF] Gaté | X max reconstruction from amplitude information with AERA[END_REF]). The 2D LDF is calculated as the maximum of the quadratic sum of the three polarizations. The results are shown in Fig. 17 for the three simulated sets as a function of the X max values of the simulated showers.

Tab. 3 summarizes the results shown in Fig. 17. We also give in this table the distance between the shower maximum and the shower core associated to the reconstructed X max . ) (bottom). The red and green vertical lines correspond to the true X max of the test event and the reconstructed X max respectively.

true value N GDAS HF + ρ GDAS N GDAS HF + ρ US N US GD + ρ US X max [g/cm
We see that when using the correct description of the air density and air index values, we reconstruct with no bias the correct X max together with the correct distance to the shower maximum. With the US standard model for air density and the correct air index values (N GDAS HF ), the distance to the shower maximum is correctly estimated (4396 m instead of 4412 m) but the X max /distance conversion is not satisfactory. This was expected as the overall shape of the 2D LDF is governed by the distance to the shower maximum which is strongly related to the air index model. Finally, taking a bad air density model (US standard) and a bad air index model leads to large discrepancies in both the X max and the distance to the shower maximum. This is also shown in Fig. 18 where we display the relation between the distance between the shower core and the shower maximum as a function of the atmospheric depth, for the air density models ρ GDAS in blue and ρ GDAS in red. are in agreement with [START_REF] Corstanje | The effect of the atmospheric refractive index on the radio signal of extensive air showers[END_REF] where reconstructed X max values are shifted from 3.5 to 11 g/cm 2 for showers with zenith angles in the range 15 • -55 • in [30; 80] MHz for relative variation of N of 4%.

D ( X ( ⇢ G D A S ) ) D ( X ( ⇢ U S ) ) N G D A S H F X m a x =
We also checked the influence of the zenith angle on the X max reconstruction. We repeated the same procedure with zenith angles 50 GDAS GDAS + HF (N+20%) 9.3 ± 16.4 9.5 ± 6.5 7.2 ± 9.9 3.9 ± 13.5

Table 5: Same as Tab. 4 for three aditionnal zenith angles.

These results tell us that the choice of the atmospherical model for the air density is the dominant factor in the quality of the X max reconstruction. Then, the air index model also has an influence on this quality, at a lower level though. In all cases, errors and bias increase with the zenith angle. Assuming the correct air index profile, the true geometrical distance to X max will be successfully reconstructed. The discrepancies arise from a bad conversion of this distance to its equivalent in traversed atmospheric depth, but these discrepancies, induced by the air density model, can be corrected successfully after the reconstruction, as presented in [2]. However, this is not the case for the errors induced by an incorrect air index profile modeling because the spatial and temporal structures of the electric field depend on the values of the air refractive index at the altitude of the emission maximum and at lower altitudes along the shower axis. As a consequence, the simulation has to be performed using the most refined model, namely, N GDAS HF .

Conclusion

In this work, we have studied the influence of the description of the atmosphere on the electric field emitted by air showers and its effect on the reconstruction of the properties of the primary cosmic ray using the radio technique.

In order to reach the required accuracy to be a competitive technique, we need to describe the atmosphere in a very precise way. With this objective, we have demonstrated the need to use a spherical geometry for the Earth and its atmosphere: the flat approximation leads to systematic errors larger than 10 g/cm 2 for zenith angles above 60 • .

After that, we have used the Global Data Assimilation System (GDAS), which provides information on the atmospheric pressure, temperature and humidity for a range of altitudes every three hours. These three quantities allow us to know the density of the atmosphere and its refractive index, both of which are crucial for a correct simulation of the development of an extensive air shower and the calculation of the electric field it produces. Since the data provided by the GDAS are available up to 26 km of altitude, our atmospheric model is a mixture of GDAS data below 26 km (which is the most important region for the development of air showers), and the usual US Standard atmosphere above 26 km. The atmospheric refractivity has been calculated with two formulas: the usual Gladstone-Dale (GD) formula, that does not take humidity into account, and a high-frequency (HF) formula that is more suited for radio frequencies (MHz-GHz) and takes the relative humidity as an input. The differences in refractivity between using a US Standard atmosphere coupled with the GD formula on one side and the GDAS atmospheric data with the HF formula are of 15% on average at 1 km of altitude, and it can reach up to 35% in the lowest layers of the atmosphere.

We have studied the influence of the refractivity on the time traces and the lateral distribution function (LDF) of the electric field produced by air showers. When considering the [20; 80] MHz band, differences in refractivity up to 20% result in a relatively small difference in the amplitude of the electric field and hence the LDF, indicating that at these frequencies, an accurate knowledge of the refractivity is not the most important factor for reconstructing the properties of the primary cosmic ray. However these small differences in the LDF vary as a function of the axis distance (+2% to +8% when increasing the refractivity by 20%) leading to a shift in the reconstructed X max value. Moreover, when inspecting the [120; 250] MHz band, the shape of the time traces for the electric fields and the LDF on the ground change appreciably with the refractivity, making the reconstruction at high frequency more dependent on the correct knowledge of the atmospheric refractivity. In turn, if we can provide a precise refractivity, the [120; 250] MHz band presents the advantage that the electric field footprint on the ground varies dramatically with the shower maximum. In particular, the Cherenkov ring is clearly visible at these frequencies and can help us discriminating the position of the shower maximum.

Finally, we have compared the performance in the reconstruction of the shower maximum with the several atmospheric densities (US Standard and GDAS) and refractivities (US Standard coupled with GD, GDAS coupled with GD and GDAS with the HF formula with relative humidity) available. We have used test events simulated with the GDAS density and HF refractive index, in order to quantify the error induced with the US Standard atmosphere and the GD formula if we assume the GDAS data are closer to the actual atmosphere. We have found that the most important parameter for the reconstruction of the shower maximum is the air density, since even if we correctly reconstruct the altitude of the shower maximum, an incorrect air density will bias the atmospheric depth of the X max . The bias induced with a US Standard air density lies around ∼ 30 g/cm 2 for 30 • showers and ∼ 100 g/cm 2 for 60 • showers. The bias induced by the refractivity calculated with the US Standard atmosphere and the GD index ranges from ∼ 5 g/cm 2 for 30 • showers to ∼ 32 g/cm 2 for 60 • showers. These biases are not negligible and indicate the need for a correct description of the atmospheric properties. The theoretical accuracy of the method, using the GDAS data and without taking into account uncertainties in the modelling of the electric field of the shower or the atmospheric parameters, is ∼ 2.4 g/cm 2 for 30 • showers and ∼ 10 g/cm 2 for 60 • showers. These accuracies constitute a theoretical limit for the precision of the X max reconstruction using the method discussed in this paper.

To sum up with, the results of this paper indicate that a description of the atmosphere using the US Standard model paired with the GD formula cause non-negligible biases when reconstructing the X max , and therefore an alternative description is needed. The most complete description of the atmosphere publically available is the GDAS data, from which we can trivially calculate the properties of the atmosphere relevant for the simulation of the electric field produced by air showers. In doing so, we guarantee the minimum possible bias in the simulation of the electric field and the reconstruction of the shower maximum. Currently, the only way of improving this method is to directly measure the atmospheric properties for a given experiment in situ.

Figure 1 :

 1 Figure 1: Left: flat atmosphere/Earth geometry. Right: spherical geometry.

Figure 2 :

 2 Figure2: Right: differences in atmospheric depth obtained with the flat approximation (using Eq. 1) and the spherical description (using Eq. 2) for several zenith angles. The observer is located at the sea level and the shower hits the ground at the position of the observer. The distance-to-observer axis corresponds to the distance of Fig.1and is indicated in the left part of the figure.

Figure 3 :

 3 Figure 3: Daily variations of the relative humidity as a function of the altitude, using the GDAS data at Nançay on March 18, 2014.

Figure 4 :

 4 Figure 4: Daily variations of the temperature (top) and pressure (bottom) as a function of the altitude, using the GDAS data at Nançay on March 18, 2014.

Figure 5 :

 5 Figure 5: Temperature as a function of altitude, using the US Standard model (in black), the mean of the GDAS data for the year 2014 (in green) and the minimum and maximum values of the GDAS data in blue and red respectively. At fixed altitude, the temperature can vary by ±20 • C with respect to the US Standard temperature.

Figure 6 :

 6 Figure 6: Top: the GDAS profile on March 18, 2014 at noon is shown in red as function of altitude along with the US Standard model in dashed blue. Bottom: the extrema of the differences between the US Standard model air density profile and all the GDAS profiles along the year 2014 are shown in black as a function of altitude. The blue lines account for the standard deviations along the year 2014 and the green one is the mean difference. In red: the GDAS profile on March 18, 2014 at noon.

Figure 7 :

 7 Figure 7: Top: Extrema of the atmospheric depth differences between the US Standard model and all GDAS profiles along the year 2014 at the location of the CODALEMA experiment as a function of source-to-observer distance and for various zenith angles. Bottom: The corresponding standard deviations.

Figure 8 :

 8 Figure 8: Relative difference of the refractivity up to 26 km of altitude for the cases N GDAS GD and N GDAS HF,dry . The black line corresponds to the mean values along the year 2014 and the blue dashed lines indicate the standard deviation of the relative difference.

Figure 9 :Figure 10 :

 910 Figure 9: Refractivity up to 26 km of altitude. The black line corresponds to the case N US GD . The blue solid lines correspond to the maximum deviations along year 2014 for the cases N GDAS GD

Figure 11 :

 11 Figure 11: Top: Total electric field amplitude as a function of distance to the shower axis. The electric field is filtered in the band [20; 80] MHz (left) and [120; 250] MHz (right). We used the US Standard model (blue curve) and the atmospheric model based on the GDAS data on March 18, 2014 at noon (red curve). Bottom: the relative amplitude differences between the two air density profiles as a function of axis distance for the corresponding frequency bands.

Figure 12 :

 12 Figure 12: Time traces of the electric field in the late (at the south-west of the core) direction simulated with SELFAS using the refractive index model N GDAS HF (in blue), N GDAS HF + 10% (in black) and N GDAS HF + 20% (in red), with the same air density profile, for different distances to the shower axis in the shower front reference frame. The electric field is filtered in the band [20; 80] MHz for the three polarizations, indicated at the bottom of each plot together with the scale factor for better visibility.

Figure 13 :

 13 Figure 13: Same as Fig. 12 in the [120; 250] MHz band.

Figure 14 :

 14 Figure 14: Top left: total electric field amplitudes simulated with the refractive index N GDAS HF

Figure 15 :Figure 16 :

 1516 Figure 15: Two-dimensional lateral distribution functions in the ground reference frame for N GDAS HF

Table 2 :

 2 Cherenkov radii (distances from the shower core to the maximum of the LDF) for the South-West line of the shower in Fig.15at 300 MHz, calculated with SELFAS and with the analytical expression of the Cherenkov angle, for different values of the air refractivity.

HF)

  on March 18, 2014 at noon • the third set uses (ρ US , N GDAS HF ) on March 18, 2014 at noon. These choices allow to check independently the influence of air density and air index profiles.

Figure 18 :

 18 Figure 18: Geometric distance D to the observer as a function of the atmospheric depth X using ρ US (plain red curve) and ρ GDAS (plain blue curve). The two red points correspond to the reconstructions obtained with (ρ US , N US GD ), (ρ US , N GDAS HF ); the blue point corresponds to (ρ GDAS , N GDAS HF ). The green star corresponds to the true value of the reference shower.

Table 3 :

 3 Reconstructed X max values for different atmospheric profiles and the corresponding geometrical distance D max .

	D max [m]	2 ]	702 4412	703 ± 7 4408 ± 84	732 ± 8 4396 ± 96	738 ±14 4323 ± 171

  • , 55 • and 60 • . We present the reconstruction in Tab. 5.

	data set density	air index	∆X 30 •	∆X 50 •	∆X 55 •	∆X 60 •
	#1 #2 #3 #4 #5 #6	US Std. GDAS GDAS GDAS GDAS GDAS + HF (N+10%) 2.9 ± 4.8 US Std. + GD 34.1 ± 8.9 51.1 ± 11.9 69.1 ± 9.2 108.1 ± 10.5 US Std. + GD 5.7 ± 5.5 17.7 ± 9.5 21.0 ± 5.4 31.9 ± 10.9 GDAS + GD 4.6 ± 3.6 9.1 ± 6.4 7.1 ± 4.6 4.7 ± 9.9 GDAS +HF 0.1 ± 2.4 0.6 ± 5.4 0.9 ± 8.1 2.1 ± 10.0 3.7 ± 6.3 4.0 ± 6.9 2.7 ± 12.7

geopotential meters
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Set of reconstructed events

To study the influence of both the air density ρ and air refractivity N on the X max reconstruction, we ran simulations corresponding to 6 different combinations of (ρ, N ). Each set is composed of 10 iron showers and 40 proton showers, with random first interaction depth and X max , having the same arrival direction than our test event (θ = 30 The distributions of the differences are gaussian and the displayed values are the mean values and their standard deviations. Using set #1, the mean difference is 34 g/cm 2 , in agreement with the example presented in section 5.1. With set #2, the differences are much smaller, because it uses the same GDAS air density profile than the tested events. With set #3 the air index profile is calculated with the Gladstone and Dale law but with the air density profile from the GDAS data and the result is a bit better than set #2. With set #4 we use the most precise description by replacing the Gladstone and Dale law with the high frequency law. In this configuration the mean difference is compatible with zero (0.1 ± 2.4 g/cm 2 ), which also proves the self-consistency of the method. Sets #5 and #6 have been simulated with the same conditions as set #4 but the refractivity N has been artificially increased by 10% and 20%, respectively. The corresponding shift of the reconstructed X max values are 3 g/cm 2 and 10 g/cm 2 . These results

Appendix

At an altitude z and a latitude φ, the geopotential height is defined as:

Where g 0 and g(φ, z) are respectively the gravitational acceleration at mean sea level and corrected for altitude z, latitude φ and Earth rotation. The function g(φ, z) can be estimated by the following relation known as International Gravity Formula 1967 with the free-air correction:

and A = 0.0053024, B = 5.8 × 10 -6 , C = 3.086 × 10 -6 s -2 .

We compute the altitude above sea level by solving Eq. 10; the solution for z at a given latitude φ and geopotential height Z g (z) is: