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DEFORMATION THEORY OF BIALGEBRAS, HIGHER
HOCHSCHILD COHOMOLOGY AND FORMALITY

GRÉGORY GINOT, SINAN YALIN

Abstract. A first goal of this paper is to precisely relate the homotopy the-
ories of bialgebras and E2-algebras. For this, we construct a conservative and
fully faithful∞-functor from pointed conilpotent homotopy bialgebras to aug-
mented E2-algebras which consists in an appropriate “cobar” construction.
Then we prove that the (derived) formal moduli problem of homotopy bial-
gebras structures on a bialgebra is equivalent to the (derived) formal moduli
problem of E2-algebra structures on this “cobar” construction. We show con-
sequently that the E3-algebra structure on the higher Hochschild complex of
this cobar construction, given by the solution to the higher Deligne conjecture,
controls the deformation theory of this bialgebra. This implies the existence
of an E3-structure on the deformation complex of a dg bialgebra, solving a
long-standing conjecture of Gerstenhaber-Schack. On this basis we solve a
long-standing conjecture of Kontsevich, by proving the E3-formality of the de-
formation complex of the symmetric bialgebra. This provides as a corollary
a new proof of Etingof-Kazdhan deformation quantization of Lie bialgebras
which extends to homotopy dg Lie bialgebras and is independent from the
choice of an associator. Along the way, we establish new general results of in-
dependent interest about the deformation theory of algebraic structures, which
shed a new light on various deformation complexes and cohomology theories
studied in the literature.
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Introduction

A deep interplay between bialgebras and quantum groups on one side and higher
algebras on the other side (for instance E2 and E3-algebras) has been noticed for
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many years and more relations have been expected for a long time. This led people
to investigate the relationship between these two kinds of structures with the hope
to establish some equivalence between their deformation theories, which could help
to understand various related problems on both sides. One of the first goals of this
paper is to give a precise relation between their respective homotopy theories and
to use it to study the deformation theory of dg-bialgebras.

Algebras governed by En-operads and their deformation theory play a prominent
role in a variety of topics such as the study of iterated loop spaces, Goodwillie-Weiss
calculus for embedding spaces, deformation quantization of Poisson manifolds and
Lie bialgebras, and factorization homology [47, 48, 52, 54, 8, 19, 20, 26, 30, 36,
39, 40, 44, 49, 55, 62, 69, 72, 77]. These algebras form a hierarchy of “more and
more” commutative and homotopy associative structures, interpolating between
homotopy associative or A∞-algebras (the E1 case) and E∞-algebras (the colimit of
the En’s, which is homotopy equivalent to differential graded commutative algebras
in characteristic zero). Their natural cohomology theory, the higher Hochschild
cohomology, is a suitable generalization of the Hochschild cohomology of associative
algebras.

On the other hand, bialgebras are central in various topics of algebraic topology,
representation theory and mathematical physics (often incarnated as Hopf alge-
bras) [9, 10, 5, 16, 17, 29, 58, 59]. They consist of two structures, an associative
algebra structure and a coassociative coalgebra structure, related by a compatibil-
ity condition such that bialgebras can be alternately defined as algebras in coal-
gebras or vice-versa. Their natural cohomology theory, the Gerstenhaber-Schack
cohomology, is a suitable mixing between Hochschild cohomology of algebras and
co-Hochschild cohomology of coalgebras.

Two important and long-standing conjectures expected from the relationship be-
tween these two kind of structures are the following. The first one, enunciated by
Gerstenhaber and Schack (in a wrong way) at the beginning of the 90’s [29], charac-
terizes the structure of the complex controlling the deformation theory of bialgebras,
which remained quite mysterious for a while. It is a “differential graded bialgebra
version” of the famous Deligne conjecture for associative differential graded alge-
bras (see for instance [72] and [47]). The second one, enunciated by Kontsevich
in his celebrated work on deformation quantization of Poisson manifolds [48], is
a formality statement for the deformation complex of the symmetric bialgebra,
which should imply as a corollary Drinfeld’s and Etingof-Kazdhan’s deformation
quantization theory (see [9], [16] and [17]).

This situation is somehow a generalization to bialgebras of the situation encoun-
tered in deformation quantization of Poisson manifolds: the formality of the E2-
operad implies the Deligne conjecture, which states the existence of an E2-algebra
structure on the Hochschild complex of an associative algebra, and this allows to
prove that the Hochschild complex of the ring of functions on a Poisson manifold is
formal. This formality implies, in turn, the deformation quantization of such a man-
ifold. Here, the formality of the E3-operad should allow to prove a bialgebra version
of this Deligne conjecture, implying the formality of the Gerstenhaber-Schack com-
plex of the symmetric bialgebra, inducing in turn Drinfeld and Etingof-Kazdhan
deformation quantization of Lie bialgebras.

In this paper, we solve this bialgebra version of the Deligne conjecture proposed
by Gerstenhaber-Schack as well as Kontsevich’s E3-formality conjecture, both at a
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greater level of generality than the original statements, by implementing methods
coming from derived algebraic geometry (see in particular [52], [54] and [76]) as
well as from previous results of the authors (see in particular [36] and [82]) and by
solving partially a conjecture of Francis-Gaistgory.

We deduce from it a generalization of Etingof-Kadhan’s celebrated deformation
quantization.

Moreover, we enlighten along the way the role of various versions of deformation
complexes of algebraic structures considered in the literature, by characterizing
their associated derived formal moduli problems in full generality. Our new methods
have thus an independent interest going even further than the solutions to the two
aforementioned conjectures. We now describe our main results and conclude with
some perspectives for future works.

0.1. From bialgebras to E2-algebras. The cobar construction defining a Quillen
equivalence between conilpotent dg coalgebras and augmented dg algebras can be
lifted to a functor from the category of associative coassociative bialgebras to the
category of E2-algebras [43]. A natural question [19] was thus to know whether
this implies an equivalence of homotopy theories (in the sense of (∞, 1)-categories)
between bialgebras and E2-algebras. The appropriate answer to this problem is
more subtle, and we solve it by using an appropriate notion of cobar construction
for bialgebras, which intertwines a bar construction on the algebra part of the
structure with a cobar construction on the coalgebra part:

Theorem 0.1. (1) There exists a bar-cobar adjunction

BenhE1
: E1 −Alg0−con(dgCogconil) � E1 − Cogconil(dgCogconil) : ΩenhE1

inducing an equivalence of (∞, 1)-categories between 0-connected homotopy associa-
tive algebras in conilpotent dg coalgebras (0-connected conilpotent homotopy asso-
ciative bialgebras) and conilpotent homotopy coassociative coalgebras in conilpotent
dg coalgebras.

(2) The equivalence above induces an equivalence of (∞, 1)-categories

(Benh,ptE1
(−)−)+ : E1−Algaug,con(dgCogconil) � E1−Cogconil,pt(dgCogconil) : (Ωenh,ptE1

(−)−)+

between connected augmented conilpotent homotopy associative bialgebras and pointed
conilpotent homotopy coassociative coalgebras in conilpotent dg coalgebras.

This solves a conjecture of Francis-Gaitsgory [19] in the case where the base
category is the category of conilpotent dg coalgebras, respectively the category
of pointed conilpotent dg coalgebras. Let us note that we work here with non-
negatively graded chain complexes.

Corollary 0.2. The left adjoint of Theorem 0.1(2) induces a fully faithful ∞-
functor

Ω̃ : E1 −Algaug,con(dgCogconil) ↪→ E2 −Algaug

embedding connected augmented conilpotent homotopy associative bialgebras into
augmented E2-algebras.

We use the above results to study deformation of bialgebras in terms of those of
E2-algebras, by the means of the theory of moduli spaces of algebraic structures.
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0.2. Moduli spaces associated to deformation complexes. One of the main
tool for studying deformation is given by deformation complexes of algebraic struc-
tures. In a part of this paper which is of independent interest, we prove several
new results about deformation theory of algebraic structures. In particular, we
give a conceptual explanation of the differences between various deformation com-
plexes appearing in the literature by explaining which kind of deformations each
of these complexes controls. We later use these results to identify the deformation
complexes of dg-bialgebras with those of its (appropriate) cobar construction.

Deformation theory is classicaly encoded by moduli problem and their associated
dg-Lie-algebras (for instance see [38, 48, 52, 63]). Formal moduli problems are sim-
plicial presheaves over augmented artinian cdgas satisfying some extra properties
with respect to homotopy pullbacks, which control the infinitesimal deformation
theory of points on a given moduli space (variety, scheme, derived stack). Accord-
ing to Lurie’s equivalence theorem [52], (derived) formal moduli problems and dg
Lie algebras are equivalent as ∞-categories, so to a given formal moduli problem
controlling the infinitesimal neighbourhood of a point on a moduli space corre-
sponds a dg Lie algebra called the deformation complex of this point. Here we
are interested in moduli spaces of algebraic structures and formal moduli prob-
lems controlling the deformations of such structures. A convenient formalism to
deal with algebraic structures at a high level of generality, in order to encompass
not only algebras but also bialgebras, is the notion of properad [79], a suitable
generalization of operads. In the differential graded setting, algebraic structures
are deformed as algebraic structures up to homotopy, for instance dg associative
algebras are deformed as A∞-algebras. Such a notion can be properly defined by
considering cofibrant resolutions of properads. Given a cofibrant dg properad P∞
and a P∞-algebra structure ψ : P∞ → EndX on a complex X, there is a formal
moduli problem P∞{X}ψ controlling the deformation theory of ψ. The associated
deformation complex is an explicit Lie algebra noted gψP,X . In this paper, we prove
the following general criterion to compare formal moduli problems between two
kind of algebras:

Theorem 0.3. Let F : P∞ −Alg → Q∞ −Alg be a fully faithful and conservative
∞-functor inducing functorially in A, for every augmented artinian cdga A, a fully
faithful and conservative ∞-functor F : P∞ − Alg(ModA) → Q∞ − Alg(ModA).
Then F induces an equivalence of formal moduli problems

P∞{X}ψ ∼ Q∞{F (X)}F (ψ)
,

where F (ψ) is the Q∞-algebra structure on the image F (X,ψ) of (X,ψ) under F ,
hence an equivalence of tangent L∞-algebras

gψP,X ∼ g
F (ψ)
Q,F (X).

Moreover, we get the following fiber sequence comparing the deformation com-
plex of an algebra (X,ψ) with the homotopy Lie algebra Lie(hautP∞(X,ψ)) tan-
gent to the derived algebraic group hautP∞(X,ψ) (in the sense of [20]) of homotopy
automorphisms of this algebra:

Proposition 0.4. There is a homotopy fiber sequence of L∞-algebras

gψP,X → Lie(hautP∞(X,ψ))→ Lie(haut(X)).
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However, one should note that the deformation complex gψP,X does not give
exactly the usual cohomology theories. For instance, let us consider the case of the
Hochschild complex Hom (A⊗>0, A) of a dg associative algebra A. This Hochschild
complex is bigraded, with a cohomological grading induced by the grading of A
and a weight grading given by the tensor powers A⊗•. It turns out that the part
Hom(A,A) of weight 1 in the Hochschild complex is missing in gψAss,A.

To correct this, and in particular to get the correct deformation complexes, we
use a “plus” construction gψ

+

P+,X which gives the right cohomology theory and can
be obtained by a slight modification of the properad P , see § 3. Moreover, we relate
it to the homotopy automorphisms of the algebra:

Theorem 0.5. There is a quasi-isomorphism of L∞-algebras

gψ
+

P+,X ' Lie(hautP∞(X,ψ)).

The conceptual explanation behind this phenomenon is that gψP,X controls the
deformations of the P∞-algebra structure over a fixed complex X, whereas gψ

+

P+,X

controls deformations of this P∞-algebra structure plus compatible deformations of
the differential of X, that is, deformations of the P∞-algebra structure up to self
quasi-isomorphisms of X (and in particular up to automorphisms). This is the role
of the part Hom(X,X) appearing for instance in Hochschild cohomology.

For instance, in the case of a an associative dg algebra A, the complex gψ
+

Ass+,A
∼=

Hom(A⊗>0, A)[1] computes the reduced Hochschild cohomology of A, where the
right hand side is a sub-complex of the standard Hochschild cochain complex shifted
down by 1 equipped with its standard Lie algebra structure (due to Gerstenhaber).
The complex gψAss,A ∼= Hom(A⊗>1, A)[1] is the one controlling the formal moduli
problem of deformations of A with fixed differential, where the right hand side is
the subcomplex of the previous shifted Hochschild cochain complex where we have
removed the Hom(A,A) component. There is also a third complex, the full shifted
Hochschild complex Hom(A⊗≥0, A)[1), which controls not the deformations of A
itself but the linear deformations of its dg category of modules ModA [46, 62].

In the case of n-Poisson algebras (Poisson algebras with a Poisson bracket of
degree 1 − n), we prove in Section 6 that the Tamarkin deformation complex [74]
(which we denote CH(•>0)

Poisn
(A)[n] since it is the part of positive weight in the full

Poisson complex [7]) controls deformations of A into dg-Poisn-algebras, that is, it is
the tangent Lie algebra gψ

+

Pois+n ,A
of hautPoisn

(A). We also prove that the deforma-
tion complex gψPoisn,R

of the formal moduli problem Poisn∞{A}
ψ of homotopy n-

Poisson algebra structures deforming ψ is given by the L∞-algebra CH(•>1)
Poisn

(A)[n],
which is a further truncation of CHPoisn(A)[n]. Concerning the full shifted Poisson
complex, we conjecture the following:
Conjecture. Let n ≥ 2 and A be an n-Poisson algebra. The L∞-algebra structure
of the full shifted Poisson complex CH∗Poisn

(A)[n] controls the deformations of
ModA into En−1-monoidal dg categories.

In the same way, we relate deformation complexes of bialgebras with trunca-
tions of the full Gerstenhaber-Schack complex (see § 6.2), and we conjecture the
following:
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Conjecture. Let B be a conilpotent dg bialgebra. The full shifted Gerstenhaber-
Schack complex CfullGS (B,B)[2] controls the deformations ofModB as an E2-monoidal
dg category, that is, a braided monoidal dg category.

0.3. Gerstenhaber-Schack conjecture. Another open problem is to prove that
the higher Hochschild complex of the cobar construction of a bialgebra is a defor-
mation complex of this bialgebra. It is important since it allows to reduce questions
of deformations of the bialgebras to those of E2-structures for which more tools are
available.

We deduce it as a consequence of a more general result stating the equivalence
of formal moduli problems in the sense of Lurie [54] between the moduli problem
Bialg∞{B}ϕ of homotopy bialgebra structures on a bialgebra B deforming the
bialgebra structure ϕ : Bialg → EndB (where Bialg is the prop of bialgebras) and
the moduli problem E2{Ω̃B}

Ω̃ϕ of E2-algebra structures deforming the E2-algebra
structure Ω̃ϕ : E2 → EndΩ̃B on its cobar construction Ω̃B. For this, we use the
characterization of such moduli problems obtained in [82]. We deduce that the
Gerstenhaber-Schack complex of B is quasi-isomorphic to the higher Hochschild
complex of ΩB as L∞-algebras, for the L∞ structure on this Hochschild complex
induced by its E3 structure. The existence of this E3 structure on the higher
Hochschild complex is a higher version of Deligne conjecture proved in [20] and
[36]. Precisely, we prove the following results:

Theorem 0.6. Let B be a pointed conilpotent homotopy associative dg bialgebra.
Let ϕ : Bialg∞ → EndB be this homotopy bialgebra structure on B, and let Ω̃ϕ :
E2 → EndΩ̃B be the corresponding E2-algebra structure on its cobar construction
Ω̃B.

(1) There is a homotopy equivalence of formal moduli problems

Bialg∞{B}ϕ ' E2{Ω̃B}
Ω̃ϕ
.

This homotopy equivalence induces a quasi-isomorphism of L∞-algebras

gϕBialg,B
∼→ gΩ̃ϕ

E2,Ω̃B

between the deformation complex of B and the deformation complex of Ω̃B.
(2) There is a homotopy equivalence of formal moduli problems

Bialg+
∞{B}ϕ

+
' E+

2 {Ω̃B}Ω̃ϕ
+
.

This homotopy equivalence induces a quasi-isomorphism of L∞-algebras

C∗GS(B,B) ∼→ TΩ̃(B)

between the Gerstenhaber-Schack complex of B and the (truncated) E2-Hochschild
complex1 of Ω̃B.

Then we extend these equivalences to E3-algebra equivalences, and even extend
this to the full Gerstenhaber-Schack complex CfullGS (B,B). We get eventually the
following solution to a longstanding problem:

1that is the E2-cotangent complex TΩ̃(B) which is equivalent to RDerE2 (Ω̃B, Ω̃B)
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Corollary 0.7 (Gerstenhaber-Schack conjecture). (1) There is an E3-algebra struc-
tures on C∗GS(B,B) and a unital E3-algebra structure on CfullGS (B,B)) such that the
following diagram

Ω̃B[−1] // TΩ̃(B)
// CH∗E2

(Ω̃B, Ω̃B)

Ω̃B[−1] // C∗GS(B,B)

'

OO

// CfullGS (B,B)

'

OO

is a commutative diagram of non-unital E3-algebras with vertical arrows being equiv-
alences.

(2) The E3-algebra structure on C∗GS(B,B) is a refinement of its L∞-algebra
structure controlling the deformation theory of the bialgebra B.

This corollary provides a stronger version of a longstanding conjecture stated
by Gerstenhaber-Schack in [29, Section 8] (the existence of a homotopy graded
Lie algebra structure on the Gerstenhaber-Schack complex) for the three different
versions of the Gerstenhaber-Schack and E2-Hochschild complexes. This also solves
a stronger version of a conjecture proposed by Kontsevich in [48] in 2003 (existence
of an E3 structure in the case where B = Sym(V ) is the symmetric bialgebra on a
vector space V ).

0.4. Kontsevich formality conjecture and deformation quantization of Lie
bialgebras. In the introduction of his work on deformation quantization of Poisson
manifolds [48], Kontsevich conjectured that Etingof-Kazhdan quantization should
be the “degree zero part” of a much more general formality theorem of the defor-
mation complex Def(Sym(V )) of the symmetric bialgebra Sym(V ) on a vector
space V . This deformation complex should possess an E3-algebra structure whose
underlying L∞-structure controls the deformations of this bialgebra, and should be
formal as an E3-algebra.

The existence of such an E3-algebra structure on Def(Sym(V )) controling the
deformations of Sym(V ) is a particular case of Corollary 0.7. To prove the E3
formality of Def(Sym(V )), one has to compare two E3-algebra structures on the
Gerstenhaber-Schack cohomology of Sym(V ), the one coming from the action of
the operad of 3-Poisson algebras P3 ∼= H∗E3 via the formality E3

∼→ H∗E3 ∼= P3 of
E3 operads (see [50] over R and more generally [28] over Q), and the one transferred
from Def(Sym(V )). The following formality result was conjectured by Kontsevich
(in the case where V is a vector space) in the introduction of [48]:

Theorem 0.8. The deformation complex of the symmetric bialgebra Sym(V ) on a
Z-graded cochain complex V whose cohomology is of finite dimension in each degree
is formal over Q as an E3-algebra.

We obtain it by using the relationship with E2-Hochschild cohomology (Corol-
lary 0.7) and the higher HKR-theorem for the latter [7].

We then (see § 8) obtain a new proof of Etingof-Kazhdan quantization theo-
rem from the underlying L∞ formality given by Theorem 0.8, the properties of
Maurer-Cartan spaces for filtered L∞-algebras [81] and by using the results of [59].
In fact, after the appropriate completion, Def(Sym(V )) controls the (homotopy)
K[[~]]-bialgebra structures quantizing the (homotopy) Lie bialgebra structures on
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V , which are controlled by H∗GS(Sym(V ), Sym(V )) which by formality also con-
trols deformation of dg-bialgebras. In particular, our work shows that quantization
of bialgebras follows from a higher analogue of the Kontsevich approach to quanti-
zation of Poisson manifolds in [48, 72] as was conjectured from the early 2000’s.

Let us add two important remarks. First, what we get is actually a generalization
of Etingof-Kazhdan quantization to homotopy dg Lie bialgebras, which encompasses
the case of usual Lie bialgebras. Second, since the E3 formality does not rely on
the choice of a Drinfeld associator (contrary to the E2 formality), we thus solve
another open problem by showing that such a quantization does not rely on the
choice of an associator. Precisely, we get the following results:

Corollary 0.9. (1) The L∞-formality underlying Theorem 0.8 induces a general-
ization of Etingof-Kazdhan deformation quantization theorem to homotopy dg Lie
bialgebras whose cohomology is of finite dimension in each degree. In the case where
V is a vector space, this gives a new proof of Etingof-Kazdhan’s theorem.

(2) Deformation quantization of homotopy dg Lie bialgebras whose cohomology
is of finite dimension in each degree does not rely on the choice of a Drinfeld
associator.

In the case of a Lie algebra equipped with a Casimir element, the invariance under
the choice of an associator was already known by Drinfeld in [9]. A similar result
was announced in [12] for finite dimensional Lie bialgebras but without complete
proof. Our corollary provides an alternative complete proof of this statement, as
well as an extension of this invariance result to homotopy dg Lie bialgebras with
finite dimensional cohomology which is completely new.

0.5. Perspectives. The new methods developed in this paper to approach defor-
mation theory and quantization problems have several possible continuations. A
first perspective is to get a better understanding of the moduli problem associated
to the full En-Hochschild complex, which should control the deformation theory
of En-monoidal dg categories and is deeply related to the deformation quantiza-
tion of shifted Poisson structures in derived algebraic geometry (see for instance
[77, Theorem 5.2]). In particular, in the case of the full E2-Hochschild complex,
the equivalence with the full Gerstenhaber-Schack complex CfullGS (B,B) proved in
this paper (Corollary 0.7) will imply that CfullGS (B,B) controls the deformations of
ModB as an E2-monoidal dg category, that is, a braided monoidal dg category. This
is still a conjecture at present. The E3-formality of CfullGS (Sym(g), Sym(g)), where
g is a Lie bialgebra, then corresponds to the deformation quantization ofModg with
the equivalence relation on quantizations given by Drinfeld’s gauge equivalence [9]
(equivalence of braided monoidal categories). In the case where g = Lie(G) is the
tangent Lie algebra of a reductive algebraic group G, this result has to be compared
with the quantization of the derived classifying stack BG in the sense of [8].

A second perspective is to recover the major results in deformation quantization
obtained in [14] and [15] as consequences of suitable variants of our Formality The-
orem 0.8. In particular, we expect the quantization of coboundary Lie bialgebras of
[15] to be a consequence of this formality suitably extended to algebras over framed
little disks operads (see for instance [66] for a definition of framed little disks, and
[32],[67] for formality results). The coboundary on the bialgebra side should cor-
respond to the framing on the little disks side. Let us note that this quantization
would be then automatically independent from the choice of an associator.



BIALGEBRAS, HOCHSCHILD COHOMOLOGY AND FORMALITY 9

Both perspectives will be investigated by the authors in future works.
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Notations

The reader will find below a list of the main notations used at several places in
this article.

• We work over a field of characteristic zero noted K.
• ChK is the category of Z-graded chain complexes over K.
• Let (C,WC) be a relative category, also called a category with weak equiv-
alences. Here C is a category and WC its subcategory of weak equivalences.
The hammock localization (see [11]) of such a category with respect to
its weak equivalences is noted LH(C,WC), and the mapping spaces of this
simplicial localization are noted LH(C,WC)(X,Y ).

• Several categories of algebras and coalgebras will have a dedicated notation:
cdga for the category of commutative differential graded algebras, dgArt for
the category of artinian cdgas, dgCog for the category of dg coassociative
coalgebras and dgLie for the category of dg Lie algebras.

• Given a cdga A, the category of A-modules is notedModA. More generally,
if C is a symmetric monoidal category tensored over ChK, the category of
A-modules in C is noted ModA(C).

• Given a dg Lie algebra g, its Chevalley-Eilenberg algebra is noted C∗CE(g)
and its Chevalley-Eilenberg coalgebra is noted CCE∗ (g).

• More general categories of algebras and coalgebras over operads or proper-
ads will have the following generic notations: given a properad P , we will
note P −Alg the category of dg P -algebras and given an operad P we will
note P − Cog the category of dg P -coalgebras.

• Given a properad P , a cofibrant resolution of P is noted P∞.
• When the base category is a symmetric monoidal category C other than
ChK, we note P −Alg(C) the category of P -algebras in C and P −Cog(C)
the category of P -coalgebras in C.

• These various categories of algebras and coalgebras will be restricted to
several subcategories for which we will add the following super scripts:
aug for augmented and coaug for coaugmented (for example, P − Algaug
is the category of augmented P -algebras), con for connected, 0 − con for
0-connected, conil for conilpotent, and pt for pointed.

• Algebras over properads form a relative category for the weak equivalences
defined by chain quasi-isomorphisms. The subcategory of weak equivalences
of P −Alg is noted wP −Alg.

• Given a properad P and a complex X, we will consider an associated con-
volution Lie algebra noted gP,X which will give rise to two deformation
complexes: the deformation complex gϕP,X controling the formal moduli
problem of deformations of a P -algebra structure ϕ on X, and a variant
gϕ

+

P+,X whose role will be explained in Section 3.
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• We will consider various moduli functors in this paper, defined as simpli-
cial presheaves over artinian augmented cdgas: the simplicial presheaf of
P∞-algebra structures on X noted P∞{X}, the formal moduli problem of
deformations of a given P∞-algebra structure ϕ on X noted P∞{X}ϕ, and
the derived algebraic group of homotopy automorphisms of (X,ϕ) noted
hautP∞(X,ϕ). The derived algebraic group of automorphisms of X as a
chain complex will be noted haut(X).

• The little n-disks operads have several variants we will distinguish as fol-
lows: En for the operad of non-unitary En-algebras, uEn for the operad of
En-algebras with a unit up to homotopy, and suEn for the operad of strictly
unitary En-algebras. The same notations hold for the operad Poisn of n-
Poisson algebras.

• We will use two tensor products of operads. The tensor product arity by
arity, also called the Hadamar tensor product, will be noted P ⊗H Q. The
Boardman-Vogt tensor product will be noted ⊗ (see [18] for a definition).

• The standard (full) complex computing the (André-Quillen) cohomology
theory of n-Poisson algebra A is denoted CH∗Poisn

(A,A). Tamarkin stan-
dard deformation complex is the subcomplex in weight greater than 0, that
we denote CH(•>0)

Poisn
(A,A). There is also another truncation CH(•>1)

Poisn
(A,A)

complex has two gradings, the cohomological grading from the one of A and
a weight grading for the subcomplex in weight greater than 1. The same no-
tations will be used for some standard complexes computing En-Hochschild
cohomology of En-algebras.

• The tangent complex of an En-algebra A in the sense of [20] is noted TA.
• The centralizer of an En-algebra morphism f in the sense of [54] is noted
zEn

(f), the version for n-Poisson algebras is noted zPoisn
(f).

• Several kinds of bar and cobar constructions will play an important role in
this paper. The functors Bar and Ω are the classical bar and cobar con-
structions respectively for augmented associative algebras and coaugmented
coassociative coalgebras. The operadic Koszul duality functors Bar(n) and
Cobar(n) are adjoint functors defining respectively the bar construction
for augmented En-algebras and the cobar construction for conilpotent En-
coalgebras, which can be modeled respectively by an n-iterated bar con-
struction and an n-iterated cobar construction (hence the notations). The
versions for n-Poisson algebras are noted Bar

(n)
Poisn

and Cobar
(n)
Poisn

. An-
other Koszul duality functor is the one used in [52], which is an endofunctor
of the category of augmented En-algebras noted Dn.

• More generally, given a Koszul operad P in a symmetric monoidal ∞-
category C, there is a bar construction BP : P − Alg(C) → C, which can
be enhanced by the Barr-Beck-Lurie theorem [54] to a bar functor BenhP :
P − Alg(C) → P ! − Cogconil(C) where P ! is the Koszul dual operad of P .
Similarly, there is a cobar construction ΩP and an enhanced version ΩenhP .

1. Recollections

The goal of this section is to briefly review the key notions and results at the
heart of the present paper.

1.1. Symmetric monoidal categories over a base category.
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Definition 1.1. Let C be a symmetric monoidal category. A symmetric monoidal
category over C is a symmetric monoidal category (E ,⊗E , 1E) endowed with a sym-
metric monoidal functor η : C → E , that is, an object under C in the 2-category of
symmetric monoidal categories.

This defines on E an external tensor product ⊗ : C×E → E by C⊗X = η(C)⊗EX
for every C ∈ C and X ∈ E . This external tensor product is equipped with the
following natural unit, associativity and symmetry isomorphisms:

(1) ∀X ∈ E , 1C ⊗X ∼= X,
(2) ∀X ∈ E ,∀C,D ∈ C, (C ⊗D)⊗X ∼= C ⊗ (D ⊗X),
(3) ∀C ∈ C,∀X,Y ∈ E , C ⊗ (X ⊗ Y ) ∼= (C ⊗X)⊗ Y ∼= X ⊗ (C ⊗ Y ).
The coherence constraints of these natural isomorphisms (associativity pen-

tagons, symmetry hexagons and unit triangles which mix both internal and external
tensor products) come from the symmetric monoidal structure of the functor η.

We will implicitly assume throughout the paper that all small limits and small
colimits exist in C and E , and that each of these categories admit an internal
hom bifunctor. We suppose moreover the existence of an external hom bifunctor
HomE(−,−) : Eop × E → C satisfying an adjunction relation

∀C ∈ C,∀X,Y ∈ E ,MorE(C ⊗X,Y ) ∼= MorC(C,HomE(X,Y ))

(so E is naturally an enriched category over C).

Example 1.2. Let I be a small category; the I-diagrams in a symmetric monoidal
category C form a symmetric monoidal category over C. The internal tensor product
is defined pointwise, and the external tensor product is defined by the functor η
which associates to X ∈ C the constant I-diagram CX on X. The external hom
HomCI (−,−) : CI × CI → C is given by

HomCI (X,Y ) =
ˆ
i∈I

HomC(X(i), Y (i)).

Throughout this paper we will deal with symmetric monoidal categories equipped
with a model structure. We assume that the reader is familiar with the basics of
model categories. We refer to to Hirschhorn [42] and Hovey [41] for a compre-
hensive treatment of homotopical algebra. We just recall the axioms of symmetric
monoidal model categories formalizing the interplay between the tensor and the
model structures.

Definition 1.3. (1) A symmetric monoidal model category is a symmetric monoidal
category C equipped with a model category structure such that the following axioms
holds:

MM0. For any cofibrant object X of C, the map Q1C ⊗ X → 1C ⊗ X ∼= X
induced by a cofibrant resolution Q1C → 1C of the unit 1C is a weak equivalence.

MM1. The pushout-product (i∗, j∗) : A⊗D⊕A⊗CB⊗C → B⊗D of cofibrations
i : A � B and j : C � D is a cofibration which is also acyclic as soon as i or j is
so.

(2) Suppose that C is a symmetric monoidal model category. A symmetric
monoidal category E over C is a symmetric monoidal model category over C if
the axiom MM1 holds for both the internal and external tensor products of E .

Example 1.4. The usual projective model category ChK of unbounded chain com-
plexes over a field K forms a symmetric monoidal model category.
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A property of the pushout-product axiom MM1 which will be useful later is that
it is equivalent to the following dual version:

Lemma 1.5. (cf. [41, Lemma 4.2.2]) In a symmetric monoidal model category C,
the axiom MM1 is equivalent to the following one:

MM1’. The morphism
(i∗, p∗) : HomC(B,X)→ HomC(A,X)×HomC(A,Y ) HomC(B, Y )

induced by a cofibration i : A � B and a fibration p : X � Y is a fibration in C
which is also acyclic as soon as i or p is so.

1.2. Operads, Props and their algebras.

1.2.1. Props and their algebras. Let C be a symmetric monoidal category. A Σ-
biobject is a double sequence {M(m,n) ∈ C}(m,n)∈N2 where each M(m,n) is
equipped with a right action of Σm and a left action of Σn commuting with each
other.

Definition 1.6. A prop is a Σ-biobject endowed with associative horizontal com-
position products

◦h : P (m1, n1)⊗ P (m2, n2)→ P (m1 +m2, n1 + n2),
associative vertical composition products

◦v : P (k, n)⊗ P (m, k)→ P (m,n)
and units 1→ P (n, n) which are neutral for ◦v. These products satisfy the exchange
law

(f1 ◦h f2) ◦v (g1 ◦h g2) = (f1 ◦v g1) ◦h (f2 ◦v g2)
and are compatible with the actions of symmetric groups.

Morphisms of props are equivariant morphisms of collections compatible with
the composition products.

Definition 1.7. (1) To any object X of C we can associate an endomorphism prop
EndX defined by

EndX(m,n) = HomC(X⊗m, X⊗n).
(2) A P -algebra is an object X ∈ C equipped with a prop morphism P → EndX .

We can also define a P -algebra in a symmetric monoidal category over C:

Definition 1.8. Let E be a symmetric monoidal category over C.
(1) The endomorphism prop ofX ∈ E is given by EndX(m,n) = HomE(X⊗m, X⊗n)

where HomE(−,−) is the external hom bifunctor of E .
(2) Let P be a prop in C. A P -algebra in E is an object X ∈ E equipped with a

prop morphism P → EndX .

There is a functorial free prop construction F leading to an adjunction
F : CS � Prop : U

with the forgetful functor U . The category of Σ-biobjects CS is a diagram category
over C, so it inherits the usual projective model structure of diagrams, which is
a cofibrantly generated model category structure. In the case of unbounded chain
complexes over a field of characteristic zero, this model structure can be transferred
along the free-forgetful adjunction:
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Theorem 1.9. (cf. [23, Theorem 5.5]) The category of dg props Prop equipped
with the classes of componentwise weak equivalences and componentwise fibrations
forms a cofibrantly generated model category.

1.2.2. Properads. Composing operations of two Σ-biobjects M and N amounts to
consider 2-levelled directed graphs (with no loops) with the first level indexed by
operations of M and the second level by operations of N . Vertical composition by
grafting and horizontal composition by concatenation allows one to define props as
before. The idea of properads is to mimick operads (for operations with several
outputs), which are defined as monoids in Σ-objects, by restricting the vertical
composition product to connected graphs. The unit for this connected composition
product �c is the Σ-biobject I given by I(1, 1) = K and I(m,n) = 0 otherwise. The
category of Σ-biobjects then forms a symmetric monoidal category (ChSK,�c, I).

Definition 1.10. A dg properad (P, µ, η) is a monoid in (ChSK,�c, I), where µ
denotes the product and η the unit. It is augmented if there exists a morphism of
properads ε : P → I. In this case, there is a canonical isomorphism P ∼= I ⊕ P
where P = ker(ε) is called the augmentation ideal of P .

Morphisms of properads are morphisms of monoids in (ChSK,�c, I).

Properads have also their dual notion, namely coproperads:

Definition 1.11. A dg coproperad (C,∆, ε) is a comonoid in (ChSK,�c, I).

As in the prop case, there exists a free properad functor F forming an adjunction

F : ChSK � Properad : U

with the forgetful functor U . There is an explicit construction of the free properad in
terms of direct sums of labelled graphs for which we refer the reader to [79]. Dually,
there exists a cofree coproperad functor denoted Fc(−) having the same underlying
Σ-biobject. Moreover, according to [57], this adjunction equips dg properads with a
cofibrantly generated model category structure with componentwise fibrations and
weak equivalences.

There is also a notion of algebra over a properad similar to an algebra over a prop,
since the endomorphism prop restricts to an endomorphism properad. Properads
are general enough to encode a wide range of bialgebra structures such as asso-
ciative and coassociative bialgebras, Lie bialgebras, Poisson bialgebras, Frobenius
bialgebras for instance.

1.2.3. Algebras over operads. Operads are used to parametrize various kind of al-
gebraic structures consisting of operations with one single output. Fundamental
examples of operads include the operad As encoding associative algebras, the op-
erad Com of commutative algebras, the operad Lie of Lie algebras and the operad
Pois of Poisson algebras. They can be defined as monoids in the category of
Σ-objects (collections {P (n)}n∈N with an action of Σn on each P (n)), for the ap-
propriate composition product. Dg operads form a model category with bar-cobar
resolutions and Koszul duality [51]. An algebra X over a dg operad P can be
defined in any symmetric monoidal category E over ChK, alternatively as an alge-
bra over the corresponding monad or as an operad morphism P → EndX where
EndX(n) = HomE(X⊗n, X) and HomE is the external hom bifunctor. The cate-
gory of P -algebras satisfies good homotopical properties, namely:
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Theorem 1.12. (see [22, Theorem 12.3.A]) Let P be a Σ-cofibrant dg operad and E
be a cofibrantly generated symmetric monoidal model category over ChK. Then the
category EP of P -algebras in E inherits a cofibrantly generated semi-model category
structure such that the forgetful functor U : EP → E creates weak equivalences and
fibrations, and that the generating (acyclic) cofibrations are the images under the
free P -algebra functor of the generating (acyclic) cofibrations of E.

Remark 1.13. In general, algebras over properads and props do not inherit such a
model category structure, since there is no free algebra functor in this case.

Dual to operads is the notion of cooperad, defined as a comonoid in the cate-
gory of Σ-objects. A coalgebra over a cooperad is a coalgebra over the associated
comonad. We can go from operads to cooperads and vice-versa by dualization.
Indeed, if C is a cooperad, then the Σ-module P defined by P (n) = C(n)∗ =
HomK(C(n),K) form an operad. Conversely, suppose that K is of characteristic
zero and P is an operad such that each P (n) is finite dimensional. Then the P (n)∗
form a cooperad in the sense of [51]. The additional hypotheses are needed because
we have to use, for finite dimensional vector spaces V and W , the isomorphism
(V ⊗W )∗ ∼= V ∗⊗W ∗ to define properly the cooperad coproduct. We also give the
definition of coalgebras over an operad:

Definition 1.14. (1) Let P be an operad. A P -coalgebra is a complex C equiped
with linear applications ρn : P (n) ⊗ C → C⊗n for every n ≥ 0. These maps are
Σn-equivariant and associative with respect to the operadic compositions.

(2) Each p ∈ P (n) gives rise to a cooperation p∗ : C → C⊗n. The coalgebra
C is usually said to be conilpotent if for each c ∈ C, there exists N ∈ N so that
p∗(c) = 0 when we have p ∈ P (n) with n > N .

If K is a field of characteristic zero and the P (n) are finite dimensional, then
it is equivalent to define a P -coalgebra via a family of applications ρn : C →
P (n)∗ ⊗Σn C

⊗n.

Theorem 1.15. The category dgCogconil of non-negatively graded conilpotent coas-
sociative dg coalgebras forms a cofibrantly generated model category with quasi-
isomorphisms as weak equivalences and degreewise injections as cofibrations.

This follows verbatim from the argument line of [80, Theorem 0.1] adapted to
the non-negatively graded setting, or the argument line of [31] adapted to the
conilpotent case. In both cases, the model structure is transferred via the adjunction
between the forgetful functor and the reduced tensor coalgebra functor (which is
both the cofree coalgebra functor in the positively graded setting of [80] and the
cofree conilpotent coalgebra functor in the non-negatively graded setting of [31]).
The fact that this model category is cofibrantly generated is crucial in the proof of
Theorem 0.1(2).

We will also need a more general model category structure on conilpotent coalge-
bras over dg operads, however without needing it to be cofibrantly generated. The
existence of such a model category results from the following arguments. There are
very general assumptions under which a category of coalgebras over a comonad in
a model category inherits a model category structure [37], which can be applied to
the case of coalgebras over differential non-negatively graded operads. Given a dif-
ferential non-negatively graded operad P , to check that the category ChK has the
needed properties to get a left-induced model structure on the category P−Cogconil
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of dg P -coalgebras from [37, Theorem 5.8], one just specializes the results of [37,
Section 6] (enunciated for right dg modules over a dga A) to the case A = K:

Theorem 1.16. Let P be a differential non-negatively graded operad. The category
P − Cogconil inherits a model category structure such that the forgetful functor
U : P − Cogconil → ChK creates the cofibrations and the weak equivalences.

1.3. En-operads, higher Hochschild cohomology and the Deligne conjec-
ture. Configuration spaces of n-disks into a bigger n-disk gather into a topological
operad Dn called the little n-disks operad. An En-operad is a dg operad quasi-
isomorphic to the singular chains C∗Dn of the little n-disks operad. The formality
of the little 2-disks operad (i.e. the fact that it is quasi-isomorphic as an operad to
its cohomology) is the key point to prove Deligne conjecture about the homotopy
Gerstenhaber structure (that is, the E2-algebra structure) of the Hochschild com-
plex, which in turn provided an alternative method for deformation quantization
of Poisson manifolds [47], [48], [72], [73]. Its formality holds over Q and relies on
the choice of a Drinfeld associator (which exists over Q, as proved in [9]), a process
closely related to deformation quantization of Lie bialgebras as well. The formality
of En-operads for n ≥ 3 was sketched over R in [47] and fully proved in [50]. This
result was recently superseded in [28], where this formality was proved to hold over
Q and to be intrinsic (under a mild technical assumption satisfied in particular by
the little n-disks operads). An important observation to note here is that contrary
to the case n = 2, the formality of En-operads for n ≥ 3 does not rely on the choice
of an associator.

Given an ordinary associative (or E1) algebraA, its endomorphismsHombiModA
(A,A)

in the category biModA of A-bimodules form nothing but the center Z(A) of A.
Deriving this hom object gives the Hochschild complex CH∗(A,A) of A, and the
Hochschild cohomology HH∗(A,A) of A satisfies HH0(A,A) = Z(A). One says
that the Hoschchild complex is the derived center of A, and the Deligne conjec-
ture can then be reformulated as “the derived center of an E1-algebra forms an
E2-algebra”. This sentence enlarges to a similar statement for En-algebras.

Definition 1.17. The (full) Hochschild complex of an En-algebra A, computing its
higher Hochschild cohomology, is the derived hom CH∗En

(A,A) = RHomEn

A (A,A)
in the category of (operadic) A-modules over En.

The Deligne conjecture endows the Hochschild cochain complex with an En+1-
algebra structure [36, Theorem 6.28] or [20, 54]. Associated to an En-algebra A,
one also has its cotangent complex LA, which classifies square-zero extensions of
A [20, 54].

Definition 1.18 ([20]). The tangent complex TA of an En-algebra A is the dual
TA := HomEn

A (LA, A) ∼= RDer(A,A).

Francis [20, 54] has proved that TA[−n] has a canonical structure of En+1-algebra
and further that we have a fiber sequence TA[−n] → CH∗En

(A,A) → A where the
first map is a map of En+1-algebras.

1.4. Deformation quantization of Lie bialgebras. Lie bialgebras originally
arose from Poisson-Lie groups in mathematical physics. Poisson-Lie groups are Lie
groups with a compatible Poisson structure, and appear as gauge groups of various
classical mechanical systems such as integrable systems. The tangent space TeG
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of a Poisson-Lie group G has more structure than a Lie algebra, because of the
Poisson bracket, which induces a compatible Lie coalgebra structure on TeG so
that TeG forms Lie bialgebra. The compatibility relation between the bracket and
the cobracket is called the Drinfeld’s compatibility relation or the cocycle relation.
Quantizing tangent spaces of Poisson-Lie groups gives solutions to the quantum
Yang-Baxter equation, which allow to build “exactly solvable” quantum systems
from classical mechanical systems. Deformation quantization of Lie bialgebras pro-
duces quantum groups, which are relevant not only for mathematical physics but
also for low-dimensional topology (quantum invariants of knots and 3-manifolds),
and are deeply related to algebraic geometry and number theory (moduli spaces of
curves, Grothendieck-Teichmüller groups, multizeta values) via the Drinfeld asso-
ciators [9].

The problem of a universal quantization of Lie bialgebras raised by Drinfeld was
solved by Etingof and Kazhdan [16], [17]. A deformation quantization of a Lie
bialgebra g is a topologically free Hopf algebra H over the ring of formal power
series K[[~]] such that H/~H is isomorphic to U(g) (the enveloping algebra of
g)as a co-Poisson bialgebra. Such a Hopf algebra is called a quantum universal
enveloping algebra (QUE for short). Conversely, the quasi-classical limit of a QUE
algebra H is the Lie bialgebra of primitive elements g = Prim(H/~H) whose
cobracket is induced by the coproduct of H. For technical reasons (the need of a
“quasi-triangular structure” on the Lie bialgebra, that is, of a classical r-matrix),
the initial construction of Etingof-Kazdhan takes as input a quasi-triangular Lie
bialgebra D(g) called the double of g. Then they equip the category ModD(g)[[~]]
(same objects than ModD(g) but the vector spaces of morphisms are tensored by
the ring of formal series), called the Drinfeld category, with a braided monoidal
structure induced by the r-matrix of D(g) and the choice of a Drinfeld associator.
The forgetful functor from the Drinfeld category to the category of modules is a
braided monoidal functor, so by the tannakian formalism the Drinfeld category
is equivalent to the category of modules over a topologically free Hopf algebra
quantizing D(g). The QUE algebra of g is then a certain Hopf subalgebra of this
Hopf algebra.

As explained in the sequel [17] with the formalism of cyclic categories, and later
in [13] in the formalism of props, deformation quantization of Lie bialgebras can be
reformulated as the existence of a prop morphism

QUE → UEcP [[~]]

between the prop of QUE algebras and the prop UEcP [[~]] of topologically free
co-Poisson K[[~]]-bialgebras. This prop morphism induces a quantization functor
from the category of UEcP [[~]]-algebras to the category of QUE-algebras. The
category of UEcP [[~]]-algebras is equivalent to the category of topologically free
Lie bialgebras over K[[~]] (the enveloping algebra of a Lie bialgebra is a co-Poisson
bialgebra). The existence of such a prop morphism relies on the use of a Drinfeld
associator. An alternative propic approach to deformation quantization, which will
be useful for us in this paper, is presented in [59]. We will go back to this with
more details in Section 8.
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2. Moduli problems of algebraic structures and deformation
complexes

2.1. Formal moduli problems and (homotopy) Lie algebras. Formal moduli
problems arise when one wants to study the deformation theory of a point of a
given moduli space (variety, scheme, stack, derived stack). The general principle
of moduli problems is that the deformation theory of a given point in a formal
neighbourhood of this point (that is, the formal completion of the moduli space
at this point) is controlled by a certain tangent dg Lie algebra. This idea of a
correspondence between formal moduli problems and dg Lie algebras arose from
unpublished work of Deligne, Drinfed and Feigin, and was developed further by
Goldman-Millson, Hinich, Kontsevich, Manetti among others. However, there was
no systematic recipe to build a dg Lie algebra for a given moduli problem, and
even worse, different dg Lie algebras could represent the same moduli problem. To
overcome these difficulties, one has to consider moduli problems in a derived setting.
The rigorous statement of an equivalence between derived formal moduli problems
and dg Lie algebras was proved independently by Lurie in [52] and by Pridham in
[63].In this paper, what we will call moduli problems are actually derived moduli
problems.

Briefly, formal moduli problems are functors F : dgArtaugK → sSet from aug-
mented artinian commutative differential graded algebras to simplicial sets, such
that F (K) ' pt and F preserves certain pullbacks (we refer the reader to [52] for
more details). The value F (K) corresponds to the point of which we study the
formal neighbourhood, the evaluation F (K[t]/(t2)) on the algebra of dual numbers
encodes infinitesimal deformations of this point, and the F (K[t]/(tn)) are polyno-
mial deformations of a higher order, for instance. Formal moduli problems form a
full sub-∞-category noted FMPK of the ∞-category of simplicial presheaves over
augmented artinian cdgas. By [52, Theorem 2.0.2], this∞-category is equivalent to
the ∞-category dgLieK of dg Lie algebras. Moreover, one side of the equivalence is
made explicit, and is equivalent to the nerve construction of dg Lie algebras studied
thoroughly by Hinich in [38]. The homotopy invariance of the nerve relies on nilpo-
tence conditions on the dg Lie algebra. In the case of formal moduli problems, this
nilpotence condition is always satisfied because one tensors the Lie algebra with
the maximal ideal of an augmented artinian cdga.

It turns out that this nerve construction can be extended to homotopy Lie alge-
bras, that is, L∞-algebras. There are two equivalent definitions of an L∞-algebra:

Definition 2.1. (1) An L∞-algebra is a graded vector space g = {gn}n∈Z equipped
with maps lk : g⊗k → g of degree 2−k, for k ≥ 1, satisfying the following properties:

• lk(..., xi, xi+1, ...) = −(−1)|xi||xi+1|lk(..., xi+1, xi, ...)
• for every k ≥ 1, the generalized Jacobi identities

k∑
i=1

∑
σ∈Sh(i,k−i)

(−1)ε(i)lk(li(xσ(1), ..., xσ(i)), xσ(i+1), ..., xσ(k)) = 0

where σ ranges over the (i, k − i)-shuffles and

ε(i) = i+
∑

j1<j2,σ(j1)>σ(j2)

(|xj1 ||xj2 |+ 1).
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(2) An L∞-algebra structure on a graded vector space g = {gn}n∈Z is a coderiva-
tion Q : Sym•≥1(g[1]) → Sym•≥1(g[1]) of degree 1 of the cofree cocommutative
coalgebra Sym•≥1(g[1]) such that Q2 = 0.

The bracket l1 is actually the differential of g as a cochain complex. When the
brackets lk vanish for k ≥ 3, then one gets a dg Lie algebra. The dg algebra C∗(g)
obtained by dualizing the dg coalgebra of (2) is called the Chevalley-Eilenberg
algebra of g.

A L∞ algebra g is filtered if it admits a decreasing filtration
g = F1g ⊇ F2g ⊇ ... ⊇ Frg ⊇ ...

compatible with the brackets: for every k ≥ 1,
lk(Frg, g, ..., g) ∈ Frg.

We suppose moreover that for every r, there exists an integer N(r) such that
lk(g, ..., g) ⊆ Frg for every k > N(r). A filtered L∞ algebra g is complete if the
canonical map g → limrg/Frg is an isomorphism.

The completeness of a L∞ algebra allows to define properly the notion of Maurer-
Cartan element:

Definition 2.2. (1) Let g be a dg L∞-algebra and τ ∈ g1, we say that τ is a
Maurer-Cartan element of g if∑

k≥1

1
k! lk(τ, ..., τ) = 0.

The set of Maurer-Cartan elements of g is noted MC(g).
(2) The simplicial Maurer-Cartan set is then defined by

MC•(g) = MC(g⊗̂Ω•),
, where Ω• is the Sullivan cdga of de Rham polynomial forms on the standard
simplex ∆• (see [70]) and ⊗̂ is the completed tensor product with respect to the
filtration induced by g.

The simplicial Maurer-Cartan set is a Kan complex, functorial in g and preserves
quasi-isomorphisms of complete L∞-algebras. The Maurer-Cartan moduli set of g
isMC(g) = π0MC•(g): it is the quotient of the set of Maurer-Cartan elements of
g by the homotopy relation defined by the 1-simplices. When g is a complete dg
Lie algebra, it turns out that this homotopy relation is equivalent to the action of
the gauge group exp(g0) (a prounipotent algebraic group acting on Maurer-Cartan
elements), so in this case this moduli set coincides with the one usually known for
Lie algebras. We refer the reader to [82] for more details about all these results.
We also recall briefly the notion of twisting by a Maurer-Cartan element. The
twisting of a complete L∞ algebra g by a Maurer-Cartan element τ is the complete
L∞ algebra gτ with the same underlying graded vector space and new brackets lτk
defined by

lτk(x1, ..., xk) =
∑
i≥0

1
i! lk+i(τ, ..., τ︸ ︷︷ ︸

i

, x1, ..., xk)

where the lk are the brackets of g.
To conclude, we explain why Lurie’s equivalence [52, Theorem 2.0.2] lifts from the

∞-category of dg Lie algebras dgLie to the ∞-category of L∞-algebras L∞ −Alg.
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Let p : L∞
∼→ Lie be the cofibrant resolution of the operad Lie encoding L∞-

algebras. This morphism induces a functor p∗ : dgLie→ L∞−Alg which associates
to any dg Lie algebra the L∞-algebra with the same differential, the same bracket
of arity 2 and trivial higher brackets in arities greater than 2. It turns out that this
functor is a right Quillen functor belonging to a Quillen equivalence

p! : L∞ −Alg � dgLie : p∗,
since p is a quasi-isomorphism of Σ-cofibrant operads (see [22, Theorem 16.A] for
the general result). Quillen equivalences induce equivalences of the ∞-categories
associated to these model categories (which can be realized, for instance, by taking
the coherent nerve of the simplicial localization of these model categories). We have
a commutative triangle of ∞-categories

L∞ −Alg
ψ̃

&&
dgLie

p∗

OO

ψ
// FMPK

where ψ and ψ̃ send a Lie algebra, respectively an L∞-algebra, to its nerve functor
or Maurer-Cartan space. The maps p∗ and ψ are weak equivalences of∞-categories
in the chosen model category of ∞-categories (which can be for instance the one
of quasicategories [53], but actually any model works). By the two-out-of-three
property of weak equivalences, this implies that ψ̃ : L∞ −Alg → FMPK is a weak
equivalence of ∞-categories.

2.2. Fully faithful ∞-functors. In the next section, we will need the following
useful criteria to obtain fully faithful ∞-functors between categories of algebras,
and see under which conditions they induce equivalences between the associated
formal moduli problems:

Lemma 2.3. Let F : (C,WC) � (D,WD) : G be an adjunction of relative categories
(that is, the functors F and G preserves weak equivalences) such that the unit
and counit of this adjunction are pointwise weak equivalences. Then F induces an
equivalence of ∞-categories with inverse G.

Proof. Let us denote by RelCat the category of relative categories. The objects
are the relative categories and the morphisms are the relative functors, that is, the
functors restricting to functors between the categories of weak equivalences. By [4,
Theorem 6.1], there is an adjunction between the category of bisimplicial sets and
the category of relative categories

Kξ : sSets∆op

� RelCat : Nξ
(where Kξ is the left adjoint and Nξ the right adjoint) which lifts any Bousfield
localization of the Reedy model structure of bisimplicial sets into a model structure
on RelCat. In the particular case of the Bousfield localization defining the model
category CSS of complete Segal spaces [65, Theorem 7.2], one obtains a Quillen
equivalent homotopy theory of ∞-categories in RelCat [4].

A way to build the∞-category associated to a relative category (C,WC) is to take
a functorial fibrant resolution Nξ(C,WC)f of the bisimplicial set Nξ(C,WC) in CSS
to get a complete Segal space. So we want to prove that NξF f is a weak equivalence
of CSS. For this, let us note first that the assumption on the adjunction between F
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and G implies that F is a strict homotopy equivalence in RelCat in the sense of [4].
By [4, Proposition 7.5 (iii)], the functor Nξ preserves homotopy equivalences, so
NξF is a homotopy equivalence of bisimplicial sets, hence a Reedy weak equivalence.
Since CSS is a Bousfield localization of the Reedy model structure on bisimplicial
sets, Reedy weak equivalences are weak equivalences in CSS, then by applying the
fibrant resolution functor (−)f we conclude that NξF f is a weak equivalence of
complete Segal spaces. �

From this we deduce:
Proposition 2.4. Let F : (C,WC) → (D,WD) be a functor of relative categories
(that is, a functor preserving weak equivalences). If F is fully faithful, then it
induces a fully faithful ∞-functor at the level of the associated ∞-categories.
Proof. Since F is fully faithful, it induces an equivalence of relative categories be-
tween C and F (C), hence an equivalence of the associated∞-categories by Lemma 2.3,
which exactly means that F induces a fully faithful∞-functor between C and D. �

Corollary 2.5. A surjection of props ϕ : P � Q induces a fully faithful ∞-functor
ϕ∗ : Q−Alg ↪→ P −Alg,

where weak equivalences on both sides are defined by quasi-isomorphisms.
In the formalism of Dwyer-Kan’s hammock localization, a fully faithful functor

F : C → D is a functor satisfying the following property: for every two objects X
and Y of C, it induces a weak equivalence of simplicial mapping spaces

LH(C,WC)(X,Y ) ∼→ LH(D,WD)(F (X), F (Y )).
In particular, the associated functor Ho(F ) at the level of homotopy categories
is fully faithful (but not an equivalence). We would like this weak equivalence
to restrict at the level of homotopy automorphisms. For this, let us recall that
a functor F : C → D is conservative if the following property holds: let f be a
morphism of C, if F (f) is a weak equivalence of D then f is a weak equivalence of
C.
Lemma 2.6. Let F : (C,WC) → (D,WD) be a functor of relative categories. Let
us suppose that F is conservative and fully faithful. Then the restriction of F to
the subcategories of weak equivalences

wF : WC →WD

is fully faithful and induces, for every X ∈ C, a weak equivalence of homotopy
automorphisms

LHWC(X,X) ∼→ LHWD(F (X), F (X)),
where LHWC is Dwyer-Kan’s hammock localization of WC with respect to itself.
Proof. Since F preserves weak equivalences, it induces a functor wF : WC → WD.
Moreover, the functor wF is clearly faithful as well. Now let f : F (X) → F (Y )
be a weak equivalence of D. Since F is full, there exists a morphism g of C such
that f = F (g).Since F is conservative, the fact that f is a weak equivalence of D
implies that g is a weak equivalence of C, hence wF is full. According to Proposition
2.4, the functor wF gives a fully faithful ∞-functor, so at the level of hammock
localizations it induces a weak equivalence

LHWC(X,Y ) ∼→ LHWD(F (X), F (Y ))
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for every two objects X and Y of C, in particular
LHWC(X,X) ∼→ LHWD(F (X), F (X)).

�

Corollary 2.7. A surjection of props ϕ : P � Q induces weak equivalences of
homotopy automorphisms

LHwQ−Alg(X,X) ∼→ LHwP −Alg(ϕ∗X,ϕ∗X)
for every Q-algebra X.

2.3. Moduli problems of algebraic structures. Moduli spaces of algebraic
structures were originally defined as simplicial sets, in the setting of simplicial op-
erads [64]. This notion can be extended to algebras over differential graded props
as follows (see [82]):

Definition 2.8. Let P∞ be a cofibrant prop and X be a complex. The moduli
space of P∞-algebra structures on X is the simplicial set P∞{X} defined by

P∞ = MorProp(P∞, EndX ⊗ Ω•),
where the prop EndX ⊗ Ω• is defined by EndX ⊗ Ω•)(m,n) = EndX(m,n) ⊗ Ω•
and Ω• is the Sullivan cdga of the standard simplex ∆•.

This simplicial set enjoys the following properties:

Proposition 2.9. (1) The simplicial set P∞{X} is a Kan complex and
π0P∞{X} = [P∞, EndX ]Ho(Prop)

is the set of homotopy classes of P∞-algebra structures on X.
(2) Any weak equivalence of cofibrant props P∞

∼→ Q∞ induces a weak equiva-
lence of Kan complexes Q∞{X}

∼→ P∞{X}.

For the remaining part of the paper, we will restrict ourselves to dg properads.
Cofibrant resolutions of a properad P can always be obtained as a cobar construc-
tion Ω(C) on some coproperad C (which is usually the bar construction or the
Koszul dual if P is Koszul). Given a cofibrant resolution Ω(C) ∼→ P of P and
another properad Q, one considers the convolution dg Lie algebra HomΣ(C,Q)
consisting in morphisms of Σ-biobjects from the augmentation ideal of C to Q.
The Lie bracket is the antisymmetrization of the convolution product. This convo-
lution product is defined similarly to the convolution product of morphisms from
a coalgebra to an algebra, using the infinitesimal coproduct of C and the infinites-
imal product of Q. The total complex HomΣ(C,Q) is a complete dg Lie algebra.
More generally, if P is a properad with minimal model (F(s−1C), ∂) ∼→ P for a
certain homotopy coproperad C (see [56, Section 4] for the definition of homotopy
coproperads), and Q is any properad, then the complex HomΣ(C,Q) is a complete
dg L∞ algebra. The relationship between the simplicial mapping space of mor-
phisms P∞ → Q and the Lie theory of the convolution L∞-algebra HomΣ(C,Q) is
provided by the following theorem:

Theorem 2.10. (cf. [82, Theorem 2.10,Corollary 4.21]) Let P be a dg properad
equipped with a minimal model P∞ := (F(s−1C), ∂) ∼→ P and Q be a dg properad.
The simplicial presheaf

Map(P∞, Q) : A ∈ dgArtaugK 7→MapProp(P∞, Q⊗A)



BIALGEBRAS, HOCHSCHILD COHOMOLOGY AND FORMALITY 22

is equivalent to the simplicial presheaf

MC•(HomΣ(C,Q)) : A ∈ dgArtaugK 7→MC•(HomΣ(C,Q)⊗A)

associated to the complete L∞-algebra HomΣ(C,Q).

By [81, Corollary 2.4], the tensor productMC•(HomΣ(C,Q)⊗A) does not need
to be completed because A is artinian. In the following, we will also consider the
simplicial presheaf

MCfmp• (HomΣ(C,Q)) : A ∈ dgArtaugK 7→MC•(HomΣ(C,Q)⊗mA),

where mA is the maximal ideal of A. This presheaf is the formal moduli problem
associated to HomΣ(C,Q) under Lurie’s equivalence theorem.

We will use such results in the case where Q = EndX . In this case, the simplicial
presheaf Map(P∞, Q) will be noted P∞{X}. Let us note that P∞{X} can be
alternately defined by

A 7→ P∞ ⊗A{X ⊗A}ModA
,

where P∞ ⊗ A{X ⊗ A}ModA
is the mapping space of dg props in A-modules

Map(P∞ ⊗ A,EndModA

X⊗A ) where EndModA

X⊗A is the endormorphism prop of X ⊗ A
taken in the category of A-modules. That is, the simplicial moduli space of P∞-
algebra structures on X ⊗A in the category of A-modules. Indeed, since ModA is
tensored over ChK, on can make P∞ act on A-modules either by morphisms of dg
props in A-modules from P∞⊗A to the endomorphism prop defined by the internal
hom of ModA, or by morphisms of dg props from P∞ to the endomorphism prop
defined by the external hom of ModA.

This theorem applies in particular to the case of a Koszul properad, which in-
cludes for instance Frobenius algebras, Lie bialgebras and their variants such as
involutive Lie bialgebras in string topology. It applies also to more general situa-
tions such as the properad Bialg encoding associative and coassociative bialgebras,
which is homotopy Koszul [56, Proposition 41].

By Proposition 2.9, the simplicial set P∞{X}(A) classifies P∞⊗A-algebra struc-
tures on X ⊗ A. However, the simplicial presheaf P∞{X} is not a formal mod-
uli problem, since P∞{X}(K) is in general not contractible. The formal moduli
problem P∞{X}ψ controlling the formal deformations of a P∞-algebra structure
ψ : P∞ → EndX on X is defined, on any augmented artinian cdga A, by the
homotopy fiber

P∞{X}ψ(A) = hofib(P∞{X}(A)→ P∞{X}(K))

taken over the base point ψ, the map being induced by the augmentation A→ K.
The twisting of HomΣ(C,EndX) by a properad morphism ψ : P∞ → EndX is the
deformation complex of ψ, and we have an isomorphism

gψP,X = HomΣ(C,EndX)ψ ∼= Derψ(Ω(C), EndX)

where the right-hand term is the complex of derivations with respect to ψ [57,
Theorem 12].

Proposition 2.11. The tangent L∞-algebra of the formal moduli problem P∞{X}ψ

is given by
gψP,X = HomΣ(C,EndX)ψ.
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Proof. Let A be an augmented artinian cdga. By Theorem 2.10, we have the
homotopy equivalences

P∞{X}ψ(A) ' hofib(MC•(gP,X)(A)→MC•(gP,X)(K))
= hofib(MC•(gP,X ⊗A)→MC•(gP,X))
' MC•(hofibL∞(gP,X ⊗A→ gP,X))

where hofibL∞(gP,X ⊗ A → gP,X) is the homotopy fiber, over the Maurer-Cartan
element ψ, of the L∞-algebra morphism gP,X ⊗ A → gP,X given by the tensor
product of the augmentation A → K with gP,X . This homotopy fiber is nothing
but gϕP,X ⊗mA, where mA is the maximal ideal of A, so there is an equivalence of
formal moduli problems

P∞{X}ψ 'MCfmp• (gψP,X).

By Lurie’s equivalence theorem, this means that gψP,X is the Lie algebra of the
formal moduli problem P∞{X}ψ. �

In this paper, we will also be interested in derived algebraic groups in the sense
of [20] and deformation complexes governing homotopy automorphisms of algebras
over properads. Let us first note that for any cdga A, the category ModA is a
(cofibrantly generated) symmetric monoidal model category tensored over chain
complexes, so that one can define the category P∞ − Alg(ModA) of P∞-algebras
in ModA.

Definition 2.12. For a chain complex X, we denote haut(X) the derived algebraic
group of homotopy automorphisms of the underlying complex X taken in the model
category of chain complexes. It is defined by

A 7→ hautModA
(X ⊗A),

where hautModA
is the simplicial monoid of homotopy automorphisms in the cat-

egory of A-modules. Since for every A we have haut(X) ∼ hautModA
(X ⊗ A), it

can be defined alternately by the constant functor
A 7→ haut(X).

Further, let O be an operad, let O∞ be a cofibrant resolution of O, and let
(X,ψ : O∞ → EndX) be an O-algebra structure on X. We define hautO∞(X,ψ)
to be the derived algebraic group associated to the simplicial monoid of homotopy
automorphisms of (X,ψ) in the model category of O∞-algebras, that is the sim-
plicial sub-monoid of self weak equivalences in the usual homotopy mapping space
MapO∞−Alg(X,X). Such simplicial monoids of self weak-equivalences are defined
in any model category, see for instance [42, Chapter 17]. The (weak) simplicial
presheaf is defined by

A 7→ hautO∞(X ⊗A,ψ ⊗A)ModA

where hautO∞(X ⊗A,ψ⊗A)ModA
is the simplicial monoid of homotopy automor-

phisms of (X ⊗A,ψ ⊗A) ∈ O∞ −Alg(ModA).

By [11] we have a homotopy equivalence hautO∞(X,ψ) ' LHwO∞ −Alg(X,ψ),
where LHwO∞ −Alg(X,ψ) is the derived algebraic group of homotopy automor-
phisms in the Dwyer-Kan hammock localization of O∞-algebras with respect to
quasi-isomorphisms [11]. When P is a prop but not an operad, we do not have a
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model structure on P∞-algebras to define hautP (X,ψ) but we can still define the
hammock localization LHwP∞ −Alg(X,ψ). To such a derived algebraic group,
one can associate a formal moduli problem BLHwP∞ −Alg(X,ψ) given by the
strictification (see [1, Section I.2.3.1]) of the weak simplicial presheaf

A ∈ dgArtaugK 7→ LHwP∞ −Alg(ModA)(X ⊗A,ψ ⊗A),

where B is the classifying complex functor for simplicial monoids (see [20] for the
definition of such a formal moduli problem in the case of algebras over operads). We
introduce two related and useful classification space constructions. The assignment

A 7→ wP∞ −Alg(ModA),
where the w(−) stands for the subcategory of weak equivalences, defines a weak
presheaf of categories in the sense of [1, Definition I.56], sending a morphism A→ B
to the functor − ⊗A B, which is symmetric monoidal, hence lifted at the level of
P∞-algebras. This weak presheaf can be strictified into a presheaf of categories.
Applying the nerve functor then defines a simplicial presheaf of Dwyer-Kan classi-
fication spaces that we note NwP∞ −Alg. The simplicial presheaf associated to
A 7→ ModA is the simplicial presheaf of quasi-coherent modules of [75, Definition
1.3.7.1] that we note NwChK. The loop construction on these simplicial presheaves
is defined as follows. The loop space on NwP∞ −Alg based at a P∞-algebra (X,ψ)
is the strictification of the weak simplicial presheaf

Ω(X,ψ)NwP∞ −Alg : A 7→ Ω(X⊗A,ψ⊗A)NwP∞ −Alg(ModA).

The loop space on P∞{X} based at a morphism ψ : P∞ → EndX is the strictifica-
tion of the weak simplicial presheaf

ΩψP∞{X} : A 7→ Ωψ⊗AP∞ ⊗A{X ⊗A}ModA
.

One defines similarly the loop space ΩψP∞{X}ψ on the formal moduli problem
P∞{X}ψ.

Rezk’s homotopy pullback theorem [64], generalized to algebras over cofibrant dg
props in [83, Theorem 0.1], states that the simplicial moduli space of P∞-algebras
structures on X is the homotopy fiber of a forgetful map between the Dwyer-Kan
classification space of the ∞-category of P∞-algebras and the classification space
of the ∞-category of chain complexes, over the base point given by a P∞-algebra
structure on X. This result points towards two crucial ideas about the deformation
theory of algebras over a prop, which will be crucial in our paper but are of course
of independent interest as well.

First, in derived algebraic geometry, a Zariski open immersion of derived Artin
stacks F ↪→ G induces a weak equivalence between the tangent complex over a
given point of F and the tangent complex over its image in G [75]. We would
like a somehow similar statement about the tangent Lie algebras of our formal
moduli problems of algebraic structures, when an∞-category of algebras “embeds”
into another ∞-category of algebras. The idea is that [83, Theorem 0.1] tells us
that the formal moduli problem P∞{X}ψ is the “tangent space” over (X,ψ) to
the Dwyer-Kan classification space of the ∞-category of P∞-algebras. An “im-
mersion” F : P∞ − Alg ↪→ Q∞ − Alg should induce an equivalence between the
formal moduli problem of formal deformations of (X,ψ) in P∞-algebras and the
formal moduli problem of formal deformations of F (X,ψ) in Q∞-algebras, hence
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an equivalence between their tangent L∞-algebras. Here the word “immersion” has
to be understood as “fully faithful conservative ∞-functor”.

Second, the result [83, Theorem 0.1] implies the existence of a long exact sequence
relating the homotopy type of P∞{X} to the homotopy type of the homotopy au-
tomorphisms hautP∞(X,ψ) of (X,ψ) inside the∞-category of P∞-algebras. These
homotopy automorphisms form a derived algebraic group [20] with an associated
L∞-algebra Lie(hautP∞(X,ψ)), thus there should be a homotopy fiber sequence of
L∞-algebras relating Lie(hautP∞(X,ψ)) to the tangent L∞-algebra of P∞{X}ψ.

To formalize properly the two ideas above, we need the following generalization
of Rezk’s homotopy pullback theorem:

Proposition 2.13. Let P∞ be a cofibrant prop and X be a chain complex.
(1) The forgetful functor P∞ −Alg → ChK induces a homotopy fiber sequence

P∞{X} → NwP∞ −Alg → NwChK
of simplicial presheaves over augmented artinian cdgas, taken over the base point
X.

(2) This homotopy fiber sequence induces an equivalence of derived algebraic
groups

ΩψP∞{X} ' LHwP∞ −Alg(X,ψ).

Proof. (1) We explain briefly how [83, Theorem 0.1] can be transposed in the con-
text of simplicial presheaves of cdgas. The identification of the homotopy fiber of
the forgetful map

NwP∞ −Alg → NwChK
with the simplicial presheaf P∞{X} follows from the two following facts. First,
we can identify it pointwise with Map(P∞ ⊗A,EndModA

X⊗A ), where EndModA

X⊗A is the
endomorphism prop of X ⊗ A in the category of A-modules. This comes from the
extension of [83, Theorem 0.1] to P∞-algebras in A-modules, which holds true triv-
ially by replacing chain complexes by A-modules as target category in the universal
functorial constructions of [83, Section 2.2] (A-modules are equipped with exactly
the same operations than chain complexes which are needed in this construction:
directs sums, suspensions, twisting cochains). Second, there is an isomorphism of
simplicial sets

Map(P∞ ⊗A,EndModA

X⊗A ) ∼= P∞{X}(A)
(see for instance [82, Section 3]).

(2) The connected components of NwP∞ −Alg are the classifying complexes of
homotopy automorphisms of P∞-algebras, hence a decomposition

NwP∞ −Alg ∼=
∐

[Y,φ]∈π0NwP∞−Alg

BLHwP∞ −Alg(Y, φ)

where [Y, φ] ranges over quasi-isomorphism classes of P∞-algebras. The moduli
space P∞{X} thus decomposes into

P∞{X} ∼=
∐

[X,ψ]∈π0NwP∞−Alg

BLHwP∞ −Alg(X,ψ)

where [X,ψ] ranges over quasi-isomorphism classes of P∞-algebras having X as
underlying complex. This induces a homotopy equivalence

ΩψP∞{X} ' LHwP∞ −Alg(X,ψ)
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which sends the constant loop at ψ to id(X,ψ) and any loop to a homotopy auto-
morphism of (X,ψ). The naturality of this homotopy equivalence follows from the
commutativity of the following square for every morphism f : A→ B of augmented
artinian cdgas:

ΩψP∞{X}(A) ∼ //

−⊗AB

��

LHwP∞ −Alg(ModA)(X ⊗A,ψ ⊗A)

−⊗AB

��
ΩψP∞{X}(B) ∼ // LHwP∞ −Alg(ModB)(X ⊗B,ψ ⊗B)

Hence we get the desired equivalence
ΩψP∞{X} ' LHwP∞ −Alg(X,ψ).

�

The relation between ΩψP∞{X}ψ and the derived algebraic group of homotopy
automorphisms of (X,ψ) is then given by the following homotopy fiber sequence:

Proposition 2.14. There is a homotopy fiber sequence of derived algebraic groups

ΩψP∞{X}ψ → LHwP∞ −Alg(X,ψ)→ haut(X),
hence a homotopy fiber sequence of the associated L∞-algebras

gψP,X → Lie(LHwP∞ −Alg(X,ψ))→ Lie(haut(X)).

Proof. Let A be an augmented artinian cdga. On the one hand, the simplicial set
P∞{X}ψ(A) is identified to the Kan subcomplex of P∞{X}(A) generated by the
set of points φ : P∞ ⊗A→ EndModA

X⊗A such that their reduction modulo A satisfies
φ ⊗A K ∼ ψ, where K is an A-module via the augmentation A → K. That is, the
simplicial set P∞{X}ψ(A) is the moduli space of A-linear deformations of ψ.

On the other hand, the homotopy fiber of the map
−⊗A K : LHwP∞ −Alg(X,ψ)(A)→ haut(X),

which is the reduction modulo A induced by the augmentation A→ K, is identified
with the Kan subcomplex of LHwP∞ −Alg(X,ψ)(A) = LHwP∞−Alg(ModA)(X⊗
A,ψ⊗A) generated by the set of points f : (X ⊗A,ψ⊗A) ∼← • ∼→ (X ⊗A,ψ⊗A)
such that f ⊗AK ∼ idX (recall that vertices of the hammock localization are given
by finite zigzags of weak equivalences).

Now recall from Proposition 2.13 that there is a simplicial homotopy equivalence
ΩψP∞{X}(A) ∼= Ωψ⊗AP∞⊗A{X⊗A}ModA

' LHwP∞−Alg(ModA)(X⊗A,ψ⊗A)
sending the constant loop at ψ ⊗ A to id(X⊗A,ψ⊗A) and generally any loop to a
homotopy automorphism of (X ⊗ A,ψ ⊗ A). Such a loop is given by a pointed
simplicial map ∂∆1 → P∞ ⊗A{X ⊗A}ModA

sending the point 0 to ψ ⊗A. At the
level of geometric realizations of these Kan complexes, this is equivalent to define
a pointed topological map l : S1 → |P∞ ⊗A{X ⊗A}ModA

| such that l(0) = ψ⊗A,
where 0 is the base point of S1. Here we use the fact that the geometric realization
is a Quillen equivalence of model categories between simplicial sets with the Kan-
Quillen model structure and topological spaces with the model structure induced by
weak homotopy equivalences and Serre fibrations. The space Ωψ⊗A|P∞{X}ψ(A)|
is then the subspace of loops l : S1 → |P∞ ⊗ A{X ⊗ A}ModA

| such that for every
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point p of S1, we have l(p)⊗AK ∼ ψ. By the geometric realization of the homotopy
equivalence above, such loops l are sent to homotopy automorphisms fl : (X⊗A,ψ⊗
A) ∼← • ∼→ (X ⊗A,ψ⊗A) of (X ⊗A,ψ⊗A) such that fl ⊗AK ∼ idX . That is, we
get a homotopy equivalence

Ωψ⊗A|P∞{X}ψ(A)| ∼ |hofib(−⊗A K)|,

hence the simplicial homotopy equivalence above restricts to

Ωψ⊗AP∞{X}ψ(A) ∼ hofib(−⊗A K).

The fiber sequence of L∞-algebras then follows by taking the Lie algebras of the
derived algebraic groups as in [20]. Concerning the identification of the fiber with
gψP,X , recall that the Lie algebra of loops over a formal moduli problem gives the
tangent Lie algebra of this formal moduli problem. �

Remark 2.15. Let us note that gψP,X is thus different from the Lie algebra of the loop
space ΩψP∞{X} ' LHwP∞ −Alg(X,ψ). The later will be described in Section 3.

Relying on these results, we prove the following comparison result:

Theorem 2.16. Let F : P∞−Alg → Q∞−Alg be a fully faithful and conservative
∞-functor inducing functorially in A, for every augmented artinian cdga A, a fully
faithful and conservative ∞-functor F : P∞ − Alg(ModA) → Q∞ − Alg(ModA).
Then F induces an equivalence of formal moduli problems

P∞{X}ψ ∼ Q∞{F (X)}F (ψ)
,

where F (ψ) is the Q∞-algebra structure on the image F (X,ψ) of X,ψ under F ,
hence an equivalence of the associated L∞-algebras

gψP,X ∼ g
F (ψ)
Q,F (X).

Proof. Let F : P∞−Alg → Q∞−Alg be a fully faithful∞-functor inducing a fully
faithful and conservative ∞-functor F : P∞−Alg(ModA)→ Q∞−Alg(ModA) for
every augmented artinian cdga A. At the level of homotopy automorphisms, which
can be seen equivalently as loops in Dwyer-Kan’s classification spaces, this means
that the commutative triangle

NwP∞ −Alg
NwF //

Nw(U◦F ) ''

NwQ∞ −Alg
NwU

ww
NwChK

,

where Nw(−) is the simplicial nerve of the subcategory of weak equivalences (here
quasi-isomorphisms) and U is the forgetful functor, induces a commutative triangle

Ω(X,ψ)NwP∞ −Alg
∼ //

))

ΩF (X,ψ)NwQ∞ −Alg

uu
ΩXNwChK

where the horizontal arrow induced by NwF is a weak equivalence by Lemma 2.6.
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Consequently, we get the morphism of homotopy fiber sequences of derived al-
gebraic groups

ΩψP∞{X}ψ

��

∼ // ΩF (ψ)Q∞{F (X)}F (ψ)

��
Ω(X,ψ)NwP∞ −Alg

∼ //

))

ΩF (X,ψ)NwQ∞ −Alg

uu
ΩXNwChK

,

where the homotopy fibers are given by Proposition 2.14. The upper horizontal
arrow is a weak equivalence of derived algebraic groups

ΩψP∞{X}ψ
∼→ ΩF (ψ)Q∞{F (X)}F (ψ)

,

hence an equivalence of the associated L∞-algebras, which are the tangent L∞-
algebras of the associated formal moduli problems. By Lurie’s equivalence theorem,
this means that we have a weak equivalence of formal moduli problems

P∞{X}ψ
∼→ Q∞{F (X)}F (ψ)

as well. �

In the case of algebras and coalgebras over operads, we can get a similar result
for a more general base category:

Proposition 2.17. (1) Let P and Q be two dg operads. Let C be a cofibrantly gener-
ated symmetric monoidal model category over ChK. We assume that the categories
of P -algebras and Q-algebras are equipped with their standard model structure. Let

F : P −Alg(C)→ Q−Alg(C)

be a fully faithful and conservative ∞-functor inducing functorially in A, for every
augmented artinian cdga A, a fully faithful and conservative ∞-functor F : P∞ −
Alg(ModA(C)) → Q∞ − Alg(ModA(C)), where ModA(C) is the category of A-
modules in C. Let X ∈ C be equipped with a P -algebra structure ϕ :→ EndX
and let φ : Q → EndF (X) be its image under the functor F . Then there exists a
homotopy equivalence of formal moduli problems

P{X}Cϕ ' Q{F (X)}Cφ.

(2) Let us now assume that Q satisfies the necessary assumptions so that Q −
Cog(C) forms a model category. Let

F : P −Alg(C)→ Q− Cog(C)

be a fully faithful ∞-functor. Let X ∈ C be equipped with a P -algebra structure
ϕ :→ EndX and let φ : Q → coEndF (X) be its image under the functor F . Then
there exists a homotopy equivalence of formal moduli problems

P{X}Cϕ ' Q∨{F (X)}C
φ
,

where Q∨{F (X)}C denotes the simplicial presheaf of Q-coalgebra structures on X.
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Proof. Proof of (1). The functor F induces a commutative square of categories

P −Alg(C) U◦F //

F

��

C

=

��
Q−Alg(C)

U
// C

where U : Q− Alg(C)→ C is the forgetful functor. In [61], Muro builds a stack of
algebras over a nonsymmetric operad AlgC(P ), whose evaluation at an algebra A is
the classification space of cofibrant P -algebras in A-modules (that is, the nerve of
the subcategory of weak equivalences between cofibrant objects). For every algebra
A, there is a forgetful functor from P -algebras in A-modules to A-modules, inducing
a morphism of simplicial sets NwP −Alg(ModA)→ NwModA, hence a morphism
of stacks AlgC(P ) → QCoh (where QCoh is the stack of quasi-coherent modules).
For operads in chain complexes over a field of characteristic zero, this construction
extends to symmetric operads. Thus the commutative square above also induces a
commutative square of stacks

NwP −Alg(C) //

��

NwC

=

��
NwQ−Alg(C) // NwC

via this construction, hence a morphism of the induced homotopy fiber sequences
of stacks.

In order to relate these homotopy fibers to moduli spaces of algebraic structures,
we need a symmetric version of [61, Theorem 4.6], which consists in a generalization
of Rezk’s homotopy pullback theorem [64] to non-symmetric operads in monoidal
model categories. A key point in the proof of [61, Theorem 4.6] is that extension
and restriction of structures along a weak equivalence of admissible non-symmetric
operads form a Quillen pair. However, if one restricts to the setting of algebras in
a cofibrantly generated symmetric monoidal model category tensored over another
cofibrantly generated symmetric monoidal model category, then a weak equivalence
of symmetric Σ-cofibrant operads similarly induces a Quillen pair between the cor-
responding categories of algebras by [22, Theorem 16.A]. In this framework, [61,
Theorem 4.6] can be extended to the symmetric case by following exactly the same
argument line. When the base category is ChK, then the endomorphism operad of
any object of C, defined by the external dg hom of C, is fibrant because fibrations of
operads are defined aritywise and every chain complex over a field of characteristic
zero is fibrant. In our situation we can thus drop the fibrancy-cofibrancy condi-
tion on X stated in [61, Theorem 4.6]. The stack of P -algebra structures on an
A-module M is the homotopy pullback of the morphism AlgC(P ) → QCoh along
the morphism RSpec(A) → QCoh representing M [61, Section 5]. This gives a
stack version of Rezk’s homotopy pullback theorem [64]. Under our assumptions,
this theorem holds also in the symmetric case.
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The proof concludes as follows. The commutative square of stacks

NwP −Alg(C) //

��

NwC

=

��
NwQ−Alg(C) // NwC

induces, for every choice of a basepoint X ∈ C, a commutative square of derived
algebraic groups

Ω(X,ϕ)NwP −Alg(C)
ΩNw(U◦F )//

ΩNwF
��

ΩXNwC

=

��
Ω(F (X),φ)NwQ−Alg(C)

ΩNwU
// ΩXNwC

.

The homotopy fibers of ΩNw(U ◦ F ) and ΩNwU are identified respectively with
the formal moduli problems P{X}Cϕ and Q{F (X)}Cφ. The map ΩNwF is a weak
equivalence, so the homotopy fibers are weakly equivalent as well.
Proof of (2). The arguments are the same than in the proof of (1), using that Q-
coalgebra structures on a given object X can be defined by operad morphisms Q→
coEndX , where coEndX is the coendomorphism operad defined by coEndX(n) =
HomC(X,X⊗n). �

3. The “plus” construction and the corresponding deformation
theory

The plus construction, originally due to Merkulov, will be crucial later in the
paper, to consider deformation complexes of algebraic structures which also en-
code compatible deformations of the differential. In this section, we explain the
homotopical counterpart of this construction, that is, how the corresponding defor-
mation complex controls the derived algebraic group of homotopy automorphisms
of an algebra over a properad.

Recall from [59] that there is an endofunctor (−)+ : Prop → Prop on the
category of properads which associates to any dg properad P with presentation
F(E)/(R) and differential δ a properad P+ with presentation F(E+)/(R) and
differential δ+. The Σ-biobject E+ is defined by E+(1, 1) = E(1, 1) ⊕ K[1] and
E+(m,n) = E(m,n) otherwise. This means that we added a generating opera-
tion u of degree 1, with one input and one output. We would like this generator
to twist the differential of a complex X when we consider a P+-algebra struc-
ture on X. For this, the differential δ is modified accordingly to have in par-
ticular δ+(u) = u ⊗ u ∈ E(1, 1) ⊗ E(1, 1). Consequently, properad morphisms
ϕ+ : P+ → End(X,d) for a given complex X with differential d corresponds to
properad morphisms P → End(X,d−ϕ+(u)) for X equipped with the twisted dif-
ferential d − ϕ+(u). In particular, if X is a graded vector space then P+-algebra
structures on X equip X simultaneously with a P -algebra structure and a com-
patible differential. Let us reinterpret this construction by defining the following
operad:



BIALGEBRAS, HOCHSCHILD COHOMOLOGY AND FORMALITY 31

Definition 3.1. The operad of differentials Di is the quasi-free operad Di =
(F(E), ∂), where E(1) = Kδ with δ a generator of degree 1, E(n) = 0 for n 6= 1
and ∂(δ) = δ ◦ δ is the operadic composition ◦ : Di(1)⊗Di(1)→ Di(1).

We will do an abuse of notation and still note Di the properad freely generated
by this operad.

Lemma 3.2. Let (V, dV ) be a complex.
(1) A Di-algebra structure φ : Di→ EndV on V is a twisted complex (V, dV −δV )

where δV is the image of the operadic generator δ under φ.
(2) A morphism of Di-algebras f : (V, dV − δV ) → (W,dW − δW ) is a chain

morphism f : (V, dV ) → (W,dW ) which satifies moreover f ◦ (dV − δV ) = (dW −
δW ) ◦ f (it is a morphism of twisted complexes).

Proof. (1) The morphism φ is entirely determined by the image of the generator δ.
Since

Di(1)→ Hom(V, V )
is a morphism of complexes, its compatibility with the differentials reads

φ(∂(δ)) = dV ◦ δV + δV ◦ dV
which gives the equation of twisting cochains

δ2
V = dV ◦ δV + δV ◦ dV ,

hence
(dV − δV )2 = d2

V + δ2
V − dV ◦ δV − δV ◦ dV = 0.

(2) A Di-algebra structure on V is given by a morphism Di(V ) → V , and a
Di-algebra morphism f : V → W is a chain morphism fitting in the commutative
square

Di(V )
Di(f) //

��

Di(W )

��
V

f
// W

.

Since a Di-algebra structure is determined by the image of the generator δ via
Di(1)⊗ V → V , this amounts to the commutativity of the square

Di(1)⊗ V
Di(1)⊗f//

��

Di(1)⊗W

��
V

f
// W

,

which is exactly saying that f is a morphism of twisted complexes. �

Let us note that Di is a non-negatively graded quasi-free operad, hence a cofi-
brant operad, so we do not need to take a resolution of it to consider the associated
simplicial presheaf of Di-algebra structures.

Lemma 3.3. The based loop space at a given complex of the simplicial presheaf
of Di-algebra structures is equivalent to the derived algebraic group of homotopy
automorphisms of this complex, that is

Ω(V,dV )Di{(V, dV )} ∼ haut(V, dV )
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where the loops are based at the trivial Di-algebra structure Di 0→ End(V,dV ).

Proof. First, recall from Proposition 2.13(2) the equivalence

Ω(V,dV )Di{(V, dV )} ∼ hautDi(V, dV ).

There is a fully faithful functor i : ChK ↪→ Di−Alg which sends any chain complex
X to itself seen as a twisted complex with twisting δX = 0, that is, the Di-algebra
(X, 0) for the trivial Di-algebra structure 0 : Di → EndX . By definition, it sends
quasi-isomorphisms of chain complexes to quasi-isomorphisms of complexes with
trivial twisting, that is, it preserves weak equivalences. It is clearly conservative as
well, and it satisfies i(X ⊗A) = i(X)⊗A for every augmented artinian cdga A, so
it induces a weak equivalence

hautDi(V, dV ) ∼ haut(V, dV ).

�

Let us note that the plus construction obviously preserves quasi-isomorphisms of
props. Indeed, the only effect of the plus construction on the cohomology of P is to
add a new generator of arity (1, 1) to H∗P whose square is zero. Let ϕ : P ∼→ Q be
a quasi-isomorphism of dg props whose collections of generators are respectively EP
and EQ, such that E+

P (1, 1) = E(1, 1)⊕KuP and E+
Q(1, 1) = E(1, 1)⊕KuQ. Then

H∗(ϕ+) sends [uP ] to [uQ] (where [−] denotes the cohomology class) and coincides
with H∗(ϕ) on the other generators. The only relations satisfied by [uP ] and [uQ]
are that they are both of square zero so H∗(ϕ+) is still a prop isomorphism, hence
ϕ+ is a quasi-isomorphism.

The functor (−)+ takes quasi-free properads satisfying the conditions of [57,
Corollary 40] to quasi-free properads satisfying the same conditions. By [57, Corol-
lary 40], such properads are cofibrant and by [57, Theorem 42], every properad
admits a cofibrant resolution of this form. So to any dg properad P we can asso-
ciate a cofibrant properad P+

∞ resolving P+.

Lemma 3.4. There is a homotopy cofiber sequence of properads

Di→ P+
∞ → P∞.

Proof. The initial morphism i : I → P∞ induces a morphism i+ : I+ → P+
∞, and

I+ is nothing but Di so we get our first morphism

i+ : Di→ P+
∞,

which is a morphism of cofibrant properads. Now we would like to compare P+
∞

and P∞ ∨ Di, where ∨ stands for the coproduct of properads (see [57, Appendix
A.3] for its definition). Since the free properad functor F is a left adjoint, it
preserves coproducts and thus comes with natural isomorphisms F(M ⊕ N) ∼=
F(M)∨F(N). If we consider the coproduct P∞ ∨Q∞ of two quasi-free properads
P∞ = (F(M), ∂P ) and Q∞ = (F(M), ∂Q), then via the previous isomorphism we
can define a differential on F(M ⊕N) by taking the derivation associated to

∂P |M ⊕ ∂Q|N : M ⊕N → F(M)⊕F(N) ↪→ F(M ⊕N)

by universal property of derivations and the fact that this morphism satisfies the
twisting cochain equation. In the case where Q = Di, it turns out that the free
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properad underlying P+
∞ is F(M⊕Kd) and the differential on P+

∞ (see [59]) coincides
with the one above, yielding a properad isomorphism

P+
∞
∼= P∞ ∨Di.

We deduce that the homotopy fiber of i+ is the homotopy fiber of the canonical
map Di → P∞ ∨ Di. This map is a cofibration between cofibrant objects, so its
homotopy cofiber is a strict cofiber, hence the cokernel of i+ which is exactly P∞
as expected. �

Now we fix a diagram of properad morphisms

Di �
� //

0

""

P+
∞

// //

ψ+

��

P∞
ψ

{{
EndX

which induces a homotopy fiber sequence of formal moduli problems

P∞{X}ψ → P+
∞{X}

ψ+

→ Di{X}0

because the functor Map(−, EndX) is a simplicial mapping space with fibrant tar-
get in a model category, so it sends homotopy colimits to homotopy limits. Equiv-
alently this gives a homotopy fiber sequence of the associated L∞-algebras

gψP,X → gψ
+

P+,X → g0
Di,X .

We obtain

Theorem 3.5. There is a quasi-isomorphism of L∞-algebras

gψ
+

P+,X ' Lie(L
HwP∞ −Alg(X,ψ)),

in particular
gψ

+

P+,X ' Lie(hautP∞(X,ψ))

if P∞ is an operad (where hautP∞(X,ψ) is the derived algebraic group from Defi-
nition 2.12).

Proof. We have to build a comparison quasi-isomorphism between the homotopy
fiber sequence

gψP,X → gψ
+

P+,X → g0
Di,X

and the homotopy fiber sequence

gψP,X → Lie(LHwP∞ −Alg(X,ψ))→ Lie(haut(X)).

of Proposition 2.14. For this, we consider the following commutative triangle

LHwP∞ −Alg(X,ψ) U //

H∗◦U ((

haut(X)

H∗xx
Aut(H∗X)
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where U is the map induced by the forgetful functor, H∗ is the map induced by the
homology functor and Aut(H∗X) is the constant functor A 7→ Aut(H∗X). This
triangle induces a morphism at the level of homotopy fiber sequences

hofib1

��

// hofib2

��
LHwP∞ −Alg(X,ψ) U //

H∗◦U ((

haut(X)

H∗xx
Aut(H∗X)

.

Using the same arguments as in Proposition 2.14, one relates the homotopy auto-
morphisms to loops over the appropriate moduli problems

hofib1 ' Ωψ+P+
∞{X}

ψ+

and
hofib2 ' Ω0Di{X}0.

Moreover, the base of these homotopy fiber sequences is a discrete space, which
implies that the homotopy fiber and the total space have the same homotopy type:
indeed, a homotopy fiber sequence F → E → B induces a homotopy fiber sequence
ΩB → F → E. If B is discrete, then ΩB is contractible, which implies that the
map F → E is a homotopy equivalence.

The resulting commutative square

Ωψ+P+
∞{X}

ψ+
//

∼
��

Ω0Di{X}0

∼
��

LHwP∞ −Alg(X,ψ)
U
// haut(X)

induces a morphism of homotopy fiber sequences

hofib

��

// Ωψ+P+
∞{X}

ψ+
//

∼
��

Ω0Di{X}0

∼

��
ΩψP∞{X}ψ // LHwP∞ −Alg(X,ψ)

U
// haut(X)

where the bottom fiber sequence is the one of Proposition 2.14. The upper homo-
topy fiber hofib can be identified with those loops in Ωψ+P+

∞{X}
ψ+

which preserves
the trivial Di-algebra structure 0 : Di → EndX on X, that is, preserving the dif-
ferential on X. So hofib is nothing but ΩψP∞{X}ψ. We thus get the desired
quasi-isomorphism of homotopy fiber sequences. �

A useful corollary for us will be the following identification of the tangent complex
TA of an En-algebra (Definition 1.18):
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Corollary 3.6. The En-Hochschild tangent complex TA of an En-algebra A is
naturally weakly equivalent as an L∞-algebra to gψ

+

E+
n ,A

:

TA ' Lie(hautEn
(A,ψ)) ' gψ

+

E+
n ,A

,

where ψ+ is the E+
n -algebra structure on A trivially induced by its En-algebra struc-

ture ψ : En → EndA as above, and hautEn
(A) is the derived algebraic group of

homotopy automorphisms of A as an En-algebra.

Proof. According to [20, Lemma 4.31], the homotopy Lie algebra of homotopy
automorphisms Lie(hautEn

(A,ψ)) is equivalent to the tangent complex TA of A.
Hence Theorem 3.5 implies the corollary. �

Remark 3.7. Theorem 3.5 shows that the + construction is crucial to study defor-
mation of dg-algebras and not just deformations of algebraic structures on a fixed
complex. Let us illustrate the difference between these two moduli problems in a
standard example: dg associative algebras. We recall that the operad E1 is weakly
equivalent to the operad Ass of associative dg algebras. By Lemma 3.6, we have
that gψ

+

Ass+,A
∼= TA and by Francis [20], the upper fiber sequence of Theorem 6.7

shows that TA ∼= Hom(A⊗>0, A)[1] where the right hand side is a sub-complex of
the standard Hochschild cochain complex [51] shifted down by 1, with its standard
Lie algebra structure (due to Gerstenhaber). On the other hand, a computation
similar to the one of Corollary 3.6 using the operad of associative algebras instead
of En shows that

gψAss,A
∼= Hom(A⊗>1, A)[1]

, where the right hand side is just the subcomplex of the previous shifted Hochschild
cochain complex where we have removed the Hom(A,A) component.

In general, if O is an operad, and X is a non-graded O-algebra, O∞{X}ψ is the
moduli space of all O-algebra structure on X, while O+

∞{X}
ψ+

is the moduli space
of O-algebra structures on X up to automorphisms (if X is a chain complex, then
the same is true with dg-algebras structures and self-quasi-isomorphisms instead).

4. Bialgebras versus iterated coalgebras

The main purpose of this section is to prove Theorem 0.1(1). Along the way, we
establish general results about triple coresolutions and totalizations for dg coalge-
bras which dualize the ones obtained in [27] and are of independent interest. Part
(2) of Theorem 0.1 as well as Corollary 0.2 follows from an adaptation of Part (1)
to the context of pointed algebras and will be proved in Section 5.

4.1. Bar-cobar adjunction. We recall the construction of bar-cobar adjunctions
from [19] for algebras and coalgebras in a stable symmetric monoidal (∞, 1)-category
C. Let O be an operad with an augmentation ε : O → I, then the associated functor

ε∗ = trivO : C → O −Alg(C)

has a left adjoint
BO : O −Alg(C)→ C.
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It follows from Barr-Beck-Lurie’s theorem [54, Theorem 4.7.4.5] that this bar con-
struction can be enhanced in

(BO ◦ trivO)− Cog(C)
oblvO

''
O −Alg(C)

Benh
O

55

BO

// C

where oblvO is the forgetful functor and (BO ◦ trivO) − Cog(C) is the category of
coalgebras over the comonad BO ◦ trivO. Now, by [19, Lemma 3.3.4] there is a
morphism of comonads

BO ◦ trivO
∼→ F cBO,

where BO is the operadic bar construction on O and F cBO is the comonad whose cat-
egory of coalgebras is the category BO−Cogconil(C) of conilpotent BO-coalgebras,
inducing a new commutative triangle (see [19, Corollary 3.3.5])

BO − Cogconil(C)
oblvBO

&&
O −Alg(C)

Benh
O

66

BO

// C

.

In the dual situation, given a cooperad P with a coaugmentation η : P → I,
there is an adjunction

η∗ = trivP : C � P − Cogconil(C) : ΩP
which can be enhanced by Barr-Beck-Lurie’s theorem in a commutative triangle

(ΩP ◦ trivP )−Alg(C)
oblvP

''
P − Cogconil(C)

Ωenh
P

55

ΩP

// C

where oblvP is the forgetful functor and (ΩP ◦ trivP ) − Alg(C) is the category of
algebras over the monad ΩP ◦ trivP . By [19, Lemma 3.3.9] there is a morphism of
monads

FΩP → ΩP ◦ trivP ,
where ΩP is the operadic cobar construction on P and FΩP is the monad whose
category of algebras is the category ΩP − Alg(C) of ΩP -algebras, inducing a new
commutative triangle (see [19, Corollary 3.3.11])

ΩP −Alg(C)
oblvΩP

$$
P − Cogconil(C)

Ωenh
P

66

ΩP

// C

.

If the operad O is derived Koszul in the sense that the canonical map Ω◦B(O) ∼→
O is a weak equivalence (something always true in our setting), then the two con-
structions above return an adjunction of ∞-categories

BenhO : O −Alg(C) � BO − Cogconil(C) : ΩenhO .
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Let us note that if the operad O is Koszul in the usual sense, for instance when O
is an En-operad [24], then one can replace BO by the Koszul dual operad O! in the
adjunction above. One then wonders whether such an adjunction is an equivalence
of ∞-categories. Such a result cannot be true in full generality, however, it is
conjectured [19, Conjecture 3.4.5] that it holds true when one restricts O-algebras
to the subcategory of nilpotent O-algebras. An O-algebra A is nilpotent if there
exists an integer N such that the morphism

P (n)→ HomC(A⊗n, A),
which is the arity n component of the operad morphism P → EndA defining the
P -algebra structure of A, is homotopic to the zero map. However, in our framework
we will prove a version of this conjecture that holds for the notion of 0-connected dg
algebra, that is, an algebra whose underlying complex is concentrated in positive
degrees.

4.2. Plan of the proof of Theorem 0.1(1). We are going to use the following
dual version of [54, Theorem 4.7.4.5] in the comonadic setting:

Theorem 4.1. Let C be an ∞-category.
(1) An adjunction of ∞-categories

F : C � D : G
induces a commutative triangle

(F ◦G)− Cog(D)
oblv

''C

F enh

88

F
// D

where (F ◦G)−Cog(D) is the category of coalgebras over the comonad F ◦G in D
and oblv is the forgetful functor.

(2) Let us suppose that C admits totalizations Tot : C∆ → C. If F is conservative
and preserves totalizations, then F enh is an equivalence of ∞-categories.

Remark 4.2. As we will explain with more details in the next subsection, cosim-
plicial objects in any model category admits a totalization functor, so the theorem
above applies in particular to ∞-categories associated to model categories.

Since we know that the comonads BO ◦trivO and F cBO are weakly equivalent, the
associated∞-categories of coalgebras are equivalent as well, and the later is nothing
but the ∞-category of conilpotent BO-coalgebras. Thus it remains to prove that
BO is conservative and commutes with totalizations up to weak equivalence. Our
goal is to prove such a result in the case where C = dgCogconil is the category of
conilpotent coassociative coalgebras in non-negatively graded chain complexes.

In order to get explicit models for the bar construction and the totalization, we
work in the framework of model categories. If E is a cofibrantly generated symmetric
monoidal model category over a base category C and O is a Σ-cofibrant operad in C,
then the category of O-algebras form a cofibrantly generated semi-model category,
a slight weakening of the notion of model category sufficient for our purposes (see
[22, Section 12.1] for the definition and properties of semi-model categories, and [22,
Theorem 12.3.A] for the proof of this result). Moreover, the functor η∗ is a right
Quillen functor and his left adjoint η! = BO is consequently a left Quillen functor
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[22, Theorem 16.A]. In this context, one can show that BO is weakly equivalent to
the derived functor of indecomposables (see for instance [51, Chapter 12]). Here
we would like to consider dg operads acting on conilpotent dg coalgebras. For this,
we need the following result:

Proposition 4.3. The category dgCogconil is a cofibrantly generated closed sym-
metric monoidal model category.

Proof. We know that dgCogconil forms a cofibrantly generated model category with
colimits, weak equivalences and cofibrations created by the forgetful functor. We
also know from [2, Lemma 1.3.36] that the chain tensor product of two conilpotent
coalgebras is again a conilpotent coalgebra, so that the forgetful functor creates
also the tensor product of dgCogconil. Since ChK satisfies the pushout-product
axiom, which is by definition made out of pushout, coproduct, cofibrations and weak
equivalences, this implies that dgCogconil satisfies the pushout-product axiom as
well. The existence of an internal hom bifunctor follows verbatim from the argument
line of [2, Theorem 2.5.1], given that:

• [2, Proposition 2.1.10] restricts to the full subcategory dgCogconil of dgCog;
• [2, Proposition 2.1.12] restricts to the nilpotent case, either by following
verbatim the proof of [80, Section 2.1], or by [30, Proposition 1.20] (since
we work over a field of characteristic zero, every cooperad is exact);

• the forgetful functor creates small colimits;
• the forgetful functor creates the tensor product of conilpotent coalgebras.

This concludes the proof. �

Taking E = dgCogconil, C = ChK and O an E1-operad, we get a bar-cobar
adjunction

BenhE1
: E1 −Alg(dgCogconil) � E1 − Cogconil(dgCogconil) : ΩenhE1

which forms a Quillen adjunction of semi-model categories. Our main goal is now
to prove the following properties of the (not enhanced) bar construction functor:

Theorem 4.4. The functor BE1 is conservative when restricted to 0-connected E1-
algebras, and commutes with totalizations up to weak equivalence when restricted to
the essential image of a functorial fibrant resolution.

Since we wants to apply the comonadic Barr-Beck-Lurie theorem, we work in
an ∞-categorical setting where the ∞-category of fibrant objects of a model cate-
gory is equivalent to the ∞-category associated to this model category, hence the
assumptions of Theorem 4.4. More precisely, the inclusion of the full subcategory
of fibrant objects into the model category induces a Dwyer-Kan equivalence of
simplicial localizations [11, Proposition 5.2].

4.2.1. Conservativity. We note
BKE1

: E1 −Alg(ChK)→ ChK

the left adjoint of the functor η∗ induced by the augmentation η : E1 → I at the
level of dg algebras, to distinguish it from the functor

BE1 : E1 −Alg(dgCogconil)→ dgCogconil

induced by the augmentation η : E1 → I at the level of dg algebras in dgCogconil.
Recall that this left adjoint is by construction weakly equivalent to the derived
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functor of the indecomposables, which is the Quillen homology complex computing
Quillen homology of algebras over the corresponding operad [51, Section 12.1].

First we want to prove the conservativity of BKE1
on 0-connected E1-algebras. For

this, we use the formalism of right modules over operads thoroughly developed in
[22], characterizing in particular bar constructions as functors naturally associated
to right modules. We prove that checking the conservativity of BKE1

boils down to
the conservativity of the classical bar construction of dg associative algebras.

Given the projection morphism π : E1
∼→ Ass, according to [22, Theorem 7.2.2],

there is a natural isomorphism
SE1(BE1 ,−) ◦ π∗ ∼= SAss(π!BE1 ,−)

where π∗ is the restriction of structures fitting in the adjunction
π! : E1 −Alg � Ass−Alg : π∗

and π! is the extension of structures fitting in the adjunction
π! : E1 −Mod� Ass−Mod : π∗

between right Ass-modules and right E1-modules. Since π is a weak equivalence, by
[22, Theorem 16.B] the adjunction above between right modules is a Quillen equiv-
alence, so the weak equivalence of right E1-modules BE1

∼→ π∗BAss corresponds by
adjunction to a weak equivalence of right Ass-modules π!BE1

∼→ BAss. Moreover,
since π! is a left Quillen functor, the right module π!BE1 is still cofibrant, so this
is a weak equivalence of cofibrant right Ass-modules. By [22, Theorem 15.1.A], it
induces consequently a natural weak equivalence

SE1(BE1 ,−) ◦ π∗ ∼= SAss(π!BE1 ,−) ∼→ SAss(BAss,−),
hence

BKE1
◦ π∗ ∼ Bar

where π∗ is the restriction of structures and Bar is the operadic bar construc-
tion on dg associative algebras. The functor Bar is conservative on 0-connected
associative algebras (alternately, the classical bar construction is conservative on
connected associative algebras), see for instance [51, Chapter 11]. By the natural
weak equivalence above, this implies that BKE1

◦ π∗ is conservative on 0-connected
associative algebras as well. By the Quillen equivalence between dg associative
algebras and E1-algebras, the conservativity of BKE1

◦ π∗ implies that the functor
BKE1

itself is conservative when restricted to 0-connected E1-algebras. Now recall
from [22, Section 3.3.5] that BE1 , as an extension functor adjoint to the restriction
functor η∗, is obtained by a certain reflexive coequalizer

E1(A) ⇒ A→ BE1(A)
in dgCogconil for every A ∈ ob(E1 − Alg(dgCogconil)), where E1(A) is the free
E1-algebra on A determined by the formula

E1(A) =
⊕
n≥1

(E1(n)⊗A⊗n)Σn
.

Here (−)Σn denotes the coinvariants under the diagonal action of the symmetric
group Σn. Since the forgetful functor U : dgCogconil → ChK creates the tensor
product and the small colimits, we actually have

U ◦ BE1 = BKE1
.
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Weak equivalences in E1 − Alg(dgCogconil) and dgCogconil are created in chain
complexes, so the conservativity of BKE1

on E1 − Alg0−con(ChK), where the upper
script 0− con stands for 0-connected algebras, implies the conservativity of BE1 on
E1 −Alg0−con(dgCogconil).

4.2.2. Commuting with totalizations. We need the conormalization of a cosimplicial
coalgebra structure to be compatible with an E1-algebra structure. The conormal-
ization of cosimplicial coalgebras forms a lax monoidal functor (see [68, Section 2])
for a good review of its properties in the simplicial case) that consequently lifts to
cosimplicial E1-algebras in dg coalgebras. Let us note

TotE1−Assop : E1 −Alg(dgCogconil)∆ → E1 −Alg(dgCogconil)

and
TotAssop : (dgCogconil)∆ → dgCogconil

the totalization functors, which exist since we work with model categories). Let
us also note Res•(C) ∈ E1 − Alg(dgCogconil)∆, for C ∈ E1 − Alg(dgCogconil),
a certain functorial cosimplicial resolution of C which will be defined in the next
section and whose totalization gives a functorial fibrant resolution of C. Our aim
is to prove the following properties of the bar construction with respect to these
functors:

Proposition 4.5. (1) There is an isomorphism

TotE1−Assop(Res•(C))
∼=→ TotAssop(Res•(C))

in E1 −Alg(dgCogconil).
(2) There is an isomorphism

N∗Res•(C)
∼∼= TotAssop(Res•(C))

in E1 −Alg(dgCogconil), where N∗ is the reduced conormalization.
(3) There is a weak equivalence

BE1(N∗Res•(C)) ∼→ N∗BE1(Res•(C))

in dgCogconil.

This gives the commutation of the bar construction BE1 with the totalizations,
up to weak equivalence, on the image of a functorial fibrant resolution on E1 −
Alg(dgCogconil). The two next subsections are devoted to define explicit models for
totalizations and cosimplicial resolutions that will allow us to prove this proposition.

4.3. Triple coresolution and totalization for dg coalgebras. The crux of our
method here is to adapt to dg coalgebras a dual version of the operadic arguments
of [26, Appendix B], [27] and [28, Lemma B.8].

The adjunction
U : dgCogconil � ChK : F c

between the forgetful functor U and the cofree coalgebra functor F c gives rise to
a comonad F c = U ◦ F c over ChK equipped with a coproduct ν : F c → F c ◦ F c,
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a counit ε : F c → Id and a coaction ρ : F c → F c ◦ F c of F c on F c. For every
C ∈ dgCogconil, the triple coresolution Res•(C) ∈ (dgCogconil)∆ is defined by

Resn(C) = F c ◦ F c ◦ · · · ◦ F c︸ ︷︷ ︸
n

(U(C))

= F c(Kn(C))

where
Kn(C) = F c ◦ · · · ◦ F c︸ ︷︷ ︸

n

(U(C)).

The cofaces
di : Resn−1(C)→ Resn(C)

are induced by ρ for i = 0, by ν on the ith factor for 1 ≤ i ≤ n − 1 and by the
coalgebra structure U(C)→ F c(U(C)) of C for i = n. The codegeneracies

sj : Resn+1(C)→ Resn(C)

are induced by ε on the (j + i)th factor.
Now recall that for every model category C, the category of cosimplicial objects

C∆ can be equipped with the Reedy model structure. The existence of simplicial
frames in any model category (see [42, Chapter 16]) ensures that for any cosimplicial
object C• ∈ C∆, we can pick a simplicial frame (C•)∆• which forms a simplicial
object in C∆. This allows us to define the totalization of C• by the end formula

Tot(C•) =
ˆ
n∈∆

(Cn)∆n

.

When C• is Reedy fibrant, any simplicial frame on C• is a simplicial resolution of
C•, and the properties of such resolutions implies that the totalization of C• is a
fibrant object of C which is invariant, up to weak equivalence, under a change of
simplicial frame.

Proposition 4.6. For any dg coalgebra C, the cosimplicial dg coalgebra Res•(C)
is Reedy fibrant.

Proof. The cofaces and codegeneracies of Res•(C) restrict to K•(C) except for
d0, so we set d0 = 0 to get a full cosimplicial structure on K•(C) which induces
the cosimplicial structure of Res•(C) by applying the cofree coalgebra functor.
Then the remaining part of the proof is essentially a dual version of the proof
of[27, Proposition 2.2]. The tree-decomposition argument of [27, Proposition 2.2]
dualizes to the coalgebra setting by using trees with the converse orientation (one
single input and several outputs), so that the n-simplices Kn(C) decompose into a
direct sum

Kn(C) = MnK•(C)⊕NnK•(C)
where MnK•(C) is the nth matching object of K•(C) and NnK•(C) is the degree
n part of the conormalization of C (for the graduation induced by the cosimplicial
structure of K•(C)). Moreover, we have MnRes•(C) = F c(MnK•(C)) because
F c commutes with small limits and the codegeneracies of Res•(C) are induced by
those of K•(C) under F c, hence

Resn(C) = MnRes•(C) ∧ F c(NnK•(C))
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where ∧ stands for the product in dgCogconil. The matching morphisms
µn : Resn(C)→MnRes•(C)

are the projections on the first factor defined by the pullbacks

Resn(C) //

µn

��

F c(NnK•(C))

��
MnRes•(C) // 0.

By definition of the model structure on dgCogconil, the cofree coalgebra functor F c
is a right Quillen functor so F c(NnK•(C)) is fibrant (every chain complex over a
field is fibrant in the projective model structure). Since fibrations are stable under
pullbacks, the maps µn are fibrations for every integer n, which exactly means that
Res•(C) is Reedy fibrant. �

Our goal is now to prove that the totalization of the triple coresolution gives a
(functorial) fibrant resolution in dgCogconil. For this, we give an explicit model
of this totalization by chosing an appropriate simplicial frame. Recall that for
any cosimplicial set K•, its conormalization N∗(K•) forms an augmented simpli-
cial associative algebra, and dually its normalization N∗(K•) forms a coaugmented
cosimplicial coassociative coalgebra (they have actually a richer structure, respec-
tively that of an algebra and a coalgebra over the Barratt-Eccles operad [6]). The
coaugmentation ideal of N∗(K•), that is, its reduced normalization N∗(K•), hence
forms an object of dgCogconil.

Proposition 4.7. The collection Res•(C)∆• = {F c(Kn(C) ⊗ N∗(∆m))}n,m∈N
forms a simplicial frame of Res•(C) in (dgCogconil)∆.

Proof. We first show that the functor (−) ⊗ N∗(∆•) defines a simplicial frame
on the full subcategory F c(ChK) of dgCogconil formed by cofree coalgebras. Let
C ∈ dgCogconil and X ∈ ChK, we have a sequence of natural isomorphisms

MordgCogconil(C,F c(X ⊗N∗(∆m)))
∼=→ MorChK(C,X ⊗N∗(∆m))
∼=→ MorChK(C ⊗N∗(∆m), X)
∼=→ MordgCogconil(C ⊗N∗(∆m), F c(X))

where the first line follows from the universal property of the free-forgetful adjunc-
tion, the second line follows from the dualization of the conormalization, and the
third line from the free-forgetful adjunction. Let us note that the third line makes
sense because the reduced normalization is a coalgebra and the tensor product of
coalgebra is defined in chain complexes. We deduce that the functor

(−)∆m

: F c(X) 7→ F c(X ⊗N∗(∆m))
is right adjoint to the functor

(−)⊗∆m : C 7→ C ⊗N∗(∆m)

on the full subcategory F c(ChK) of dgCogconil. Consequently, the functor (−)∆•

defines a simplicial frame on F c(ChK) if and only if (−) ⊗∆• defines a cosimpli-
cial frame. Since the forgetful functor dgCogconil → ChK defines small colimits,
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cofibrations and weak equivalences, the later property follows from the fact that
(−)⊗N∗(∆•) is a cosimplicial frame on ChK.

Finally, the fact that (−)∆• is a simplicial frame on F c(ChK) implies that
Res•(C)∆• is a simplicial frame of Res•(C). Indeed, the morphism

ε∗ : Res•(C)∆0
→ Res•(C)∆n

induced by the constant map ε : {0, ·, n} → {0} defines a weak equivalence in each
dimension because Res•(C) is fibrant in each dimension (since it is Reedy fibrant).
By definition of weak equivalences in the Reedy model structure of (dgCogconil)∆,
this means that ε∗ is a weak equivalence of (dgCogconil)∆ for every integer n. The
simplicial frame construction Res•(C)∆• can be extended to an arbitrary simplicial
set K ∈ sSet to give a simplicial-cosimplicial object Res•(C)K , and checking the
fibration condition in the definition of a simplicial frame amounts to check that for
every integer n, the map

i∗ : Res•(C)∆n

→ Res•(C)∂∆n

induced by the inclusion i∗ : ∂∆n ↪→ ∆n forms a fibration in the base category for
any n > 0. Here the base category is (dgCogconil)∆, which means that i∗ has to be
a Reedy fibration of cosimplicial objects. By definition, we thus have to prove that
the pullback-corner map

(i∗, µ∗) : Resr(C)∆n

→MrRes
•(C)∆n

×MrRes•(C)∂∆n Resr(C)∂∆n

induced by the matching map µ : Resr(C) → MrRes
•(C) and by i is a fibration

of dg coalgebras. The cofree coalgebra functor F c commutes with limits, so the
pullback-corner map above is actually given by

(i∗, µ∗) : F c(Kr(C)⊗N∗(∆n)) →

F c
(
MrK

•(C)⊗N∗(∆n)×MrK•(C)⊗N∗(∂∆n) K
r(C)⊗N∗(∂∆n)

)
which is exactly the image under F c of the pullback-corner map of complexes in-
duced by i and the matching map of K•(C). Since F c preserves fibrations between
fibrant objects as a right Quillen functor, and since every chain complex is fibrant,
the proof boils down to check that the map

(i∗, µ∗) : Kr(C)⊗N∗(∆n) →
MrK

•(C)⊗N∗(∆n)×MrK•(C)⊗N∗(∂∆n) K
r(C)⊗N∗(∂∆n)

is a fibration of chain complexes. Dualizing the normalization functor in complexes,
this map is, up to isomorphism, given by

(i∗, µ∗) : Homdg(N∗(∆n),Kr(C))→
Homdg(N∗(∆n),MrK

•(C))×Homdg(N∗(∂∆n),MrK•(C)) Homdg(N∗(∂∆n),Kr(C))

. We conclude that this is a fibration by applying the dual pushout-product axiom,
which holds true in ChK. �

Proposition 4.8. The coaugmentation η : C → Tot(Res•) induced by the counit
ε(C) : C → Res0(C) = Res0(C)∆0 is a quasi-isomorphism of dg coalgebras.
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Proof. This proof follows an argument line similar to the one of [28, Lemma B.8].
The totalization of Res•(C) is defined by the end

Tot(Res•(C)) =
ˆ
n∈∆

F c(Kn(C)⊗N∗(∆n)).

We consider the following composition of mapsˆ
n∈∆

F c(Kn(C)⊗N∗(∆n)) →︸︷︷︸
(1)

ˆ
n∈∆

Kn(C)⊗N∗(∆n)

∼=→︸︷︷︸
(2)

N∗K•(C)

→︸︷︷︸
(3)

Ω(C)

where (1) is the canonical projection, (2) is a formal isomorphism and (3) is the pro-
jection on maximal simplices in K•(C) (see [26, Appendix C.2.16] for the operadic
case) from the reduced conormalized complex of the cosimplicial object K•(C) to
the reduced cobar construction Ω(C) of C. The composite (1 − 3) lifts to a mor-
phism f : Tot(Res•(C)) → BarΩ(C), where Bar is the usual bar construction
on augmented dg algebras. Using the weight decomposition of the cofree coalge-
bra functor F c =

⊕
s≥1 F

c
s , we apply the argument of [28, Lemma B.8] to get a

morphism of spectral sequences associated to the filtration of f induced by this
decomposition, such that on the E0 page, the morphism of graded objects induced
by f is given by

E0f = F c(
ˆ
n∈∆

Kn(C)⊗N∗(∆n) →︸︷︷︸
(2−3)

Ω(C)).

The arrow (2) is a formal isomorphism, and the arrow (3) is a quasi-isomorphism
(see [21] for a comparison between reduced conormalization and reduced cobar
construction in the operadic case), so E0f is a quasi-isomorphism, hence f is a
quasi-isomorphism as well. We conclude that η is a quasi-isomorphism via the
commutative triangle

Tot(Res•(C)) f // BΩ(C)

C

η

ee

∼

<<
.

�

We conclude:

Theorem 4.9. The functor Tot(Res•(−)) defines a functorial fibrant resolution
on dgCogconil.

We can thus restrict ourselves to prove the desired properties of BE1 on cosim-
plicial coalgebras of the form Res•(C).
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4.4. Totalization versus bar construction. In this section we prove Proposi-
tion 4.5.

Lemma 4.10. For any C ∈ E1−Alg(dgCogconil), there is an E1-algebra structure
on TotAssop(Res•(C)) compatible with its coalgebra structure so that we can chose
TotAssop(Res•(C)) as a model for TotE1−Assop(Res•(C)).

Proof. Recall that since E1−Alg(dgCogconil)∆ is a Reedy model category, we can
define a totalization functor

TotE1−Assop(C•) =
ˆ E1−Alg(dgCogconil)

n∈∆
(Cn)∆n

E1−Assop

where C• ∈ E1 − Alg(dgCogconil)∆, (−)∆•
E1−Assop is a simplicial frame in E1 −

Alg(dgCogconil)∆, and the limit
´ E1−Alg(dgCogconil)
n∈∆ is taken in E1−Alg(dgCogconil).

The cofree coalgebra functor is defined by the reduced tensor coalgebra F c(C) =⊕
n≥1 C

⊗n equipped with the deconcatenation product, and comes with a diagonal
morphism

F c(C ⊗D) =
⊕
n≥1

C⊗n ⊗D⊗n →
⊕
m,n≥1

C⊗m ⊗D⊗n = F c(C)⊗ F c(D)

(recall that the tensor product of coalgebras is defined in chain complexes) natural
in C and D, so that F c is an oplax monoidal functor. Moreover, the forgetful
functor U is monoidal by construction of the tensor product in dgCogconil, so the
Quillen adjunction between U and F c lifts to a Quillen adjunction

U : E1 −Alg(dgCogconil) � E1 −Alg(ChK) : F c

(see [22, Proposition 12.3.3]). This implies that if C is an object of E1−Alg(dgCogconil),
then its E1-algebra structure is compatible with the cosimplicial constructions
K•(C) and Res•(C) so that these cosimplicial coalgebras are actually cosimpli-
cial E1-algebras in coalgebras.

Now, recall that the reduced conormalization N∗(∆n) is an algebra over the
Barratt-Eccles operad BE (see [6]). For any C ∈ E1 − Alg(dgCogconil), the chain
tensor product Kn(C)⊗N∗(∆n) thus forms an E1 ⊗H BE-algebra in ChK, where
⊗H is the arity-wise tensor product of operads (also called the Hadamard tensor
product [51, Section 5.3.2]). Since E1, like any operad over a field of characteristic
zero, is equipped with an operad morphism E1 → E1 ⊗H BE, the tensor product
Kn(C) ⊗ N∗(∆n) is actually an E1-algebra in ChK. This implies, in turn, that
F c(Kn(C)⊗N∗(∆n)) belongs to E1 − Alg(dgCogconil). Moreover, limits in E1 −
Alg(dgCogconil) are determined by the forgetful functor, so
ˆ E1−Alg(dgCogconil)

n∈∆
F c(Kn(C)⊗N∗(∆n)) =

ˆ dgCogconil

n∈∆
F c(Kn(C)⊗N∗(∆n))

= TotAssop(Res•(C))

where the last line follows from Proposition 4.7, and the totalization of Res•(C)
in coalgebras inherits a compatible E1-algebra structure. We conclude by noticing
that the argument line of the proof of Proposition 4.7 can be literally transposed
here: the simplicial-cosimplicial object F c(K•(C) ⊗ N∗(∆•)) defines a simplicial
frame of Res•(C) in E1 − Alg(dgCogconil)∆ because for any X ∈ E1 − Alg(ChK),
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the simplicial object F c(X ⊗N∗(∆•)) defines a simplicial frame of F c(X) in E1 −
Alg(dgCogconil). �

Lemma 4.11. For any C ∈ E1 −Alg(dgCogconil), there is an isomorphism

TotAssop(Res•(C))
∼=→ N∗Res•(C)

in E1 −Alg(dgCogconil).

Proof. There is an isomorphism
ˆ E1−Alg(ChK)

n∈∆
Kn(C)⊗N∗(∆n) =

ˆ ChK

n∈∆
Kn(C)⊗N∗(∆n)

∼=→ N∗K•(C)

in E1 −Alg(ChK), inducing an isomorphism

F c(
ˆ ChK

n∈∆
Kn(C)⊗N∗(∆n))

∼=→ F c(N∗K•(C))

in E1 −Alg(dgCogconil). We have equalities

F c(
ˆ ChK

n∈∆
Kn(C)⊗N∗(∆n)) =

ˆ dgCogconil

n∈∆
F c(Kn(C)⊗N∗(∆n)))

because F c commutes with limits and

F c(N∗K•(C)) = N∗Res•(C)

because Res•(C) = F c(K•(C)) and the cosimplicial structure of Res•(C) is induced
by the one of K•(C) under F c, hence an isomorphism

ˆ dgCogconil

n∈∆
F c(Kn(C)⊗N∗(∆n)))

∼=→ N∗Res•(C).

The source of this isomorphism is nothing but TotAssop(Res•(C)). �

Lemma 4.12. For any C ∈ E1 −Alg(dgCogconil), there is a weak equivalence

BE1(N∗Res•(C)) ∼→ N∗BE1(Res•(C))

in dgCogconil.

Proof. We start by proving that F c commutes with reflexive coequalizers of E1-
algebras. Let I be the small category whose associated diagram is given by

0 //
// 1

~~

and {Xi}i∈ob(I) be an I-diagram

X0

d0 //

d1

// X1

s0

��

in E1 − Alg(ChK) such that s0 ◦ d0 = s0 ◦ d1 = idX0 . The colimit colimiXi of
such a diagram is called a reflexive coequalizer. We have the following series of
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isomorphisms in E1 −Alg(dgCogconil):

F c(colimiXi) =
⊕
n≥1

(colimiXi)⊗n

∼=
⊕
n≥1

colimi(Xi)⊗n

∼= colimi

⊕
n≥1

X⊗ni

= colimiF
c(Xi).

The first line is by definition of F c as the reduced tensor coalgebra. Since E1 is a
Hopf operad, E1 − Alg(ChK) forms a symmetric monoidal category for the chain
tensor product. Moreover, according to [22, Proposition 3.3.1], reflexive coequal-
izers of E1-algebras are also determined in chain complexes, and according to [22,
Proposition 1.2.3] the chain tensor power functors preserves reflexive coequalizers,
hence the second line. The third line is just the commutation of two colimits of
E1-algebras, and the last line follows from the fact that colimits of coalgebras are
determined by the forgetful functor.

Now, recall from 4.2.1 that BE1 is constructed as a reflexive coequalizer of E1-
algebras, so that

F c ◦ BKE1
= BE1 ◦ F c.

We have

BE1(N∗Res•(C)) = BE1(F c(N∗K•(C)))
= F c(BKE1

(N∗K•(C)))

by construction of the cosimplicial structures of K•(C) and Res•(C) and the com-
mutation rule above, and

N∗BE1(Res•(C)) = F c(N∗BKE1
(K•(C)))

by the commutation of F c with N∗ and BE1 as explained above. Consequently, to
build a weak equivalence

BE1(N∗Res•(C)) ∼→ N∗BE1(Res•(C))

in dgCogconil amounts to build a weak equivalence of cofree coalgebras

F c(BKE1
(N∗K•(C))) ∼→ F c(N∗BKE1

(K•(C))),

thus a quasi-isomorphism of chain complexes

BKE1
(N∗K•(C)) ∼→ N∗BKE1

(K•(C)).

On the one hand, as explained before, the functors U and F c commute with
reflexive coequalizers of E1-algebras, in particular with the bar construction BKE1

,
hence the equality

N∗BKE1
(K•(C)) = N∗K•(BKE1

(C)).
By the same argument, the coalgebra structure map C → F c(C) of C induces a
map BKE1

(C) → BKE1
(F c(C)) = F c(BKE1

(C)), so BKE1
(C) is a coalgebra and we get

the canonical quasi-isomorphism

N∗K•(BKE1
(C)) ∼→ ΩBKE1

(C)
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between the reduced conormalization and the reduced cobar construction. On the
other hand, the E1-algebra structure of C is compatible with the quasi-isomorphism

N∗K•(C) ∼→ Ω(C)
so that this is actually a quasi-isomorphism of E1-algebras. The compatibility of the
E1-algebra structures with this map follows, once again, from the lax monoidality of
the reduced conormalization, and from the lax monoidality of the cobar construction
functor of coalgebras via the Milgram map [60]. In turn, this quasi-isomorphism of
E1-algebras induces a quasi-isomorphism

BKE1
(N∗K•(C)) ∼→ BKE1

(Ω(C)).
Finally, the equality

BKE1
(Ω(C)) = Ω(BKE1

(C))
holds true for any E1-algebra in coalgebras C. Indeed, on the one hand, the cobar
functor Ω is a left adjoint, so it commutes with colimits of chain complexes. On
the other hand, the bar construction BKE1

is a reflexive coequalizer of E1-algebras,
and such reflexive coequalizers are created in chain complexes.

This provides consequently the desired quasi-isomorphism between BKE1
(N∗K•(C))

and N∗BKE1
(K•(C)). �

5. Bialgebras versus E2-algebras

5.1. (Co)units and (co)augmentations. We refer the reader to [2] for a detailed
exposition about associative algebras and coassociative coalgebras in the pointed
setting. A pointed complex is a complex X equipped with two maps e : K → X
and ε : X → K such that ε ◦ e = IdK. Pointed complexes form a category ChptK ,
with morphisms defined by chain morphisms commuting with these maps. The two
functors

(−)− : X ∈ ChptK 7→ X− = ker(ε) ∈ ChK
and

(−)+ : X ∈ ChK 7→ X+ = X ⊕K ∈ ChptK
form an equivalence of categories

(−)+ : ChK � ChptK : (−)−.

This equivalence induces on ChptK the structure of a cofibrantly generated symmetric
monoidal model category tensored over ChK, with the following features:

• the coproduct (and also product) of two pointed complexes X and Y is
given by

X ∨ Y = (X− ⊕ Y−)+;
• the tensor product of two pointed complexes X and Y is given by

X ∧ Y = (X− ⊗ Y−)+;
• the internal hom is given by

Hompt(X,Y ) = Hom(X−, Y−)+;
• the external tensor product of a complex X with a pointed complex Y is
given by

X ⊗e Y = X+ ∧ Y (= (X ⊗ Y−)+);
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• the external hom is given by
Homdg(X,Y ) = Hom(X−, Y−),

because of the sequence of equalities
Morpt(X ⊗e Y, Z) = Morpt((X ⊗ Y−)+, Z) ∼= Mor(X ⊗ Y−, Z−)

∼= Mor(X,Hom(Y−, Z−));
• weak equivalences are quasi-isomorphisms and fibrations are degreewise
surjections.

Now let P be an augmented dg operad (i.e with an operad morphism P → I)
presented by P = F(Kµ⊕E)/(R), where µ is a generator of arity 2 (a product). We
suppose moreover that P is equipped with an operad morphism P → Com, so that
K with its usual commutative associative product is a P -algebra. This includes
associative, commutative and Lie algebras (here E is the zero Σ-object), as well
as n-Poisson algebras (here E is defined by a generator of degree 1 − n in arity
2 giving the shifted Poisson bracket), and En-algebras via the sequence of operad
morphisms

E1 ↪→ ... ↪→ En ↪→ ... ↪→ E∞
∼→ Com.

Definition 5.1. (1) A P -algebra A is unitary if it is equipped with a chain mor-
phism e : K→ A satisfying the unitarity relations

µ(e(1K),−) = µ(−, e(1K)) = idA.

Unitary P -algebras are uP -algebras, where uP is obtained from P by adding a
generator of arity 1 for the unit and adding the unitarity relations to R.

(2) A P -algebra A is augmented if it is equipped with a P -algebra morphism
ε : A → K, where K is equipped with the P -algebra structure induced by the
morphism P → Com and the standard commutative algebra structure of K. Such
an algebra A is connected if its augmentation ideal is 0-connected, equivalently if
the degree zero part of A is isomorphic to K.

(3) A P -algebra A is pointed if it is equipped with a unit e and an augmentation
ε satisfying

ε ◦ e = idK.

(4) A strictly unitary P∞-algebra, or suP∞-algebra, is a P∞-algebra (where P∞
is a cofibrant resolution of P ) equipped with a strict unit with respect to the arity 2
generator of P∞ inducing the product µ in homology. Similarly, we get the notions
of augmented P∞-algebra and pointed P∞-algebra.

(5) Dually, one can define counitary, coaugmented and pointed P -algebras and
P∞-algebras.

Remark 5.2. An augmented uP -algebra is an uP -algebra A with a morphism of uP -
algebras ε : A → K. The compatibility of this morphism with the unit e : K → A
of A and the unit idK of the uP -algebra K is exactly the relation ε ◦ e = idK,
so augmented uP -algebras are exactly pointed P -algebras. Dually, coaugmented
uP -coalgebras are exactly pointed P -coalgebras. The same identification holds for
suP∞-algebras and suP∞-coalgebras.

Notations. To conclude this section of definitions, let us fix some notations for the
next part. When writing our various categories of algebras and coalgebras, we use
the superscripts aug for augmented algebras, coaug for coaugmented coalgebras,
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con for connected (co)algebras, 0 − con for 0-connected (co)algebras, and pt for
pointed (co)algebras.

5.2. Proofs of Theorem 0.1(2) and Corollary 0.2. Part (2) of Theorem 0.1
follows from the following lemma:

Lemma 5.3. (1) There is an equivalence of ∞-categories

(−)+ : E1 − Cogconil(dgCogconil) � E1 − Cogconil,pt(dgCogconil) : (−)−.

(2) There is an equivalence of ∞-categories

(−)+ : E1 −Alg0−con(dgCogconil) � E1 −Algaug,con(dgCogconil) : (−)−.

Proof. Recall that the functors (−)+ and (−)− defines equivalences of categories

(−)+ : E1 −Alg � E1 −Algpt : (−)−

between non-unitary A∞-algebras and augmented (strictly) unitary A∞-algebras
(see for instance [45]) and dually

(−)+ : E1 − Cogconil � E1 −Algconil,pt : (−)−

between conilpotent non-counitary A∞-coalgebras and conilpotent coaugmented
(strictly) counitary A∞-algebras. The functor (−)+ is defined by a direct sum and
the functor (−)− is defined by a cokernel (cokernel of the coaugmentation). Since
colimits in conilpotent dg coalgebras are created in chain complexes, these functors
lift to the equivalence of categories of part (2). The same argument applies for part
(1), combined with the fact that this equivalence restricts to an equivalence between
0-connected algebras and connected augmented algebras. In both cases, the base
field K gives a well defined pointing because it is an associative and coassociative
bialgebra. Moreover, in both cases the functors preserve quasi-isomorphisms by
definition, so we conclude by applying Lemma 2.3. �

According to Lemma 5.3 and to part (1) of Theorem 0.1, the composite adjunc-
tion

(Benh,ptE1
(−)−)+ : E1−Algaug,con(dgCogconil) � E1−Cogconil,pt(dgCogconil) : −(Ωenh,ptE1

(−)−)+

defines an equivalence of ∞-categories.
We now build explicitly the fully faithful ∞-functor of Corollary 0.2:

Theorem 5.4. There is a fully faithful ∞-functor

Ω̃ : E1 −Algaug,con(dgCogconil) ↪→ E2 −Algaug

from pointed homotopy associative conilpotent dg bialgebras to augmented dg E2-
algebras.
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Proof. The equivalence with the∞-category of nilpotent E2-algebras goes through
the following sequence of ∞-functors:

E1 −Algaug,con(dgCogconil)
∼→

(Benh
E1 (−)−)+

E1 − Cogconil,pt(dgCogconil)

= suE1 ⊗ uAss− Cogconil,coaug

↪→ uE1 ⊗ uAss− Cogconil,coaug
∼→
φ∗

uE2 − Cogconil,coaug = E2 − Cogconil,pt
∼→

(−)− E2 − Cogconil
∼→

Cobar(2) E2 −Algaug.

The equivalence of the first line is the functor (BenhE1
(−)−)+ given by Theorem

0.1(2). The second line holds by definition of the Boardman-Vogt tensor product
⊗ of operads. Indeed, recall that we have

E1 − Cogconil,pt(dgCogconil) = suE1 − Cogconil,coaug(dgCogconil).
The operad suE1 ⊗ uAss encodes suE1-coalgebras in uAss-coalgebras, and the
pointing of any coalgebra A ∈ E1 − Cogconil,pt(dgCogconil) fixes a pointing on A
as an object of dgCogconil as well, hence the equality

suE1 − Cogconil(uAss− Cogconil) = suE1 ⊗ uAss− Cogconil

restricts to
E1 − Cogconil,pt(dgCogconil) = suE1 − Cogconil,coaug(dgCogconil)

= suE1 ⊗ uAss− Cogconil,coaug.
The third line is the fully faithful functor induced by the operad morphism

uE1 ⊗ uAss→ suE1 ⊗ uAss,
where suE1⊗uAss parametrizes coalgebras whose E1-structure is strictly counitary,
and uE1 ⊗ uAss parametrizes coalgebras whose E1-structure is counitary up to
homotopy in order to use a cofibrant model of uE1 (noted E1 in [18]). At the level
of the corresponding categories of coalgebras, this embeds coalgebras with a strict
counit into coalgebras with a homotopy counit. This is a surjection of operads,
which induces consequently a fully faithful ∞-functor by Corollary 2.5.

The functor φ∗ is defined as follows. First, the precomposition of any uE1⊗uAss-
algebra structure map with the operad morphism

φ : uE2
∼→ uE1 ⊗ uE1

∼→ uE1 ⊗ uAss
gives a left Quillen functor

φ∗ : uE1 ⊗ uAss− Cogconil → uE2 − Cogconil,
where the model structures are given by Theorem 1.16 (weak equivalences and
cofibrations are quasi-isomorphisms and degreewise injections). According to the
results of [54] and [18] this is a composite of weak equivalences of Σ-cofibrant
operads, so this functor is actually an equivalence of ∞-categories. According to
[18, Proposition 3.7], we have uE1⊗uAss−Cogconil = u(E1⊗Ass)−Cogconil (the
units of two coalgebra structures related by an interchange law coincide). So this
is actually an equivalence

φ∗ : u(E1 ⊗Ass)− Cogconil
∼→ uE2 − Cogconil.
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This equivalence induces, in turn, an equivalence of the slice ∞-categories

φ∗ : K \ u(E1 ⊗Ass)− Cogconil
∼→ φ∗(K) \ uE2 − Cogconil.

By definition, these slice categories are respectively K \ u(E1 ⊗ Ass)− Cogconil =
uE1 ⊗ uAss− Cogconil,coaug and φ∗(K) \ uE2 − Cogconil = uE2 − Cogconil,coaug.

The functor (−)− defines an equivalence of categories between pointed E2-
coalgebras and E2-coalgebras which preserves quasi-isomorphisms, hence an equiv-
alence of ∞-categories by Lemma 2.3.

Finally, the functor Cobar(2) is the twice iterated cobar construction on conilpo-
tent E2-coalgebras, which gives the Koszul duality functor associated to E2 and
forms a Quillen equivalence when restricted to conilpotent E2-coalgebras and aug-
mented E2-algebras, hence an equivalence of ∞-categories. �

The functor Ω̃ is thus defined, for every pointed homotopy associative conilpotent
dg bialgebra B, by

Ω̃(B) = Cobar(2)(φ∗(BenhE1
(B−)+)−)

= Cobar(2)φ∗BenhE1
(B−).

Example 5.5. Our main working example in the last sections of the paper is the
symmetric bialgebra Sym(V ) over a chain complex V . It is actually a bicomplex,
with a homological grading induced by the one of V and a weight grading defined
by the symmetric powers. In the remaining part we will consider the total complex
associated to this bicomplex, thus we will consider Sym(V ) as a dg bialgebra with
degree given by the total degree (sum of the homological degree and the weight),
and with differential induced by the differential of V . This differential does not
change the weight but decreases the homological degree by 1, so it decreases the
total degree by 1. There is a decomposition

Sym(V ) = K⊕ Sym≥1(V )

where Sym≥1(V ) is the part of weight greater or equal to 1, hence the part of total
degree greater or equal to 1. The base field K = Sym0(V ) is the part of total
degree 0 in Sym(V ), making Sym(V ) a pointed conilpotent bialgebra. Hence it
makes sense to study Ω̃(Sym(V )) = Cobar(2)φ∗BenhE1

(Sym≥1(V )).

5.3. Proof of Theorem 0.3. Let us recall the following consequence of Section 2:

Theorem 5.6. Let P∞ and Q∞ be two properads and X and Y be two complexes.
Let ϕ : P∞ → EndX be a P∞-algebra structure on X and ψ : P∞ → EndY be a
Q∞-algebra structure on Y . Let us suppose that there is a homotopy equivalence of
formal moduli problems.

P∞{X}ϕ ' Q∞{Y }ψ.
Then there exists a zigzag of quasi-isomorphisms

Derϕ(P∞, EndX) ∼← • ∼→︸ ︷︷ ︸
L∞

Derψ(Q∞, EndY )

of L∞-algebras.

Proof. By Lurie’s equivalence generalized to L∞-algebras (see Section 2.1), a homo-
topy equivalence of formal moduli problems induces a zigzag of quasi-isomorphisms
of their tangent L∞-algebras. In the case of formal moduli problems of algebraic
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structures, the tangent L∞-algebra can be identified with a derivation complex (see
Section 2.2). �

To get Theorem 0.3(1), one first applies Theorem 2.16 to the functor Ω̃. In
the sequence of ∞-functors used to define Ω̃, there are equivalences plus a functor
induced by precomposition with a surjection of operads. This functor is a fully
faithful and conservative ∞-functor, so Ω̃ gives a fully faithful and conservative
∞-functor. Moreover, the functor induced by precomposition with an operad mor-
phism extends functorially by definition to algebras in A-modules, and still gives
a fully faithful and conservative ∞-functor (it does not affect the underlying A-
module structure of an algebra, and weak equivalences of algebras in A-modules
are still the quasi-isomorphisms). The construction of the equivalences in Theo-
rem 5.4 extends readily to algebras in A-modules as well. Indeed, the properties
of chain complexes needed to build BenhE1

and Cobar(2) are the same in A-modules,
which form a cofibrantly generated symmetric monoidal dg category with weak
equivalences defined by quasi-isomorphisms, and these two functors are by con-
struction compatible with linear extensions of the form − ⊗A B. Second, we have
a fully faithful and conservative ∞-functor

E1 −Algaug,con(dgCogconil) ↪→ Bialg∞ −Alg

induced by the projection Bialg∞ � (E1, Ass
∨), where (E1, Ass

∨) is the properad
encoding E1-algebras in dg coalgebras. So the associated tangent formal moduli
problems are equivalent, which concludes the proof, since the formal moduli prob-
lem of deformations of B ∈ E1 − Algaug,con(dgCogconil) as a homotopy bialgebra
is exactly Bialg∞{B}ϕ.

The proof of part (2) of Theorem 0.3 is completely similar for the following
reasons. The functor (−)+ takes quasi-free properads satisfying the conditions of
[57, Corollary 40] to quasi-free properads satisfying the same conditions. By [57,
Corollary 40], such properads are cofibrant and by [57, Theorem 42], every prop-
erad admits a cofibrant resolution of this form. Since our formal moduli problems
are homotopy invariant under the choice of a resolution, we can always choose a
resolution of this form, and [57, Proposition 43] ensures that the corresponding de-
formation complexes are also invariant, up to quasi-isomorphism, under the choice
of a resolution. So that all we have to do is to replace props P∞ by P+

∞ in the
constructions above to transpose our results from P∞-algebras to P+

∞-algebras. We
consequently get, for any Bialg+

∞-algebra ϕ+ : Bialg+
∞ → EndB and the corre-

sponding E+
2 -algebra structure ψ+ : E+

2 → EndΩ̃B , a zigzag of quasi-isomorphisms
of L∞-algebras

gϕ
+

Bialg+
∞,B

∼← • ∼→ gψ
+

E+
2 ,Ω̃B

.

The left-hand complex is identified with the Gerstenhaber-Schack complex C∗GS(B,B)
(see [59]). In other words we have a zigzag of quasi-isomorphisms

(5.1) C∗GS(B,B) ∼← • ∼→ gψ
+

E+
2 ,Ω̃B

,

so it remains to identify the right-hand complex with the E2-Hochschild complex
CH

(•>0)
E2

(Ω̃B, Ω̃B). This is precisely given by Lemma 3.6.
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Remark 5.7. As explained in [59], the reason why we need the “plus” construction
to recover the Gerstenhaber-Schack complex is that, one the one hand

C∗GS(B,B) ∼=
∏

m,n≥1
Homdg(B⊗m, B⊗n)[2−m− n],

but on the other hand
gϕBialg∞,B

∼=
∏

m,n≥1,m+n≥3
Homdg(B⊗m, B⊗n)[2−m− n]

is an L∞-algebra with differential also given by the Gerstenhaber-Schack differen-
tial, but without the term Homdg(B,B).

6. Identification of Deformation complexes with higher Hochschild,
Gerstenhaber-Schack and Tamarkin complexes of Poisn-algebras

In this section we identify the deformation complex gψ
+

E+
2 ,Ω̃B

and prove Corol-
lary 0.7. More generally we identify the underlying L∞-structures of several com-
plexes related to the deformation theory of Poisn, En and bialgebra structures.

6.1. Tamarkin deformation complexes of Poisn-algebras. We have already
mentioned the higher Hochschild complexes controlling the deformation theory of
E2-algebras in Section 1.3 and their identification with deformation complexes and
tangent complexes (ee Corollary 3.6). We now introduce Tamarkin deformation
complexes of a Poisn-algebra [74] and prove that these complexes do control defor-
mations of (dg-)Poisn-algebras. Relying on the formality of En-operads, we will
use these complexes to simplify the computations of the deformation complex of
symmetric bialgebras in Section 7. We only need the case n = 2, but the proofs are
just as easy for a general n so we do it in this generality.

We denote by Poisn the operad of Poisn-algebras and uPoisn the operad of
unital Poisn-algebras.

Let A be a dg Poisn-algebra, with structure morphism ψ : Poisn → EndA. We
denote by CH∗Poisn

(A,A) its Poisn-Hochschild cochain complex, also referred to
as its Poisn-deformation complex as defined by Tamarkin [74] and Kontsevich [47].
Following Calaque-Willwacher [7], we note that this complex is given by the sus-
pension
(6.1) CH∗Poisn

(A,A) := HomΣ(uPoisn∗{n}, EndA)[−n]
of the underlying chain complex of the convolution Lie algebra. Here (−)∗ is the
linear dual and {n} is the operadic n-iterated suspension. The inclusion of Poisn
in uPoisn induces a splitting (as a graded space)
(6.2) CH∗Poisn

(A,A) ∼= A⊕HomΣ(Poisn∗{n}, EndA)[−n]
and also gives rise to the truncated deformation complex

(6.3) CH
(•>0)
Poisn

(A,A) = HomΣ(Poisn∗{n}, EndA)[−n]
obtained by deleting the “unit part” A, which is more relevant to deformations of
Poisn-algebras2, see Lemma 6.3. Note that both complexes are naturally bigraded
with respect to the internal grading of A and the “operadic” grading coming from

2as opposed to deformation of categories of modules
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uPoisn
∗. The notation CH(•>0)

Poisn
(A,A) is there to suggest that we are taking the

subcomplex with positive weight with respect to the operadic grading.
The suspensions CH∗Poisn

(A,A)[n] and CH
(•>0)
Poisn

(A,A)[n] have canonical L∞-
structures since they are convolution algebras, and CH(•>0)

Poisn
(A,A)[n] is canonically

a sub L∞-algebra of CH∗Poisn
(A,A)[n]. Tamarkin [74] (see also [47, 7]) proved

that the complex CH∗Poisn
(A,A) actually inherits a (homotopy) Poisn+1-algebra

structure lifting this L∞-structure. Further, by (6.2) we have an exact sequence of
cochain complexes

(6.4) 0 −→ CH
(•>0)
Poisn

(A,A) −→ CH∗Poisn
(A,A) −→ A −→ 0

which yields after suspending the exact triangle

(6.5) A[n− 1] ∂P oisn [n−1]−→ CH
(•>0)
Poisn

(A,A)[n] −→ CH∗Poisn
(A,A)[n].

Remark 6.1. The map ∂Poisn : A ⊂ CH∗Poisn
(A,A) → CH

(•>0)
Poisn

(A,A) is the part
of the differential in the cochain complex CH∗Poisn

(A,A) = A ⊕ CH
(•>0)
Poisn

(A,A)
which comes from the operadic structure. That is ∂Poisn(x) ∈ Hom(A,A) is the
map a 7→ ±[x, a] where the bracket is the bracket of the Poisn-algebra. The Jacobi
identity for the Lie algebra A[n − 1] implies that the sequence (6.5) is a sequence
of L∞-algebras.

Remark 6.2. The operad Poisn is denoted en in [7, 74] and the complex CH∗Poisn
(A,A)

is simply denoted def(A) in Tamarkin [74]. We prefer to use the notations we have
introduced by analogy with (operadic) Hochschild complexes.

The next Lemma compares the L∞-algebra structure of the truncated Poisn
Hochschild complex and the one associated to the derived algebraic group of ho-
motopy automorphisms of a Poisn-algebra:

Lemma 6.3. Let A be a dg Poisn-algebra with structure map ψ : Poisn → EndA.
There is an equality of dg Lie algebras

gψ
+

Pois+n ,A
= CH

(•>0)
Poisn

(A,A)

where the right hand side is the truncated cochain complex of a Poisn-algebra defined
by Tamarkin as above.

Proof. According to the definition of the plus construction (−)+ given in Section 3,
we have

Pois+
n∞ = Ω(Pois∗n{n})+ = (F(Pois∗n{n+ 1}

+
), ∂+)

where Poisn∞ is the minimal model of Poisn, (−)∗ is the linear dual, {n} is the
operadic n-iterated suspension, Ω is the operadic cobar construction and − is the
coaugmentation ideal of a coaugmented cooperad. Recall that the collection of
generators Pois∗n{n+ 1}

+
is given by

Pois∗n{n+ 1}
+

(1) = Pois∗n{n+ 1}(1)⊕K[1] = Pois∗n{n+ 1}(1)⊕Kd
where d is a generator of degree 1 and

Pois∗n{n+ 1}
+

(r) = Pois∗n{n+ 1}(r)
for r > 1. The restriction of the differential ∂+ on the generators decomposes into
∂+ = ∂ + δ where ∂ is the differential of the minimal model and δ is defined by
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δ(d) = d ⊗ d and zero when evaluated on the other generators (note that, by the
Koszul sign rule and for degree reasons, we have δ2(d) = 0 so we get a differential
indeed). Now let ψ+ : Pois+

n∞ → EndA be the operad morphism induced by ψ,
thus a Maurer-Cartan element of the convolution graded Lie algebra gPois+n ,A. We
twist this Lie algebra by ψ to get a dg Lie algebra gψ

+

Pois+n ,A
with the same Lie

bracket and whose differential is defined by
±(dA)∗ + [ψ,−]

where (−)∗ denotes the post-composition, dA is the differential on EndA induced
by the differential of A, the ± sign is defined according to the Koszul sign rule and
[−,−] is the convolution Lie bracket. Note here that the Koszul dual cooperad has
no internal differential. We refer the reader to [51, Chapter 12] for more details
about such convolution Lie algebras. Now let us point out that

Pois∗n{n+ 1}
+

(1) = Pois∗n{n+ 1}(1)⊕K[1] = (Pois∗n{n}(1)⊕K)[1],
which implies that

gψ
+

Pois+n ,A
= HomΣ(Pois∗n{n} ⊕ I, EndA)ψ = Conv(Pois∗n{n}, EndA)

where Conv(Pois∗n{n}, EndA) is the convolution Lie algebra of [7, Section 2.2].
This is an equality of dg Lie algebras, because the convolution bracket is defined by
the action of the infinitesimal cooperadic coproduct on the coaugmentation ideal,
so is the same on both sides. �

Remark 6.4. Lemma 6.3 together with Theorem 3.5 implies that the truncated
Tamarkin deformation complex CH(•>0)

Poisn
(A,A) controls deformations of A into dg

Poisn-algebras, in other words is the tangent Lie algebra of the derived algebraic
group hautPoisn∞

(A), where Poisn∞ is a cofibrant resolution of Poisn.
The proof of Lemma 6.3 also shows that the deformation complex gψPoisn,A

of the
formal moduli problem Poisn∞{A}

ψ is given by the L∞-algebra CH(•>1)
Poisn

(A,A)[n],
which is the kernel
(6.6) CH

(•>1)
Poisn

(A,A)[n] := ker
(
CH

(•>0)
Poisn

(A,A)[n] � Hom(A,A)[n]
)

and is thus a even further truncation of CH∗Poisn
(A,A). The situation is thus

similar to what happens in deformation theory of associative algebras.
One can also wonder which deformation problem controls the full complex CH∗Poisn

(A,A).
In view of Theorem 6.7 below and classical results on deformation theory of En-
algebras ([46, 62, 20]), we can conjecture that CH∗Poisn

(A,A) shall control de-
formations of categories of modules over Poisn-algebras into E|n−1|-monoidal dg-
categories, with some shift on the linear enrichment of the category when n ≤ 1
according to the red shift trick [44, 77, 76].

We now compare the deformation complexes of Poisn-algebras with those of
En-algebras. Let us fix a formality morphism ϕ : En

∼→ Poisn (n ≥ 2). This allows
to see any dg Poisn-algebra as an En-algebra.

Lemma 6.5. Let A be a dg Poisn-algebra with structure map ψ : Poisn → EndA.
Then, there is a quasi-isomorphism of dg Lie algebras

CH
(•>0)
Poisn

(A,A)[n] = gψ
+

Pois+n ,A

∼→ g
(ψ◦ϕ)+

E+
n ,A
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where the left hand side is the truncated cohomology complex (6.3) of a Poisn-
algebra defined by Tamarkin [74].

Proof. The formality quasi-isomorphism ϕ induces a quasi-isomorphism of cofibrant
resolutions

ϕ∞ : En∞
∼→ Poisn∞

fitting in a commutative diagram

En∞ = Ω(E¡
n)

i ∼
��

∼ // Poisn∞ = Ω(Pois¡
n)

ΩB(En)
ΩB(ϕ)
∼ // ΩB(Poisn)

Ω(π)∼

OO

where B is the operadic bar construction, Ω is the operadic cobar construction,
(−)¡ is the Koszul dual cooperad given by H0B(−) (see [51, Chapter 7]), i is the
inclusion and π : B(Poisn) � H0B(Poisn) is the projection. This construction
implies that ϕ∞ is a tangent quasi-isomorphism of dg operads in the sense of [57,
Theorem 7], that is, the composite map

E¡
n{1} ↪→ En∞

∼→ Poisn∞ � Pois¡
n{1}

is a quasi-isomorphism. Given that, according to Section 1.2.2, the plus construc-
tion (−)+ preserves quasi-isomorphisms of dg props, this implies that the con-
struction above works with the plus construction as well and induces a tangent
quasi-isomorphism

ϕ+
∞ : E+

n∞
∼→ Pois+

n∞,

which by [57, Theorem 7] induces the desired quasi-isomorphism of dg Lie algebras

(ϕ+
∞)∗ : gψ

+

Pois+n ,A

∼→ g
(ψ◦ϕ)+

E+
n ,A

.

�

Corollary 6.6. Let A be a Poisn-algebra with structure map ψ : Poisn → EndA.
The formality map ϕ induces an equivalence of formal moduli problems

ϕ∗∞ : Pois+
n∞

ψ+

{A} '−→ E+
n∞{ϕ

∗A}(ψ◦ϕ)+

(where ϕ∗A is the En-algebra obtained from the Poisn-algebra A by restriction of
structures along ϕ).

Further, Lemma (6.5) and Corollary (3.6) combine to give a quasi-isomorphism
of L∞-algebras

(6.7) CH
(•>0)
Poisn

(A,A)[n] '−→ TA

when A is dg-Poisn-algebra. Here TA is the tangent complex of A viewed as an
En-algebra using the chosen formality ϕ (so strictly speaking it shall be noted
Tϕ∗A).

Recall now that if A is a Poisn-algebra, then A[n − 1] is a dg Lie algebra, in
particular an L∞-algebra. We relate its deformation complexes (the full and the
truncated) as a Poisn-algebra with its deformation complexes as an En-algebra:
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Theorem 6.7. Let A be a Poisn-algebra (n ≥ 2).
(1) The sequence (6.5) fits into a morphism of fiber sequences of L∞-algebras

A[n− 1] // TA // CH∗En
(A,A)[n]

A[n− 1]

'

OO

// CH(•>0)
Poisn

(A,A)[n]

'

OO

// CH∗Poisn
(A,A)[n]

'

OO

whose vertical arrows are L∞-quasi-isomorphisms and the middle vertical arrow
is (6.7).

(2) The L∞-structure on CH
(•>0)
Poisn

(A,A)[n] and TA is the one controling the
derived algebraic group hautPoisn∞

(A) of homotopy automorphisms of A.

Proof. We saw that the equivalence ϕ∞ : En∞
∼→ Poisn∞ induced by the formality

morphism ϕ induces the weak-equivalence ϕ+
∞ : E+

n∞
∼→ Pois+

n∞. Adding a gener-
ator for strict units gives us also a weak-equivalence suϕ+

∞ : suE+
n∞

∼→ suPois+
n∞.

Let ψ∞ : Poisn∞ → EndA be a Poisn-algebra structure on A (seen as a homo-
topy Poisn-algebra structure), and ψ+

∞ : Pois+
n∞ � Poisn∞

ψ∞→ EndA be the
map obtained by first sending the generator δ to 0. In the proof of Lemma 6.5,
we saw that ϕ+

∞ is a tangent quasi-isomorphism, hence inducing an L∞-algebra
quasi-isomorphism at the level of the associated deformation complexes. Following
readily the proof of Lemma 6.5, we get that suϕ+

∞ is a tangent quasi-isomorphism
as well, thus

(ϕ+
∞)∗ : gψ

+
∞

Pois+n ,A

∼−→ g
(ψ◦ϕ)+

E+
n ,A

and
(suϕ+

∞)∗ : gψ
+
∞

suPois+n ,A

∼−→ g
(ψ◦ϕ)+

suE+
n ,A

are both L∞-algebra quasi-isomorphisms fitting in a commutative diagram

(6.8) g
(ψ◦ϕ)+

suE+
n ,A

g
(ψ◦ϕ)+

E+
n ,A

? _oo

g
ψ+
∞

suPois+n ,A

(suϕ+
∞)∗ '

OO

g
ψ+
∞

Pois+n ,A
? _oo

(ϕ+
∞)∗'

OO
.

As in Remark 6.1, the homopy fibers of these inclusions are both A[n−1] equipped
with its Lie structure defined by shifting the Poisson bracket of A. We thus get a
quasi-isomorphism of homotopy fiber sequences

(6.9) g
(ψ◦ϕ)+

suE+
n ,A

g
(ψ◦ϕ)+

E+
n ,A

? _oo A[n− 1]oo

g
ψ+
∞

suPois+n ,A

(suϕ+
∞)∗ '

OO

g
ψ+
∞

Pois+n ,A
? _oo

(ϕ+
∞)∗'

OO

A[n− 1]oo

∼

OO
.

Following readily the proof of Lemma 6.3, we see that gψ
+
∞

suPois+n ,A
= CH∗Poisn

(A,A)[n]:
the generator of arity zero in suPois+

n (defining the unit) is of degree 0, hence of
degree n in Pois∗n{n}. In the associated convolution Lie algebra gψ

+
∞

suPois+n ,A
, it gives
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an additional term A[n] in operadic degree 0 which corresponds to the part of weight
0 in CH∗Poisn

(A,A)[n]. The inclusion g
ψ+
∞

Pois+n ,A
↪→ g

ψ+
∞

suPois+n ,A
is thus nothing but

the inclusion CH(•>0)
Poisn

(A,A)[n] ↪→ CH∗Poisn
(A,A)[n]. This means that we have a

quasi-isomorphism of homotopy fiber sequences

(6.10) g
(ψ◦ϕ)+

suE+
n ,A

g
(ψ◦ϕ)+

E+
n ,A

? _oo A[n− 1]oo

CH∗Poisn
(A,A)[n]

(suϕ+
∞)∗ '

OO

CH
(•>0)
Poisn

(A,A)[n]? _oo

(ϕ+
∞)∗'

OO

A[n− 1]oo

∼

OO
.

Now we want to prove that the full Poisson complex CH∗Poisn
(A,A) is quasi-

isomorphic to the full En-Hochschild complex CH∗En
(A,A). For this, we use the

fact (proved later in Lemma 7.7) that the formality morphism
ϕ : En

∼→ Poisn

induces a natural quasi-isomorphism

Bar(n) ◦ ϕ∗ ∼→ Bar
(n)
Poisn

,

where Barn is the operadic bar construction for En-algebras, Bar(n)
Poisn

is the one
for Poisn-algebras and ϕ∗ is the restriction of structures from Poisn-algebras to
En-algebras. So, for a given n-Poisson algebra A, we have a quasi-isomorphism

Bar(n)(ϕ∗A) ∼→ Bar
(n)
Poisn

(A)
inducing a quasi-isomorphism

Homdg(Bar(n)
Poisn

(A), A) ∼→ Homdg(Bar(n)(ϕ∗A), A)
between the complexes computing respectively the operadic Poisn-cohomology of
A and the operadic En-cohomology of ϕ∗A (see [51, Section 12.4] for the general
construction of operadic cohomology). By [51, Theorem 12.4.5], the operadic com-
plex of an algebra over an operad is quasi-isomorphic to its André-Quillen complex
so we get a quasi-isomorphism of André-Quillen complexes

CPoisn

AQ (A,A) ∼→ CEn

AQ(ϕ∗A,ϕ∗A).

By definition, the André-Quillen complex CEn

AQ(ϕ∗A,ϕ∗A) is the right derived func-
tor, applied to ϕ∗A, of the hom functor HomEn

A (−, ϕ∗A) in operadic A-modules
over En, that is, exactly CH∗En

(ϕ∗A,ϕ∗A). Similarly, we have CPoisn

AQ (A,A) =
CH∗Poisn

(A,A). Tensoring the map above by K[n], we get a quasi-isomorphism

CH∗Poisn
(A,A)[n] ∼→ CH∗En

(A,A)[n].

The equality g
ψ+
∞

suPois+n ,A
= CH∗Poisn

(A,A)[n] gives to CH∗Poisn
(A,A)[n] an L∞-

algebra structure that we can transfer to CH∗En
(A,A)[n] by the quasi-isomorphism

above to make it a quasi-isomorphism of L∞-algebras.
We now compare this structure with the one given by the solution to the Deligne

conjecture. The En-Hochschild cohomology has a natural (and unital) En+1-
structure (see [54, 20, 36]) given by the suE1 ⊗ suEn-algebra structure3 on the

3The centralizer is canonically endowed with a structure of E1-algebras in En-algebras. By
Dunn additivity theorem [54], this is equivalent to an En+1-structure.
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En-centralizer zsuEn
(ϕ∗(A)) := zsuEn

(idϕ∗(A)) of A, seen as an En-algebra using our
chosen formality map. By [20], the upper horizontal sequence of chain complexes
in claim (1) of the theorem is a natural sequence of L∞-algebras. Here, by the the-
ory of formal moduli problems [52] and deformation theory of En-algebras [54, 20],
CH∗En

(A,A)[n] is endowed with the underlying L∞-algebra structure characterized
by the commutative formal moduli problem defined by

(6.11) MapEn+1−Algaug (D(n+1) ◦ I(n+1)(−), zsuEn
(ϕ∗(A)))

where I(n+1) : cdgaaug → Eaugn is the canonical functor sending a cdga to the En-
algebra with trivial higher products, and D(n+1) is the appropriate Koszul duality
∞-functor as used in [52]. Note that D(n+1) can be identified with the centralizer
of the augmentation zsuEn

(R → K), hence with the dual of the n + 1-fold bar
construction, see [52, 36, 3].

Let us denote zsuPoisn
(A) the centralizer of the identity map A→ A in the ∞-

category of Poisn-algebras; it is a (unital) E1-algebra in Poisn-algebras. Similarly
as above, the formality map ϕ induces an equivalence of E1-algebras in En-algebras
(hence of unital En+1-algebras):

(6.12) ϕ∗
(
zsuPoisn(A)

) ∼= zsuEn(ϕ∗(A)).

By [74] (also see [7, 36]), the E1 ⊗ Poisn-algebra structure of zsuPoisn
(A) is repre-

sented by an explicit compatible4 dg algebra structure on the dg Poisn-coalgebra
Bar

(n)
Poisn

(zsuPoisn
(A))) whose differential encodes its canonical Poisn∞-algebra

structure5.

We wish to rewrite the formal moduli problem (6.11). To do so, following [54,
Sections 2.3 and 3.3], we note that we have an adjunction of ∞-categories C∗CE :
dgLie � dgArtaugK : DLie, where C∗CE is the ∞-functor induced by the Chevalley-
Eilenberg cochain algebra functor, and DLie is an equivalence onto its essential
image in dgLie (with inverse given by C∗CE). Furthermore, by [3, Corollary 4.2.2],
there is an equivalence

(6.13) D(n+1) ◦ Un+1
(
DLie(R)

) ∼= C∗CE
(
DLie(R)

)
where Un+1 is the the En+1-envelopping algebra functor; in particular we have an
adjunction Un+1 : En+1 − Algaug � dgLie : [n]. Since D(n+1) is self-dual, for
an artinian augmented cdga R, we get from (6.13) and [52, Theorem 4.4.5], an
equivalence

Un+1
(
DLie(R)

) ∼= D(n+1) ◦ C∗CE
(
DLie(R)

)
.

4the compatibility means that we have an E1 ⊗ P oisn∞-algebra structure
5Note that the (non-unital) centralizer and is corresponding dg P oisn-coalgebra are denoted

def(A)[−n] and HomId(A, A) in [74]



BIALGEBRAS, HOCHSCHILD COHOMOLOGY AND FORMALITY 61

Combining all the above we get an equivalence of formal moduli problems given,
for every artinian augmented cdga R, by

(6.14) MapEn+1−Algaug

(
D(n+1) ◦ I(n+1)(R), zsuEn

(ϕ∗(A))
)

∼= MapEn+1−Algaug

(
D(n+1) ◦ C∗CE(DLie(R)), ϕ∗

(
zsuPoisn

(A))
)

∼= MapEn+1−Algaug

(
Un+1(DLie(R)), ϕ∗

(
zsuPoisn

(A))
)

∼= MapdgLie

(
DLie(R), zsuPoisn

(A)[n]
)
.

This identifies the L∞-algebra structure underlying CH∗En
(A,A) ∼= zsuEn

(ϕ∗(A))
with the one obtained by n-fold desuspension of zsuPoisn(A). It remains to prove
that this structure on the center coincides with the one on CH∗Poisn

(A,A)[n] =
g
ψ+
∞

suPois+n ,A
; so far we have proved that they are quasi-isomorphic as chain com-

plexes. Tamarkin [74, Section 5] has proved that CH∗Poisn
(A,A)[n] has the underly-

ing L∞-algebra structure of a certain Poisn+1∞-algebra structure on zsuPoisn(A) ∼=
CH∗Poisn

(A,A)[n]. This Poisn+1∞-algebra structure is given by the differential on
Bar

(n+1)
Poisn+1

(zsuPoisn
(A)) and we use the later notation (or simply CH∗Poisn

(A,A)[n])
to refer to this precise homotopy Poisn+1-algebra structure on zsuPoisn

(A), in or-
der to distinguish it from the one given by the centralizer. Further Tamarkin
showed that this structure induces a cocommutative Hopf bialgebra structure on
Bar

(n)
Poisn

(zsuPoisn
(A)), an additional compatible degree n Lie cobracket on its prim-

itive part and finally an isomorphism of dg Poisn+1-coalgebras:

(6.15) Bar
(n+1)
Poisn+1

(zsuPoisn
(A)) ∼= CCE∗ (Prim(Bar(n)

Poisn
(zsuPoisn

(A))))

where CCE∗ is the standard Chevalley-Eilenberg commutative coalgebra functor
(whose associated derived functor computes K⊗L

U(−) K).
As above, Tamarkin L∞-structure on CH∗Poisn

(A,A)[n] is characterized by the
following equivalence of moduli functors

(6.16) MapdgLie
(
DLie(R), CH∗Poisn

(A,A)[n]
)

∼= MapPoisn+1−Algaug

(
D(n+1)
Poisn+1

◦ I(n+1)(R), CH∗Poisn
(A,A))

)
∼= MapPoisn+1−Cog

(
I(n+1)(R′), Bar

(n+1)
Poisn+1

(zsuPoisn(A))
)

where I(d) : Com − Cog → Poisd − Cog is the canonical functor and R′ is the
(linear) dual of the artinian algebra R. The last equivalence follows from the bar-
cobar equivalence and the definition of Poisn+1∞-morphisms.

Recall that the centralizer zsuPoisn(A) is canonically an E1-algebra in Poisn∞-
algebras and this structure is given by a compatible algebra structure onBar(n)

Poisn
(zsuPoisn

(A)).
In particular it is canonically isomorphic as a cocommutative Hopf algebra to the
envelopping algebra of its primitive elements Prim(Bar(n)

Poisn
(zsuPoisn

(A))). Also
if C is a dg cocommutative coalgebra, then its cobar construction coBar(1)(C) is
canonically a cocommutative Hopf algebra. Using moreover the natural equiva-
lence Bar(1) ◦U(−) ∼= CCE∗ (−) of dg cocommutative coalgebras and the adjunction
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between Bar(1) and coBar(1), we get an equivalence of moduli problems

(6.17) MapdgLie

(
DLie(R), zsuPoisn

(A)[n]
)

∼= MapPoisn+1−Algaug

(
D(n+1)
Poisn+1

◦ I(n+1)(R), zsuPoisn
(A)
)

∼= MapE1⊗Poisn−Cog

(
I(n) ◦ coBar(1)(R′), Bar(n)

Poisn
(zsuPoisn

(A))
)

∼= MapPoisn+1−Cog

(
I(n+1)(R′), Bar(1) ◦Bar(n)

Poisn
(zsuPoisn

(A))
)

∼= MapPoisn+1−Cog

(
I(n+1)(R′), CCE∗ (Prim(Bar(n)

Poisn
(zsuPoisn

(A))))
)
.

Therefore the isomorphism (6.15) implies that the two moduli functors (6.16)
and (6.17) are equivalent. Consequently, the two L∞-algebras that they repre-
sent are equivalent as well by Lurie’s equivalence theorem, which yields the right
vertical equivalence of L∞-algebras in Claim (1).

Moreover, by Corollary 3.6 we have an equivalence of L∞-algebras g(ψ◦ϕ)+

E+
n ,A

∼→ TA
and we finally get the commutative diagram of L∞-algebras

CH∗En
(A,A)[n] TA?

_oo

CH∗Poisn
(A,A)[n]

'

OO

CH
(•>0)
Poisn

(A,A)[n]

'

OO

? _oo

.

Hence both lines have quasi-isomorphic fibers as well which are A[n− 1] according
to (6.5) and [20].

Now Claim (2) follows from Lemma 6.3. �

Remark 6.8. Claim (2) can be proved directly by using the equivalence (ϕ+
∞)∗ :

Poisn∞
+{A} ∼→ En∞

+{ϕ∗A} of Corollary 6.6. Indeed, applying Theorem 3.5
gives us directly a quasi-isomorphism of L∞-algebras

CH∗>0
Pois(A,A)[n] = gψ

+

Pois+n ,A

∼→ Tϕ∗A.

Remark 6.9. In particular, we also get out of Theorem 6.7 that the L∞-algebra
gψPoisn,A

controlling the moduli space Poisn∞{A} is thus isomorphic to a sub-L∞-
algebra of TA.

Remark 6.10. Let C̃(d) : Poisd − Cog → Com − Cog be the right adjoint of the
canonical functor I(d) : Com − Cog → Poisd − Cog. The moduli functor (6.17)
encoding the L∞-structure on CHPois(A,A)[n] is then equivalent to

MapPoisn+1−Algaug

(
D(n+1)
Poisn+1

◦ I(n+1)(R), CH∗Poisn
(A,A))

)
∼= MapPoisn+1−Cog

(
I(n+1)(R′), Bar(1) ◦Bar(n)

Poisn
(zsuPoisn

(A))
)

∼= MapE1⊗Com−Cog

(
coBar(1)(R′), C̃(n)(Bar

(n)
Poisn

(zsuPoisn
(A)))

)
∼= MapE1⊗Com−Cog

(
coBar(1)(R′), U(zsuPoisn

(A)[n])
)
.
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wher the last line is [74, Corollary 4.7]. By (6.16), this is also equivalent to

MapPoisn+1−Cog

(
I(n+1)(R′), Bar(n+1)

Poisn+1
(zsuPoisn(A))

)
∼= MapCom−Cog

(
R′, C̃(n+1)(Bar

(n+1)
Poisn+1

(zsuPoisn(A)))
)
.

Let η : B → k be an augmented unital cdga and B := ker(η) be its augmentation
ideal, so that B ∼= k⊕B. Both B and B are cdgas, hence (non-unital) En-algebras
for any n. In particular, B and B are canonically En-B-modules as well as En-B-
modules. Let us denote ι : B → B the canonical inclusion.
Lemma 6.11. The canonical maps

CH∗En
(B,B) ι∗→ CH∗En

(B,B), CH∗En
(B,B) ι∗→ CH∗En

(B,B)
are quasi-isomorphisms and the following diagram

CH∗En
(B,B)

ι∗

' ''
CH∗En

(B,B)
ι∗

'
''

ι∗

77

CH∗En
(B,B)

CH∗En
(B,B)

ι∗

77

is a commutative diagram of En+1-algebras.
Proof. The En-Hochschild cohomology of a cdga B with value in a bimodule M
can be computed using Pirashvili type higher Hochschild cochains (see [36]):

CH∗En
(B,M) ∼= CHSn

• (B,M) ∼= HomB(B⊗S
n
• ,M)

for any simplicial set model Sn• of the n-sphere. Being obtained as a cosimplicial
cochain complex, the later one is naturally quasi-isomorphic to its non-degenerate
cochains, which amounts to quotienting by the submodule generated by the unit
(see [35]). Hence, denoting ∗ the base-point of Sn• , since B is augmented, we have
a quasi-isomorphism

q∗ : HomB(B⊗S
n
• ,M) '→ HomB(B ⊗B⊗S

n
• \{∗},M) ∼= CH∗En

(B,M).
Since q∗ ◦ ι∗ is the identity, we obtain that ι∗ is a quasi-isomorphism as well, hence
the first claim by taking M = B or B. The commutativity of the diagram follows
from the same identification with higher Hochschild cochains and a straightforward
computation.

Since all modules structures are induced by maps of cdgas, the same identification
with higher Hochschild cochains implies that all complexes in the diagram above
are canonically En+1-algebras, this structure being functorial with respect to maps
of En-algebras, see [36]; this also follows from [20] using moduli problems. �

From Lemma 6.11, we get a canonical (zigzag of) cochain maps

(6.18) ι : CH∗En
(B,B) ' CH∗En

(B,B) ι∗−→ CH∗En
(B,B).

Note that we endow CH∗En
(B,B) with its En+1-algebra structure given by transfer

along ι∗ : CH∗En
(B,B) ι∗→ CH∗En

(B,B).
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Proposition 6.12. Assume n ≥ 2 and B is an augmented cdga essentially of
finite type. The canonical map (6.18) ι : CH∗En

(B,B) → CH∗En
(B,B) is a (non-

unital) En+1-algebra homomorphism. Further, we have a cofiber sequence of cochain
complexes

CH∗En
(B,B) ι−→ CH∗En

(B,B) π∗−→ CH∗En
(B,K).

Proof. Taking a cofibrant resolution ofB as a cdga, we may assumeB =
(
Sym(W ), d

)
is an augmented cofibrant cdga and each W has finite dimensional cohomology; in
particular d(W ) ⊂ Sym≥1(W ) and B = Sym≥1(W ). Being cdgas, these algebras
are canonically Poisn-algebras, and this structure is compatible with the induced
En-algebra structure. By [7], [36, Corollary 6.39]6, we have, for any cofibrant cdga
A, an equivalence of En+1-algebras

(6.19) CH∗En
(A,A) ' ŜymA(Der(A,A)[−2])

where the shifted Lie bracket is given by the Lie bracket on derivations and the
Leibniz rule. Here Der(A,A) is the cochain complex of derivations and the En+1-
algebra structure on the right hand side of (6.19) is induced by formality from
its canonical Poisn+1-structure. By Theorem 6.7, we can replace CH∗En

(A,A) by
CH∗Poisn

(A,A) = HomΣ(uPoisn∗{n}, EndA)[−n] in the above equivalence.
Since B =

(
Sym(W ), d

)
, we have an isomorphism of complexes:

ι∗ : Der(B,B) ∼= Der(B,B)

as well as canonical quasi-isomorphisms

(W )∗ ⊗B '→ Der(B,B), (W )∗ ⊗B '→ Der(B,B)

identifying the canonical map ι∗ : Der(B,B) ↪→ Der(B,B) (extending a derivation
on B to a derivation on B) with the map id(W )∗⊗ ι. The equivalence (6.19) is given
by the map

ŜymA(Der(A,A)[−n] ⊂ HomΣ(uCom∗{n}, EndA)[−n] ↪→ HomΣ(uPoisn∗{n}, EndA)[−n]

where the right map is induced by the canonical operad morphism Com→ Poisn.
Hence we have a commutative diagram
(6.20)
Ŝym

(
(W )∗

)
⊗ Sym≥1(W ) ∼= //
� _

��

ŜymB

(
Der(B,B)[−n]

)
SymB(ι∗)

��

' // CH∗En
(B,B)

ι

��
Ŝym

(
(W )∗

)
⊗ Sym

(
W
) ∼= // ŜymB

(
Der(B,B)[−n]

) ' // CH∗En
(B,B).

Since the left vertical map is a map of dg Poisn+1-algebras and the horizontal
maps are equivalences of En+1-algebras, the first claim follows. The second claim
follows from the fact that the left hand side is a cofiber sequence with cofiber
Ŝym

(
(W )∗

)
⊗ k. �

6beware that one uses an homological grading in loc. cit. while we are using a cohomological
grading
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6.2. Gerstenhaber-Schack cochain complexes for bialgebras and proof of
Corollary 0.7. We now precisely relate Gerstenhaber-Schack complexes [29] and
E2-Hochschild cohomology. As for Poisn and En-algebras, there are several more
or less truncated complexes one can consider and encounter in the literature7, each
related to different deformation problems. Let us fix some notations. What we call
the Gerstenhaber-Schack complex is the total complex of a bicomplex, defined by

(6.21) C∗GS(B,B) ∼=
∏

m,n≥1
Homdg(B⊗m, B⊗n)[−m− n].

The horizontal differential is defined, for every n, by the Hochschild differential
associated to the Hochschild complex of B seen as an associative algebra with
coefficients in the B-bimodule B⊗n. The vertical differential is defined, for every
m, by the co-Hochschild differential associated to the co-Hochschild complex of B
seen as a coassociative coalgebra with coefficients in the B-bicomodule B⊗m. The
compatibility between these differentials, which gives us a well defined bicomplex,
follows from the distributive law relating the product and the coproduct of the
bialgebra B (see [29, 59] for details). This is the complex relevant for Etingof-
Kazdhan quantization in Section 8 because

Proposition 6.13 ([59]). The Gerstenhaber-Schack complex is quasi-isomorphic
to the deformation complex of dg-bialgebras (up to isomorphisms):

C∗GS(B,B) ∼= gϕ
+

Bialg+
∞,B

.

Note here that in the definition of C∗GS(B,B) we use truncated versions of
Hochschild and co-Hochschild complexes. We can also use their full versions and
define an extended Gerstenhaber-Schack complex

(6.22) C̃∗GS(B,B) ∼=
∏

m≥0,n≥1
Homdg(B⊗m, B⊗n)[−m− n],

which sits inside the fully extended Gerstenhaber-Schack complex

CfullGS (B,B) ∼=
∏

m,n≥0
Homdg(B⊗m, B⊗n)[−m− n].

The differentials are defined as for C∗GS(B,B), which is naturally a (non-split)
subcomplex of each of the preceding ones ([29]).

Corollary 6.14. Let B be a conilpotent dg-bialgebra. There is a commutative
diagram of L∞-algebras

Ω̃B[1] // TΩ̃B
// CH∗E2

(Ω̃B, Ω̃B)[2]

Ω̃B[1]

'

OO

// C∗GS(B,B)[2]

'

OO

// C̃∗GS(B,B))[2]

'

OO

whose vertical arrows are L∞-quasi-isomorphisms and the middle vertical arrow is
given by Lemma 3.6 and the quasi-isomorphism (5.1). The horizontal arrows are
further fiber sequences.

7beware that, unfortunately, the terminology, notations or degree shifting are not consistent
in the literature.
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Proof. We endow Ω̃B with its E2-algebra structure given by Corollary 0.2. The
upper horizontal sequence is then given by the main result of [20]. The middle
vertical equivalence is assertion (2) in Theorem 0.6. A proof similar to the one of
Theorem 6.7 gives a commutative diagram of L∞-algebras

(6.23) g
(ψ)+

suE+
2 ,Ω̃B

g
(ψ)+

E+
2 ,Ω̃B

? _oo

gϕ
+

suBialg+
∞,B

'

OO

gϕ
+

Bialg+
∞,B

? _oo

'

OO
.

, which induces a morphism of fiber sequences, and an identification of gϕ
+

suBialg+
∞,B

with C∗GS(B,B)[2] similar to the one of g(ψ)+

suPois+2 ,A
with CH∗Pois2(A,A). The upper

line has been identified with TΩ̃B −→ CH∗E2
(Ω̃B, Ω̃B)[2] in the proof of Theo-

rem 6.7. The diagram being a diagram of fiber sequences of L∞-algebras, we get
that the fibers are also isomorphic as L∞-algebras. �

Let B be a conilpotent dg-bialgebra. Then Ω̃B is an E2-algebra by Corollary 0.2
and the sequence of L∞-algebras

Ω̃B[1] // TΩ̃B
// CH∗E2

(Ω̃B, Ω̃B)[2]

lits to a sequence of (non-unital) E3-algebras (after shifting it down by 2) by the so-
lution to (Kontsevich) higher Deligne conjecture, and more precisely the main result
of Francis in [20] (also see [54, 36] for the relationship with Pirashvili Hochschild
cohomology and derived centralizers).

Finally we improved Corollary 6.14 into

Corollary 6.15 (Gerstenhaber-Schack conjecture). (1) The E3-algebra structures
of CH(•>0)

E2
(Ω̃B, Ω̃B) ∼= TΩ̃B [−2] and CH∗E2

(Ω̃B, Ω̃B) induce E3-algebra structures
on C∗GS(B,B) and C̃GS(B,B)) such that the following diagram

Ω̃B[−1] // TΩ̃(B)
// CH∗E2

(Ω̃B, Ω̃B)

Ω̃B[−1] // C∗GS(B,B)

'

OO

// C̃GS(B,B)

'

OO

is a commutative diagram of non-unital E3-algebras with vertical arrows being equiv-
alences.

(2) The E3-algebra structure on C∗GS(B,B) is a refinement of its L∞-algebra
structure controlling the deformation theory of the bialgebra B.

Proof. The diagram and the existence of the lifts of the E3-structures are obtained
by transfer of the structure of the first line [20] along the equivalences given by
Corollary 6.14. We further know that the underlying L∞-algebra structure of TΩ̃(B)

is equivalent to the one of the deformation complexes of Lie bialgebra gϕ
+

Bialg+
∞,B
∼=

C∗GS(B,B) by Theorem 0.6. Claim (2) follows. �
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Remark 6.16. We conjecture that the underlying L∞-algebra structure of the full
Gerstenhaber-Schack complex CfullGS (B,B) controls deformations as a monoidal dg
category of the dg category of representations of B.

Remark 6.17 (Relevance of the choice of E3-lift). In view of Theorem 6.7, we
can also endow the Gerstenhaber-Schack complexes C∗GS(B,B)) and CfullGS (B,B))
with E3-algebra structures given by the ones on Tamarkin deformation complexes
CH•>0

Poisn
(−,−), CH∗Poisn

(−,−) ([74, 7]), which carry the same underlying L∞-
structure. In view of Theorem 0.6, our choice of solutions to the Gerstehaber-Schack
conjecture seems more natural.

With respect to applications to quantization of Lie bialgebras, this choice is
however not important: any E3-algebra structure inducing the correct L∞-structure
will be good enough to compute the deformation complex of bialgebras and gives
in quantization the independence from the choice of an associator; the additional
datum of the E3-structure is in fact used to simplify computations of deformation
complexes by adding more rigidity. In our case of interest for Etingof-Kazdhan
quantization in § 8, we are in fact in a case (Sym(V )) where both E3-structures
are the same. We actually believe that the diagram of Theorem 6.7 is in fact a
commutative diagram of E3-algebras in general so that the aforementioned two
E3-structures are always the same.

As a consequence, the Gerstenhaber-Schack complex C∗GS(B,B) inherits a ho-
motopy associative multiplication (that is an E1-algebra structure obtained through
the canonical map E1 → E3 of operads). There is a standard dg associative multi-
plication on the Gerstenhaber-Schack complex given by the cup-product [29], which
is a model for the Yoneda extension product [71]. On the other hand, following
Corollary 6.15, the E3-algebra structure on C∗GS(B,B) is given by its identifica-
tion with the derived center RHomE2

Ω̃(B)(Ω̃(B), Ω̃(B)) of Ω̃(B). By definition, its
E1-algebra structure is given by composition of E2-Ω̃(B)-modules endomorphisms
which is the same as derived homomorphisms of left modules over factorization
homology

´
S1 Ω̃(B) ([20, 36]); that is, it models the Yoneda extension product for

E2-Ω̃(B)-modules. Then, from Theorem 0.6, one can deduce:

Proposition 6.18. The E1-structure induced by Corollary 6.15 on C∗GS(B,B) is
equivalent to the E1-algebra structure induced by the cup-product.

7. The E3-formality Theorem

7.1. The Gerstenhaber-Schack complexes of Sym(V ). This section is devoted
to the proof of our E3-formality theorem (Theorem 0.5). Corollary 0.4 tells us two
facts. First, we can choose the higher Hoschchild complex CH(•>0)

E2
(Ω̃B, Ω̃B) as a

model for the deformation complex Def(B) of a dg bialgebra B. By (Kontsevich)
higher Deligne conjecture [20, 54, 36], the L∞-structure controlling these deforma-
tions has a lift to an E3-algebra structure (and an E3-moduli problem). Then, the
Gerstenhaber-Schack cohomology groups H∗GS(B,B) of B inherits a 3-Poisson al-
gebra structure, that is, an algebra over the homology H∗(E3) ∼= Pois3 of the little
3-disks operad, so that H∗Def(B) ∼= H∗(TΩ̃(B)) and H∗GS(B,B) are isomorphic as
3-Poisson algebras.

The formality of the little 3-disks operad then gives an E3-algebra structure on
H∗GS(B,B). The main question of interest here is to know whether C∗GS(B,B) and
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H∗GS(B,B) are then quasi-isomorphic as E3-algebras. We cannot expect such a
result to holds true in full generality, however, for our purposes it will be sufficient
to prove it in the case where B = Sym(V ) is the symmetric bialgebra over a Z-
graded cochain complex V with cohomology of finite dimension in each degree. The
general strategy is very similar to the famous obstruction theoretic approach used
by Tamarkin to prove the E2-formality of the Lie algebra of polyvector fields on an
affine space ([39],[72], [73]).

Now let (V, d) be a (Z-graded) cochain complex with cohomology of finite di-
mension in each degree. Its symmetric algebra Sym(V ) equipped with the induced
differential (extending d : V • → V •+1 ⊂ Sym(V ) into a derivation) is a conilpotent
dg bialgebra (see Example 5.5) so that we can apply Theorem 0.6.

Furthermore, there is a natural (strict) dg Pois3-algebra structure on (possibly
completed) symmetric powers of

(
V ⊕ (V )∗

)
[−1] mimicking the Poisson structure

of vector fields.

Definition 7.1. Let V be a cochain complex. We define a dg Pois3-algebra struc-
ture on

Ŝym(V [−1]⊕ (V )∗[−1]) ∼=
∏

m,n≥1
Symm(V [−1])⊗ Symn((V )∗[−1])

the (fully completed) symmetric algebra (on (V [−1] ⊕ (V )∗[−1])), with the usual
differential given by the extension as a derivation of the one of V , and the degree
−2 Poisson bracket induced by the evaluation pairing ev : (V •)∗⊗V → K, [χ, v] :=
ev(χ⊗ v) = χ(v) and the Leibniz rule :

[a · b, c] = a · [b, c] + (−1)|a||b|b · [a, c].

The subalgebra

Ŝym
(
(V )∗[−1]

)
⊗ Sym(V [−1]) ∼=

∏
m≥1

⊕
n≥1

Symm(V [−1])⊗ Symn((V )∗[−1])

is a dg sub-Pois3-algebra and such also are the sub-complexes

Ŝym
≥1(

(V )∗[−1]
)
⊗ Sym(V [−1]), Ŝym

(
(V )∗[−1]

)
⊗ Sym≥1(V [−1]).

Note that if V 1 = 0, then the completed symmetric algebra is just the usual
symmetric algebra.

Theorem 7.2. Let (V, d) be a (Z-graded) cochain complex with finite dimensional
cohomology in each degree.

(1) The Gertenhaber-Schack cohomology of Sym(V )) is given by

H∗GS(Sym(V ), Sym(V )) ∼=
∏
m≥1

(⊕
n≥1

Symn(H∗(V )[−1])⊗ Symm(H∗(V )∗[−1])
)

∼= Ŝym(H∗(V )∗[−1])⊗ Sym(H∗(V )[−1])

as a Pois3-algebra. Here, the algebra structure is the one of the symmetric
algebra and the the degree −2 Poisson bracket is induced by the evaluation
pairing ev : H∗(V )∗ ⊗H∗(V )→ K as above.

(2) The Gertenhaber-Schack complex C∗GS(Sym(V ), Sym(V )) is equivalent as
an E3-algebra to Ŝym(V [−1]⊕ (V )∗[−1]), where the later is equipped with
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the E3-algebra structure induced by the chosen formality morphism E3
∼→

Pois3. Furthermore, there is a commutative diagram of E3-algebras

C∗GS(Sym(V ), Sym(V )) ' //
� _

��

Sym≥1(V [−1])⊗Ŝym
≥1

(V )∗[−1])� _

��

C̃∗GS(Sym(V ), Sym(V ))� _

��

' // Sym(V [−1])⊗Ŝym
≥1

((V )∗[−1])� _

��
CfullGS (Sym(V ), Sym(V )) ' // Sym(V [−1])⊗Ŝym((V )∗[−1])

whose horizontal arrows are natural (with respect to V ) equivalences of E3-
algebras and the vertical arrows are the canonical inclusions.

(3) The three Gertenhaber-Schack complexes are formal as E3-algebras (in par-
ticular, there is an equivalence of E3-algebras between C∗GS(Sym(V ), Sym(V ))
and H∗GS(Sym(V ), Sym(V ))).

The theorem also holds with TΩ̃Sym(V ) and CHE2(Ω̃Sym(V ), Ω̃Sym(V )) instead
of C∗GS(Sym(V ), Sym(V )) and C̃∗GS(Sym(V ), Sym(V )) since the E3-structure on
the later one is induced by transfer from the first one along the weak equivalence
given by Theorem 0.6.

Proof of Theorem 0.8. SinceDef(Sym(V )) is precisely the (shifted) Gerstenhaber-
Schack complex with its underlying L∞-structure, Theorem 0.6 shows that it suf-
fices to prove that CH∗E2

(Ω̃Sym(V ), Ω̃Sym(V )) is formal as an L∞-algebra. The
previous Theorem 7.2 (in the case where V has trivial differential) shows the
stronger statement that the later is actually formal as an E3-algebra, which con-
cludes the proof. �

Theorem 7.2 is a consequence of Proposition 7.4 and Proposition 7.3 below.

Proposition 7.3. There is a commutative diagram of E3-algebras

TSym(V [−1])[−2] // CH∗E2
((Sym(V [−1]), (Sym(V [−1]))

Sym(V [−1])⊗ Ŝym
≥1

((V )∗[−1]) �
� //

'

OO

Sym(V [−1])⊗ Ŝym((V )∗[−1])

'

OO

whose vertical arrows are quasi-isomorphisms (and the upper map is the canonical
one from Theorem 6.7).

Proof. By [7], [36, Corollary 6.39]8, we have, for a Sullivan algebra A (that is a
cofibrant cdga), an equivalence of E3-algebras

(7.1) CH∗E2
(A,A) ' ŜymA(Der(A,A)[−2])

where the shifted Lie bracket is given by the Lie bracket on derivations and the
Leibniz rule. Since the differential on Sym(V [−1]) is the unique derivation induced
by the desuspension of d : V • → V •+1, it is in particular a Sullivan algebra so

8beware that one uses an homological grading in loc. cit. while we are using a cohomological
grading
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that we can apply this result to A = Sym(V [−1]). For any cochain complex W
with cohomology of finite dimension in each degree, we have an isomorphism of
cochain complexes Der(Sym(W ), Sym(W )) ∼= (W )∗ ⊗ Sym(W ), and, under this
equivalence, the Lie bracket of derivations is induced by the pairingW⊗(W )∗ → K.
Thus, for A = Sym(V [−1]), the right hand side of the equivalence (7.1) is precisely
Sym(V [−1])⊗ Ŝym

≥1
((V )∗[−1]) as an E3-algebra. Thanks to Theorem 6.7 (since

our E3-algebra structures are induced by the one on Tamarkin complexes, we are in
fact mainly using the sequence (6.4)), we can identify TSym(V [−1]) with the kernel
of the canonical projection

Sym(V [−1])⊗ Ŝym((V )∗[−1])→ Sym(V [−1])

and the equivalences as well as the diagram follow. �

Proof of Theorem 7.2. Recall that the E3-algebra structure on C̃GS(Sym(V ), Sym(V ))
is obtained from the one on CH∗E2

(Ω̃Sym(V ), Ω̃Sym(V )) by transfer thanks to The-
orem 0.6. Then, from Proposition 7.4 we obtain weak equivalences of E3-algebras

CGS(Sym(V ), Sym(V )) ' TΩ̃Sym(V )
∼= TSym≥1(V [−1]),

C̃GS(Sym(V ), Sym(V )) ' CH∗E2
(Ω̃Sym(V ), Ω̃Sym(V ))

∼= CH∗E2
(Sym≥1(V [−1]), Sym≥1(V [−1])).

We are going to use Proposition 7.3 and Proposition 6.12 to compute these com-
plexes. Indeed, we have a canonical augmentation Sym(V [−1])) ∼= K⊕Sym≥1(V [−1]))
and these propositions as well as diagram (6.20) yields the equivalence of E3-
algebras

Sym(V [−1])⊗ Ŝym
≥1

((V )∗[−1]) '−→ C̃GS(Sym(V ), Sym(V )).

The commutative left square of the diagram of claim (2) follows similarly. Further,
by Proposition 6.12, the right upper map of the diagram fits into a diagram of
cofiber sequences

CH∗E2
(Sym≥1(V [−1])) ι // CH∗E2

(Sym(V [−1])) π∗ // CH∗E2
(Sym(V [−1]),K)

Sym(V [−1])⊗ Ŝym
≥1

((V )∗[−1]) �
� //

'

OO

'
��

Sym(V [−1])⊗ Ŝym((V )∗[−1]) // //

'

OO

'
��

Ŝym((V )∗[−1])

'

OO

'
��

C̃GS(Sym(V ), Sym(V )) �
� // CfullGS (Sym(V ), Sym(V )). π∗ // CfullGS (Sym(V ),K).

Hence the commutativity of the right hand square. This proves assertion (2).
Assertion (1) follows from assertion (2) by passing to the cohomology groups,

while assertion (3) also follows from (2) by choosing any quasi-isomorphismH∗(V ) '→
V since we work over a characteristic zero field. �

7.2. Enhanced Cobar functor on Sym(V ). The main goal of this section is
to compute the value of our enhanced cobar functor Ω̃ : E1 − Alg(dgCogconil) →
E2 −Algaug on the commutative and cocommutative dg bialgebra Sym(V ), where
(V, d) is a cochain complex with cohomology of finite dimension in each degree:
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Proposition 7.4. There is a quasi-isomorphism of E2-algebras Ω̃(Sym(V )) ∼→
Sym≥1(V [−1]).

We first start by exhibiting a cofibrant resolution of Sym(V ) in E1−Alg(dgCogconil).

Lemma 7.5. There is a cofibrant resolution Cobar(Sym(V [1])) → Sym(V ) of
Sym(V ) in E1 −Alg(dgCogconil).

Proof. This is dual to the usual Hochschild-Kostant-Rosenberg theorem for sym-
metric algebras: the composition p : Sym(V [1])[−1] → V ↪→ Sym(V ) of the
canonical projection with the canonical inclusion, yields the map of dg algebras
π : T (Sym(V [1])[−1]) → Sym(V ), which is further a map of coalgebras with re-
spect to the shuffle coproduct on the source. Then Cobar(Sym(V [1])) is the semi-
free dg algebra obtained from T (Sym(V [1])[−1]) by adding the extra-differential
δ(x1⊗xn) :=

∑n
i=1±x1⊗· · ·⊗x(1)

i ⊗x
(2)
i ⊗· · ·⊗xn ∈ Tn+1(Sym(V [1])[−1]), using

the coalgebra structure of Sym(V [1]). Since the latter is cofree cocommutative on
the shift of V , we get that p ◦ δ = 0. Hence π : Cobar(Sym(V [1])) → Sym(V )
is indeed a map in E1 − Alg(dgCogconil). This is a quasi-isomorphism by the
same argument (replacing algebras by coalgebras) as for the bar construction of
a symmetric algebra. Indeed, Cobar(Sym(V [1])) is the derived cotensor prod-
uct of K and Sym(V [1]) as Sym(V [1])-bicomodules and we have a resolution
Sym(V [1]) ∆→ Sym(V [1]) ⊗

⊕
Symn(V ) ⊗ Sym(V [1]), where the target is the

tensor product of cocommutative coalgebras equipped with the extra differential
δ(x⊗ f ⊗ y) = x(1) ⊗ p(x(2) · f ⊗ y ± x⊗f · p(y(1))⊗ y(2).

In fact one can also directly apply the usual HKR theorem which gives a quasi-
isomorphism of Hopf algebras Sym(V [1]) → Bar(Sym(V )) (given by the unique
dg coalgebra map extending the linear map Sym(V [1]) p→ V [1] ↪→ Sym(V )[1]) and
then conclude by the counit of the bar-cobar adjunction. �

Let
φ∗BenhE1

(−)− : E1 −Algcon,aug(dgCogconil)→ E2 − Cogconil

be the equivalence given by Theorem 0.1 and Section 5.2. We wish to evaluate
φ∗BenhE1

(−)− on Sym(V ).
Note that we have a commutative diagram of (∞-)operads

E1 ⊗Ass
a // E∞

' // Com

E2

b

OO ::

which in turn induces a commutative diagram

(7.2) E∞ − Cogconil

**

b∗ // E1 − Cogconil(dgCogconil)
obl //

a∗

��

E1 − Cogconil

dgCom− Cogconil

'

OO ;;

E2 − Cogconil

55

where obl is induced by forgetting the dg-coalgebra structure and the non-labbeled
arrows are given by the standard restriction functors between Em-algebras.
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The differential d on a cochain complex (V, d) extends canonically to the coar-
tinian cofree cocommutative coalgebra Sym(V ), giving it a canonical dg-cocommutative
coalgebra structure and thus E2 − Cogconil structure by restriction.

Lemma 7.6. One has an equivalence φ∗BenhE1
(Sym(V ))− ∼= Sym≥1(V [1]) in E2 −

Cogconil.

Proof. Applying the argument line of the proof of Lemma 7.5 to the augmentation
ideal Sym≥1(V ) of Sym(V ), we have

Sym≥1(V ) ' Cobar(Sym≥1(V [1]))

in E1 −Alg(dgCogconil).
Applying the functor BenhE1

gives an equivalence

BenhE1
Sym≥1(V ) ' BenhE1

Cobar(Sym≥1(V [1]))

in E1 − Cogconil(dgCogconil), hence

φ∗BenhE1
Sym≥1(V ) ' φ∗BenhE1

Cobar(Sym≥1(V [1]))

in E2 − Cogconil. It thus remains to prove that BenhE1
Cobar(Sym≥1(V [1])) '

Sym≥1(V [1]) in E1 − Cogconil(dgCogconil).
Recall that the Koszul duality of E1-operads provides us a Quillen equivalence

Cobar : E1 − Cogconil � E1 −Algaug : Bar

where Bar is weakly equivalent to the derived functor of indecomposables. Let us
note that the unit and counit of this adjunction are actually always weak equiva-
lences, because every object of E1−Cogconil is cofibrant (cofibrations of coalgebras
are determined in chain complexes) and every object of E1 − Algaug is fibrant (fi-
brations of algebras are determined in chain complexes). The fact that E1 is a Hopf
operad gives a distributive law between E1 and Ass allowing to lift these functors
as follows

E1 −Algaug(dgCogconil)
oblv

))
E1 − Cogconil(dgCogconil)

Cobar

44

oblv
// E1 − Cogconil

Cobar
// E1 −Algaug

where oblv is the forgeful functor, and

E1 − Cogconil(dgCogconil)
oblv

))
E1 −Algaug(dgCogconil)

Bar

44

oblv
// E1 −Algaug

Bar
// E1 − Cogconil

.

This gives us a new adjunction

Cobar : E1 − Cogconil(dgCogconil) � E1 −Algaug(dgCogconil) : Bar

whose unit and counit are still weak equivalences (recall that weak equivalences
here are all determined in cochain complexes). This functor Cobar is the one of
Lemma 7.5 and the functor Bar is actually weakly equivalent to BenhE1

(they are
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both equivalent to the derived functor of indecomposables), which means that we
have a natural quasi-isomorphism

Id
∼→ BenhE1

◦ Cobar,
giving in particular

Sym≥1(V [1]) ∼→ BenhE1
Cobar(Sym≥1(V [1]))

in E1 − Cogconil(dgCogconil). �

The last step in the construction of the functor Ω̃ of Corollary 0.2 is the Koszul
duality equivalence Cobar(n) : En − Cogconil → En −Algaug in the case n = 2.

We wish to prove that Cobar(n)(Sym≥1(W )) ∼= Sym≥1(W [−n]). A first step is
to prove that, by formality of En-operads, it is enough to prove this result with
the operad Poisn (instead of En), given that Sym≥1(W ) can be seen as a Poisn-
coalgebra. For this, we use several features of the theory of right modules over
operads as thoroughly studied in [22].

Given any operad R equipped with an operad morphism E1 → R, one can
extend the bar construction from E1-algebras to R-algebras: this extended bar
construction is the functor SR(BR,−) : R − Alg → ChK associated to a certain
cofibrant quasi-free right R-module BR. Moreover, any weak equivalence of operads
ϕ : R ∼→ S induces a weak equivalence of right R-modules BR

∼→ ϕ∗BS , where ϕ∗BS
is BS equipped with the right R-module structure induced by ϕ. In the case of
En-operads, it turns out that this extended bar construction is given by the iterated
bar construction Bar(n) [25] (right adjoint to Cobar(n)).

Let us fix a formality morphism ϕ : En
∼→ Poisn and denote respectively

Bar
(n)
Poisn

and Cobar(n)
Poisn

the Koszul duality Bar and Cobar construction for Poisn-
algebras.

Lemma 7.7. Let n ≥ 2. One has natural equivalences

Bar(n) ◦ ϕ∗ ∼ Bar(n)
Poisn

,

where ϕ∗ is the restriction of structures from Poisn-algebras to En-algebras and

Cobar(n) ◦ ϕ∗ ∼ Cobar(n)
Poisn

where ϕ∗ is the restriction of structures from Poisn-coalgebras to En-coalgebras.

Proof. Given the formality morphism ϕ : En
∼→ Poisn, according to [22, Theoerem

7.2.2], there is a natural isomorphism
SEn

(BEn
,−) ◦ ϕ∗ ∼= SPoisn

(ϕ!BEn
,−)

where ϕ∗ is the restriction of structures fitting in the adjunction
ϕ! : Poisn −Alg � En −Alg : ϕ∗

and ϕ! is the extension of structures fitting in the adjunction
ϕ! : Poisn −Mod� En −Mod : ϕ∗

between right Poisn-modules and right En-modules. Since ϕ is a weak equiv-
alence, by [22, Theorem 16.B] the adjunction above between right modules is a
Quillen equivalence, so the weak equivalence of right En-modules BEn

∼→ ϕ∗BPoisn

corresponds by adjunction to a weak equivalence of right Poisn-modules ϕ!BEn

∼→
BPoisn

. Moreover, since ϕ! is a left Quillen functor, the right module ϕ!BEn
is still
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cofibrant, so this is a weak equivalence of cofibrant right Poisn-modules. By [22,
Theorem 15.1.A], it induces consequently a natural weak equivalence

SEn
(BEn

,−) ◦ ϕ∗ ∼= SPoisn
(ϕ!BEn

,−) ∼→ SPoisn
(BPoisn

,−),
hence

Bar(n) ◦ ϕ∗ ∼ Bar(n)
Poisn

where ϕ∗ is the restriction of structures. This proves the first claim. Since Bar(n)

fits in a Quillen equivalence with Cobar(n) (for both operads) as a left adjoint, the
first claim also implies that

Cobar(n) ◦ ϕ∗ ∼ Cobar(n)
Poisn

as well, where ϕ∗ is now the restriction of structures from Poisn-coalgebras to
En-coalgebras. �

We now compute Cobar(n)
Poisn

on Sym≥1(W ). Recall that to a a dg Lie coalge-
bra (g, δ, d), we can associate a Poisn-coalgebra defined by Sym≥1(g[n − 1]) with
cocommutative cobracket given by the one of Sym≥1(−) = Cocom (the free co-
commutative conilpotent coalgebra functor) and Lie cobracket induced by the one
of g and the Leibniz rule. Note that g 7→ Sym≥1(g[1 − n]) is the right adjoint of
the canonical functor Poisn − Coalg → Lie− Coalg given by P 7→ P [1− n]. The
following Lemma is rather standard

Lemma 7.8. One has
Cobar

(n)
Poisn

(Sym≥1(g[n− 1])) ∼=
(
Com(g[−1]), dCE

)
where Cobar(n)

Poisn
(−) is the En-Koszul duality functor Poisn−Cogconil → Poisn−

Algaug and the right hand side is the part of positive weight of the Chevalley-
Eilenberg algebra of the dg-Lie coalgebra g.

Proof. By Koszul duality of the Poisn-operad, the functor Cobar(n)
Poisn

: dg −
Poisn−Cogconil → dg−Poisn−Algaug on C is given by the free Pois!

n-algebra on
C endowed with the differential induced by its Poisn-coalgebra structure. Recall
that Pois!

n = ΛnPoisn. Hence, one has an equivalence
Cobar(n)(C) = Com

(
Lie(C[−1])[1− n]

)
see [74, 33, 39]. We are interested in the case where C = Sym≥1(g[n− 1]) which is
cofree as a conilpotent cocommutative coalgebra (in cochain complexes). It follows
that the Harrison cochain complex Har∗

(
Sym≥1(g[n − 1])

)
= Lie(Sym≥1(g[n −

1])[−1]) of Sym≥1(g[n− 1]) is quasi-isomorphic to (g[n− 1])[−1]. Hence we have a
quasi-isomorphism of cochain complexes
Cobar(n)(Sym(g[n−1])) = Com

(
Lie(Sym≥1(g[n−1])[−1])[1−n]

)
' Com(g[−1])

)
where the right hand side is identified with the part of positive weight in the
Chevalley-Eilenberg algebra of the Lie coalgebra g. (see [72, 33, 39] for detailled
computation of this dg-Poisn-algebra cohomology of the free Poisn-algebra gener-
ated by a dg-Lie algebra). �

We finally compute Cobar(n) on Sym≥1(W ).

Lemma 7.9. Let n ≥ 2. One has Cobar(n)(Sym≥1(W )) ∼= Sym≥1(W [−n]) where
Cobar(n) is the En-Koszul duality functor En − Cogconil → En −Algaug.
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Proof. By Lemma 7.7, we conclude that proving the result for the En-cobar con-
struction Cobar(n)(Sym≥1(W )) on Sym≥1(W ) considered as an En-coalgebra boils
down to check it for the Poisn-cobar construction Cobar

(n)
Poisn

(−) on Sym≥1(W )
considered as a Poisn-coalgebra with trivial cobracket. Applying the previous
Lemma 7.8 to the case g = W [1 − n] equipped with zero cobracket (or simply
redoing the proof of the Lemma in this simpler case), we get

Cobar(n)(Sym≥1(W )) = Com
(
Lie(Sym≥1(W )[−1])[1− n]

)
' Com(W [−n])

)
where the right hand side is identified with the part of positive weight of the
Chevalley-Eilenberg algebra of a Lie coalgebra with a null cobracket, since Sym≥1(W )
has a null cobracket. Hence it is formal and we get that Cobar(n)(Sym≥1(W )) '
Sym≥1(W [−n]). �

Proof of Proposition 7.4. By definition of the functor Ω̃ (Section 5.2), it is the com-
position of functors Cobar(2) ◦ φ∗BenhE1

(−)−. Hence, one has

Ω̃(Sym(V )) ' Cobar(n)
(
φ∗BenhE1

(Sym≥1(V ))
)

' Cobar(n)
(
Sym≥1(V [1])

)
by Lemma 7.6

' Sym≥1(V [1][−2]) = Sym≥1(V [−1])

by Lemma 7.9 in the case n = 2. �

8. Etingof-Kazdhan deformation quantization

We now apply our computations of the L∞-structure of the Gerstenhaber-Schack
complex to quantization of Lie bialgebras and prove Corollary 0.9.

If V is a finite dimensional vector space, by [58, Corollary 5.1], the Maurer-
Cartan elements of the graded Lie algebra∏

m≥1

(⊕
n≥1

Symn(V [−1])⊗ Symm((V )∗[−1])
)
[2]

(for the Lie bracket induced by the Poisson bracket of Definition 7.1) are exactly the
prop morphisms BiLie+

∞ → EndV , that is, the homotopy Lie bialgebra structures
on V . Here BiLie is the prop governing (dg-)Lie bialgebras structures on (dg-
)vector spaces, BiLie∞ is its standard cofibrant resolution, and BiLie+

∞ is the
result of the + construction (Section 3) on the later one.

By Theorem 7.2, this Lie algebra is the one of H∗GS(Sym(V ), Sym(V )) and is
quasi-isomorphic to the deformation complex C∗GS(Sym(V ), Sym(V )). This is the
first step to derive the Etingof-Kazdhan quantization theorem from the formality
theorem.

Next, let ϕ+ : Bialg+
∞ → EndPolySym(V ) be the map canonically associated to the

(cocommutative and commutative) bialgebra structure on Sym(V ). The Etingof-
Kazdhan quantization theorem assert that any Maurer-Cartan element in the above
Lie algebra gives rise functorially to a formal deformation of ψ+, in other words a
point of the moduli space Bialg+

∞{Sym(V )}ϕ+(k[[~]]). These observations (a dg
extension of the quantization of Lie bialgebra was established in the Appendix of
[34]) can be made for a dg vector space V as well.
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According to Merkulov [59], there is an explicit completed9 dg prop (DefQ+, d+)
such that, for any cochain complex (V, dV ), the representations of (DefQ+, d+) into
(V, dV ) are in bijection with polydifferential representations of homotopy bialgebra
structures on the cochain algebra (Sym(V ), dV ). In other words

(8.1) MorProp(DefQ+, EndV ) ∼= MorProp
(
Bialg+

∞, End
Poly
Sym(V )

)
.

Polydifferential representations are explained in [58, 59]; they amount to replace the
endomorphism prop EndSym(V ) with its polydifferential endomorphism EndPolySym(V )
which is the dg-sub-prop of EndSym(V ) spanned by those multilinear maps that are
(normalized) polydifferential operators on Sym(V ). Merkulov [59] has proved that
the natural map

(8.2) MorProp(DefQ+, EndV ) '−→MorProp
(
Bialg+

∞, EndSym(V )
)
.

is a quasi-isomorphism.

Using the above analysis, the formality Theorem 0.8 implies the following quanti-
zation theorem. Following the previous notation, we have the map ϕ+ : Bialg+

∞ →
EndSym(V ) giving the dg bialgebra structure of Sym(V ) for a cochain complex V .
Further, we also have 0+ : BiLie+

∞ → EndV the (trivial) map corresponding to the
trivial (= null) Lie bialgebra structure on V .

Theorem 8.1. Let (V, d) be a (Z-graded) cochain complex with finite dimensional
cohomology in each degree. There is a weak-equivalence of formal moduli problems

Bialg+
∞{Sym(V )}ϕ

+
' BiLie+

∞{V }0
+

In particular, given an artinian cdga R, any R-deformation of the trivial Lie
bialgebra structure on V (in other words a dg-bialgebra structure on V ⊗R) gives
rise to a (essentially unique isomorphism class of) R-deformation of Sym(V ).

Proof. By Theorem 7.2 and Theorem 0.6, we have an equivalence of deformation
complexes

Def(Sym(V )) ' gϕ
+

Bialg+
∞,Sym(V ) ' C∗GS(Sym(V ), Sym(V ))

' Sym≥1(V [−1])⊗Ŝym
≥1

(V )∗[−1])
' g0+

BiLie+∞,V

where the last equivalence is from [58, Corollary 5.1]. Then the result follows from
Theorem 2.10 or Lurie classification of (commutative) formal moduli problem [52].

�

The theorem also implies that formal deformations of the null Lie bialgebra
structure quantize into formal deformation s of the symmetric bialgebra on V ,
hence Corollary 0.9.

Proof of Corollary 0.9. The first claim of the corollary is equivalent to the existence
of a natural (in V ) weak-equivalence

(8.3) Bialg+
∞{Sym(V )}ϕ

+
(k[[~]]) ' BiLie+

∞{V }0
+

(k[[~]])

9completion for the filtrations induced by the genus and the number of vertices
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where, for any formal moduli problem F , we denote

F(k[[~]]) := lim
i
F(k[~]/hi).

By [78, Corollaire 2.11] (or [52]), there is an natural weak-equivalence

(8.4) F(k[[~]]) ' Map(k[−1], gF )

where gF is the L∞-algebra associated to the formal moduli problem F and k[−1]
is the abelian one dimensional Lie algebra concentrated in degree 1.

The equivalence (8.4) now implies the first claim (8.3) in virtue of Theorem 8.1
(and Theorem 5.6).

For claim (2), we note that the above proof relies essentially on the formality
Theorem 7.2 for the underlying L∞-algebra of the Gerstenhaber-Schack complex of
Sym(V ). This theorem relies on the formality of the En-operad for n ≥ 3, which
does not rely on the choice of a Drinfeld associator. �

Our proof somehow goes in the converse way as Merkulov [59] proof of a dg prop
quasi-isomorphism EK : (DefQ+, d+) → (B̂iLie, 0), which relies in loc. cit. on
the existence of the Etingof-Kazdhan quantization functor for dg Lie bialgebras.
Our proof establishes first this equivalence, from which the above statement ac-
tually follows. Applied to an ordinary finite dimensional vector space, our result
gives a new proof of Etingof-Kazhdan deformation quantization. Indeed, homo-
topy Lie bialgebra structures BiLie∞ → EndV are in this case strict Lie bialgebra
structures: since the endomorphism prop is concentrated in degree 0 and prop mor-
phisms preserve the degree, the generators of positive degree in BiLie∞ are sent
to zero. In particular, the 1-cycles whose images under the differential of BiLie∞
are the 0-boundaries inducing the Jacobi, co-Jacobi and Drinfeld’s compatibility
relations in homology, are sent to 0. Since dg prop morphisms commute with the
differentials, this means that these 0-boundaries are also sent to 0. That is, the two
generators of degree 0 in BiLie∞ are sent to a bracket and a cobracket satisfying the
Jacobi, co-Jacobi and Drinfeld’s compatibility relations, i.e. a strict Lie bialgebra
structure. This is a particular incarnation of the general fact that any P∞-algebra
structure on a vector space is actually a strict one. Non trivial homotopy algebra
structures appear only in the differential graded setting. By the same argument,
homotopy bialgebra structures Bialg∞ → EndSym(V ) are only the ones factoring
through Bialg.

Moreover, it further applies to any Z-graded dg Lie bialgebra g with cohomology
of finite total dimension as well as homotopy Lie bialgebra structures on g.
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