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On the simplest scale invariant Tree-Tensor-States

preserving the quantum symmetries of the antiferromagnetic XXZ chain

Cécile Monthus
Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France

For the line of critical antiferromagnetic XXZ chains with coupling J > 0 and anisotropy
0 < ∆ ≤ 1, we describe how the block-spin renormalization procedure preserving the SUq(2) symme-
try introduced by Martin-Delgado and Sierra [Phys. Rev. Lett. 76, 1146 (1996)] can be reformulated
as the translation-invariant scale-invariant Tree-Tensor-State of the smallest dimension that is com-
patible with the quantum symmetries of the model. The properties of this Tree-Tensor-State are
studied in detail via the ground-state energy, the magnetizations and the staggered magnetizations,
as well as the Shannon-Renyi entropies characterizing the multifractality of the components of the
wave function.

I. INTRODUCTION

Quantum information ideas [1] have profoundly changed the perspective on many condensed matter problems (see
the book [2] and references therein). In particular, various real-space renormalization procedures have been reinter-
preted from the point of view of Tensor Network States (see the reviews [3–9] and references therein) with the following
output for the ground state of one-dimensional quantum spin chains : the Density-Matrix-RG introduced by S. White
[10] corresponds to Matrix-Products-States that are well adapted to describe non-critical states displaying area-law
entanglement, while the traditional block-spin renormalization for critical points corresponds to scale-invariant Tree-
Tensor-States. In addition, this way of thinking has produced completely new types of renormalization procedures,
like the multi-scale-entanglement-renormalization-ansatz (MERA) [11, 12] for critical models, where ’disentanglers’
between blocks are introduced besides the block-coarse-graining operators already present in Tree-Tensor-States (more
details can be found in the reviews [5–8]).
As stressed in the review [13], the ’old’ block-spin renormalization procedures and the ’new’ tensor-network ap-

proaches have remained different in their aims : the goal of block-spin renormalization is to produce some explicit
tractable RG flow for the few parameters of the initial Hamiltonian, while the Tensor Network activity is more ori-
ented towards the production of very powerful numerical algorithms, based on the variational optimization of the
whole Tensor Network representing the ground state wave function, and where the numerical precision can be sys-
tematically improved by increasing the dimension of the elementary tensors. Nevertheless, it seems useful to establish
some bridges between the two points of view, at least on specific examples. In the present paper, we thus consider
the critical line of the XXZ antiferromagnetic chain, for which Martin-Delgado and Sierra have proposed a simple
block-spin procedure that takes into account the SUq(2) symmetry via the introduction of boundary fields in the
intra-block Hamiltonian [14–16]. Here, we describe how the obtained solution can be reformulated as the simplest
scale-invariant Tree-Tensor-State compatible with the quantum symmetries of the model, and analyze in detail its
various properties.
The paper is organized as follows. Section II contains a reminder on the XXZ chain and the quantum group

SUq(2). In section III, we discuss the construction of scale-invariant Tree-Tensor-State compatible with the quantum
symmetries of the model. In section IV, the scaling properties of local operators involving one spin or two spins are
analyzed, in order to compute the ground-state energy, the magnetizations and the staggered magnetizations. The
section V is then devoted to the Shannon-Renyi entropies that characterize the multifractality of the components of
the wave function. Our conclusions are summarized in section VI.

II. REMINDER ON THE XXZ CHAIN AND THE QUANTUM GROUP SUq(2)

A. Reminder on the XXZ chain with anisotropy ∆ : continuous line of critical points

The XXZ chain with coupling J > 0 and anisotropy ∆

H{J,∆} =

N−1
∑

i=1

Hi,i+1

Hi,i+1 = J
(

σx
i σ

x
i+1 + σy

i σ
y
i+1 +∆σz

i σ
z
i+1

)

(1)
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is one of the most studied integrable system [17]. While the ground state displays Long-Ranged Ferromagnetic order
for ∆ ≤ −1 and Long-Ranged Anti-Ferromagnetic order for ∆ > 1, it remains critical in the whole region −1 < ∆ ≤ 1.
With the standard parametrization in terms of the phase γ ∈ [0, π[

∆ = cos γ (2)

the spin-spin correlations decay as the following power-laws with oscillating and non-oscillating contributions [18]

< σx
i σ

x
j > ∝ c1

(−1)i−j

|i− j|ηx
+ c2

1

|i− j|ηx+
1
ηx

< σz
i σ

z
j > ∝ c3

(−1)i−j

|i− j|ηz
+ c4

1

|i− j|2 (3)

where the exponents (ηx, ηz) vary continuously as a function of ∆ = cos γ

ηx = 1− γ

π
=

1

ηz
(4)

with the special points :
(i) the isotropic Antiferromagnetic chain ∆ = 1 corresponding to γ = 0 involves the exponents ηx = 1 = ηz.
(ii) the anisotropic Antiferromagnetic case ∆ = 1

2 corresponding to γ = π
3 involves the exponents ηx = 2

3 and

ηz = 3
2 .

(iii) the free-fermionic case ∆ = 0 corresponding to γ = π
2 involves the exponent ηx = 1

2
(iv) in the region of ferromagnetic interaction −1 < ∆ < 0 corresponding to γ > π

2 , the correlation < σz
i σ

z
j > is

dominated by the ferromagnetic part in 1/|i− j|2.
Note that the case J < 0 does not require an independent study since the unitary operator U = ei

π
2

∑
n nσz

n acts on
the Hamiltonian of Eq. 1 as [17]

UH{J,∆}U
−1 = −H{J,−∆} = H{−J,−∆} (5)

B. Reminder : XXZ chain with boundary fields and the quantum group SUq(2)

The parametrization of the anisotropy in terms of q as

∆ =
q + q−1

2
(6)

and the introduction of the following opposite boundary fields on the first and on the last spins

h1 = J
q − q−1

2
= −hN (7)

gives the Hamiltonian

H{J,q} = J

N−1
∑

i=1

(

σx
i σ

x
i+1 + σy

i σ
y
i+1 +

q + q−1

2
σz
i σ

z
i+1

)

+ J
q − q−1

2
(σz

1 − σz
N ) (8)

that has the nice property to commute with the generators of the quantum group SUq(2) [19, 20], the q-deformation
of SU(2) corresponding to the isotropic point q = 1. Let us summarize at the most pedestrian level what is needed
for our present purposes (see [20] for more details). The idea is to replace the local ladder Pauli matrices σ±

i by the
q-deformed ladder operators

Σ±
i ≡ q

1
2 (σ

z
1+...σz

i−1) σ±
i q−

1
2 (σ

z
i+1+...σz

N ) (9)

with the commutator

[Σ+
i ,Σ

−
i ] = q(σ

z
1+...σz

i−1) σz
i q

−(σz
i+1+...σz

N ) (10)
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while for i 6= j they commute

[Σ+
i ,Σ

−
j ] = 0 (11)

The corresponding global operators for the whole chain

Σz ≡
N
∑

i=1

σz
i

Σ± ≡
N
∑

i=1

Σ±
i (12)

satisfy the commutation relation

[Σ+,Σ−] =
qΣ

z − q−Σz

q − q−1
(13)

that reduces to the the usual SU(2) commutation relation for q → 1.
The commutation of the Hamiltonian of Eq. 8 with the generators (Σz,Σ±)

[H{J,q},Σ
z] = 0 = [H{J,q},Σ

±] (14)

yields that the eigenstates can be classified with the representations of SUq(2). As long as q is not a root of unity,
these representations are similar to the usual case of SU(2) with multiplets |j,m >, where m = −j, ..,+j denotes the
magnetization along z, and where the ladder operators Σ± can be used to generate the various states of the multiplets
[20], as described below for the examples of b = 2 and b = 3 spins.
An important technical point is that in all computations, q should be treated as a formal variable that is left

unchanged by complex conjugation [20] so that the q-deformed ladder operators of Eq. 12 are the adjoint operators
of each other [20]

Σ+
i = (Σ−

i )
† (15)

On the other hand, the critical region −1 < ∆ = cos γ ≤ 1 (Eq 2) corresponds to the complex values

q = eiγ (16)

where the boundary fields in Eq 7 are imaginary [20]

h1 = −hN = J
q − q−1

2
= iJ sin γ (17)

so that the Hamiltonian of Eq. 8 is actually not self-adjoint, even if its eigenvalues remain real [20]. In summary, all
the intermediate calculations have to be performed with the formal variable q left unchanged by complex conjugation,
even if at the end of the day, one wishes to apply the final results of the computations to the critical region with
complex q (Eq. 16).

C. Supplementary symmetries

It is useful to introduce the following supplementary symmetries of the Hamiltonian H{J,q} and the SUq(2) gener-

ators Σ±,Σz [20] :
(1) the Relabeling symmetry where the sites (1, 2, .., N) are relabeled in reverse order by (N,N − 1, .., 1) and where

q is replaced by q−1 [20]

R ≡ {(1, 2, .., N) → (N,N − 1, .., 1); q → q−1} (18)

satisfy R2 = 1 and can be usedl to characterize the symmetry rj = 1 or antisymmetry rj = −1 of multiplets

R|j,m >= rj |j,m > (19)

(2) the Flip Symmetry where all the z-components are flipped σz
i → −σz

i and where q is replaced by q−1 [20] relates
the states of opposite magnetizations in a given multiplet (or the same state for the zero-magnetization state m = 0)

F |j,m >= ǫj |j,−m > (20)

Let us now describe explicitly how all these symmetries allows to structure the Hilbert space for a small number of
spins.
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D. Example with b = 2 sites

For two spins, the generators of SUq(2) reduce to

Σz = σz
1 + σz

2

Σ± = σ±
1 q

− σz
2
2 + q

σz
1
2 σ±

2 (21)

The four-dimensional Hilbert space can be decomposed into
(i) the triplet j = 1 containing the two ferromagnetic states | + + > and | − − >, while the third state of zero

magnetization can be obtained by applying Σ− to |++ > or Σ+ to | − − > and by normalizing

|j = 1,m = 1 > = |++ >

|j = 1,m = 0 > =
1√
2∆

(

q−
1
2 | −+ > +q

1
2 |+− >

)

|j = 1,m = −1 > = | − − > (22)

This triplet corresponds to r1 = +1 and ǫ1 = +1 for the supplementary symmetries of section II C.
(ii) the singlet j = 0 is annihilated by the two ladder operators Σ±

|j = 0 > =
1√
2∆

(

q
1
2 | −+ > −q− 1

2 |+− >
)

(23)

and corresponds to r0 = −1 and ǫ0 = −1.

E. Example with b = 3 sites

For three spins, the generators of SUq(2) reduce to

Σz = σz
1 + σz

2 + σz
3

Σ± = σ±
1 q

− σz
2+σz

3
2 + q

σz
1
2 σ±

2 q
− σz

3
2 + q

σz
1+σz

2
2 σ±

3 (24)

The eight-dimensional Hilbert space can be decomposed into
(i) the quadruplet j = 3/2 of states related by the ladder operators Σ±

|j = 3/2,m = 3/2 > = |+++ >

|j = 3/2,m = 1/2 > =
1√

4∆2 − 1

(

q−1| −++ > +|+−+ > +q|++− >
)

|j = 3/2,m = −1/2 > =
1√

4∆2 − 1

(

q|+−− > +| −+− > +q−1| − −+ >
)

|j = 3/2,m = −3/2 > = | − −− > (25)

characterized by r3/2 = +1 and ǫ3/2 = +1.
(ii) two doublets j = 1/2 that can be distinguish by the quantum number r = ±1 describing their behavior with

respect to the Relabeling Symmetry of Eq. 19
(ii-a) the doublet that is symmetric r = +1 with respect to R, and that will be denoted by the simpler notation

|a± > in the remainder of the paper

|a+ > ≡ |r = 1, j = 1/2,m = 1/2 >=
1

√

2(2∆ + 1)

(

−q 1
2 | −++ > +

(

q
1
2 + q−

1
2

)

|+−+ > −q− 1
2 |++− >

)

|a− > ≡ |r = 1, j = 1/2,m = −1/2 >=
1

√

2(2∆ + 1)

(

q−
1
2 |+−− > −

(

q
1
2 + q−

1
2

)

| −+− > +q
1
2 | − −+ >

)

(26)

with the flip antisymmetry ǫ = −1.
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(ii-b) the doublet that is antisymmetric r = −1 with respect to the Relabeling R, and that will be denoted by the
simpler notation |b± > in the remainder of the paper

|b+ > ≡ |r = −1, j = 1/2,m = 1/2 >=
1

√

2(2∆− 1)

(

q
1
2 | −++ > +

(

q
1
2 − q−

1
2

)

|+−+ > −q− 1
2 |++− >

)

(27)

|b− > ≡ |r = −1, j = 1/2,m = −1/2 >=
1

√

2(2∆− 1)

(

−q− 1
2 |+−− > +

(

q
1
2 − q−

1
2

)

| −+− > +q
1
2 | − −+ >

)

with the flip antisymmetry ǫ = −1.

III. SCALE-INVARIANT TREE-TENSOR-STATE PRESERVING THE SUq(2) SYMMETRY

A. Coarse-graining with blocks of b = 3 spins

In a standard block-spin renormalization, the chain of N spins σi is decomposed into N
3 blocks j = 1, .., N3 containing

the three spins (σ3j−2, σ3j−1, σ3j) : out of this Hilbert space of dimension 23 = 8, one wishes to keep only 2 states
|ψ±

j > that can be parametrized by a single renormalized spin τj . Within the Tensor-Network perspective, this

coarse-graining step is described by the following operators called isometries (see the reviews [5–8]) between the
eight-dimensional Hilbert space of the three initial spins (σ3j−2, σ3j−1, σ3j) and the two-dimensional Hilbert space of
the renormalized spin τj

wj = |τzj = +1 >< ψ+
j |+ |τzj = −1 >< ψ−

j |
w†

j = |ψ+
j >< τzj = +1|+ |ψ−

j >< τzj = −1| (28)

where the product

wjw
†
j = |τzj = +1 >< τzj = +1|+ |τzj = −1 >< τzj = −1| = Iτj (29)

is the identity of the renormalized Hilbert space, while the product

w†
jwj = |ψ+

j >< ψ+
j |+ |ψ−

j >< ψ−
j | ≡ Pj (30)

corresponds to the projector Pj onto the subspace spanned by the two states ψ±
j that are kept out of the initial

Hilbert space of the block.
For the whole chain, the correspondence between the initial Hilbert space of size 2N and the renormalized Hilbert

space of size 2
N
3 is describe by the global operators

W = ⊗
N
3

j=1wj

W † = ⊗
N
3

j=1w
†
j (31)

B. Ascending super-operator A

For the initial chain of N spins σi, the most general operator can be expanded on the Pauli basis as

Oσ =
∑

α1=0,x,y,z

∑

α2=0,x,y,z

...
∑

αN=0,x,y,z

Cα1,α2,...,αN
σα1
1 σα2

2 ...σαN

N (32)

in terms of the 4N coefficients

Cα1,α2,...,αN
=

1

2N
Trace(Oσσ

α1
1 σα2

2 ...σαN

N ) (33)

After one renormalization step, the operator Oσ of Eq. 32 becomes projected onto the following operator acting on
the renormalized spins τj

Ôτ = A[Oσ ] =WOσW
† =

∑

α1=0,x,y,z

...
∑

αN=0,x,y,z

Cα1,α2,...,αN

N
3
∏

j=1

wj(σ
α3j−2

3j−2 σ
α3j−1

3j−1 σ
α3j

3j )w†
j (34)
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This defines the ascending super-operator A (see the reviews [5–8]).
In each block j, the projection of an operator oj = σ

α3j−2

3j−2 σ
α3j−1

3j−1 σ
α3j

3j of the internal spins produces the following
operator for the renormalized spin τj

wj(oj)w
†
j =

1 + τzj
2

< ψ+
j |oj |ψ+

j > +
1− τzj

2
< ψ−

j |oj |ψ−
j > +τ+j < ψ+

j |oj |ψ−
j > +τ−j < ψ−

j |oj |ψ+
j > (35)

To see how it works, it is now useful to consider the simplest examples of operators containing only a few spin
operators :
(0) Zero-spin operator : the identity Iσ is projected onto the identity Iτ as a consequence of Eq 29

A[Iσ] =WIσW
† = Iτ (36)

(1) One-spin operator σα
i : the projection of a single spin operator involves only the corresponding renormalized

spin operators τβj .

(2) Two consecutive spin operators σα
i σ

α′

i+1 : here depending on the position of the pair with respect to the blocks,
the projection will involve either a single renormalized spin τj , or two consecutive renormalized spins τj and τj+1.

(3) Three consecutive spin operators σα
i σ

α′

i+1σ
α′′

i+2 : here the projection can involve either a single renormalized
spin τj , or two consecutive renormalized spins τj and τj+1, but cannot produce three consecutive renormalized spins
operators.

C. Choice of the isometry w preserving the SUq(2) symmetry

The choice of the isometry w is the point where the traditional block-spin renormalization approach and the
Tensor-Network perspective differ.
In the traditional block-spin renormalization approach, the isometry w of Eq. 28 is chosen by requiring that the

two kept states |ψ±
j > are the ground-states of some ’intra-block Hamiltonian’ involving only the three initial spins

(σ3j−2, σ3j−1, σ3j). The ’computational advantage’ is that the diagonalization of the three spins Hamiltonian usually
gives simple explicit results for |ψ±

j > as a function of the couplings of the Hamiltonian. The first ’theoretical
drawback’ is that there is some arbitrariness in the decomposition of the Hamiltonian into ’intra-block’ and ’extra-
block’ contributions that can lead to completely different outputs, so that the quality of the results will strongly
depend on the ’cleverness’ of the choice of the intra-block Hamiltonian. The second ’theoretical drawback’ is that the
choice of the ground states of the ’intra-block Hamiltonian’ does not take at all into account the ’environment’ of the
neighboring blocks.
In the Tree-Tensor-Network perspective (see the reviews [3–9] and references therein), one represents instead the

whole ground-state wavefunction |ψGS
N > as a tree-tensor-state involving isometries, and the choice of the isometries

is based on the minimization of the total energy

EGS
N =< ψGS

N |H |ψGS
N > (37)

The ’computational drawback’ is that this global minimization can usually only be done numerically. However, the
number of parameters can be drastically reduced if one takes into account all the symmetries of the model (see the
review [9] and references therein). In the following, we describe how the symmetries of the XXZ chain allows to
constraint sufficiently the possible isometries of the smallest dimension in order to obtain an analytical solution.
(i) Translation-invariance : for models that are translation-invariant in the bulk, the isometries wj of Eq. 28 are

chosen to be the same in each block j = 1, .., N3 . It is important to stress however that the decomposition into blocks
breaks nevertheless the equivalence between the three spins inside each block : this issue will be further discussed
below.
(ii) Scale-invariance : for translation-invariant critical models, the coarse-graining procedure can be iterated with

the same isometry w for the ( lnN
ln 3 ) layers representing the successive renormalization steps : the initial layer t = 0

contains the N initial spins σi, the first layer t = 1 contains N
3 renormalized spins τj , the layer t = 2 contains N

9

second renormalized spins... up to the top layer t = lnN
ln 3 containing a single t-renormalized spin representing the

two degenerate ground-states of the whole chain. In summary at this stage, the ground-state wavefunction |ψGS
N >

is written as a translation-invariant scale-invariant tree-tensor state involving the same isometry w everywhere in all
layers.
(iii) SUq(2) symmetry : the presence of symmetries in tensor networks states is discussed in detail in the series

of papers [21–25], and the present SUq(2) symmetry can be considered as a deformation of the SU(2) symmetry
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analyzed in [23]. However, since we focus here only on tree-tensor state involving the isometry w with the smallest
possible dimension (Eq. 28), we do not need the full formalism described in [23] for general tensors in the presence of
the SU(2) symmetry, but we can use the language of the initial spins σ and the renormalized spins τ to simplify the
analysis. The idea is to introduce the SUq(2) generators for the renormalized spins τ similar to Eq. 12

T z =

N
3

∑

j=1

τzj

T± =

N
3

∑

j=1

T±
j

T±
j ≡ q

1
2 (τ

z
1+...τz

j−1) τ±j q
− 1

2 (τ
z
j+1+...τz

N
3

)
(38)

and to require that the generators of the SUq(2) symmetry are preserved by the coarse-graining procedure as described
by the ascending super-operator A introduced in Eq. 34

A(Σz) = T z

A(Σ±) = T± (39)

At the level of each block j, one thus needs that the renormalized spin operators (τzj , τ
±
j ) are the images via the

ascending superoperator A

τzj = A(Σz
3j−2,3j−1,3j)

τ±j = A(Σ±
3j−2,3j−1,3j) (40)

of the generators associated to the three initial spins of a given block

Σz
3j−2,3j−1,3j ≡ σz

3j−2 + σz
3j−1 + σz

3j

Σ±
3j−2,3j−1,3j ≡ σ±

3i−2q
−

(σz
3i−1+σz

3i)

2 + q
σz
3i−2
2 σ±

3i−1q
− σz

3i
2 + q

(σz
3i−2+σz

3i−1)

2 σ±
3i) = τ±j (41)

Since the renormalized spin τj is a doublet j = 1/2, one obtains that the two states |ψ± > that are kept in each
block should also correspond to a doublet j = 1/2. Since the SUq(2) representations for b = 2 spins (section IID)
only contains a triplet j = 1 and a singlet j = 0, one obtains that the coarse-graining with blocks of b = 2 sites are
not compatible with the SUq(2) symmetry. Since the SUq(2) representations for b = 3 spins (section II E) contains
a quadruplet j = 3/2 and two doublets j = 1/2 that have different quantum number r = ±1 for the relabeling
symmetry, one concludes that there are only two possible isometries that are compatible with the SUq(2) and the
relabeling symmetry :
(a) the isometry wa based on the choice |ψ± >= |a± > of Eq 26

wa = |τz = +1 >< a+|+ |τz = −1 >< a−| (42)

(b) the isometry wb based on the choice |ψ± >= |b± > of Eq 27

wb = |τz = +1 >< b+|+ |τz = −1 >< b−| (43)

So one needs to compare the ground state energies (Eq. 37) for the two tree-tensor-states |ψGS
a > and |ψGS

b >
based on the isometries wa and wb respectively. Physically, one expects that this coarse-graining based on SUq(2)
representations with j = 1/2 up to the whole ground state has a meaning only in the antiferromagnetic critical region

0 < ∆ ≤ 1 (44)

while the ferromagnetic critical region−1 < ∆ < 0 would require to consider higher representations and thus isometries
of higher dimensions.

IV. MAGNETIC AND ENERGETIC PROPERTIES OF THE TREE-TENSOR-STATE

In this section, we describe the magnetic and energetic properties of the tree-tensor-state based on the isometry wa

of Eq. 42, while the comparison with the isometry wb of Eq. 43 is postponed to section IVE.
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A. Renormalization rules for spin operators inside a given block

The action of the ascending super-operator A on any observable localized on a single block can be obtained by Eq.
35. Since all block are the same, let us simplify the notations and write the renormalization rules for the three initial
spins (σ1, σ2, σ3) in terms of the corresponding renormalized spin τ of the block.
Inside a given block of three sites, the renormalization rules are different for the three spins (σ1, σ2, σ3). The two

boundary spins operators are renormalized according to

A(σ±
1 ) = ζτ±

A(σ±
3 ) = ζτ± (45)

and

A(σz
1 ) = ζτz − ω

A(σz
3 ) = ζτz + ω (46)

with the notations

ζ ≡ 1 + ∆

1 + 2∆

ω ≡ q − q−1

2(1 + 2∆)
(47)

The central spin operators follow the renormalization rules

A(σ±
2 ) = ζ2τ

±

A(σz
2) = µ2τ

z (48)

with

ζ2 ≡ − ∆

1 + 2∆

µ2 ≡ − 1

1 + 2∆
(49)

The consequences for the magnetizations and staggered magnetizations will be described below in section IVB.
Let us now consider the operators involving two consecutive spin-operators that appear in the Hamiltonian. The

two interaction terms inside each block are renormalized into

A(σz
1σ

z
2) = −ζ − ωτz

A(σz
2σ

z
3) = −ζ + ωτz (50)

while the two hoppings are renormalized into

A(σ+
1 σ

−
2 + σ−

1 σ
+
2 ) = −ζ − ωτz

A(σ+
2 σ

−
3 + σ−

2 σ
+
3 ) = −ζ + ωτz (51)

so that the Hamiltonian (H12+H23) associated to the two internal links of the block is renormalized into the constant

ein ≡ A(H12 +H23) = −2J(2 + ∆)ζ = −2J
(2 + ∆)(1 + ∆)

1 + 2∆
(52)

B. Scaling dimensions of the magnetization and the staggered magnetization

For α = x, y, z, we are interested into the scaling of the magnetizations for the full chain

Mα
N =

N
∑

j=1

σα
j (53)



9

and of the staggered magnetizations adapted to the Néel antiferromagnetic order

Nα
N =

N
∑

j=1

(−1)jσα
j (54)

From Eqs 45, 46 and 48, one obtains in each block

A(σz
3j−2 + σz

3j−1 + σz
3j) = (ζ + µ2 + ζ)τzj = τzj

A(σ±
3j−2 + σ±

3j−1 + σ±
3j) = (ζ + ζ2 + ζ)τ±j =

2 +∆

1 + 2∆
τ±j (55)

and

A(σz
3j−2 − σz

3j−1 + σz
3j) = (ζ − µ2 + ζ)τzj =

3 + 2∆

1 + 2∆
τzj

A(σ±
3j−2 − σ±

3j−1 + σ±
3j) = (ζ − ζ2 + ζ)τ±j =

2 + 3∆

1 + 2∆
τ±j (56)

so that the magnetization and staggered magnetization operators follow the simple RG rules

A





N
∑

j=1

σz
j



 =

N
3

∑

j=1

τzj

A





N
∑

j=1

σ±
j



 =
2 +∆

1 + 2∆

N
3

∑

j=1

τ±j (57)

and

A





N
∑

j=1

(−1)jσz
j



 =
3 + 2∆

1 + 2∆

N
3

∑

j=1

(−1)jτzj

A





N
∑

j=1

(−1)jσ±
j



 =
2 + 3∆

1 + 2∆

N
3

∑

j=1

(−1)jτ±j (58)

The iteration upon t = lnN
ln 3 RG steps then yields the following scaling dimensions δ with the system-size N for the

magnetizations per spin

<
1

N

N
∑

j=1

σz
j >GS ∝ 1

N δFz
with δFz = 1

<
1

N

N
∑

j=1

σx,y
j >GS =

1

N

(

2 + ∆

1 + 2∆

)
lnN
ln 3

=
1

N δFx
with δFx = 1−

ln
(

2+∆
1+2∆

)

ln 3
(59)

and for the staggered magnetizations per spin

<
1

N

N
∑

j=1

(−1)jσz
j >GS =

1

N

(

3 + 2∆

1 + 2∆

)
lnN
ln 3

=
1

N δAF
z

with δAF
z = 1−

ln
(

3+2∆
1+2∆

)

ln 3

<
1

N

N
∑

j=1

(−1)jσx,y
j >GS =

1

N

(

2 + 3∆

1 + 2∆

)
lnN
ln 3

=
1

N δAF
x

with δAF
x = 1−

ln
(

2+3∆
1+2∆

)

ln 3
(60)

These scaling dimensions can be compared to the exact exponents of the correlation function of Eq. 3 corresponding
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to

δFexact
z = 1

δFexact
x =

ηx + 1
ηx

2
=

1− ArcCos(∆)
π

2
+

1

2
(

1− ArcCos(∆)
π

)

δAFexact
z =

ηz
2

=
1

2
(

1− ArcCos(∆)
π

)

δAFexact
x =

ηx
2

=
1− ArcCos(∆)

π

2
(61)

The numerical comparison between these scaling dimensions is presented for the the isotropic point ∆ = 1 and for
the anisotropic point ∆ = 1/2 in Tables I and II respectively.

C. Renormalization rule for the Hamiltonian

We have already seen that the contributions of the two links inside each block j are renormalized according to (Eq
52 )

A(H3j−2,3j−1 +H3j−1,3j) = ein (62)

The contribution of the link between two blocks involves the independent renormalization of the boundary spin
operators in each block (Eqs 45 and 46)

A(H3j,3j+1) = 2Jζ2(τ+j τ
−
j+1 + τ−j τ

+
j+1) + J∆(ω + ζτzj )(−ω + ζτzj+1)

= JR
[

2(τ+j τ
−
j+1 + τ−j τ

+
j+1) + ∆τzj τ

z
j+1

]

− J∆ωζτzj ++J∆ωζτzj+1 + eex (63)

with the renormalized coupling

JR = Jζ2 (64)

and the constant contribution

eex = −J∆ω2 = J
∆(1 −∆2)

(2∆ + 1)2
(65)

while the anisotropy is invariant ∆R = ∆.
The contributions of the two boundary fields in Eq. 8 are renormalized into

A(J
q − q−1

2
(σz

1 − σz
N )) = esurf + J

q − q−1

2
ζ(τz1 − τzN

3
) (66)

with

esurf = 2J
1−∆2

1 + 2∆
(67)

Putting everything together, one finally obtains that the whole Hamiltonian of Eq. 8 for a chain of N = 3
(

N
3

)

spins is renormalized into the same Hamiltonian for the N
3 renormalized spins with the renormalized coupling JR up

to constant contributions

A(H
(N)
{J,q}) =

N

3
ein +

(

N

3
− 1

)

eex + esurf +H
(N

3 )

{JR,q} (68)
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Isotropic case ∆ = 1 δFz = δFx δAF
z = δAF

x
e0
J

Tree-Tensor-State 1 1−
ln( 5

3 )
ln 3

= 0.535 − 36

23
= -1.565

Exact 1 1

2
=0.5 1− 4 ln 2 = -1.773

Table I: Isotropic case ∆ = 1 : the magnetization scaling dimensions δF,AF
z,x of the Tree-Tensor-State (Eqs 59 and 60) are

compared to the excat values of Eq. 61 , while the last column e0
J

corresponds to the ground-state-energy per monomer of Eq.
71.

Anisotropic case ∆ = 1

2
δFz δFx δAF

z δAF
x

e0
J

Tree-Tensor-State 1 1−
ln( 5

4 )
ln 3

= 0.797 1− ln 2

ln 3
= 0.369 1−

ln( 7
4 )

ln 3
= 0.491 − 3

2

Exact 1 13

12
= 1.083 3

4
= 0.75 1

3
=0.333 − 3

2

Table II: Ansotropic case ∆ = 1

2
: the magnetization scaling dimensions δF,AF

z,x of the Tree-Tensor-State (Eqs 59 and 60) are
compared to the excat values of Eq. 61, while the last column e0

J
corresponds to the ground-state-energy per monomer of Eq.

71.

D. Ground-state-energy of the tree-tensor state

The renormalization rule of Eq. 68 for the Hamiltonian yields the following recursion for the ground-state energy

E
GS(N)
J =< ψGS

N |H |ψGS
N > per site of the tree tensor state

E
GS(N)
J

N
=
ein + eex

3
+

1

N
(esurf − eex) +

1

3





E
GS((N

3 ))

(JR=Jζ2)

N
3



 (69)

The iteration up to the last renormalization step t = lnN
ln 3

E
GS(N)
J

N
=
ein + eex

3

[

1 +
ξ2

3
+

(

ξ2

3

)2

+ ...

(

ξ2

3

)t−1
]

+
1

N
(esurf − eex)

[

1 + ξ2 +
(

ξ2
)2

+ ...
(

ξ2
)t−1

]

=
ein + eex

3







1−
(

ξ2

3

)
lnN
ln 3

1− ξ2

3






+

1

N
(esurf − eex)





1−
(

ξ2
)

lnN
ln 3

1− ξ2





= e0 +
e1
N

− (e0 + e1)

N1− ln ζ2

ln 3

(70)

yields the ground state energy per site in the thermodynamic limit N → +∞

e0 ≡ lim
N→+∞

(

< ψGS
N |H |ψGS

N >

N

)

=
ein + eex
3− ξ2

= −J (∆ + 1)2(5∆ + 4)

(11∆2 + 10∆+ 2)
(71)

and the coefficient of the leading correction in 1/N

e1 =

(

esurf − eex
1− ξ2

)

= J
(1−∆2)

∆
(72)

In particular for the case ∆ = 1
2 , the values [14]

e0

(

∆ =
1

2

)

= −3

2
J

e1

(

∆ =
1

2

)

= +
3

2
J (73)

happens to coincide with the exact values derived in [19]. Since the ground state energy per site e0 in the thermody-
namic limit N → +∞ is independent of the boundary conditions, the same value e0 has been also found for the XXZ
chain with periodic or twisted boundary conditions [26, 27].
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E. Comparison with the tree-tensor-state based on the isometry wb

The properties of the tree-tensor-state based on the isometry wb of Eq. 43 can be computed similarly. However in
the region (J > 0,∆ > 0) that we consider, one obtains that wa is the good solution, while wb would be the good
solution in the region J < 0 and ∆ < 0 in relation with the symmetry J → −J and ∆ → −∆ of Eq. 5.
It is now interesting to return to the discussion of section III C on the choice of the isometry w :
(i) within the standard Block-spin Renormalization perspective, the choice between wa and wb is based on the

comparison of the ground-state energy EGS(N) for blocks of size N = 3 [14], that read

EGS(N=3)
a = ein + esurf = −2J(1 + ∆)

E
GS(N=3)
b = 2J(1−∆) (74)

(ii) within the Tree-Tensor-State perspective, the choice between the isometries wa and wb is based on the compar-
ison of the ground-state-energy per site e0 in the thermodynamical limit N → +∞ that contains the resummation
over all renormalization steps (Eqs 70 and 71).

V. SHANNON-RÉNYI ENTROPIES OF THE TREE-TENSOR STATE

The groundstate wavefunction of manybody quantum systems have been found to be generically multifractal, with
many studies concerning the Shannon-Rényi entropies in pure quantum spin models [28–41], or focusing on the weight
of the dominant configuration, for instance the Néel state for the present XXZ model [26, 27, 42]. It is thus interesting
in this section to analyze the multifractal properties of the tree-tensor-state.

A. Reminder on the multifractal formalism

The expansion of the tree-tensor-state in the σz basis

|ψGS
N >=

∑

S1=±1

∑

S2=±1

..
∑

SN=±1

ψ(S1, S2, ..., SN)|S1, S2, .., SN > (75)

involves the 2N coefficients ψ(S1, S2, ..., SN ). The statistics of their weights |ψ(S1, S2, ..., SN )|2 normalized to unity
can be analyzed via the Inverse Participation Ratios Yp(N) where p is the continuous parameter that is usually
denoted by q in the field of multifractality (but here the notation q is already being used to represent the parameter
of SUq(2))

Yp(N) ≡
∑

S1=±1

∑

S2=±1

..
∑

SN=±1

|ψ(S1, S2, ..., SN )|2p (76)

The leading extensive behavior of the corresponding Rényi entropies define the generalized fractal dimensions 0 ≤
Dp ≤ 1

Sp(N) ≡ lnYp(N)

1− p
∝

N→+∞
Dp(N ln 2) (77)

For p = 0, Y0(N) simply measures the size 2N of the Hilbert space leading to

D0 = 1 (78)

For p → 1, Y1(N) = 1 as a consequence of the normalization of the wave-function, and Eq. 77 corresponds to the
Shannon entropy that defines the ’information dimension’ D1

S1(N) ≡ −
∑

S1=±1

∑

S2=±1

..
∑

SN=±1

|ψ(S1, S2, ..., SN )|2 ln |ψ(S1, S2, ..., SN )|2 ∝
N→+∞

D1(N ln 2) (79)

For p → +∞, the sum of Eq. 76 is dominated by the contribution of the maximal weight |ψmax|2, so that the Renyi
entropy directly characterizes the scaling of the maximal coefficient ψmax with respect to the system size

S∞(N) ≡ − ln |ψmax|2 ∝
N→+∞

D∞(N ln 2) (80)
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B. Renormalization rule for the Renyi entropies

Block-spin renormalization has already been used to analyze the Renyi entropies of the pure and random quantum
Ising chains [41]. Here we apply the same strategy to the Tree-Tensor-State for the XXZ chain.
The weight of a given configuration (S1, .., SN) of the initial spins in the (σz) basis is directly related to the weight

of the corresponding renormalized configuration (τ1, ..., τN
3
) in the τz basis with the fixed values τj = −S3j−2S3j−1S3j

|ψ(S1, S2, ..., SN )|2 = |ψR(τ1, ..., τN
3
)|2

N
3
∏

j=1

[

δτj=−S3j−2S3j−1S3j | < S3j−2S3j−1S3j |aτj |2
]

(81)

One then obtains that the IPR of Eq. 76 follows the simple renormalization rule

Yp(N) = (yp)
N
3 Yp

(

N

3

)

(82)

where Yp
(

N
3

)

is the IPR associated to the N
3 renormalized spins τj , while yp represents the IPR within a block of

three spins that can be computed from Eq. 26

yp ≡
∑

S1=±1

∑

S2=±1

∑

S3=±1

| < S1S2S3|aτ=−S1S2S3 |2p =
2p(1 + ∆)p + 2 cos(p arccos(∆))

2p(1 + 2∆)p
(83)

The multiplicative renormalization rule of Eq. 82 translates into the following additive renormalization rule for the
Shannon-Rényi entropies of Eq. 77

Sp(N) =
lnYp(N)

1− p
= N

ln yp
3(1− p)

+ Sp

(

N

3

)

(84)

The iteration upon the renormalization steps yields the extensive contribution

Sp(N)

N
≃

N→+∞

ln yp
3(1− p)

[

1 +
1

3
+

1

32
+ ..

]

=
ln yp

2(1− p)
(85)

so that the final result for the generalized dimensions of Eq. 77 reads

Dp(∆) =
ln yp

2 ln 2(1− p)
=

1

2 ln 2(1− p)
ln

(

2p(1 + ∆)p + 2 cos(p arccos(∆))

2p(1 + 2∆)p

)

(86)

Here a word of caution is in order for small values of p, since the generalized dimension of Eq. 86 for p = 0

DTree
p=0 =

ln 3

2 ln 2
≃ 0.7925... (87)

is not equal to unity as it should (Eq. 78), because the Tree-Tensor-State does not span the whole Hilbert space, since
all strings of three identical consecutive spins (+ + +) and (− − −) have been projected out in the renormalization
procedure. So the Tree-Tensor-State cannot describe the region of small p where the ’true’ generalized dimensions
Dtrue

p are in the region 1 ≥ Dtrue
p ≥ DTree

p=0 = ln 3
2 ln 2 , while one may hope that it can give correct approximations in

the region of higher p where the ’true’ generalized dimensions Dtrue
p (∆) are smaller than DTree

p=0

Dtrue
p (∆) ≤ DTree

p=0 =
ln 3

2 ln 2
≃ 0.7925... (88)

Let us thus describe the generalized dimensions of Eq. 86 for special values of p starting from infinity.

C. Dimension Dp=∞(∆) that measures the weight of the Néel state

The limit p→ +∞ of Eq. 86

D∞(∆) =
1

2 ln 2
ln

(

1 + 2∆

1 +∆

)

(89)
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characterizes the scaling of the maximal coefficient ψmax (Eq. 80), which occurs for the Néel state in the present
antiferromagnetic XXZ chain

|ψmax|2 = |ψNeel|2 ∝
N→+∞

e−D∞(N ln 2) (90)

For instance for the isotropic case ∆ = 1 and the anisotropic case ∆ = 1/2, Eq. 89 corresponds to the values

D∞(∆ = 1) =
ln 3

2 ln 2
− 1

2
≃ 0.2925...

D∞(∆ = 1/2) = 1− ln 3

2 ln 2
≃ 0.2075... (91)

D. Correlation dimension Dp=2

For p = 2, Eq. 86 turns out to reduce to the simple fraction 1/2 independently of ∆

Dp=2(∆) =
1

2
(92)

that translates into the sum rule

Yp=2(N) ≡
∑

S1=±1

∑

S2=±1

..
∑

SN=±1

|ψ(S1, S2, ..., SN )|4 ∝
N→+∞

√
2−N (93)

It is not clear to us whether this property has a simple physical explanation.

E. Information dimension Dp=1

For p = 1, the information dimension

D1(∆) =
(1 + 2∆) ln(1 + 2∆)− (1 + ∆) ln(1 + ∆) +∆ ln 2 +

√
1−∆2 arccos(∆)

2 ln 2(1 + 2∆)
(94)

gives the following values for the isotropic case ∆ = 1 and the anisotropic case ∆ = 1/2

D1(∆ = 1) =
ln 3

2 ln 2
− 1

6
≃ 0.6258...

D1(∆ = 1/2) = 1−
3 ln 3− π√

3

8 ln 2
≃ 0.7327... (95)

F. Dimension Dp=1/2

For the value p = 1/2, the value of Eq. 86

Dp=1/2(∆) = 1− 1

2 ln 2
ln

(

1 + 2∆

1 +∆

)

(96)

is found to satisfy the simple relation with D∞(∆) of Eq. 89

Dp=1/2(∆) = 1−D∞(∆) (97)

This relation is indeed expected for the isotropic model ∆ = 1 (see the review [37]) as a consequence of the expansion
of the maximal configuration in the σz basis into the σx basis (or vice versa) leading to the following relation between
Renyi entropies in the two different basis [37]

Sz
p=∞(∆) = N ln 2− Sx

p=1/2(∆)

Sx
p=∞(∆) = N ln 2− Sz

p=1/2(∆) (98)
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Multifractal dimensions Dp(∆) D∞ D2 D1 D 1
2

Isotropic case ∆ = 1 ln 3

2 ln 2
− 1

2
= 0.2925 1

2

ln 3

2 ln 2
− 1

6
= 0.6258 3

2
− ln 3

2 ln 2
= 0.7075

Anisotropic case ∆ = 1

2
1− ln 3

2 ln 2
= 0.2075 1

2
1−

3 ln 3−
π√
3

8 ln 2
=0.7327 ln 3

2 ln 2
= 0.7925

Table III: Comparison of the multifractal dimensions Dp(∆) of the Tree-Tensor-State for the special values p = ∞, 2, 1, 1/2
between the isotropic case ∆ = 1 and the anisotropic case ∆ = 1

2
.

and then the SU(2) symmetry for the isotropic case ∆ = 1 yields that the Renyi entropies should be the same in
the two basis Sx

p (∆ = 1) = Sz
p(∆ = 1) leading to Eq. 97 for ∆ = 1. For ∆ 6= 1, Eq. 97 can be explained for the

Tree-Tensor-State as discussed below in section VG.
For the isotropic case ∆ = 1 and the anisotropic case ∆ = 1/2, Eq. 96 corresponds to the values

Dp=1/2(∆ = 1) =
3

2
− ln 3

2 ln 2
≃ 0.7075...

Dp=1/2(∆ = 1/2) =
ln 3

2 ln 2
≃ 0.7925... (99)

This last value turns out to coincide with the exact value Dp=1/2(∆ = 1/2) computed for odd chains with periodic
boundary conditions [26, 32, 34]. So despite the fact that the Tree-Tensor-State cannot describe the generalized
dimensions in the region of small p near p = 0 (see the discussion before Eq. 88), we see on this specific example
∆ = 1/2 that the Tree-Tensor-State is able to reproduce the correct dimension for the not-so-big value p = 1

2 .

G. Properties of the Tree-Tensor-State in the σx basis

Up to now, we have only considered the σz basis, but in this final section it is actually interesting to discuss some
properties of the Tree-Tensor-State in the σx basis.
The two states |τz = ±1 >= |a± > defining the renormalized spin τ for a block of three initial spins that was

written in the σz basis in Eq. 26 translates into the following expansions in the σx basis (σx
1 = ±1, σx

2 = ±1, σx
3 = ±1)

|τz = +1 >x=
1

2
√

(2∆ + 1)
( q

1
2 | −++ > −

(

q
1
2 + q−

1
2

)

|+−+ > +q−
1
2 |++− >

−q 1
2 |+−− > +

(

q
1
2 + q−

1
2

)

| −+− > −q− 1
2 | − −+ >)

|τz = −1 >x=
1

2
√

(2∆ + 1)
( q−

1
2 | −++ > −

(

q
1
2 + q−

1
2

)

|+−+ > +q
1
2 |++− >

+q−
1
2 |+−− > −

(

q
1
2 + q−

1
2

)

| −+− > +q
1
2 | − −+ >) (100)

where the two ferromagnetic states (σx
1 , σ

x
2 , σ

x
3 ) = (+ + +) and (σx

1 , σ
x
2 , σ

x
3 ) = (− − −) are again absent, while the

other amplitudes are very reminiscent of Eq. 26.
Let us now write the two states of the renormalized spin τ in the τx basis

|τx = +1 >x =
|τz = +1 >x +|τz = −1 >x√

2

=
1

2
√

2(2∆ + 1)
(

(

q
1
2 + q−

1
2

)

| −++ > −2
(

q
1
2 + q−

1
2

)

|+−+ > +
(

q
1
2 + q−

1
2

)

|++− >

−
(

q
1
2 − q−

1
2

)

|+−− > +0+
(

q
1
2 − q−

1
2

)

| − −+ >)

|τx = −1 >x =
|τz = +1 >x −|τz = −1 >x√

2

=
1

2
√

2(2∆ + 1)
(

(

q
1
2 − q−

1
2

)

| −++ > +0−
(

q
1
2 − q−

1
2

)

|++− >

−
(

q
1
2 + q−

1
2

)

|+−− > +2
(

q
1
2 + q−

1
2

)

| −+− > −
(

q
1
2 + q−

1
2

)

| − −+ >) (101)
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For the isotropic case ∆ = 1 = q, these states are similar to the expressions in the z-basis with only three components
of the corresponding magnetization (Eq. 26), while for the anisotropic cases ∆ 6= 1, they are clearly different. As a
consequence the Renyi entropies Sz

p(∆) and Sx
p (∆) in the two basis are not expected to be the same for the anisotropic

cases ∆ 6= 1 and generic index p. However in the limit p → +∞, where only the weight of the maximal component
ψmax corresponding to the Néel state in the two basis remains (Eq. 90), some simplification occurs in the σx basis :
the Néel state | + −+ >x for the block only occurs in the renormalized state |τx = +1 >x, while the opposite Néel
state | − +− >x for the block only occurs in the renormalized state |τx = −1 >x, and both weights are equal to the
corresponding weight in the z-basis (Eq 26)

|x < +−+|τx = +1 >x |2 = |x < −+−|τx = −1 >x |2 =
1 +∆

1 + 2∆
= |z < +−+|τz = +1 >x |2 (102)

These properties lead to the equality of the Renyi entropies Sz
p(∆) and Sx

p (∆) for p→ +∞

Sz
p=∞(∆) = Sx

p=∞(∆) (103)

and explain the simple relation found in Eq. 97 for the Tree-Tensor-State.

VI. CONCLUSIONS

For the line of critical antiferromagnetic XXZ chains with coupling J > 0 and anisotropy 0 < ∆ ≤ 1, we have
obtained that the translation-invariant scale-invariant Tree-Tensor-State of the smallest dimension compatible with
the quantum symmetries of the model corresponds to the block-spin renormalization procedure introduced previously
by Martin-Delgado and Sierra via the introduction of boundary fields in the intra-block Hamiltonian to make it SUq(2)
invariant [14–16]. Even if the final output is the same, we have explained the differences in reasoning between the two

points of view : in the block-spin renormalization approach, the solution is based on the lowest eigenstate E
GS(N=3)
a

for the block of N = 3 spins (Eq. 74), while in the Tree-Tensor approach, the chosen solution is based on the best
ground-state-energy per site e0 in the thermodynamic limit N → +∞, after the resummation of the contributions of
all the renormalization scales (Eqs 70 and 71). As a consequence, the two criteria could turn out to be different in
other models. In the future, it would be thus interesting to see for other critical quantum spin chains whether the
Tree-Tensor approach agrees also with some previous choices of block-spin renormalization or produces new solutions.
In the second part of the paper, we have described the energetic and magnetic properties of the Tree-Tensor-State,

as well as the as the multifractality of the components of the wave function. Despite its simplicity, the Tree-Tensor-
State turns out to be able to reproduce some exact results for the anisotropic case ∆ = 1/2, like the ground-state
energy (Eq. 73) or the multifractal dimension Dp=1/2 of Eq. 99. Further work is needed to understand whether
’disentanglers’ between blocks preserving the SUq(2) symmetry can be introduced besides the block-coarse-graining
in order to produce some simple analytical MERA for the XXZ chain.
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