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MODULI SPACES OF (BI)ALGEBRA STRUCTURES IN
TOPOLOGY AND GEOMETRY

SINAN YALIN

Abstract. After introducing some motivations for this survey, we describe a
formalism to parametrize a wide class of algebraic structures occurring nat-
urally in various problems of topology, geometry and mathematical physics.
This allows us to define an “up to homotopy version” of algebraic structures
which is coherent (in the sense of ∞-category theory) at a high level of general-
ity. To understand the classification and deformation theory of these structures
on a given object, a relevant idea inspired by geometry is to gather them in a
moduli space with nice homotopical and geometric properties. Derived geom-
etry provides the appropriate framework to describe moduli spaces classifying
objects up to weak equivalences and encoding in a geometrically meaningful
way their deformation and obstruction theory. As an instance of the power
of such methods, I will describe several results of a joint work with Gregory
Ginot related to longstanding conjectures in deformation theory of bialgebras,
En-algebras and quantum group theory.
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Introduction

To motivate a bit the study of algebraic structures and their moduli spaces in
topology, we will simply start from singular cohomology. Singular cohomology
provides a first approximation of the topology of a given space by its singular
simplices, nicely packed in a cochain complex. Computing the cohomology of spaces
already gives us a way to distinguish them and extract some further information like
characteristic classes for instance. Singular cohomology has the nice property to
be equipped with an explicit commutative ring structure given by the cup product.
This additional structure can distinguish spaces which have the same cohomology
groups, illustrating of the following idea: adding finer algebraic structures is a way
to parametrize finer invariants of our spaces. In the case of manifolds, it can also be
used to get more geometric data (from characteristic classes and Poincaré duality
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for instance). Such an algebraic struture determined by operations with several
inputs and one single output (the cup product in our example) satisfying relations
(associativity, commutativity) is parametrized by an operad (here the operad Com
of commutative associative algebras). More generally, the notion of operad has
proven to be a fundamental tool to study algebras playing a key role in algebra,
topology, category theory, differential and algebraic geometry, mathematical physics
(like Lie algebras, Poisson algebras and their variants).

We can go one step further and relax such structures up to homotopy in an
appropriate sense. Historical examples for this include higher Massey products,
Steenrod squares and (iterated) loop spaces.

Higher Massey products organize into an A∞-algebra structure on the cohomol-
ogy of a space and give finer invariants than the cup product. For instance, the
trivial link with three components has the same cohomology ring as the borromean
link (in both cases, the cup product is zero), but the triple Massey product vanishes
in the second case and not in the first one, implying these links are not equivalent.

Loop spaces are another fundamental example of A∞-algebras (in topological
spaces this time). When one iterates this construction by taking the loop space of
the loop space and so on, one gets an En-algebra (more precisely an algebra over the
little n-disks operad). These algebras form a hierarchy of “more and more” com-
mutative and homotopy associative structures, interpolating between A∞-algebras
(the E1 case, encoding homotopy associative structures) and E∞-algebras (the col-
imit of the En’s, encoding homotopy commutative structures). Algebras governed
by En-operads and their deformation theory play a prominent role in a variety of
topics, not only the study of iterated loop spaces but also Goodwillie-Weiss calculus
for embedding spaces, deformation quantization of Poisson manifolds, Lie bialge-
bras and shifted Poisson structures in derived geometry,and factorization homology
of manifolds [54, 55, 59, 61, 8, 25, 26, 31, 35, 39, 46, 50, 66, 75, 83, 86, 91].

The cup product is already defined at a chain level but commutative only up
to homotopy, meaning that there is an infinite sequence of obstructions to com-
mutativity given by the so called higher cup products. That is, these higher cup
products form an E∞-algebra structure on the singular cochain complex. This
E∞-structure classifies the rational homotopy type of spaces (this comes from Sul-
livan’s approach to rational homotopy theory [84]) and the integral homotopy type
of finite type nilpotent spaces (as proved by Mandell [63]). Moreover, such a struc-
ture induces the Steenrod squares acting on cohomology and, for Poincaré duality
spaces like compact oriented manifolds for example, the characteristic classes that
represent these squares (the Wu classes). This is a first instance of how a homo-
topy algebraic structure can be used to build characteristic classes. Then, to study
operations on generalized cohomology theories, one moves from spaces to the sta-
ble homotopy theory of spectra, the natural recipient for (generalized) cohomology
theories, and focuses on theories represented by E∞-ring spectra (more generally,
highly structured ring spectra). In this setting, the moduli space approach (in a
homotopy theoretic way) already proved to be useful [40] (leading to a non trivial
improvement of the Hopkins-Miller theorem in the study of highly structured ring
spectra).

However, algebraic structures not only with products but also with coproducts,
play a crucial role in various places in topology, geometry and mathematical physics.
One could mention for instance the following important examples: Hopf algebras in
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representation theory and mathematical physics, Frobenius algebras encompassing
the Poincaré duality phenomenon in algebraic topology and deeply related to field
theories, Lie bialgebras introduced by Drinfeld in quantum group theory, involutive
Lie bialgebras as geometric operations on the equivariant homology of free loop
spaces in string topology. A convenient way to handle such kind of structures is to
use the formalism of props, a generalization of operads encoding algebraic structures
based on operations with several inputs and several outputs.

A natural question is then to classify such structures (do they exist, how many
equivalence classes) and to understand their deformation theory (existence of in-
finitesimal perturbations, formal perturbations, how to classify the possible defor-
mations). Understanding how they are rigid or how they can be deformed provide
informations about the objects on which they act and new invariants for these ob-
jects. For this, a relevant idea inspired from geometry come to the mind, the notion
of moduli space, a particularly famous example being the moduli spaces of algebraic
curves (or Riemann surfaces). The idea is to associate, to a collection of objects
we want to parametrize equipped with an equivalence relation (surfaces up to dif-
feomorphism, vector bundles up to isomorphism...), a space M whose points are
these objects and whose connected components are the equivalence classes of such
objects. This construction is also called a classifying space in topology, a classical
example being the classifying space BG of a group G, which parametrizes isomor-
phism classes of principal G-bundles. If we are interested also in the deformation
theory of our collection of objects (how do we allow our objects to modulate), we
need an additional geometric structure which tells us how we can move infinitesi-
mally our points (tangent spaces). To sum up, the guiding lines of the moduli space
approach are the following:

• To determine the non-emptiness ofM and to compute π∗M solve existence
and unicity problems;

• The geometric structure ofM imply the existence of tangent spaces. The
tangent space over a given point x ofM is a dg Lie algebra controlling the
(derived) deformation theory of x (deformations of x form a derived moduli
problem) in a sense we will precise in Section 3;

• One can “integrate” overM to produce invariants of the objects parametrized
byM. Here, the word “integrate” has to be understood in the appropriate
sense depending on the context: integrating a differential form, pairing a
certain class along the (virtual) fundamental class ofM, etc.

We already mentioned [37] (inspired by the method of [6]) as an application of the
first item in the list above. In the second one, we mention derived deformation
theory and derived moduli problems, which implicitely assume that, in some sense,
our moduli spaceM lives in a (∞-)category of derived objects (e.g. derived schemes,
derived stacks...) where tangent spaces are actually complexes. This is due to
the fact that we want to encompass the whole deformation theory of points, and
this cannot be done in the classical setting: for varieties or schemes, the tangent
space is a vector space which consists just of the equivalence classes of infinitesimal
deformations of the point. For stacks, the tangent space is a two-term complex
whose H0 is the set of equivalences classes of infinitesimal deformations, and H−1

is the Lie algebra of automorphisms of the point (infinitesimal automorphisms).
But obstruction theory does not appear on the tangent structure here, because it
has to live in positive degrees (we will go back to this remark in Section 3).
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As a last remark about the third item in the list above, let us say that the idea of
using moduli spaces to produce topological invariants got also a lot of inspiration
from quantum field theory and string theory in the 80’s. By the Feynman path
integral approach, the equations describing the evolution of a quantum system are
determined by the minimas of a functional integral over all the possible paths of
this system, that is, by integrating a certain functional over the space of fields.
This independence from a choice of path led to the idea that one could build a
topological invariant of a geometric object by computing an integral over the moduli
space of all possible geometric structures of this kind, ensuring automatically the
desired invariance property. This is the principle underlying two important sorts
of invariants of manifolds. First, Witten’s quantization of the classical Chern-
Simmons invariant in the late 80s [95], which provided topological invariants for
3-dimensional manifolds (including known invariants such as the Jones polynomial)
by integrating a geometric invariant over a moduli space of connections. Second,
Kontsevich’s formalization of Gromov– Witten invariants in symplectic topology
(counting pseudo-holomorphic curves) and algebraic geometry (counting algebraic
curves), defined by a pairing along the virtual fundamental class of the moduli space
(stack) of stable maps (an analogue of the fundamental class for singular objects
suitably embedded in a derived setting).

Organization of the paper. The first section is devoted to the formalism of
props and algebras over props, accompanied by relevant examples of topological or
geometric origin in Section 2. The third section focuses on algebraic structures up
to homotopy, defined as algebras over a cofibrant resolution of the prop, and the
fundamental theorem asserting that this notion does not rely on the choice of such
a resolution (up to an equivalence of ∞-categories). This lays down the coherent
foundations to study homotopy bialgebras. We then provide a little introduction
to derived algebraic geometry and formal moduli problems in Section 4, without
going too far in the details (we refer the reader to [90] for a more thorough survey
on this topic), before formalizing the idea of moduli spaces of algebraic structures
in Section 5 as well as their most important properties. The way to recover geomet-
rically deformation theory and obstruction theory for such structures is explained
in Section 5. Section 6 describes a joint work with Gregory Ginot, merging the
homotopical and geometric theory of such moduli spaces with several features of
factorization homology (higher Hochschild (co)homology) to solve several open con-
jectures in deformation theory of En-algebras and bialgebras related to quantum
group theory.

Acknowledgements. The idea of writing such a survey originates in the in-
augural two-weeks program at the mathematical research institute MATRIX in
Australia called Higher Structures in Geometry and Physics, which took place in
June 2016. The author gave a talk at this program about moduli spaces of algebraic
structures and their application to the recent paper [102]. The present article is
somehow a (largely) extended version of his talk, which will be eventually part of a
Proceedings Volume devoted to this workshop. The author would like to thank the
MATRIX institute for supporting this program, the organizers of this programme
for inviting him, and all the participants for their interest and for the very enjoyable
atmosphere during the two weeks spent there. Last but not least, kangaroos are
very much thanked for their natural awesomeness.
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1. Parametrizing algebraic structures

To simplify our exposition, we will work in the base category Ch of Z-graded
cochain complexes over a field K of characteristic zero. Before stating the general
definition of a prop, let us give a few examples of algebraic structures the reader
may have encountered already.

Example 1.1. Differential graded (dg for short) associative algebras are complexes
A equipped with an associative product A ⊗ A → A. We can represent such an
operation by an oriented graph with two inputs and one output satisfying the
associativity relation

=

Common examples of such structures include algebras K[G] of finite groups G in
representation theory, or the singular cochains C∗(X;Z) of a topological space
equipped with the cup product ∪ of singular simplices. In the first case we have an
associative algebra in K-modules, in the second case this is a dg associative algebra,
so the cup product is a cochain morphism determined by linear maps

∪ : Cm(X;Z)⊗ Cn(X;Z)→ Cm+n(X;Z).

Example 1.2. In certain cases, the product is not only associative but also commu-
tative, and one call such algebras commutative dg algebras or cdgas. To represent
graphically this symmetry condition, we index the inputs of the product 1 2

1
and add the symmetry condition

1 2

1

= 2 1

1

.

A way to rephrase this symmetry is to say that Σ2 acts trivially on 1 2

1

. In the

dg setting, this symmetry has to be understood in the graded sense, that is ab =
(−1)deg(a)deg(b)ba. Commutative algebras are very common objects, for instance the
singular cohomology of spaces equipped with the cup product defined previously at
the chain level, or the de Rham cohomology for manifolds. Commutative rings also
represent affine schemes in algebraic geometry or rings of functions on differentiable
manifolds. Cdgas overQ also model the rational homotopy type of simply connected
spaces.

Example 1.3. Another example of product is the bracket defining Lie algebras
1 2

1

satisfying an antisymmetry condition

1 2

1

= −2 1

1
and the Jacobi identity

1 2 3 + 3 1 2 + 2 3 1 = 0.
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A way to rephrase the antisymmetry is to say that the action of Σ2 on 1 2

1

is

given by the signature representation sgn2. Lie algebras appear for instance as
tangent spaces of Lie groups in differential geometry (Lie’s third theorem gives an
equivalence between the category of finite dimensional Lie algebras in vector spaces
and the category of simply connected Lie groups), in Quillen’s approach to rational
homotopy theory and in deformation theory (“Deligne principle” relating formal
moduli problems to dg Lie algebras).

In these three first examples, we see that the algebraic structure is defined only
by operations with several inputs and one single output. Such structures can be
encoded by a combinatorial object called an operad, and a given kind of algebra
is an algebra over the associated operad. We refer the reader to [58] for more
details about this formalism. However, there are more general algebraic structures
involving operations with several inputs and several outputs. We give below two
fundamental examples of these, before unwrapping the general definition of the
combinatorial structure underlying them (props).

Example 1.4. Poisson-Lie groups are Lie groups with a compatible Poisson struc-
ture, which occur in mathematical physics as gauge groups of certain classical me-
chanical systems such as integrable systems. Because of the Poisson bracket, the
tangent space TeG of a Poisson-Lie group G at the neutral element e is equipped
with a “Lie cobracket” compatible with its Lie algebra structure, so that TeG forms
something called a Lie bialgebra. The compatibility relation between the bracket
and the cobracket is called the Drinfeld’s compatibility relation or the cocycle re-
lation. In terms of graphical presentation, we have a bracket and a cobracket

1 2

1 2
which are antisymmetric, that is, with the signature action of Σ2. These two
operations satisfy the following relations:

Jacobi
1 2 3 + 3 1 2 + 2 3 1 = 0

co-Jacobi

1 2 3

+

3 1 2

+

2 3 1

= 0

The cocycle relation

1 2

1 2

= 1 2

1 2

+ 2 1

1 2

− 1 2

1 2

+ 2 1

1 2
The cocycle relation means that the Lie cobracket of a Lie bialgebra g is a cocy-
cle in the Chevalley-Eilenberg complex C∗CE(g,Λ2g), where Λ2g is equipped with
the structure of g-module induced by the adjoint action. Let us note that there is
an analogue of Lie’s third theorem in this context, namely the category of finite
dimensional Lie bialgebras in vector spaces is equivalent to the category of simply
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connected Poisson-Lie groups [15]. Deformation quantization of Lie bialgebras pro-
duces quantum groups, which turned out to be relevant for mathematical physics
and for low-dimensional topology (quantum invariants of knots and 3-manifolds).
This process also deeply involves other kind of objects such as Grothendieck-
Teichmüller groups, multizeta values via the Drinfeld associators [15], or graph
complexes. The problem of a universal quantization of Lie bialgebras raised by
Drinfeld was solved by Etingof and Kazhdan [21], [22]. A deformation quantization
of a Lie bialgebra g is a topologically free Hopf algebra H over the ring of formal
power series K[[~]] such that H/~H is isomorphic to U(g) (the enveloping algebra
of g)as a co-Poisson bialgebra. Such a Hopf algebra is called a quantum universal
enveloping algebra (QUE for short). The general idea underlying this process is
to tensor the K-linear category of g-modules by formal power series, equip it with
a braided monoidal structure induced by the choice of a Drinfeld associator and
an r-matrix, and make the forgetful functor from g[[~]]-modules to K[[~]]-modules
braided monoidal. Applying the tannakian formalism to this functor, the category
of g[[~]]-modules is equivalent to the category of modules over the QUE algebra
of g. Deformation quantization of Lie bialgebras can be formulated in the formal-
ism of props and their algebras, see for instance the introduction of [18] explaining
quantization/de-quantization problems in terms of prop morphisms. Another point
of view is the prop profile approach of [70], particularly useful to relate the results
of [102] to deformation quantization of Lie bialgebras.

A variant of Lie bialgebras called involutive Lie bialgebras arose in low dimen-
sional topology, in the work of Goldman [42] and Turaev [93]. Given a surface S,
one considers the K-module generated by the free homotopy classes of loops on S.
Let us note L : S1 → S a free loop on the surface S (that is, a continuous map
which is not pointed, contrary to based loops) and [L] its free homotopy class. Up
to homotopy, we can make two loops intersect transversely, so we suppose that two
given loops L and K intersect only at a finite number of points, and we note L∩K
this finite set. The Lie bracket of [L] and [K] is then defined by

{[L], [K]} =
∑

p∈L∩K
εp[L ∪p K]

where L∪pK is the loop parametrized by going from p to p along L, then going again
from p to p along K. The symbol εp denote a number which is −1 or 1, depending
on the way L and K intersect at p with respect to a choice of orientation. The
cobracket is then defined similarly, by considering this time the self-intersections of
L (that we can take transverse, up to homotopy):

δ([L]) =
∑

p∈L∩L
εp([L1,p]⊗ [L2,p]− [L2,p]⊗ [L1,p])

where L1 and L2 are the two loops obtained by separating L in two parts at the
self-intersection point p. These two operations define a Lie bialgebra structure,
satisfying moreover ({, } ◦ δ)([L]) = 0. From the graphical presentation viewpoint,
this means that we add the involutivity relation

= 0.

Links defined in the cylinder S× [0; 1] over S can be presented by diagrams of loops
on S via the canonical projection S × [0; 1]→ S. Explicit quantizations of the Lie
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bialgebra of loops on S have been used to produce (quantum) invariants of those
links [93] and the corresponding 3-dimensional TQFTs [78].

Ten years after, algebraic structures on free loop spaces for more general mani-
folds were introduced by Chas and Sullivan, giving birth to string topology [10], a
very active field of research nowadays. In the equivariant setting, the Lie bialgebra
of Goldman and Turaev has been generalized to loop spaces of smooth manifolds
[11]. The string homology of a smooth manifold M is defined as the reduced equi-
variant homology (i.e. relative to constant loops) of the free loop space LM of
M . The word equivariant refers here to the action of S1 on loops by rotation.
According to [11], the string homology of a smooth manifold forms an involutive
Lie bialgebra. Let us note that for an n-dimensional manifold, the bracket and the
cobracket of this structure are of degree 2−n. In particular, the string homology of
a surface is isomorphic to Goldman-Turaev Lie bialgebra as a graded Lie bialgebra.
Let us note that such a structure is also related to very active research topics in
symplectic topology. Precisely, the string homology of M is isomorphic as a graded
Lie bialgebra to the contact homology of its cotangent bundle (equipped with the
standard symplectic form) [12]. This result is part of a larger program aimed at
relating string topology and symplectic field theory.

Example 1.5. A dg Frobenius algebra is a unitary dg commutative associative
algebra of finite dimension A endowed with a symmetric non-degenerated bilinear
form < ., . >: A ⊗ A → K which is invariant with respect to the product, i.e
< xy, z >=< x, yz >.

A dg Frobenius bialgebra of degree m is a triple (B,µ,∆) such that:
(i) (B,µ) is a dg commutative associative algebra;
(ii) (B,∆) is a dg cocommutative coassociative coalgebra with deg(∆) = m;
(iii) the map ∆ : B → B⊗B is a morphism of left B-module and right B-module,

i.e in Sweedler’s notations we have the Frobenius relations∑
(x.y)

(x.y)(1) ⊗ (x.y)(2) =
∑
(y)

x.y(1) ⊗ y(2)

=
∑
(x)

(1)m|x|x(1) ⊗ x(2).y

The two definitions are strongly related. Indeed, if A is a Frobenius algebra,
then the pairing < ., . > induces an isomorphism of A-modules A ∼= A∗, hence a
map

∆ : A
∼=→ A∗

µ∗→ (A⊗A)∗ ∼= A∗ ⊗A∗ ∼= A⊗A
which equips A with a structure of Frobenius bialgebra. Conversely, one can prove
that every unitary counitary Frobenius bialgebra gives rise to a Frobenius algebra,
so the two notions are equivalent. In terms of graphical presentation, we have a
product of degree 0 and a coproduct of degree m presented by

and satisfying the following relations:
Associativity and coassociativity

= =
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Frobenius relations

= =

In the unitary and counitary case, one adds a generator for the unit, a generator
for the counit and the necessary compatibility relations with the product and the
coproduct. We refer the reader to [53] for a detailed survey about the role of
these operations and relations in the classification of two-dimensional topological
quantum field theories. Let us note that a variant of Frobenius bialgebras called
special Frobenius bialgebra is closely related to open-closed topological field theories
[57] and conformal field theories [24].

A classical example of Frobenius (bi)algebra comes from Poincaré duality. LetM
be an oriented connected closed manifold of dimension n. Let [M ] ∈ Hn(M ;K) ∼=
H0(M ;K) ∼= K be the fundamental class of [M ]. Then the cohomology ring
H∗(M ;K) of M inherits a structure of commutative and cocommutative Frobe-
nius bialgebra of degree n with the following data:

(i)the product is the cup product
µ : HkM ⊗H lM → Hk+lM

x⊗ y 7→ x ∪ y
(ii)the unit η : K→ H0M ∼= HnM sends 1K on the fundamental class [M ];
(iii)the non-degenerate pairing is given by the Poincaré duality:

β : HkM ⊗Hn−kM → K
x⊗ y 7→ < x ∪ y, [M ] >

i.e the evaluation of the cup product on the fundamental class;
(iv) the coproduct ∆ = (µ⊗ id) ◦ (id⊗ γ) where

γ : K→
⊕
k+l=n

HkM ⊗H lM

is the dual copairing of β, which exists since β is non-degenerate;
(v)the counit ε =< ., [M ] >: HnM → K i.e the evaluation on the fundamental

class.

A natural question after looking at all these examples is the following: can we
extract a common underlying pattern, analogue to representation theory of groups
or to operad theory, which says that an algebraic structure of a given kind is an alge-
bra over a corresponding combinatorial object ? A formalism that include algebras
over operads as well as more general structures like Lie bialgebras and Frobenius
bialgebras ? We answer this question with the following definition, originally due
to MacLane [62]. A Σ-biobject is a double sequence {M(m,n) ∈ Ch}(m,n)∈N2 where
each M(m,n) is equipped with a right action of Σm and a left action of Σn com-
muting with each other.

Definition 1.6. A prop is a Σ-biobject endowed with associative horizontal com-
position products

◦h : P (m1, n1)⊗ P (m2, n2)→ P (m1 +m2, n1 + n2),
associative vertical composition products

◦v : P (k, n)⊗ P (m, k)→ P (m,n)



MODULI SPACES OF (BI)ALGEBRA STRUCTURES IN TOPOLOGY AND GEOMETRY 10

and maps K → P (n, n) which are neutral for ◦v (representing the identity opera-
tions). These products satisfy the exchange law

(f1 ◦h f2) ◦v (g1 ◦h g2) = (f1 ◦v g1) ◦h (f2 ◦v g2)

and are compatible with the actions of symmetric groups.
Morphisms of props are equivariant morphisms of collections compatible with

the composition products.

A fundamental example of prop is given by the following construction. To any
complex X we can associate an endomorphism prop EndX defined by

EndX(m,n) = HomCh(X⊗m, X⊗n).

The prop structure here is crystal clear: the actions of the symmetric groups are
the permutations of the tensor powers, the vertical composition is the composition
of homomorphisms and the horizontal one is the tensor product of homomorphisms.

Definition 1.7. A P -algebra on a complex X is a prop morphism P → EndX .

That is, a P -algebra structure on X is a collection of equivariant cochain mor-
phisms

{P (m,n)→ HomCh(X⊗m, X⊗n)}m,n∈N
commuting with the vertical and horizontal composition products. Hence the formal
operations of P are sent to actual operations on X, and the prop structure of P
determines the relations satisfied by such operations.

Remark 1.8. MacLane’s original definition is more compact: a prop P in a closed
symmetric monoidal category C as a symmetric monoidal category enriched in C,
with the natural integers as objects and the tensor product ⊗ defined by m⊗ n =
m + n. A morphism of props is then an enriched symmetric monoidal functor.
An algebra over a prop is an enriched symmetric monoidal functor P → C, and a
morphism of algebras is an enriched symmetric monoidal transformation (see also
[100, Section 2.1] for the colored case).

There is an adjunction between the category of Σ-biobjects and the category
of props, with the right adjoint given by the forgetful functor and the left adjoint
given by a free prop functor. Briefly, given a Σ-biobject M , the free prop F(M) on
M is defined by

F(M)(m,n) =
⊕

G∈Gr(m,n)

(
⊗

v∈V ert(G)

M(|In(v)|, |Out(v)|))Aut(G)

where
• The direct sums runs over the set Gr(m,n) of directed graphs with m
inputs, n outputs and no loops;

• The tensor products are indexed by the sets V ert(G) of vertices of such
graphs G;

• For each vertex v of G, the numbers |In(v)| and |Out(v)| are respectively
the number of inputs and the number of outputs of v;

• These tensor products are mod out by the action of the group Aut(G) of
automorphisms of the graph G.



MODULI SPACES OF (BI)ALGEBRA STRUCTURES IN TOPOLOGY AND GEOMETRY 11

We refer the reader to [29, Appendix A] for more details about this construction.
Moreover, there is an obvious notion of ideal in a prop P , defined as a Σ-biobject
I such that i ◦v p ∈ I for i ∈ I and p ∈ P , and i ◦h p ∈ I for i ∈ I and p ∈ P .
This means that each prop admits a presentation by generators and relations, some-
thing particularly useful to describe an algebraic structure. For instance, all the
operations A⊗n → A on an associative algebra A induced by the algebra structure
are entirely determined by a product A ⊗ A → A and the associativity condition.
Actually, the graphical presentations we gave in the examples above are exactly pre-
sentations of the corresponding props by generators and relations ! For instance, if
we denote by BiLie the prop of Lie bialgebra, we have

BiLie = F(M)/I
where M(2, 1) = sgn2 ⊗ K.1 2, M(1, 2) = sgn2 ⊗ K.

1 2
and M(m,n) = 0

for (m,n) /∈ {(2, 1), (1, 2)} (recall here that sgn2 is the signature representation of
Σ2). The ideal I is generated by the graphs defining the relations in Example 4
(Jacobi, co-Jacobi, cocycle relation). A Lie bialgebra g is then the datum of a prop
morphism

{BiLie(m,n)→ HomCh(g⊗m, g⊗n)}m,n∈N.
According to the presentation of BiLie by generators and relations, this prop mor-
phism is completely determined by its values on the generators. That is, we send
the generator 1 2 to a cochain map [, ] : g ⊗ g → g, the generator

1 2
to a

cochain map δ : g → g ⊗ g, and the graphs of I to zero. This implies that [, ] is a
Lie bracket, δ a Lie cobracket and they satisfy moreover the cocycle relation.

Actually, for a wide range of algebraic structures, a well defined grafting opera-
tion on connected graphs is sufficient to parametrize the whole structure. Such a
grafting is defined by restricting the vertical composition product of props to con-
nected graphs. The unit for this connected composition product�c is the Σ-biobject
I given by I(1, 1) = K and I(m,n) = 0 otherwise. The category of Σ-biobjects then
forms a symmetric monoidal category (ChSK,�c, I).

Definition 1.9. A dg properad (P, µ, η) is a monoid in (ChSK,�c, I), where µ
denotes the product and η the unit. It is augmented if there exists a morphism of
properads ε : P → I. In this case, there is a canonical isomorphism P ∼= I ⊕ P
where P = ker(ε) is called the augmentation ideal of P .

Morphisms of properads are morphisms of monoids in (ChSK,�c, I).

Properads have also their dual notion, namely coproperads:

Definition 1.10. A dg coproperad (C,∆, ε) is a comonoid in (ChSK,�c, I).

As in the prop case, there exists a free properad functor F forming an adjunction
F : ChSK � Properad : U

with the forgetful functor U . There is an explicit construction of the free properad
analogous to the free prop construction, but restricted to connected directed graphs
instead of all directed graphs. Dually, there exists a cofree coproperad functor
denoted Fc(−) having the same underlying Σ-biobject. There is also a notion of
algebra over a properad similar to an algebra over a prop, since the endomorphism
prop restricts to an endomorphism properad . Properads are general enough to
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encode a wide range of bialgebra structures such as associative and coassociative
bialgebras, Lie bialgebras, Poisson bialgebras, Frobenius bialgebras for instance.

Remark 1.11. There is a free-forgetful adjunction between properads and props
[94].

2. Homotopy theory of (bi)algebras

We already mentioned before the natural occurrence of “relaxed” algebraic struc-
tures, like A∞-algebras or E∞-algebras, in various situations where a given relation
(associativity, commutativity) is satisfied only up to an infinite sequence of obstruc-
tions vanishing at the cohomology level. More generally, one can wonder how to
set up a coherent framework to define what it means to “relax” a P -algebra struc-
ture, encompassing in particular the previous examples. Moreover, we will see
later that deformation theory of differential graded P -algebras cannot be defined
without working in the larger context of P -algebras up to homotopy (or homotopy
P -algebras). This is due to the fact that the base category Ch itself manifests
a non trivial homotopy theory. A natural way to define homotopy P -algebras is
to resolve the prop P itself by means of homotopical algebra. For this, we recall
briefly that Ch has all the homotopical properties needed for our purposes, namely,
it forms a cofibrantly generated symmetric monoidal model category. We refer the
reader to to Hirschhorn [48] and Hovey [47] for a comprehensive treatment of ho-
motopical algebra and monoidal model categories. The Σ-biobjects form a category
of diagrams in Ch and inherit thus a cofibrantly generated model structure with
pointwise weak equivalence and fibrations (the projective model structure). The
free prop functor allows to transfer the projective model structure of Σ-biobjects
along the free-forgetful adjunction:

Theorem 2.1. (cf. [29, Theorem 5.5]) The category of dg props Prop equipped
with the classes of componentwise weak equivalences and componentwise fibrations
forms a cofibrantly generated model category.

Remark 2.2. According to [68], the similar free-forgetful adjunction between Σ-
biojects and dg properads equips dg properads with a cofibrantly generated model
category structure with componentwise fibrations and weak equivalences.

Hence we can define homotopy algebras over props as follows:

Definition 2.3. A homotopy P -algebra is a P∞-algebra, where P∞
∼→ P is a

cofibrant resolution of P .

Homotopy algebra structures appear naturally in plenty of topological and geo-
metric situations, especially for transfer and realization problems:

• Transfer problems: given a quasi-isomorphism X
∼→ Y , if Y forms a

P -algebra, then X cannot inherits a P -algebra structure as well (since this
is not a strict isomorphism) but rather a P∞-algebra structure. In the
converse way, a choice of quasi-isomorphism X

∼→ H∗X from a complex to
its cohomology allows to transfer any P -algebra structure on X to a P∞-
algebra structure on H∗X. That is, the data of a big complex with a strict
structure can transferred to a smaller complex with a bigger structure up
to homotopy.
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• Realization problems: A P -algebra structure on the cohomology H∗X
is induced by a finer P∞-algebra structure on X, which consists in a family
of higher operations on cochains.

Let us name a few applications of such ideas:

• A∞-structures (associative up to homotopy) appeared very early in the
study of loop spaces and monoidal categories (Stasheff’s associahedra), and
the A∞-structure induced on the singular cohomology of a topological space
by the cochain-level cup product gives the higher Massey products. Such
products are topological invariants, for instance the triple Massey product
differentiate the borromean rings from the trivial link, even though their
respective cohomologies are isomorphic as associative algebras.

• E∞-structures (commutative up to homotopy) on ring spectra play a key
role to encode cohomological operations in stable homotopy theory. Real-
ization problems for such structures have been the subject of a consequent
work by Goerss-Hopkins [40], following the idea of [6] to study the homo-
topy type of the moduli space of all realizations on a given spectrum by
decomposing it as the limit of a tower of fibrations, and determining the
obstruction groups of the corresponding spectral sequence (which turns out
to be André-Quillen cohomology groups).

• The E∞-structure on singular cochains classifies the homotopy type of
nilpotent spaces (see Sullivan over Q, Mandell over Z and Fp).

• L∞-structures (Lie up to homotopy) encode the deformation theory of var-
ious algebraic, topological or geometric structures, a striking application
being Kontsevich’s deformation quantization of Poisson manifolds [55].

• In string topology, the homology of a loop space ΩM on a manifold M is
equipped with a natural Batalin-Vilkovisky algebra (BV -algebra) structure
[10]. On the other hand, the Hochschild cohomology of the singular cochains
on M is also a BV -algebra (extending the canonical Gerstenhaber algebra
structure). In characteristic zero, when M is a simply connected closed
manifold, both are known to be isomorphic as BV -algebras [23]. It turns
out that this structure lifts to a BV∞-structure on Hochschild cochains (a
result called the cyclic Deligne conjecture). Homotopy BV -algebras are
related not only to string topology but also to topological conformal field
theories and vertex algebras [33].

• Homotopy Gerstenhaber algebras, or equivalently E2-algebras, are the nat-
ural structures appearing on Hochschild complexes by Deligne’s conjecture,
which has been generalized to the existence of En+1-algebra structures on
higher Hochschild complexes of En-algebras. These results have applica-
tions to deformation quantization but also to factorization homology of
manifolds and generalizations of string topology [39]. The proof of Deligne’s
conjecture relies on a transfer of structures combined with an obstruction
theoretic method. Let us note that a bialgebra version of this conjecture
obtained recently in [102] relies in particular on this “transfer+obstruction”
method in the case of E3-algebras and has applications to open problems
in quantum group theory.

Moreover, homotopy algebra structures are the structures controlled by the coho-
mology theories of algebras, when one works in the dg setting. For instance, the
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Hochschild complex of a dg associative algebra A controls (in a sense we will precise
later) not the strict algebra deformations but the A∞ deformations of A.

However, there is a quite obvious problem in the definition of homotopy algebra
we gave above. Indeed, it relies a priori on the choice of a resolution. For instance,
two homotopy P -algebras could be weakly equivalent for a certain choice of P∞
but not for another choice. In order to make sense of this notion and of the various
deformation theoretic, transfer and realization problems in which it naturally arises,
we have to prove an invariance result for the homotopy theory of homotopy P -
algebras:

Theorem 2.4. [97, Theorem 0.1] A weak equivalence ϕ : P∞
∼→ Q∞ between

cofibrant props induces an equivalence of (∞, 1)-categories

ϕ∗ : (Q∞ −Alg, q − isos)
∼→ (P∞ −Alg, q − isos),

where (P∞ − Alg, q − isos) is the (∞, 1)-category associated to the category of dg
P∞-algebras with quasi-isomorphisms as weak equivalences.

In the case of algebras over operads, this result is already known by using classical
methods of homotopical algebra. A weak equivalence ϕ : P → Q of dg operads
induces an adjunction

ϕ! : P∞ −Alg � Q∞ −Alg : ϕ∗,

where ϕ∗ is the functor induced by precomposition P∞ → Q∞ → EndX and
ϕ! is a certain coequalizer. The functor ϕ∗ is a right Quillen functor since weak
equivalences and fibrations of algebras over operads are determined in complexes, so
this is a Quillen adjunction. One can then prove that the unit and the counit of this
adjunction are weak equivalences, hence the desired result (a Quillen equivalence
induces an equivalence of the associated (∞, 1)-categories. We refer the reader to
[28, Chapter 16] for a detailed proof of this result. This method completely fails in
the case of algebras over props for two reasons:

• Algebras over props are a priori not stable under all colimits, so the left
adjoint ϕ! does not exist in general;
• There is no free P -algebra functor, hence no way to transfer a model cat-
egory structure from the one of cochain complexes (and by the previous
point, the first axiom of model categories already fails).

To overcome these difficulties, one has to go through a completely new method
based on the construction of a functorial path object of P -algebras and a corre-
sponding equivalence of classification spaces proved in [96], then an argument using
the equivalences of several models of (∞, 1)-categories [97]. The equivalence of The-
orem 2.4 is stated and proved in [97] as an equivalence of hammock localizations in
the sense of Dwyer-Kan [16].

Theorem 2.4 means that the notion of algebraic structure up to homotopy is
coherent in a very general context, and in particular that transfer and realization
problems make sense also for various kinds of bialgebras. Two motivating examples
are the realizations of Poincaré duality of oriented closed manifolds as homotopy
Frobenius algebra structures at the cochain level, and realizations of the Lie bial-
gebra structure on string homology at the chain level. Let us note that an explicit
realization has been recently obtained in [13] (with interesting relationships with
symplectic field theory and Lagrangian Floer theory), using a notion of homotopy
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involutive Lie bialgebra which actually matches with the minimal model of the as-
sociated properad obtained in [9] (see [13, Remark 2.4]). However, classification
and deformation theory of such structures, as well as the potential new invariants
that could follow, are still to be explored.

3. Deformation theory and moduli problems in a derived framework

Geometric idea. A common principle in algebraic topology and algebraic
geometry is the following.

• In order to study a collection of objects (or structures) equipped with an
equivalence relation, one construct a space (classifying space in topology,
moduli space in geometry) whose points are given by this collection of
objects and connected components are their equivalence classes.

• The set of equivalences classes is not enough. Indeed, understanding the de-
formation theory of these objects amounts to study the infinitesimal defor-
mations (formal neighbourhood) of the corresponding points on the moduli
space. For this, one needs the existence of some tangent structure, thus the
existence of a geometry on such a moduli space.

• The deformation theory of a given point is then described by the associated
formal moduli problem, which consists, roughly speaking, of a functor from
augmented artinian cdgas to simplicial sets with nice gluing properties, so
that its evaluation on an algebra R is the space of R-deformations of this
point.

• One would like an algebraic description of this deformation theory in terms
of deformation complexes and obstruction theory. For this, one has to move
in the derived world and use Lurie’s equivalence thm between formal moduli
problems and dg Lie algebra. The corresponding dg Lie algebra is called
the tangent Lie algebra.

In the two sections below, we describe some keys ideas to work out the construc-
tion above in a derived framework, and motivate the necessity to introduce these
additional derived data.

3.1. Derived algebraic geometry in a nutshell. A usual geometric approach to
moduli problems is to build an algebraic variety, scheme, or stack parameterizing
a given type of structures or objects (complex structures on a Riemann surface,
vector bundles of fixed rank...). However, the usual stacks theory shows its limits
when one wants to study families of objects related by an equivalence notion weaker
than isomorphisms (for instance, complexes of vector bundles) and capture their
full deformation theory on the tangent spaces. Derived algebraic geometry is a
conceptual framework to solve such problems, that can be seen as a homotopical
perturbation or thickening of algebraic geometry [89].

Recall that as a ringed space, a usual scheme is a couple (X,OX , where X is
a topological space and OX a sheaf of commutative algebras over X called the
structural sheaf of the scheme. That is, schemes are structured spaces locally mod-
elled by commutative algebras. From the “functor of points” perspective, schemes
are sheaves Aff → Set on the category Aff of affine schemes, which is the op-
posite category of the category ComK of commutative algebras: they are functors
ComK → Set satisfying a gluing condition (also called descent condition) with re-
spect to a specified collection of families of maps in ComK called a Grothendieck
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topology on ComK. The notion of Grothendieck topology can be seen as a categor-
ical analogue of the notion of covering of a topological space, and like sheaves on
a topological space, we want sheaves on a given category to satisfy a gluing condi-
tion along the “coverings” given by this Grothendieck topology. Stack theory goes
one step further, replacing Set by the 2-category of groupoids Grpd. Stacks are
then functors ComK → Grpd satisfying a 2-categorical descent condition (gluing
on objects of the groupoids and compatible gluing on sets of isomorphisms between
these objects). A motivation for such a complicated generalization of scheme theory
is to handle all the interesting moduli problems that cannot be represented by a
moduli space in the category of schemes, due to the fact that the families of objects
parametrized by this moduli problem have non trivial automorphisms (consider for
instance fiber bundles on a variety).

To give a geometric meaning and good properties for such moduli spaces, one has
to go further and work with geometric stacks, a subcategory of stacks which can be
obtained by gluing (taking quotients of) representable stacks along a specified class
P of maps. An important example of Grothendieck topology is the étale topology.
In this topology, the geometric stacks obtained by choosing for P the class of
étale maps are the Deligne-Mumford stacks, and the geometric stacks obtained
by choosing for P the class of smooth maps are the Artin stacks. To satisfy the
corresponding conditions forces the points of such a stack to have “not too wild”
automorphism groups: the points of a Deligne-Mumford stack have finite groups of
automorphisms (the historical example motivating the introduction of stack theory
is the moduli stack of stable algebraic curves), and Artin stacks allow more generally
algebraic groups of automorphisms (for example a quotient of a scheme by the action
of an algebraic group).

A derived scheme is a couple S = (X,OX , where X is a topological space
and OX a sheaf of differential graded commutative algebras over X, such that
t0S = (X,H0OX) (the zero truncation of S) is a usual scheme and the H−iOX are
quasi-coherent modules over H0OX . That is, derived schemes are structured spaces
locally modelled by cdgas. Using the “functor of points” approach, we can present
derived geometric objects in the diagram

ComK //

��

%%

��

Set

��
Grpd

��
CDGAK // sSet

where CDGAK is the∞-category of non-positively graded commutative differential
graded algebras, Set the category of sets, Grpds the (2-)category of groupoids and
sSet the ∞-category of simplicial sets (∞-groupoids).

• Schemes are sheaves ComK → Set over the category of affine schemes (the
opposite category of ComK) for a choice of Grothendieck topology.

• Stacks are “sheaves” ComK → Grpd for a 2-categorical descent condition,
and landing in groupoids allows to represent moduli problems for which
objects have non-trivial automorphisms.
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• Higher stacks are “sheaves up to homotopy” ComK → sSet, and landing
in simplicial sets allows to represent moduli problems for which objects are
related by weak equivalences instead of isomorphisms.

• Derived stacks are “sheaves up to homotopy” CDGAK → sSet over the∞-
category of non-positively graded cdgas (in the cohomological convention)
with a choice of Grothendieck topology on the associated homotopy cate-
gory. They capture the derived data (obstruction theory via (co)tangent
complexes, non-transverse intersections, K-theoretic virtual fundamental
classes [90, Section 3]) and convey richer geometric structures (shifted sym-
plectic structures for instance [74]).

It is important to precise that, to get derived stacks with geometric properties, we
have to restrict to a sub-∞-category of these, called derived Artin stacks. Derived
1-Artin stacks are geometric realizations of smooth groupoids objects in derived
affine schemes, and derived n-Artin stack are recursively defined as the geometric
realization of smooth groupoid object in derived n − 1-Artin stacks. An alternate
way is to define n-Artin stacks as smooth n-hypergroupoid objects in derived affine
schemes [77]. This is the natural generalization, in the derived setting, of the geo-
metric stacks we mentionned earlier: we obtain them by gluing representables along
smooth maps, and this gluing is defined as the realization of a (higher) “groupoid-
like” object. Such stacks are also said to be n-geometric. Derived Artin stacks admit
cotangent complexes, an associated obstruction theory and various properties for
which we refer the reader to [90]. Concerning in particular the obstruction theory,
the cotangent complex of a derived n-Artin stack is cohomologically concentrated in
degrees ]−∞;n]. If the derived Artin stack X is locally of finite presentation, then
it admits a tangent complex (the dual of the cotangent complex in the ∞-category
Lqcoh(X) of quasi-coherent complexes over X) cohomologically concentrated in de-
grees [−n;∞[. The geometric meaning of the cohomological degree is the following:
at a given point x of X, the cohomology of the tangent complex in positive degrees
controls the obstruction theory of x (extensions of infinitesimal deformations to
higher order deformations), the 0th-cohomology group is the group of equivalence
classes of infinitesimal deformations, and the cohomology of the tangent complex
in negative degrees controls the (higher) symmetries of x (the homotopy type of
its automorphisms is bounded by n). This last part generalizes to derived geom-
etry the idea of the usual theory of algebraic stacks, that we have to control the
automorphisms of the points to get a nice geometric object.

Remark 3.1. Derived Artin stacks satisfy the “geometricity” condition for a derived
analogue of the class of smooth maps. Similarly, one can define derived Deligne-
Mumford stacks by a geometricity condition for a derived analogue of the class of
étale maps.

To illustrate this homotopical enhancement of algebraic geometry, let us give
some interesting examples.

Example 3.2. Let X and Y be two subvarieties of a smooth variety V . Their
intersection is said to be transverse if and only if for every point p ∈ X ∩ Y , we
have TpV = TpX+TpY where Tp is the tangent space at p. This means that X ∩Y
is still a subvariety of V . Transverse intersections are very useful:
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• In algebraic topology, to define the intersection product [X].[Y ] = [X ∩
Y ] on the homology H∗M of a manifold M (classes being represented by
submanifolds X,Y of M).

• In algebraic geometry, classes represented by subvarieties are called alge-
braic classes, and the formula of the intersection product above equip alge-
braic classes with a ring structure. This is called the Chow ring.

It is thus natural to ask what happens when intersections are not transverse. The
idea is to deform X to another subvariety X ′ and Y to another subvariety Y ′ such
that X ′ and Y ′ intersect transversely, and to define [X].[Y ] = [X ′ ∩ Y ′]. The
drawback is that X ∩ Y is not a geometric object anymore but just a homology
class.

Another natural question is to count multiplicity (in some sense, the “degree of
tangency”) of non transverse intersections. For example, consider X = {y = 0}
a line tangent to Y = {y − x2 = 0} the parabola in the affine plane, and look
at the intersection point p = (0, 0) of X and Y . If we deform this situation to a
generic case by moving the line along the parabola, the line intersects the parabola
at two distinct points. This means that the multiplicity of p is 2. In general, the
multiplicity of the intersection of two subvarieties X and Y at a generic point p is
given by Serre’s intersection formula

I(p;X,Y ) =
∑
i

(−1)idimOV,p
(TorOV,p

i (OX,p,OY,p))

= dim(OX,p ⊗OV,p
OY,p) + correction terms

where OV,p is the stalk of OV at p, and OX,p,OY,p are OV,p-modules for the struc-
tures induced by the inclusions X ↪→ V, Y ↪→ V . In certain cases, the multiplicity is
determined by the dimension of OX,p⊗OV,p

OY,p, but in general this is not sufficient
and we have to introduce correction terms given by the derived functors Tor with
no geometric meaning.

Non transverse intersections have a natural geometric construction in derived
geometry. The idea is to realize X ∩Y as a derived scheme by using a derived fiber
product

X ×hV Y = (X ∩ Y,OX×h
V
Y = OX ⊗L

OV
OY )

where ⊗L is the left derived tensor product of sheaves of cdgas and ⊗L
OV

is the left
derived tensor product of dg OV -modules. Then

I(p;X,Y ) =
∑
i

(−1)idim(H−iOX×h
V
Y ),

that is, the intersection number naturally and geometrically arises as the Euler
characteristic of the structure sheaf of the derived intersection. In a sentence, the
transversality failure is measured by the derived part of the structure sheaf.

Example 3.3. Another kind of application is Kontsevich’s approach to Gromov-
Witten theory in symplectic topology and algebraic geometry (which has also ap-
plications in string theory). On the algebraic geometry side, the problem is the
following. When we want to count the intersection points of two curves in P2,
we use intersection theory on P2 and Bezout theorem. More generally, one could
wonder how to count rational curves of a given degree in PN that intersect a given
number of points p1, · · · , pn, or replace PN by a more general varietyX. The idea to
address this question is to define a moduli space of such curves and do intersection
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theory on this moduli space. But for this, one has to define a moduli space with
good geometric properties, a constraint that leads to the notion of stable map. Let
C be a curve of genus g and degree d with marked points p1, · · · , pn. A stable map
is a map f : C → X satisfying an additional “stability condition” we do not precise
here. Counting rational curves of genus g and degree d in X passing through n
fixed points x1, · · · , xn of X amounts to count such stable maps, and this defines
the Gromov-Witten invariants of X. A classical idea is to define an invariant by in-
tegrating some function on the appropriate moduli space (via intersection theory).
Here, this is the moduli space of stable mapsMg,n(X, d). In the case X = Pn, this
is a smooth and compact Deligne-Mumford stack. In the general case of a smooth
proper variety, the moduli space Mg,n(X, d) is not smooth anymore and this is a
major trouble.

Indeed, we would like to define Gromov-Witten invariants by

GWd(x1, · · · , xn) =
ˆ
Mg,n(X,d)

ev∗1 [x1] ∪ · · · ∪ ev∗n[xn]

= < [Mg,n(X, d)], ev∗1 [x1] ∪ · · · ∪ ev∗n[xn] >

where evi : Mg,n(X, d) → X, f 7→ f(pi) is the evaluation map at the ith marked
point of curves, the class [xi] is the cohomology class associated to the homology
class of the point xi by Poincaré duality, and <,> is the Poincaré duality pair-
ing. Intuitively, the class ev∗1 [xi] represents curves in X whose ith marked point
coincide (up to deformation of the curve) with xi, that is, equivalences classes of
curves passing through xi. The product ev∗1 [x1] ∪ · · · ∪ ev∗n[xn] then correspond to
equivalence classes of curves passing through x1, · · · , xn, and counting such curves
amounts to pair it along the fundamental class [Mg,n(X, d)] of Mg,n(X, d). And
this is the problem: there is no such thing as a “‘fundamental class ofMg,n(X, d)”,
sinceMg,n(X, d) is not smooth.

Briefly, Kontsevich’s idea is to seeMg,n(X, d) as a “derived space” (i.e. equipped
with a differential graded structure sheaf), that is, to make Mg,n(X, d) formally
behave like a smooth space by replacing the tangent spaces by tangent complexes.
Then one associates to its dg sheaf a “virtual fundamental class” [Mg,n(X, d)]vir,
generalizing the fundamental class of smooth objects to singular objects (by taking
the Euler characteristic of this dg sheaf in K-theory, and sending this K-theory
virtual class to a class in the Chow ring ofMg,n(X, d), thanks to the existence of
a Chern character). This allows to properly define

GWd(x1, · · · , xn) =< [Mg,n(X, d)]vir, ev∗1 [x1] ∪ · · · ∪ ev∗n[xn] > .

Example 3.4. Another very interesting application is the possibility to define a
derived version of character varieties. Let M be a smooth manifold and G a Lie
group (or an algebraic group). We know that a G-local system on M is given by a
G-bundle with flat connection, and those bundles are equivalent to representations
π1M → G by the Riemann-Hilbert correspondence. The variety of G-characters of
M is defined by

LocG(M) = Hom(π1M,G)/G
where G acts by conjugation. This is the moduli space of G-local systems on M .
Character varieties are of crucial importance in various topics of geometry and
topology, including
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• Teichmüller geometry: for a Riemann surface S, the variety LocSL2(S)
contains the Teichmüller space of S as a connected component.

• Low dimensional topology: for dim(M) = 3, the variety LocG(M) is related
to quantum Chern-Simons invariants of M (their are various conjectures
about how the properties of LocG(M) could determine the behaviour of
the 3-TQFT associated to G and M and associated invariant such as the
colored Jones polynomial).

However, this is generally a highly singular object, and one would like to apply the
principle shown in the previous example: treat this singular object as a smooth
object in a derived framework. To formalize this idea, one defines a derived stack

RLocG(M) = Map(Betti(M), BG)
where Betti(M) is the Betti stack of M , BG is the derived classifying stack of M
and Map is the internal mapping space in the ∞-category of derived stacks [90].
This new object satisfies the following important properties:

• Its zero truncation gives the usual character variety
T0RLocG(M) = LocG(M).

• The tangent complex over a point computes the cohomology of M with
coefficients in the associated G-local system.

• There is a nice new geometric structure appearing on such objects, which
is typically of derived nature: it possesses a canonical 2− dim(M)-shifted
symplectic structure [74]. Briefly, shifted symplectic structures are the ap-
propriate generalization of symplectic structure from smooth manifolds to
derived stacks. Here, since tangent spaces are complexes, differential forms
come with a cohomological degree in addition to their weight. An n-shifted
symplectic structure is a cohomology class of degree n in the de Rham com-
plex of closed 2-forms satisfying a weak non-degeneracy condition: for every
point Spec(K)→ X, it induces a quasi-isomorphism TX/K

∼→ LX/K[−n] be-
tween the tangent complex and the shifted cotangent complex.

If X is a smooth manifold, a 0-shifted symplectic structure on X is a usual sym-
plectic structure. Let us note that in the case of a surface, the 0-shifted symplectic
form RLocG(M) restricts to Goldman’s symplectic form on the smooth locus of
LocG(M) [41], so this is really an extension of Goldman’s form to the whole moduli
space.

Finally, to come back to the main topic of our survey and to motivate a bit the
use of homotopy theory for moduli spaces of algebraic structures, let us see on a
very simple example what happens if we build such a space with usual algebraic
geometry:

Example 3.5. Let V be a vector space of dimension n, and let us consider a basis
{e1, ·, en} of V . An associative product on V is a linear map µ : V ⊗ V → V
satisfying the associativity condition, hence it is determined by its values on the
basis vectors

µ(ei, ej) =
n∑
k=1

ckijek,

where the ckij ’s satisfy moreover a certain set of relations R determined by the
associativity of µ. We can build an affine scheme whose K-points are the associative
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algebra structures on V : its ring of functions is simply given by A = K[ckij ]/(R).
But we would like to classify such structures up to isomorphism, hence up to base
change in V . For this, we have to mod out by the action of GLn on V . In
order to have a well defined quotient of Spec(A) by GLn, we take the quotient
stack [Spec(A)/GLn] as our moduli space of associative algebra structures up to
isomorphisms.

Now let R be an associative algebra with underlying vector space V , which
represents a K-point of V (given by the orbit of the action of GL(V ) on R). Then
the truncated tangent complex TR of [Spec(A)/GLn] over the orbit of R is given
by a map

dψ : gl(V )→ TRSpec(A),
where gl(V ) is the Lie algebra ofGL(V ) (the Lie algebra of matrices with coefficients
in V ) sitting in degree −1, and TRSpec(A) is the tangent space of Spec(A) over R,
sitting in degree 0. This map is the tangent map of the scheme morphism

φ : GL(V )→ Spec(A)

which sends any f ∈ GL(V ) to f.R, the action of f on R, defined by transferring
the algebra structure of R along f . This is what one should expect for the tangent
complex: two associative algebra structures are equivalent if and only if they are
related by the action of GL(V ) (also called action of the “gauge group”). We then
get H−1TR = Endalg(R) (the Lie algebra of algebra endomorphisms of R, tangent
to Autalg(R)) andH0TR = HH2(R,R) the second Hochschild cohomology group of
R. Let us note that this computation is a very particular case of [98, Theorem 5.6].
The group HH2(R,R) classifies equivalence classes of infinitesimal deformations of
R. In particular, if HH2(R,R) = 0 then the algebra R is rigid, in the sense that
any infinitesimal deformation of R is equivalent to the trivial one.

The construction above has two main drawbacks. First, the tangent complex
does not give us any information about the obstruction theory of R, for instance,
obstruction groups for the extension of infinitesimal deformations to formal ones.
Second, in the differential graded case this construction does not make sense any
more, and gives no way to classify structures up to quasi-isomorphisms.

3.2. Derived formal moduli problems. Formal moduli problems arise when
one wants to study the infinitesimal deformation theory of a point x of a given
moduli space X (variety, scheme, stack, derived stack) in a formal neighbourhood
of this point (that is, the formal completion of the moduli space at this point).
Deformations are parametrized by augmented artinian rings, for example K[t]/(t2)
for infinitesimal deformations of order one, or K[t]/(tn) for polynomial deformations
of order n. The idea is to pack all the possible deformations of x in he datum of a
deformation functor

DefX,x : ArtaugK → Set

from augmented artinian algebras to sets, sending an artinian algebra R to the set
of equivalence classes of R-deformations of x, that is, equivalence classes of lifts

Spec(R) // X

Spec(K)

OO

x

;;
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(where the morphism Spec(K) → Spec(R) is induced by the augmentation R →
K). These are nothing but the fiber of the map X(R) → X(K) induced by the
augmentation R → K and taken over the base point x. Later on, several people
realized that one could use Lie theory of dg Lie algebra to describe these deformation
functors. Precisely, given a dg Lie algebra g, we consider the functor

Defg : ArtaugK → Set

R 7−→ MC(g ⊗K mR)

where mR is the maximal ideal of g and MC(g⊗KmR) is the set of Maurer-Cartan
elements of the dg Lie algebra g ⊗K mR, that is, elements x of degree 1 satisfying
the Maurer-Cartan equation dx+ 1

2 [x, x] = 0. The functor Defg is a formal mod-
uli problem called the deformation functor or deformation problem associated to
g. This characterization of formal moduli problems arose from unpublished work
of Deligne, Drinfed and Feigin, and was developed further by Goldman-Millson,
Hinich, Kontsevich, Manetti among others. Defining deformation functors via dg
Lie algebras led to striking advances, for instance in the study of representations of
fundamental groups of varieties [43, 82] and in deformation quantization of Poisson
manifolds [55].

It turned out that all known deformation problems related to moduli spaces in
geometry were of this form, which led these people to conjecture that there should
be a general correspondence between formal moduli problems and dg Lie algebras.
However, there was no systematic recipe to build a dg Lie algebra from a given
moduli problem (the construction above is the converse direction of this hypotheti-
cal equivalence), and even worse, different dg Lie algebras could represent the same
moduli problem. Moreover, the obstruction theory associated to a moduli problem,
given by the positive cohomology groups of its Lie algebra, has no natural interpre-
tation in terms of the deformation functor. Indeed, deformation theory is actually
of derived nature. For instance, if we want to study the extension of polynomial de-
formations of order n to order n+ 1, we have to study the properties of the natural
projection K[t]/(tn+1) → K[t]/(tn) and under which conditions the induced map
X(K[t]/(tn+1))→ X(K[t]/(tn)) is surjective, or bijective. This projection actually
fits in a homotopy pullback (not a strict pullback) of augmented dg artinian algebras
(not augmented commutative algebras in K-modules)

K[t]/(tn+1) //

��

K[t]/(tn)

��
K // K[ε]/(ε2)

,

where ε is of cohomological degree 1 (not 0). If we could define formal moduli
problems in this dg setting, we would like to apply the formal moduli problem Xx,
associated to a given point x of a moduli space X, to the diagram above to get a
fiber sequence

Xx(K[t]/(tn+1))→ Xx(K[t]/(tn))→ X(K[ε]/(ε2))

and study the obstruction theory by understanding X(K[ε]/(ε2)) in an algebraic
way.

These problems hints towards the necessity to introduce some homotopy theory
in the study of formal moduli problems. For this, one replaces augmented artinian
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algebras ArtaugK by augmented dg artinian algebras dgArtaugK , and sets Set by
simplicial sets sSet:

Definition 3.6. A derived formal moduli problem is a functor F : dgArtaugK → sSet
from augmented artinian commutative differential graded algebras to simplicial sets,
such that

1. We have an equivalence F (K) ' pt.
2. The functor F sends quasi-isomorphisms of cdgas to weak equivalences of

simplicial sets.
3. Let us consider a homotopy pullback of augmented dg artinian algebras

A //

��

B

��
C // D

and suppose that the induced maps H0C → H0D and H0B → H0D are surjective.
Then F sends this homotopy pullback to a homotopy pullback of simplicial sets.

Formal moduli problems form a full sub-∞-category noted FMPK of the ∞-
category of simplicial presheaves over augmented artinian cdgas. To explicit the
link with derived algebraic geometry, the formal neighbourhood of a point x in a
derived stack X (formal completion of X at x) gives the derived formal moduli
problem Xx controlling the deformation theory of x. Given an artinian algebra R
with augmentation ε : R→ K, the homotopy fiber

Xx(R) = hofib(X(ε) : X(R)→ X(K))
taken over the K-point x is the space of R-deformations of X, and equivalence
classes of R-deformations are determined by π0Xx(R). In particular, applying Xx

to the homotopy pullback

K[t]/(tn+1) //

��

K[t]/(tn)

��
K // K[ε]/(ε2)

,

we get a homotopy fiber sequence of spaces
Xx(K[t]/(tn+1))→ Xx(K[t]/(tn))→ X(K[ε]/(ε2)),

hence a fiber sequence
π0Xx(K[t]/(tn+1))→ π0Xx(K[t]/(tn))→ π0Xx(K[ε]/(ε2)) ∼= H1gXx ,

where gXx
is the tangent Lie algebra of the formal moduli problem Xx. We can

take equivalently the cohomology of the shifted tangent complex TX,x[−1] of the
stack X at x.

Remark 3.7. Actually, as proved in [44], for any derived Artin stack X locally of
finite presentation (so that we can dualize the cotangent complex to define the tan-
gent complex), there exists a quasi-coherent sheaf gX of OX -linear dg Lie algebras
over X such that

gX ' TX/K[−1]
in the∞-category Lqcoh(X) of quasi-coherent complexes over X, where TX/K is the
global tangent complex of X over K. Pulling back this equivalence along a point
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x : Spec(K)→ X, we get a quasi-isomorphism gXx
' TX,x[−1]. The sheaf gX thus

encodes the family of derived formal moduli problems parametrized by X which
associates to any point of X its deformation problem (the formal completion of X
at this point).

The rigorous statement of an equivalence between derived formal moduli prob-
lems and dg Lie algebras was proved independently by Lurie in [59] and by Pridham
in [76]:
Theorem 3.8 (Lurie, Pridham). The ∞-category FMPK of derived formal moduli
problems over K is equivalent to the ∞-category dgLieK of dg Lie K-algebras.

Moreover, one side of the equivalence is made explicit, and is equivalent to
the nerve construction of dg Lie algebras studied thoroughly by Hinich in [45].
The homotopy invariance of the nerve relies on nilpotence conditions on the dg
Lie algebra. In the case of formal moduli problems, this nilpotence condition is
always satisfied because one tensors the Lie algebra with the maximal ideal of an
augmented artinian cdga. In this article , what we will call moduli problems are
actually derived moduli problems.

3.2.1. Extension to L∞-algebras. Certain deformation complexes of interest are not
strict Lie algebras but homotopy Lie algebras, that is L∞-algebras. Their is a
strictification theorem for homotopy Lie algebras (more generally, for dg algebras
over any operad when K is of characteristic zero), so any L∞-algebra is equivalent
to a dg Lie algebra, but this simplification of the algebraic structure goes with an
increased size of the underlying complex, which can be very difficult to explicit.
This is why one would like the theory of derived formal moduli problems to extend
to L∞-algebras, and fortunately it does. There are two equivalent definitions of an
L∞-algebra:
Definition 3.9. (1) An L∞-algebra is a graded vector space g = {gn}n∈Z equipped
with maps lk : g⊗k → g of degree 2−k, for k ≥ 1, satisfying the following properties:

• lk(..., xi, xi+1, ...) = −(−1)|xi||xi+1|lk(..., xi+1, xi, ...)
• for every k ≥ 1, the generalized Jacobi identities

k∑
i=1

∑
σ∈Sh(i,k−i)

(−1)ε(i)lk(li(xσ(1), ..., xσ(i)), xσ(i+1), ..., xσ(k)) = 0

where σ ranges over the (i, k − i)-shuffles and

ε(i) = i+
∑

j1<j2,σ(j1)>σ(j2)

(|xj1 ||xj2 |+ 1).

(2) An L∞-algebra structure on a graded vector space g = {gn}n∈Z is a coderiva-
tion Q : ˆSym

•≥1
(g[1]) → ˆSym

•≥1
(g[1]) of degree 1 of the cofree cocommutative

coalgebra ˆSym
•≥1

(g[1]) such that Q2 = 0.
The bracket l1 is actually the differential of g as a cochain complex. When the

brackets lk vanish for k ≥ 3, then one gets a dg Lie algebra. The dg algebra C∗(g)
obtained by dualizing the dg coalgebra of (2) is called the Chevalley-Eilenberg
algebra of g.

A L∞ algebra g is filtered if it admits a decreasing filtration
g = F1g ⊇ F2g ⊇ ... ⊇ Frg ⊇ ...
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compatible with the brackets: for every k ≥ 1,

lk(Frg, g, ..., g) ∈ Frg.

We suppose moreover that for every r, there exists an integer N(r) such that
lk(g, ..., g) ⊆ Frg for every k > N(r). A filtered L∞ algebra g is complete if the
canonical map g → limrg/Frg is an isomorphism.

The completeness of a L∞ algebra allows to define properly the notion of Maurer-
Cartan element:

Definition 3.10. (1) Let g be a dg L∞-algebra and τ ∈ g1, we say that τ is a
Maurer-Cartan element of g if∑

k≥1

1
k! lk(τ, ..., τ) = 0.

The set of Maurer-Cartan elements of g is noted MC(g).
(2) The simplicial Maurer-Cartan set is then defined by

MC•(g) = MC(g⊗̂Ω•),

, where Ω• is the Sullivan cdga of de Rham polynomial forms on the standard
simplex ∆• (see [84]) and ⊗̂ is the completed tensor product with respect to the
filtration induced by g.

The simplicial Maurer-Cartan set is a Kan complex, functorial in g and preserves
quasi-isomorphisms of complete L∞-algebras. The Maurer-Cartan moduli set of g
isMC(g) = π0MC•(g): it is the quotient of the set of Maurer-Cartan elements of
g by the homotopy relation defined by the 1-simplices. When g is a complete dg
Lie algebra, it turns out that this homotopy relation is equivalent to the action of
the gauge group exp(g0) (a prounipotent algebraic group acting on Maurer-Cartan
elements), so in this case this moduli set coincides with the one usually known for
Lie algebras. We refer the reader to [98] for more details about all these results.
The notion of Maurer-Cartan space allows to define the the classical deformation
functor of g given by

MC(g) : ArtK → Set

R 7−→ MC(g ⊗mR)

and the derived deformation functor or derived formal moduli problem of g given
by

MC•(g) : dgArtaugK → sSet

R 7−→ MC•(g ⊗mR)

(which belongs indeed to FMPK). By [98, Corollary 2.4], the tensor product
MC•(g ⊗mR) does not need to be completed because R is artinian. To see why
Theorem 3.3 extends to L∞-algebras, let π : L∞

∼→ Lie be a cofibrant resolution
of the operad Lie. This morphism induces a functor p∗ : dgLie→ L∞−Alg which
associates to any dg Lie algebra the L∞-algebra with the same differential, the
same bracket of arity 2 and trivial higher brackets in arities greater than 2. This
functor fits in a Quillen equivalence

p! : L∞ −Alg � dgLie : p∗,
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where the left adjoint is a certain coequalizer (see [28, Theorem 16.A]), and Quillen
equivalences induce equivalences of the corresponding ∞-categories, so we have a
commutative triangle of ∞-categories

L∞ −Alg
ψ̃

&&
dgLie

p∗

OO

ψ
// FMPK

where ψ and ψ̃ send a Lie algebra, respectively an L∞-algebra, to its derived formal
moduli problem. The maps p∗ and ψ are weak equivalences of ∞-categories, so
ψ̃ : L∞ − Alg → FMPK is a weak equivalence of ∞-categories as well (here, by
weak equivalence we mean a weak equivalence in the chosen model category of
∞-categories, say quasi-categories for instance).

3.2.2. Twistings of L∞-algebras. We recall briefly the notion of twisting by a Maurer-
Cartan element. The twisting of a complete L∞ algebra g by a Maurer-Cartan
element τ is the complete L∞ algebra gτ with the same underlying graded vector
space and new brackets lτk defined by

lτk(x1, ..., xk) =
∑
i≥0

1
i! lk+i(τ, ..., τ︸ ︷︷ ︸

i

, x1, ..., xk)

where the lk are the brackets of g. The twisted L∞-algebra gϕ is the deformation
complex of ϕ, that is, the derived formal moduli problem of gϕ controls the de-
formation theory of ϕ. To see this, let us define another kind of Maurer-Cartan
functor

M̃C•(g ⊗−) : dgArtaugK → sSet

R 7−→ MC•(g ⊗R).

We replaced the maximal ideal mR in the definition of the deformation functor
by the full algebra R. That is, the functor M̃C•(g ⊗ −) sends R to the space of
R-linear extensions of Maurer-Cartan elements of g. Then, for every augmented dg
artinian algebra R one has

MC•(gϕ ⊗mR) = hofib(MC•(g ⊗R)→MC•(g), ϕ)

where the map in the right side is induced by the augmentation R → K and the
homotopy fiber is taken over the base point ϕ. That is, the space MC•(gϕ ⊗mR)
is the space of R-linear extensions of ϕ as Maurer-Cartan elements of g ⊗R.

4. Moduli spaces of algebraic structures

4.1. First version: a simplicial construction. We refer the reader to [48, Chap-
ter 16, Chapter 17] and [31, ] for some prerequisites about simplicial mapping spaces
in model categories. We use this notion of simplicial mapping space and the model
category structure on props to define our moduli spaces. Let us define a first version
of this moduli space as a simplicial set. This was originally defined in the setting
of simplicial operads [79], and can be extended to algebras over differential graded
props as follows (see [100]):
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Definition 4.1. Let P∞ be a cofibrant prop and X be a cochain complex. The
(simplicial) moduli space of P∞-algebra structures onX is the simplicial set P∞{X}
defined in each simplicial dimension k by

P∞{X}k = Morprop(P∞, EndX ⊗ Ωk),
where (EndX ⊗ Ωk)(m,n) = Hom(X⊗m, X⊗n)⊗ Ωk.

The Sullivan algebras Ωk gather into a simplicial commutative differential graded
algebra Ω• whose faces and degeneracies induce the simplicial structure on P∞{X}.
The functor (−)⊗ Ω• is a functorial simplicial resolution in the model category of
props [99, Proposition 2.5], so this simplicial moduli space is a homotopy mapping
space in this model category. In particular, this means that this simplicial set is
a Kan complex whose points are the P∞-algebra structures P∞ → EndX and 1-
simplices are the homotopies between such structures (the prop EndX ⊗ Ω1 forms
a path object of EndX in the model category of props). The later property implies
that

π0P∞{X} = [P∞, EndX ]Ho(Prop)
is the set of homotopy classes of P∞-algebra structures on X. So our simplicial
moduli space has the two first properties one expects from a moduli space: its
points are the objects we want to classify and its connected components are the
equivalence classes of these objects. Moreover, the fact that this is a homotopy
mapping space implies that it is homotopy invariant with respect to the choice of a
cofibrant resolution for the source, that is, any weak equivalence of cofibrant props
P∞

∼→ Q∞ induces a weak equivalence of Kan complexes
Q∞{X}

∼→ P∞{X}.
So this is a well defined classifying object for homotopy P -algebra structures on X.

Another interesting homotopy invariant is the classification space of P∞-algebras,
defined as the nerve NwP∞−Alg of the subcategory whose objects are P∞-algebras
and morphisms are quasi-isomorphisms of P∞-algebras. By [16, 17], this classifica-
tion space admits a decomposition

NwP∞ −Alg ' u[X]∈π0NwP∞−AlgWLHwP∞ −Alg(X,X).

Here the product ranges over weak equivalence classes of P∞-algebras, andWLHwP∞−
Alg(X,X) is the classifying complex of the simplicial monoid of zigzags of weak
equivalences X ∼← • ∼→ X in the hammock localization (or equivalently in the sim-
plicial localization) of P∞−Alg in the sense of Dwyer-Kan, i.e. the self equivalences
of X in the∞-category of P∞-algebras. Let us note that when P∞ is an operad and
X is a cofibrant P∞-algebra, this space is equivalent to the usual simplicial monoid
hautP∞(X) of self weak equivalences of X. This means that the classification space
of P∞-algebras encodes symmetries and higher symmetries of P∞-algebras in their
homotopy theory. Homotopy invariance of the classification space for algebras over
props is a non trivial theorem:

Theorem 4.2. [96, Theorem 0.1] Let ϕ : P∞
∼→ Q∞ be a weak equivalence between

two cofibrant props. The map ϕ gives rise to a functor
ϕ∗ : wQ∞ −Alg → wP∞ −Alg

which induces a weak equivalence of simplicial sets
Nϕ∗ : NwQ∞ −Alg

∼→ NwP∞ −Alg.
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Moreover, it turns out that the simplicial moduli space defined above gives a local
approximation of this classification space, precisely we have the following result:

Theorem 4.3. [100, Theorem 0.1] Let P∞ be a cofibrant dg prop and X be a
cochain complex. The commutative square

P∞{X}

��

// NwP∞ −Alg

��
{X} // Nw Ch

is a homotopy pullback of simplicial sets.

This homotopy fiber theorem has been applied to study the homotopy type of
realization spaces in [101] in terms of derivation complexes and to count equivalence
classes of realizations (of Poincaré duality for example).

The reader has probably noticed that we used the following property to define
our simplicial moduli space: tensoring a prop by a cdga componentwise preserves
the prop structure. This allows us to extend the definition of this moduli space and
make it a simplicial presheaf of cdgas

Map(P∞, Q) : R ∈ CDGAK 7→MapProp(P∞, Q⊗A).
Moreover, the notion of classification space defined above in the sense of Dwyer-Kan
can also be extended to a simplicial presheaf. For this, we use that for any cdga R,
the categoryModR is a (cofibrantly generated) symmetric monoidal model category
tensored over chain complexes, so that one can define the category P∞−Alg(ModR)
of P∞-algebras in ModR. The assignment

A 7→ wP∞ −Alg(ModR)
defines a weak presheaf of categories in the sense of [1, Definition I.56]. It sends a
morphism A→ B to the symmetric monoidal functor −⊗A B lifted at the level of
P∞-algebras. This weak presheaf can be strictified into a presheaf of categories (see
[1, Section I.2.3.1]). Applying the nerve functor then defines a simplicial presheaf of
Dwyer-Kan classification spaces that we noteNwP∞ −Alg. The simplicial presheaf
NwChK associated to A 7→ModA is the simplicial presheaf of quasi-coherent mod-
ules of [89, Definition 1.3.7.1]. The constructions above then make the following
generalization of Theorem 4.3 meaningful:

Proposition 4.4. [102, Proposition 2.13] Let P∞ be a cofibrant prop and X be a
chain complex. The forgetful functor P∞ − Alg → ChK induces a homotopy fiber
sequence

P∞{X} → NwP∞ −Alg → NwChK
of simplicial presheaves over cdgas, taken over the base point X.

4.2. Second version: a stack construction and the associated deformation
theory. If P is a properad with cofibrant resolution (F(s−1C), ∂) ∼→ P for a
certain homotopy coproperad C (see [67, Section 4] for the definition of homotopy
coproperads), and Q is any properad, then we consider the total complex gP,Q =
HomΣ(C,Q) given by homomorphisms of Σ-biobjects from the augmentation ideal
of C to Q. In the case Q = EndX we will note it gP,X . By [68, Theorem 5], it
is a complete dg L∞ algebra whose Maurer-Cartan elements are prop morphisms
P∞ → Q. This L∞-structure was also independently found in [65, Section 5], where



MODULI SPACES OF (BI)ALGEBRA STRUCTURES IN TOPOLOGY AND GEOMETRY 29

it is proved that such a structure exists when replacing our cofibrant resolution
above by the minimal model of a K-linear prop (and its completeness follows by
[65, Proposition 15]). In [99], we prove a non trivial generalization of this result at
the level of simplicial presheaves:

Theorem 4.5. [99, Theorem 2.10,Corollary 4.21] Let P be a dg properad equipped
with a minimal model P∞ := (F(s−1C), ∂) ∼→ P and Q be a dg properad. Let us
consider the simplicial presheaf

Map(P∞, Q) : R ∈ CDGAK 7→MapProp(P∞, Q⊗A)
where CDGAK is the category of commutative differential graded K-algebras and
Q⊗A is the componentwise tensor product defined by (Q⊗A)(m,n) = Q(m,n)⊗A.
This presheaf is equivalent to the simplicial presheaf

M̃C•(HomΣ(C,Q)) : A ∈ CDGAK 7→MC•(HomΣ(C,Q)⊗A)

associated to the complete L∞-algebra HomΣ(C,Q).

In the case Q = EndX , we get the simplicial presheaf which associates to A the
moduli space of P∞-algebra structures on X ⊗ A. Let us note that Map(P∞, Q)
can be alternately defined by

A 7→MapProp(ModA)(P∞ ⊗A,Q⊗A),
where MapProp(ModA) is the simplicial mapping space in the category of props in
dg A-modules. In the case Q = EndX , we have Q⊗A ∼= EndModA

X⊗A where EndModA

X⊗A
is the endormorphism prop of X ⊗ A taken in the category of A-modules. That
is, it associates to A the simplicial moduli space of A-linear P∞-algebra structures
on X ⊗ A in the category of A-modules. This theorem applies to a large class
of algebraic structures, including for instance Frobenius algebras, Lie bialgebras
and their variants such as involutive Lie bialgebras, as well as the properad Bialg
encoding associative and coassociative bialgebras.

Under additional assumptions, we can equip such a presheaf with a stack struc-
ture:

Theorem 4.6. [99, Corollary 0.8] (1) Let P∞ = (F(s−1C), ∂) ∼→ P be a cofibrant
resolution of a dg properad P and Q be any dg properad such that each Q(m,n) is
a bounded complex of finite dimension in each degree. The functor

Map(P∞, Q) : A ∈ CDGAK 7→MapProp(P∞, Q⊗A)
is an affine stack in the setting of complicial algebraic geometry of [89].

(2) Let P∞ = (F(s−1C), ∂) ∼→ P be a cofibrant resolution of a dg properad P
in non positively graded cochain complexes, and Q be any properad such that each
Q(m,n) is a finite dimensional vector space. The functor

Map(P∞, Q) : A ∈ CDGAK 7→MapProp(P∞, Q⊗A)
is an affine stack in the setting of derived algebraic geometry of [89], that is, an
affine derived scheme.

In the derived algebraic geometry context, the derived stack Map(P∞, Q) is not
affine anymore wether the Q(m,n) are not finite dimensional vector spaces. How-
ever, we expect these stacks to be derived n-Artin ind-stacks for the Q(m,n) being
perfect complexes with finite amplitude n, using the characterization of derived
n-Artin stacks via resolutions by Artin n-hypergroupoids given in [76].
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We denote by TMap(P∞,Q),xϕ
the tangent complex ofMap(P∞, Q) at an A-point

xϕ associated to a properad morphism ϕ : P∞ → Q⊗eA. As we explained before in
Section 3, non-positive cohomology groups of the deformation complex correspond
to negative groups of the tangent complex, which computes the higher automor-
phisms (higher symmetries) of the point, and the positive part which computes the
obstruction theory. Adding some finiteness assumptions on the resolution P∞, we
can explicit the ring of functions of this affine stack:
Theorem 4.7. [99, Theorem 0.14] Let P be a dg properad equipped with a cofibrant
resolution P∞ := Ω(C) ∼→ P , where C admits a presentation C = F(E)/(R), and
Q be a dg properad such that each Q(m,n) is a bounded complex of finite dimension
in each degree. Let us suppose that each E(m,n) is of finite dimension, and that
there exists an integer N such that E(m,n) = 0 for m+ n > N . Then

(1) The moduli stack Map(P∞, Q) is isomorphic to RSpecC∗(HomΣ(C,Q)), where
C∗(HomΣ(C,Q)) is the Chevalley-Eilenberg algebra of HomΣ(C,Q).

(2) The cohomology of the tangent dg Lie algebra at a K-point ϕ : P∞ → Q is
explicitely determined by

H∗(TMap(P∞,Q),xϕ
[−1]) ∼= H∗(HomΣ(C,Q)ϕ).

This theorem applies to a wide range of structures including for instance Frobe-
nius algebras, Lie bialgebras and their variants such as involutive Lie bialgebras,
and associative-coassociative bialgebras.

4.3. Properties of the corresponding formal moduli problems and de-
rived deformation theory. Before turning to formal moduli problems, a natural
question after reading the previous section is the following: how are the tangent
complexes of our moduli spaces related to the usual cohomology theories of well-
known sorts of algebras such as Hochschild cohomology of associative algebras,
Harrison cohomology of commutative algebras, Chevalley-Eilenberg cohomology of
Lie algebras, or Gerstenhaber-Schack cohomology of associative-coassociative bial-
gebras (introduced to study the deformation theory of quantum groups [34]). It
turns out that these tangent Lie algebras do not give exactly the usual cohomology
theories, but rather shifted truncations of them. For instance, let us consider the
Hochschild complex Hom(A⊗>0, A) of a dg associative algebra A. This Hochschild
complex is bigraded with a cohomological grading induced by the grading of A
and a weight grading given by the tensor powers A⊗•. It turns out that the part
Hom(A,A) of weight 1 in the Hochschild complex is the missing part in gϕAss,A
(the L∞-algebra of Theorem 4.7, where ϕ : Ass→ EndA is the associative algebra
structure of A). There is also a “full” version of the Hochschild complex defined by
Hom(A⊗≥0, A). These three variants of Hochschild complexes give a sequence of
inclusions of three dg Lie algebras

Hom(A⊗≥0, A)[1] ⊃ Hom(A⊗>0, A)[1] ⊃ Hom(A⊗>1, A)[1].
All of these have been considered in various places in the litterature, but without
comparison of their associated moduli problems. For the full complex, it is known
that it controls the linear deformation theory of ModA as a dg category [52, 75].

The same kind of open question arises for other cohomology theories and their
variants, and one of the achievements of our work with Gregory Ginot [102] was to
describe precisely the moduli problems controlled by these variants and how they
are related in the general context of P∞-algebras.
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The formal moduli problem P∞{X}ϕ controlling the formal deformations of a
P∞-algebra structure ϕ : P∞ → EndX on X is defined, on any augmented dg
artinian algebra R, by the homotopy fiber

P∞{X}ϕ(R) = hofib(P∞{X}(R)→ P∞{X}(K))
taken over the base point ϕ, where the map is induced by the augmentation R→ K.
The twisting of the complete L∞-algebraHomΣ(C,EndX) by a properad morphism
ϕ : P∞ → EndX is the deformation complex of ϕ, and we have an isomorphism

gϕP,X = HomΣ(C,EndX)ϕ ∼= Derϕ(Ω(C), EndX)
where the right-hand term is the complex of derivations with respect to ϕ [68,
Theorem 12], whose L∞-structure induced by the twisting of the left-hand side is
equivalent to the one of [65, Theorem 1]. Section 3.2.2 combined with Theorem 4.5
tells us which formal moduli problem this deformation complex controls:

Proposition 4.8. [102, Proposition 2.11] The tangent L∞-algebra of the formal
moduli problem P∞{X}ϕ is given by

gϕP,X = HomΣ(C,EndX)ϕ.

In derived algebraic geometry, a Zariski open immersion of derived Artin stacks
F ↪→ G induces a weak equivalence between the tangent complex over a given
point of F and the tangent complex over its image in G [89]. It is thus natural to
wonder more generally whether an “immersion” of an∞-category C into another∞-
category D induces an equivalence between the deformation problem of an object X
of C (which should be in some sense a tangent space of C at X) and the deformation
problem of its image in D, in particular an equivalence of the corresponding tangent
dg Lie algebras when such a notion makes sense. Here the word “immersion” has
to be understood as “fully faithful conservative ∞-functor”, that is, a fully faithful
∞-functor C → D such that a map of C is an equivalence if and only if its image
in D is a weak equivalence. In the case of ∞-categories of algebras over props,
Proposition 4.4 tells us that the formal moduli problem P∞{X}ϕ is the “tangent
space” over (X,ϕ) to the Dwyer-Kan classification space of the ∞-category of P∞-
algebras, with associated tangent L∞-algebra gϕP,X . In this setting, we can thus
transform the intuition above into a precise statement:

Theorem 4.9. [102, Theorem 2.16] Let F : P∞ − Alg → Q∞ − Alg be a fully
faithful and conservative∞-functor inducing functorially in A, for every augmented
artinian cdga A, a fully faithful and conservative∞-functor F : P∞−Alg(ModA)→
Q∞ −Alg(ModA). Then F induces an equivalence of formal moduli problems

P∞{X}ϕ ∼ Q∞{F (X)}F (ϕ)
,

where F (ϕ) is the Q∞-algebra structure on the image F (X,ϕ) of X,ϕ under F ,
hence an equivalence of the associated L∞-algebras

gϕP,X ∼ g
F (ϕ)
Q,F (X).

Proposition 4.4 also hints towards the fact that gϕP,X does not control the de-
formation theory of homotopy automorphisms of (X,ϕ) in the infinitesimal neigh-
bourhood of id(X,ϕ), but should be closely related to it, since classification spaces
decompose into disjoint unions of homotopy automorphisms. These homotopy au-
tomorphisms form a derived algebraic group [26], and as for underived algebraic
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groups, one can associate Lie algebras to such objects. Indeed, as explained in [26],
given a moduli functor F and a point x ∈ F (K), the reduction of F at x is the
functor Fx defined by the homotopy fiber

Fx(R) = hofib(F (R)→ F (K)

where the map is induced by the augmentation of R and the homotopy fiber is taken
over the base point x. A point x of F (K) such that the reduction of F at x is a formal
moduli problem (called an infinitesimal moduli problem in [26, Definition 4.5]) is
called formally differentiable [26, Definition 4.10], so there is a tangent Lie algebra
of F at x defined as the Lie algebra of the formal moduli problem Fx. In the case of
derived algebraic groups, the neutral element is a formally differentiable point and
the Lie algebra of a derived algebraic group is the Lie algebra of its reduction at the
neutral element. This is the natural extension to a derived framework of the well
known Lie algebra of a Lie group. Consequently, there should be a homotopy fiber
sequence of L∞-algebras relating Lie(hautP∞(X,ϕ)) to the tangent L∞-algebra
gϕP,X of P∞{X}ϕ.

Let us explicit a bit the construction of derived algebraic groups of homotopy
automorphisms. Given a complex X, its homotopy automorphism group is noted
haut(X). Given a P∞-algebra (X,ϕ), its homotopy automorphism group in the∞-
category of P∞-algebras is noted hautP∞(X,ϕ). In the general case, it is defined by
Dwyer-Kan’s hammock localization LHwP∞((X,ϕ), (X,ϕ)), since we do not have a
model category structure on the category of P∞-algebras. However in the particular
case where P∞ is an operad, it turns out that this construction is equivalent to
the usual simplicial monoid of homotopy automorphisms of (X,ϕ) in the model
category of P∞-algebras (the simplicial sub-monoid of self weak equivalences in the
usual homotopy mapping space MapP∞−Alg(X,X)).

Remark 4.10. What we mean here by a homotopy automorphism is a self weak
equivalence, not the homotopy class of a strict automorphism.

The derived algebraic group haut(X) of homotopy automorphisms ofX is defined
by the strictification of the weak simplicial presheaf

R 7→ hautModR
(X ⊗R),

where hautModA
is the simplicial monoid of homotopy automorphisms in the cate-

gory of A-modules. The derived algebraic group hautP∞(X,ϕ) of homotopy auto-
morphisms of (X,ϕ) is defined by the strictification of the weak simplicial presheaf

R 7→ hautP∞(X ⊗R,ϕ⊗R)ModR

where hautP∞(X ⊗R,ϕ⊗R)ModR
is the simplicial monoid of homotopy automor-

phisms of (X ⊗R,ϕ⊗R) ∈ P∞ − Alg(ModR). The reduction of hautP∞(X,ϕ) at
id(X,ϕ) associates to any augmented dg artinian algebra R the space of R-linear ex-
tensions of homotopy automorphisms living in the connected component of id(X,ϕ),
that is, homotopy isotopies. Finally, the deformation complex of ϕ in the ∞-
category of props and the deformation complex of homotopy isotopies of (X,ϕ) in
the ∞-category of P∞-algebras are related by the expected fiber sequence:

Proposition 4.11. [102, Proposition 2.14] There is a homotopy fiber sequence of
L∞-algebras

gϕP,X → Lie(hautP∞(X,ϕ))→ Lie(haut(X)).
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Moreover, we can explicit Lie(hautP∞(X,ϕ)) as a slight modification gϕ
+

P+,X of
gϕP,X , which consists in adding a component Hom(X,X) to gϕP,X (we refer to [102,
Section 3]):

Theorem 4.12. [102, Theorem 3.5] There is a quasi-isomorphism of L∞-algebras

gϕ
+

P+,X ' Lie(hautP∞(X,ϕ)).

The conceptual explanation underlying this phenomenon is that gϕP,X controls
the deformations of the P∞-algebra structure over a fixed complex X, whereas
gϕ

+

P+,X controls deformations of this P∞-algebra structure plus compatible defor-
mations of the differential of X, that is, deformations of the P∞-algebra structure
up to self quasi-isomorphisms of X. This is the role of the part Hom(X,X) ap-
pearing for instance in Hochschild cohomology. For instance, given an associative
dg algebra A, the complex gϕ

+

Ass+,A
∼= Hom(A⊗>0, A)[1] computes the Hochschild

cohomology of A and the complex gϕAss,A ∼= Hom(A⊗>1, A)[1] is the one controlling
the formal moduli problem of deformations of A with fixed differential. The full
shifted Hochschild complex Hom(A⊗≥0, A)[1) controls the linear deformations of
the dg category ModA.

For an n-Poisson algebra A (Poisson algebras with a Poisson bracket of degree
1− n), we have the same kind of variants of L∞-algebras: the full shifted Poisson
complex CHPoisn(A)[n] [7], the deformation complex CH

(•>0)
Poisn

(A)[n] introduced
by Tamarkin [88] which is the part of positive weight in the full Poisson complex,
and the further truncation CH(•>1)

Poisn
(A)[n]. In [102, Section 6], we solve the open

problem to determine which deformation problems these L∞-algebras control:

Theorem 4.13. Let A be an n-Poisson algebra.
(1) The truncation CH

(•>1)
Poisn

(A)[n] is the deformation complex gϕPoisn,R
of the

formal moduli problem Poisn∞{A}
ϕ of homotopy n-Poisson algebra structures de-

forming ϕ.
(2) Tamarkin’s deformation complex controls deformations of A into dg-Poisn-

algebras, that is, it is the tangent Lie algebra gϕ
+

Pois+n ,A
of hautPoisn

(A).

Remark 4.14. We conjecture that the L∞-algebra structure of the full shifted Pois-
son complex CH∗Poisn

(A)[n] controls the deformations ofModA into En−1-monoidal
dg categories. This should have interesting consequences for deformation quantiza-
tion of n-shifted Poisson structures in derived algebraic geometry [8, 91].

5. Gerstenhaber-Schack conjecture, Kontsevich formality
conjecture and deformation quantization

5.1. En-operads, higher Hochschild cohomology and the Deligne conjec-
ture. Recall that an En-operad is a dg operad quasi-isomorphic to the singular
chains C∗Dn of the little n-disks operad. We refer the reader to [31, Volume I]
for a comprehensive treatment of the construction and main properties of the little
n-disks operads. These En-operads satisfy the following properties:

• There is an isomorphism H∗E1 ∼= Ass, where Ass is the operad of associa-
tive algebras.

• For n ≥ 2, there is an isomorphism H∗En ∼= Poisn where Poisn is the
operad of n-Poisson algebras.
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• For n ≥ 2, the En-operads are formal, i.e. there is a quasi-isomorphism of
operads

En
∼→ Poisn.

Modulo a technical assumption satisfied in particular by C∗Dn, this for-
mality holds over Q [32].

The formality of the little n-disks operad has a long story of intermediate formality
results (for n = 2 over Q in [87], for n ≥ 2 over R in [54, 56], finally an intrinsic
formality result over Q in [32]). This formality is the key point to prove Deligne
conjecture, which states the existence of a homotopy Gerstenhaber structure (that
is, the E2-algebra structure) of the Hochschild complex with product given by
the usual cup product. This result provided in turn an alternative method for
deformation quantization of Poisson manifolds [54, 55, 86, 87].

The cohomology theory of En-algebras is called the higher Hochschild cohomol-
ogy or En-Hochschild cohomology:

Definition 5.1. The (full) En-Hochschild complex of an En-algebra A is the de-
rived hom CH∗En

(A,A) = RHomEn

A (A,A) in the category of (operadic) A-modules
over En.

Given an ordinary associative (or E1) algebra A, the category of (operadic)
A-modules over E1 is the category of A-bimodules, so one recovers the usual
Hochschild cohomology. Moreover, the aforementioned Deligne conjecture general-
izes to En-algebras:

Theorem 5.2. (see [39, Theorem 6.28] or [26, 61]) The En-Hochschild complex
CH∗En

(A,A) of an En-algebra A forms an En+1-algebra.

The endomorphismsHombiModA
(A,A) ofA in the category biModA ofA-bimodules

form nothing but the center Z(A) of A. Deriving this hom object gives the
Hochschild complex, and the Hochschild cohomology A satisfies HH0(A,A) =
Z(A). One says that the Hoschchild complex is the derived center of A, and the
result above can then be reformulated as “the derived center of an En-algebra
forms an En+1-algebra”. This sentence has actually a precise meaning, because
higher Hochschild cohomology can be alternately defined as a centralizer in the
∞-category of En-algebras. We refer the reader to [61] for more details about this
construction. Associated to an En-algebra A, one also has its cotangent complex
LA, which classifies square-zero extensions of A [26, 61], and its dual the tangent
complex TA := HomEn

A (LA, A) ∼= RDer(A,A).

Theorem 5.3. (see [26, 61]) The shifted tangent complex TA[−n] of an En-algebra
is an En+1-algebra, and is related to its En-Hochschild complex by a homotopy fiber
sequence of En+1-algebras

A[−n]→ TA[−n]→ CH∗En
(A,A).

5.2. From bialgebras to E2-algebras. A bialgebra is a complex equipped with
an associative algebra structure and a coassociative coalgebra structure, such that
the product is a coalgebra map and equivalently the coproduct is an algebra map.
That is, bialgebras are equivalently algebras in coalgebras or coalgebras in alge-
bras. Their cohomology theory is the Gerstenhaber-Schack cohomology [34], in-
tertwinning Hochschild cohomology of algebras and co-Hochschild cohomology of
coalgebras. Such structures naturally occur in algebraic topology (homology or
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cohomology of an H-space, for instance loop spaces), Lie theory (universal en-
veloping algebras, cohomology of Lie groups), representation theory (group rings,
regular functions on algebraic groups, Tannaka-Krein duality), quantum field the-
ory (renormalization Hopf algebras, AdS/CFT formalism)...Here we are going to
focus on their prominent role in quantum group theory, [14, 15, 21, 22, 34, 69, 70].
As explained in Example 4, deformation quantization of Lie bialgebras produce
quantum groups, whose categories of representations are particularly well behaved
(modular tensor categories) and used to produce topological invariants via 3-TQFTs
[78]. It turns out that bialgebras are deeply related to En-algebras, via the natural
occurrence of En-structures in deformation quantization and representation the-
ory of quantum groups for instance, leading people to investigate the relationship
between these two kinds of structures to understand various related problems on
both sides. A hope in particular was to establish some equivalence between their
respective deformation theories, maybe even their homotopy theories. One of the
first goals of [102] was to embody this long-standing hope in a precise mathematical
incarnation. A first crucial step is to relate bialgebras to a “half-restricted” kind of
E2-coalgebras by the following equivalence of ∞-categories:

Theorem 5.4. [102, Theorem 0.1]
(1) There exists a bar-cobar adjunction

BenhE1
: E1 −Alg0−con(dgCogconil) � E1 − Cogconil(dgCogconil) : ΩenhE1

inducing an equivalence of ∞-categories between nilpotent homotopy associative al-
gebras in conilpotent dg coalgebras (0-connected conilpotent homotopy associative
bialgebras) and conilpotent homotopy coassociative coalgebras in conilpotent dg coal-
gebras.

(2) The equivalence above induces an equivalence of (∞, 1)-categories

E1 −Algaug,nil(dgCogconil) � E1 − Cogconil,pt(dgCogconil)
between nilpotent augmented conilpotent homotopy associative bialgebras and pointed
conilpotent homotopy coassociative coalgebras in conilpotent dg coalgebras.

In part (1), the notation 0−con means 0-connected, that is dg bialgebras concen-
trated in positive degrees. In part (2), the notation aug, nil stands for augmented
and nilpotent. A typical example of such a bialgebra is the total complex of the
symmetric algebra over a cochain complex. The notation pt stands for pointed
coalgebras, that is, a coalgebra C equipped with a counit ε : C → K and a coaug-
mentation e : K → C such that ε ◦ e = idK. More generally, one can wonder,
working in a given stable symmetric monoidal ∞-category (not necessarily cochain
complexes), under which conditions a bar-cobar adjunction induces an equivalence
of ∞-categories between algebras over an operad and conilpotent coalgebras over
its bar construction [25]. Theorem 6.3 solves this conjecture of Francis-Gaitsgory
[25] in the case where the base category is the category of conilpotent dg coalgebras,
respectively the category of pointed conilpotent dg coalgebras.

Remark 5.5. This example is also interesting with respect to the conditions im-
posed on the ground symmetric monoidal ∞-category in [25], since the categories
considered here are a priori not pronilpotent in the sense of [25, Definition 4.1.1].

Using Koszul duality of En-operads and an ∞-categorical version of Dunn’s
theorem [61, 38], we deduce from these equivalences the precise and long awaited
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relationship between homotopy theories of bialgebras and E2-algebras. The correct
answer to this problem needs an appropriate notion of “cobar construction for bial-
gebras”, which intertwines a bar construction on the algebra part of the structure
with a cobar construction on the resulting E2-coalgebra:

Theorem 5.6. [102, Corollary 0.2] The left adjoint of Theorem 0.1(2) induces a
conservative fully faithful ∞-functor

Ω̃ : E1 −Algaug,nil(dgCogconil) ↪→ E2 −Algaug

embedding augmented nilpotent and conilpotent homotopy associative bialgebras into
augmented E2-algebras.

By Theorem 4.12, this “immersion” of ∞-categories induces equivalences of for-
mal moduli problems between the moduli problem of homotopy bialgebra structures
on a bialgebra B and the moduli problem of E2-algebra structures on its cobar
construction Ω̃B. Moreover, at the level of formal moduli problems controlling ho-
motopy isotopies of B and homotopy isotopies of Ω̃B, the tangent L∞-algebras can
be identified respectively with the shifted Gerstenhaber-Schack complex of B and
the shifted (truncated) higher Hochschild complex (or E2-tangent complex) of ΩB
as L∞-algebras:

Theorem 5.7. [102, Theorem 0.6] Let B be a pointed conilpotent homotopy asso-
ciative dg bialgebra. Let ϕ : Bialg∞ → EndB be this homotopy bialgebra structure
on B (where Bialg is the prop of associative-coassociative bialgebras) , and let
Ω̃ϕ : E2 → EndΩ̃B be the corresponding E2-algebra structure on its cobar construc-
tion Ω̃B.

(1) There is a homotopy equivalence of formal moduli problems

Bialg∞{B}ϕ ' E2{Ω̃B}
Ω̃ϕ
.

This homotopy equivalence induces a quasi-isomorphism of L∞-algebras

gϕBialg,B
∼→ gΩ̃ϕ

E2,Ω̃B
.

(2) There is a homotopy equivalence of formal moduli problems

Bialg+
∞{B}ϕ

+
' E+

2 {Ω̃B}Ω̃ϕ
+
.

This homotopy equivalence induces a quasi-isomorphism of L∞-algebras

C∗GS(B,B)[2] ∼→ TΩ̃(B)

between the shifted Gerstenhaber-Schack complex of B and the (truncated) E2-
Hochschild complex or E2-tangent complex of Ω̃(B).

The L∞ structure on the E2-Hochschild complex TΩ̃(B) is the one induced by the
E3 structure on TΩ̃(B)[−2] (see Theorem 5.3). Proving that the higher Hochschild
complex of the cobar construction of a bialgebra is a deformation complex of this
bialgebra is important, since it allows to reduce questions of deformations of bial-
gebras to those of E2-structures for which more tools are available.
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5.3. Gerstenhaber-Schack conjecture. At the beginning of the 90’s, Gersten-
haber and Schack enunciated (in a wrong way) a conjecture [34] characterizing the
structure of the complex controlling the deformation theory of bialgebras, which
remained quite mysterious for a while. It is a dg bialgebra version of the Deligne
conjecture. In [34, Section 8], we extended the equivalences of Theorem 5.7 to an
equivalence of homotopy fiber sequences of E3-algebras, getting a much stronger
version of the longstanding Gerstenhaber-Schack conjecture for the different ver-
sions of the Gerstenhaber-Schack and E2-Hochschild complexes:

Theorem 5.8. (Generalized Gerstenhaber-Schack conjecture [102, Corollary 0.7])
(1) There is an E3-algebra structures on C∗GS(B,B) and a unital E3-algebra

structure on CfullGS (B,B)) such that the following diagram

Ω̃B[−1] // TΩ̃(B)
// CH∗E2

(Ω̃B, Ω̃B)

Ω̃B[−1] // C∗GS(B,B)

'

OO

// CfullGS (B,B)

'

OO

is a commutative diagram of non-unital E3-algebras with vertical arrows being equiv-
alences.

(2) The E3-algebra structure on C∗GS(B,B) is a refinement of its L∞-algebra
structure controlling the deformation theory of the bialgebra B.

Let us note that the upper fiber sequence of part (1) is the fiber sequence of
Theorem 5.3. In particular, the E3-algebra structure on the deformation complex of
dg bialgebra B comes from the E3-algebra structure on the E2-Hochschild complex
of Ω̃B given by the higher Deligne conjecture.

5.4. Kontsevich formality conjecture and deformation quantization of Lie
bialgebras. Let us first recall briefly how deformation quantization of Poisson
manifolds works in Kontsevich’s work [55]. We fix a a finite dimensional Poisson
manifold M , and we consider two complexes one can associate to such a mani-
fold. First, the Hochschild complex CH∗(C∞(M), C∞(M)), second, the complex
of polyvector fields Tpoly(M) =

(⊕
k≥0

∧k ΓT (M)[−k]
)

[1] where ΓT (M) is the
space of sections of the tangent bundle on M . The Poisson structure we fixed on
M is the datum of a bivector Π ∈

∧2 ΓT (M) satifying the Maurer-Cartan equa-
tion, that is, a Maurer-Cartan element of weight 2 in the Lie algebra of polyvector
fields Tpoly(M)[1] (equipped with the Schouten-Nihenjuis bracket). To get the
equivalent definition of Poisson manifold as a manifold whose ring of functions
is a Poisson algebra, set {f, g} = Π(df, dg). A well known theorem called the
Hochschild-Kostant-Rosenberg theorem (HKR for short) states that the cohomol-
ogy of CH∗(C∞(M), C∞(M)) is precisely Tpoly(M). In [55], Kontsevich proved that
there exists a L∞-quasi-isomorphism

Tpoly(M)[1] ∼→ CH∗(C∞(M), C∞(M))[1]

realizing in particular the isomorphism of the HKR theorem. We did not use the
notion of L∞-quasi-isomorphism before, let us just say briefly that it is a quasi-
isomorphism of cdgas between the Chevalley-Eilenberg algebra of Tpoly(M)[1] and
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the Chevalley-Eilenberg algebra of CH∗(C∞(M), C∞(M))[1]. In particular, it is de-
termined by an infinite collection of maps Tpoly(M)[1]→ Λk(CH∗(C∞(M), C∞(M))[1])
for k ∈ N, whose first map is the HKR quasi-isomorphism.

Remark 5.9. An L∞-quasi-isomorphism of dg Lie algebras is actually equivalent to
a chain of quasi-isomorphisms of dg Lie algebras.

This formality theorem then implies the deformation quantization of Poisson
manifolds by the following arguments. First, noting g[[~]]+ =

⊕
~gn[[~]], one

proves that the Maurer-Cartan set MC(Tpoly(M)[[~]]+) is the set of Poisson alge-
bra structures on C∞(M)[[~]] and that the Maurer-Cartan setMC(Dpoly(M)[[~]]+)
is the set of ∗~-products, which are assocative products on C∞(M)[[~]] of the form
a.b+B1(a, b)t+ ... (i.e these products restrict to the usual commutative associative
product on C∞(M)). Second, an L∞-quasi-isomorphism of nilpotent dg Lie alge-
bras induces a bijection between the corresponding moduli sets of Maurer-Cartan
elements, so there is a one-to-one correspondence between gauge equivalence classes
of both sides. Consequently, isomorphism classes of formal Poisson structures on
M are in bijection with equivalence classes of ∗~-products.

Kontsevich builds explicit formality morphisms in the affine case M = Rd, with
formulae involving integrals on compactification of configuration spaces and deeply
related to the theory of multi-zeta functions. An alternative proof of the formal-
ity theorem for M = Rd due to Tamarkin [86], relies on the formality of E2-
operads (hence on the choice of a Drinfeld associator) and provides a formality
quasi-isomorphism of homotopy Gerstenhaber algebras (that is E2-algebras)

Tpoly(Rn) ∼→ CH∗(C∞(Rn), C∞(Rn)).

His method works as follows:
• Prove the Deligne conjecture stating the existence of an E2-algebra struc-
ture on the Hochschild complex;
• Transfer this structure along the HKR quasi-isomorphism to get an E2-
quasi-isomorphism betweeen CH∗(C∞(Rn), C∞(Rn)) with its E2-algebra
structure coming from the Deligne conjecture, and Tpoly(Rn).
• By the formality of E2, this means that we have two E2-structures on
Tpoly(Rn), the one coming from the Deligne conjecture and the one coming
from the Pois2-structure given by the wedge product and the Schouten-
Nijenhuis bracket. One proves that Tpoly(M) has a unique homotopy class
of E2-algebra structures by checking that it is intrinsically formal (precisely,
the Aff(Rn)-equivariant Pois2-cohomology of Tpoly(Rn) is trivial).

This “local” formality for affine spaces is then globalized to the case of a general
Poisson manifold by means of formal geometry [55, Section 7].

In the introduction of his celebrated work on deformation quantization of Poisson
manifolds [55], Kontsevich conjectured that a similar picture should underline the
deformation quantization of Lie bialgebras. Etingof-Kazhdan quantization (see [15,
21, 22]) should be the consequence of a deeper formality theorem for the deformation
complex Def(Sym(V )) of the symmetric bialgebra Sym(V ) on a vector space V .
This deformation complex should possess an E3-algebra structure whose underlying
L∞-structure controls the deformations of Sym(V ), and should be formal as an
E3-algebra. Then this formality result should imply a one-to-one correspondence
between gauge classes of Lie bialgebra structures on V and gauge classes of their
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quantizations. In [102], we solved this longstanding conjecture at a greater level
of generality than the original statement, and deduced a generalization of Etingof-
Kadhan’s deformation quantization theorem. Here we consider not a vector space,
but a Z-graded cochain complex V whose cohomology is of finite dimension in each
degree. By the results explained in Section 5.3, we know the existence of such
an E3-algebra structure (interestingly coming from the higher Hochschild complex
of Ω̃Sym(V )). It remains to prove the E3-formality of Def(Sym(V )) by proving
the homotopy equivalence between two E3-structures on the Gerstenhaber-Schack
cohomology of Sym(V ): the one transferred from Def(Sym(V )), and the canonical
one coming from the action of Pois3 (giving an E3-structure via the formality
E3

∼→ Pois3). Indeed, the cohomology of Def(Sym(V )) (which is precisely the
Gerstenhaber-Schack complex of V ) is explicitely computable, and given by

H∗GS(Sym(V ), Sym(V )) ∼= ˆSym(H∗V [−1]⊕H∗V ∨[−1])

where ˆSym is the completed symmetric algebra and H∗V ∨ is the dual of H∗V
as a graded vector space. This symmetric algebra has a canonical 3-Poisson al-
gebra structure induced by the evaluation pairing between H∗V and H∗V ∨. In
the spirit of Tamarkin’s method, we have to use obstruction theoretic methods to
show that Def(Sym(V )) is rigid as an E3-algebra. We thus get a generalization
of Kontsevich’s conjecture (originally formulated in the case where V is a vector
space):

Theorem 5.10. (Kontsevich formality conjecture [102, Theorem 0.8]) The defor-
mation complex of the symmetric bialgebra Sym(V ) on a Z-graded cochain complex
V whose cohomology is of finite dimension in each degree is formal over Q as an
E3-algebra.

We prove it by using in particular the relationship between Gerstenhaber-Schack
cohomology and E2-Hochschild cohomology and the higher HKR-theorem for the
latter [7]. We then obtain a new proof of Etingof-Kazhdan quantization theorem
from the underlying L∞-formality given by our E3-formality. Indeed, this formality
induces an equivalence of the associated derived formal moduli problems, in partic-
ular we have an equivalence of Maurer-Cartan moduli sets (suitably extended over
formal power series in one variable). On the right hand side, the Maurer-Cartan
moduli set is identified with equivalence classes of homotopy Lie bialgebra struc-
tures on the cochain complex V [[~]]. On the right hand side, it is identified with
deformation quantization of these Lie bialgebras (formal deformations of Sym(V )
as a homotopy dg bialgebra). Moreover, what we get is actually a generalization of
Etingof-Kazhdan quantization to homotopy dg Lie bialgebras:

Corollary 5.11. [102, Corollary 0.9] The L∞-formality underlying Theorem 5.9
induces a generalization of Etingof-Kazdhan deformation quantization theorem to
homotopy dg Lie bialgebras whose cohomology is of finite dimension in each degree.
In the case where V is a vector space, this gives a new proof of Etingof-Kazdhan’s
theorem.

This result encompasses the case of usual Lie bialgebras, because if V is concen-
trated in degree 0, then homotopy Lie bialgebra structures on V are exactly Lie
bialgebra structures on V .
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Remark 5.12. Actually, what we prove in [102] is even stronger. We get a sequence
of E3-formality morphisms for the three variants of the Gerstenhaber-Shack com-
plex [102, Theorem 7.2], indicating that important variants of deformation quanti-
zation like [19] should also follow from such E3-formality morphisms.
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