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ABSTRACT
Analysis processes of learning traces, used to gain important peda-
gogical insights, are yet to be easily shared and reused. They face
what is commonly called a reproducibility crisis. From our obser-
vations, we identify two important factors that may be the cause
of this crisis: technical constraints due to runnable necessities, and
context dependencies. Moreover, the meaning of the reproducibility
itself is ambiguous and a source of misunderstanding. In this paper,
we present an ontological framework dedicated to taking full advan-
tage of already implemented educational analyses. This framework
shifts the actual paradigm of analysis processes by representing
them from a narrative point of view, instead of a technical one. This
enables a formal description of analysis processes with high-level
concepts. We show how this description is performed, and how it
can help analysts. The goal is to empower both expert and non-
expert analysis stakeholders with the possibility to be involved in
the elaboration of analysis processes and their reuse in different
contexts, by improving both human and machine understanding
of these analyses. This possibility is known as the capitalisation of
analysis processes of learning traces.

CCS CONCEPTS
• Information systems→Data analytics; •Computingmethod-
ologies → Knowledge representation and reasoning; • Ap-
plied computing→ E-learning;

KEYWORDS
Learning analytics, analysis processes of learning traces, ontology,
context, reproducibility, reuse, adaptability, openness, capitaliza-
tion.
ACM Reference Format:
Alexis Lebis, Marie Lefevre, Vanda Luengo, and Nathalie Guin. 2018. Capi-
talisation of Analysis Processes: Enabling Reproducibility, Openness and
Adaptability thanks to Narration. In LAK ’18: International Conference on

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
LAK ’18, March 7–9, 2018, Sydney, NSW, Australia
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6400-3/18/03. . . $15.00
https://doi.org/10.1145/3170358.3170408

Learning Analytics and Knowledge, March 7–9, 2018, Sydney, NSW, Australia.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3170358.3170408

1 INTRODUCTION
In Learning Analytics, analyses are used to produce useful peda-
gogical information [13]. From a computer perspective, analyses
are concretised using analysis processes. These processes are a
sequence of identifiable and reusable operations within analysis
tools, named operators [20]. However, analysis processes are hardly
reproducible.

There is a growing concern regarding the lack of scientific re-
producibility and its effect on the credibility of results and the
validity of methodologies used. Indeed, this reproducibility is an
important driver in scientific research [2]. Paradoxically, the re-
producibility term is not coined with a unified definition and has
several meanings, depending on the considered field. For example,
in computer science, reproducibility is strongly related to the open-
ness of both computer code and data, in order to repeat analyses
with the same initial data [22]. In section 3, we propose a definition
of reproducibility to clearly identify the elements involved.

The issue of reproducibility for analysis processes can be ex-
plained because the later combine various techniques, such as
statistical and data mining ones [27], also confronted with a re-
producibility issue [5]. Indeed, analysis processes have strong de-
pendencies on implementation contexts, specificities of data used
(e.g. formalism), and technical specificities (especially regarding
analysis tools) [19]. Therefore, these dependencies make the whole
procedure of reusing and sharing analysis processes difficult, if not
irrelevant, and scarcely comprehensible [10].

Nevertheless, providing the TEL community with the possibility
to reproduce existing analysis processes in other contexts would
be a major breakthrough. It would enable us to envisage an unified
and understandable ecosystem of analysis processes. This ecosys-
tem, if open, could also become a driver within the community
for co-constructed analyses, thus making it possible to reuse and
adapt such analyses. This is what we mean by the capitalisation of
analysis processes. We present in this paper our work related to the
capitalisation of analysis processes of learning traces. In section
3, we propose a formalisation of capitalisation and compare it to
reproducibility.

We propose a paradigm shift for the formalisation of analysis
processes, achieved by a narration of these analysis processes. We
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define the narration as the representation of analyses and their con-
texts with high-level and structured concepts, setting specificities
of technical tools aside. This narration enables the description of
the analysis elements (e.g. descriptive, contextual, relational), while
avoiding as far as possible biases related to implementation con-
straints. These described and abstracted analysis processes can be
capitalised, as presented by our first experimental results in section
6. In section 4, we present our ontological framework designed to
describe such narrated analysis processes. This framework is de-
signed to be used by the analysis designers (e.g. statistician, analyst,
researcher). We then present an implementation of our framework
and discuss the impact of the narration on existing analysis pro-
cesses in section 5.

2 RELATEDWORKS
Several research studies tried to define analysis processes, leading
to an improvement of their theoretical and conceptual grounds. One
result of these studies is that analysis processes can be considered as
a succession of configured operations. These operations modify the
state of their input data in order to produce relevant information as
output [18, 20]. In addition, analysis processes, or a sub-part, can
be reused in other analysis processes [1], thus providing evidence
of the importance of the capitalisation. Moreover, definitions of
analysis life cycle have been produced by these studies [1]. These
definitions introduce interesting nomenclatures, especially regard-
ing preprocessing, analysis and post-processing steps [14, 25].

A sharing effort exists within the community, primarily con-
cerning the data used in analysis processes. Two main approaches
should be noted. The first concerns standardisation of the con-
tent used inside educational systems themselves [24], while the
second approach proposes data formalisms and specifications, as
with the well-known Datashop [17]. While the former potentially
limits diversities of educational context, the latter often implies
format constraints over data. However, both contribute to the re-
inforcement of the interoperability possibilities of TEL systems.
These approaches also indirectly provide partial responses about
interoperability between analysis tools [11]. Moreover, some of
these formalisms use dedicated semantic vocabularies for express-
ing pedagogical data and activities, such as xAPI1. The information
conveyed by such semantic vocabularies provides prospects about
reuse and understanding of analysis processes [9].

In addition to these works on data sharing, efforts have also
been made to share analysis processes. Although less common,
they are worth noting. Some works envisage general building meth-
ods concerning analyses [7]. However, they still have to deal with
the entanglement between data, context and technical specificities.
Thus, we believe that they are not suited for capitalisation. Another
approach consists of an online inventory designed for exploratory
approaches. This lists the available analysis processes in a specific
analysis tool [20]. However, similar to the above approach, this
approach does not solve understandability and reuse issues con-
cerning analysis processes and their related operators [26]. Indeed,
technical context constraints alter reuse of such processes inside
analysis tools. Analysis contexts (e.g. pedagogical system) are also
involved in these issues. The model developed by Chatti & al. [8]

1https://experienceapi.com/

gives good prospects regarding consideration of the pedagogical
context, reasons, and technical resolutions of analyses. However,
consideration of these contexts is not clearly established in works
related to analysis processes within the TEL community. The main
reason is that analysis tools allow the design of analysis processes
only from a computational perspective.

Interesting approaches are introduced by studies and works
about workflows. Workflows are used in several fields to represent
a variety of processes (e.g. biology). The flow of analyses is rep-
resented and is supposed to be understandable per se. Therefore,
runnable workflows were considered for a time as a solution for
reproducibility of analysis processes. Moreover, some works are
concerned with an open science perspective. These works require
additional information as proof of analysis validity, like experimen-
tal protocols or supplementary resources [12]. However, as noted by
Belhajjame & al. [3], workflows break off, due to their sensitiveness
to technical constraints and their poor adaptability possibilities.
This is imputable to the computational prerequisite of workflows
and the lack of descriptions attached to the elements involved (e.g.
operators). These issues hinder the reuse and adaptability of work-
flows. To reduce such constraints, works concerning the semantic
descriptions of process components can be considered, like wf4ever
[23]. These constitute an excellent means of enhancing reuse and
sharing of processes, as shown by Bowers & al. [6]. Thus, these
works introduce new ways of considering capitalisation of analysis
processes of learning traces using TEL specificities, and provide
new ways to involve TEL actors.

To our knowledge, only one work [19] emancipates analysis pro-
cesses from the computational aspect. This computational depen-
dency generates considerable technical constraints, thus affecting
the concepts conveyed by these analyses [4, 19]. Moreover, it also
hinders the description of these analyses. Actual description possi-
bilities are often plain text, leading to ambiguous understanding.
Therefore, analysis choices cannot be clearly expressed or discussed,
which has an impact on analysis adaptability. This is why we pro-
pose a new paradigm to formalise analysis processes, based on a
narrative approach, instead of using current designed formalisms
based on computational requirements.

3 ADDRESSING THE POLYSEMY OF
REPRODUCIBILITY AND CAPITALISATION

Several works show that the meaning of reproducibility itself is
vague and greatly dependent on the field where the term is used
[16, 22]. Therefore, capitalisation of analysis processes, as under-
stood in this paper, cannot be considered without proper formalisa-
tion of reproducibility. In this section, we propose to define both
capitalisation and the reproducibility terms.

According to variousworks such as the VIM (International Vocab-
ulary of Metrology) or ACM (Association for Computing Machin-
ery) recommendation concerning reproduction, several dimensions
in reproducibility can be noted [15, 16]. Two recurrent dimensions
are (1) whether or not a material is used by persons who initially
designed it, and (2) whether or not the setup for use of this mate-
rial is identical to the initial one. Less often, a third dimension in
reproducibility can nevertheless be considered. This concerns the
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Figure 1: Illustration of the properties required for capitalising analysis processes, organised hierarchically depending on
their dependencies. The hierarchy means that a property requires the property directly to its left in order to be consistent.

similarity of resources (e.g. data) used with the material compared
to those used initially.

Additionally, we found that three terms are often used alongside
reproducibility, acting as a specification of its ownmeaning, namely
the replication, repeatability and reuse terms. Moreover, these terms
seem to be more consistent regarding their definition across the
various fields. Therefore, we have used these works and definitions
as a basis to clarify what we mean by reproducibility for analysis
processes, and eventually by capitalisation of analysis processes.
We consider reproducibility as the result of an analysis process that
is simultaneously replicable, repeatable and reusable.

Replication means that an analysis process has its operations
clearly identified and their order defined. Therefore, replication does
not specify any contextual requirement and acts as a representation
of an analysis.

Repeatability introduces the possibility to redo an analysis
with the same dataset, to verify the results produced. Therefore,
contextual dependencies are introduced.Without such repeatability,
there is no information about whether an analysis is prone or not
to biases and misleadings (scientific or technical). Repeatability is
an important part of an open-science dynamic.

Reuse implies that an analysis is sufficiently well designed to
be used on other datasets. Thus, only minimum modifications can
be made to its implementation, so as not to alter expected results
and scientific theory backing it. This reuse requires reduction of
context dependencies.

With these definitions, a hierarchical structure within the repro-
ducibility of analysis processes is clearly visible. Figure 1 summa-
rizes the hierarchy of these three properties, in blue. These blue
rectangular arrows indicate that the reuse property relies on the
property of repeatability, which itself relies on the replication prop-
erty. These three properties constitute reproducibility.

However, from our perspective, capitalisation encompasses re-
producibility and involves three more properties: a property of
comprehension, a property of openness (including the sharing prop-
erty), and a property of adaptation.

A comprehensible analysis process means that the different
aspects of the analysis can be understood by the analyst. Not only
should technical information be described, but also more conceptual
information, such as the goal of the analysis, the scientific theories
employed or the data used. Comprehension of analyses is required
to perform complex tasks, and this lack of comprehension is often
the reasons why analyses are not reused [3].

Making an analysis process genuinely open can be a complex
task, as shown in section 2. Openness requires an analysis process

to be accessible, thanks to an open repository for example. How-
ever it also needs to maintain its scientific and implementation
consistencies while outside of its former analysis tools. Therefore,
an open analysis process must use unambiguous definitions for
both itself and its inner components.

Finally, adaptation of an analysis process indicates that mod-
ifications can be performed to address other needs. These needs
should have a context similar to the context of the initial analysis.
However, modifications performed require respect and matching of
the conceptual ground of the analysis itself, as otherwise improper
analysis processes could emerge.

The rectangular arrows in Figure 1 show how these three proper-
ties coexist with reproducibility to create capitalisation of analysis
processes. Again, the succession of rectangular arrows indicates
that a property is required by the property following it. Without
one of these six properties, we believe that capitalisation of analysis
processes cannot be correctly performed.

4 AN ONTOLOGICAL FRAMEWORK
Our goal is to enable capitalisation of analysis processes of learning
traces inside the TEL community. We believe that capitalisation can
play the role of a vector of improvement for Learning Analytics, in
that it can assist analysis stakeholders in elaborating analyses, in in-
terpreting and validating analyses results, and in sharing analyses.
Moreover, it will enable TEL stakeholders (e.g. teachers, educa-
tional institutions, students, etc.) to be involved, mostly via the
consultation and annotation of such capitalised analysis processes.

This section presents our ontological framework for capitalising
analysis processes of learning traces. Further to an examination of
works on the independence of analysis processes [19], we decided
to adopt a more conceptual representation of analysis processes.
Currently, representation of analysis processes depends on the anal-
ysis tool used, and is dependent on computation prerequisites. We
propose a narrative representation of analysis processes. Briefly,
the narration consists of an emphasis on non technical elements
and notions conveyed by and within an analysis, as well as on the
relations that they share. The narration structures information to
enable several reading levels. It also sets direct computational possi-
bilities aside, to prevent any biases implied by technical constraints.

4.1 Proposition
The actual analysis paradigm cannot efficiently take into account
analysis processes, their inner components, their related informa-
tion, and the relations of their inner elements. Indeed, capitalisation
is impaired by computational biases related to analysis tools. Our
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Figure 2: Simplified transposition of our ontology into UML.
The * symbol means inherits from Framework Element.

framework formalises these complex analysis elements thanks to
semantic elements, structured together. It acts as a projection from
these technical elements to higher-level concepts, in order to foster
both human and machine comprehensions. This constitutes the nar-
ration of analysis processes. Therefore, narrated analysis processes
are not designed to be directly computable (i.e. do not process data).

Below, we present the ontological framework in detail and ex-
plain how the narration is shaped. We present it in an incremental
way, to emphasise which ontological elements are themost involved
in each layer of capitalisation’s properties (see Figure 1). Figure
2 is a simplified transposition of our ontology into UML. The full
version of the ontology is accessible online2. It reuses some terms
from other works, such as xAPI or wf4ever. The goal is to foster
interoperability between works and technologies, and ultimately
between communities.

An analysis toolTi has a set of operationsOPTi , a set of operation
attributes BTiOP and a set of specificitiesWTI . Let us define it as
Ti = {OPTi ,B

Ti
OP ,WTi }, i ∈ N.

Definition 4.1. There is a narrative function ni projecting the
elements of an analysis tool Ti into our ontological framework F ,
such as:

ni : Ti → F (1)

4.1.1 Replication. According to the given definition of replica-
tion in section 3, to replicate an analysis process requires definition

2https://liris.cnrs.fr/~alebis/research/CAPTEN/ontology.html

of the operators used and their order. With capitalisation as a goal,
we believe that it is not possible to use current developed operators
or formalisms, as both are dedicated to particular needs and cannot
be used for a generic approach. Thus, they are not suitable candi-
dates for replication (see Section 2). However, considering common
denominators between similar implemented operators has proved
to be a good procedure for producing technically independent op-
erators [19]. Therefore, we define the concept of narrated operator
as the semantic conveyed by similar implemented operators, with
no computational capability. This means that implemented opera-
tors sharing same goals can be grouped under the same narrated
operator, independently of their analysis tool.

Definition 4.2. Let OPkSim be a set of similar operators OPk be-
longing to n different analysis tools Ti , i,n ∈ N, such as OPkSim =⋃n
i OP

k
TI
. We define the associated narrated operator NOPk as

follows:
NOPk = ni (OPkSim,i ) (2)

Where ni is the narrative function associated with Ti (see eq. 1).

As an illustrative example, let us consider a filter operator. De-
pending on the analysis tool, its implementation, its requirements,
its configurations and even its behaviours may be different. A filter
used in a workflow environment will be different from that used
programatically or from that used on semantic data (e.g. using a
SPARQL query). However, the intent is the same: namely to filter
something. A narrated operator filter will represent these various
forms with a semantically unified definition.

The behaviour of a narrated operator is defined by its input pat-
tern Ei , output pattern Bi , and parameter pattern Pi . The top of
Figure 2 illustrates these relations. The input pattern of narrated
operator defines what elements are expected to be used by it. This
means that applying implemented operators of the narrated oper-
ator type is expected to be consistent if the elements concerned
match the input pattern. The output pattern represents how the
data descriptions are supposed to evolve when an operator of this
type is used.

Analogously, we define the concept of the narrated analysis pro-
cess. It represents the semantic conveyed by analyses implemented
in different analysis tools, but with the same goals. It can be assimi-
lated to a high-level methodology of an analysis. In our ontology,
the narrated analysis process concept is subsumed by the narrated
operator concept. Consequently, narrated analysis processes can
be used as an operator in the description of other narrated analysis
processes, in accordance with the imbrication property [1].

Definition 4.3. LetAP i be an analysis process implemented in an
analysis toolTi , made up of H ordered operators {OPTi ,h},h ∈ H ∈
N the position. We have the associated narrative analysis process
NAP i as follows:

NAP i = ni (AP i ) (3)
However, a narrative analysis process is not just the combination of
the implemented operators which have been described within our
framework. It also consists of the other elements ε of the framework
F presented in the sections below, where ε ⊆ F .

NAP i =
H∑
h=0

ni (OPhTi ) + ε (4)

https://liris.cnrs.fr/~alebis/research/CAPTEN/ontology.html
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4.1.2 Repeatability. Data formats and data granularities need
to be unified among analysis processes, in order to guarantee the
repeatability property. To overcome these limitations, we reduce
granularity of data to the essential by conserving only the data
descriptions, i.e. the variables. By so doing we preserve the global
semantic of traces, while avoiding technical constraints. Addition-
ally, these variables are supposed to be linked together according
to the implicit relations they share. By (manually) extracting such
implicit relations, the resulting graph of variables conveys informa-
tion that can be used as resources for repeatability. Indeed, a graph
of variables is an overview of variables and their relations. There-
fore, it can be associated with any data formats or structures, as
long as the information conveyed by the data match such a graph.

A graph of variables is a directed graph defined by д = (V ,A)
where V is the set of variables, and A the set of the directed edges
an = (vi ,vj ), where an ∈ A, and vi ,vj ∈ V . These graphs of
variables are used to represent data in narrated analysis processes.
They are also used to represent the input pattern Ei and the output
pattern Bi of a narrated operator i . Figure 2 shows how this concept
of graph of variables fits into the ontological framework.

Although narrated operators do not compute data to produce
other data, they still use graphs. Matching of a narrated input pat-
ternwith a graph of variablesmust result in a new graph of variables
considered as the output. The resulting graph acts as a view of what
is happening to the variables, at a specific moment in the narrated
analysis process. This is equivalent to a state transition of the vari-
ables of the analysis when a narrated operator is applied. Based
on Kreuseler et al.’s work [18], we define the following function
γ : I × NOP × Z → O | I ,O ∈ G, as the state transition function
between graphs of variables and narrated operators, where I is a
set of inputs, NOP is a set of narrated operators, Z is a set of steps
(described further in section 4.1.4), O is a set of outputs, and G the
set of the graphs of variables.

Figure 3 represents a step in a narrated analysis process (see
section 4.1.4). It shows the effect of a narrated operator (here, a
correlation) on an input graph of variables via the output graph of
variables. The variables usedwith a narrated operator are associated
with its input pattern nodes. Here, the green variables of the input
are those linked to the pattern variableNumerical Entity. The output
pattern of the operator represents the generic variable expected of
such a correlation narrated operator: a coefficient of correlation.
This generic correlation variable has to be contextualised according
to the current state (see section 4.1.6) before being attached to the
output graph. In this illustration, a linear coefficient of correlation
is represented.

4.1.3 Comprehension. Information described directly in imple-
mented analyses is scarce and unstructured. This is a result of
computation and execution necessities of the analysis tools [3].
From our observation, we find that information described in anal-
yses has often three dimensions: technical, methodological, and
related to the utilisation of results. While the technical dimension
relates to very specific information about analysis tools, the two
others provide a more comprehensive understanding of analyses.
Methodological information tends to explain the validity of the
analysis (such as a scientific validity), while utilisation information
tries to prevent exploitation misuses.

Figure 3: Representation of a step in a narrated analysis pro-
cess. A step (section 4.1.4) involves a narrated operator (sec-
tion 4.1.1), the green trapezoid at the centre, applied on in-
put, described by a graph of variables on the top (section
4.1.1). The produced output is described by the bottomgraph.
Some semantics are applied on vertices and directed edges
(section 4.1.5).

Our narrative approach is designed to represent this information.
Our framework defines the notion of a narrative element (see Figure
2). The framework structures information related to an analysis
with independent subsets of typed information. Thus, a narrative
elementmi ∈ M represents a specific type of information with a
predefined meaning (e.g a name, a goal, an hypothesis).

Moreover, a narrative element cannot exist on its own in our
framework but it is always related to strictly one framework ele-
ment. The resulting relation is a directed edge ai = (mi ,x), where x
is an element of our framework F , such as x ∈ F . This implies that
each represented element of a narrated analysis process or opera-
tor can be justified, explained or described. This relation property
also defines complex descriptive structures. A narrative element is
defined as a framework element and consequently can also have
other dedicated narrative elements.

Definition 4.4. Let τ−1 be a transposing function for an imple-
mented operation from a tool to our framework, where τ−1

i : Ti →
NOP × NAP . Let ϕ be a function extracting the related information
associated with an implemented operation, where ϕi : Ti → N ,
where N = {M,AM } with AM = {vi ,vj }, where vi is a narrative
element, such as vi ∈ M . We can further define the narrative func-
tion (1) as a combination of the transposing function τ−1

i and of
the extracting function ϕi :

ni = τ
−1
i + ϕi (5)

As an example, let us consider an implemented analysis where a
statistical model is built. Then, the null hypothesis for this model is
tested. The threshold used here for the p-value is lowered to 0.005
instead of a more usual threshold of 0.05. In our framework, it is
possible to describe in a structured way information associated with
this threshold lowering. For example, this lowering could be based
on a hypothesis derived from the analyst’s reflection provided by a
studied paper, dedicated to the analysis field. Here, based, derived
from, provided by and dedicated to are the relations (or directed
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edge) that link the narrative elements A hypothesis, the analyst’s
reflection, a studied paper and the analysis field.

4.1.4 Reuse. In order to be considered as reusable, an analysis
process implementation and its results should be able to withstand
slight modifications. Otherwise, implementation issues may arise
as well as inconsistent outcome results. These modifications may
originate from similar datasets or from a change of analysis tools.

To address this necessity for sustainability to slight changes,
we aim to capture the intent of the analyst when an operator is
used within an analysis process, in an analysis tool. We define the
notion of step. Unlike a narrated operator which only represents
an operation to perform, a step conveys information about the
use of this operation on data. Therefore, a step z encapsulates
a narrated operator, the input graph of variables and the output
graph of variables, as shown in Figure 3. A step also encapsulates
the intents it conveyed by means of the narrative elements. We
have the following tuple z = {Iz ,NOPz ,Oz ,Nz }. Therefore, a step
is a narrative description of the state evolution of the inputs. It is
the building block of the narrative analysis processes (see Figure
2). Moreover, the relation shared by steps can be represented by a
directed edge azizj = (zi , zj ).

To prevent both misinterpretation and misuse of results, the
expected results of an analysis are formalised in our ontology. We
define the notion of relevant results Ki that should be produced by
a narrated analysis process i . To describe the general meaning of
these relevant results, variables are used. The relevant results Ki
are also represented as a graph of variables which is a subset of
outputs produced by the steps, where Ki ⊆ Oi ,Oi ⊆ O ∈ G. Narra-
tive elements can also be used to describe these results. Narrative
elements should be used to add specificities related to the results
(e.g. to list data obtained during an analysis). Narrative elements
can also be used to describe important information, such as the
expected scope of the validity of results.

Definition 4.5. A narrated analysis process produces relevant
results for a specified need. The inner differentiation we make
between a narrated operator and a narrated analysis process is
that a narrated operator does not produce relevant results. This
differentiation can be expressed as follows:

NAPi = NOPi ↔ Ki = ∅ (6)

Narrated operators and narrated analysis processes are repre-
sented in a non computational way in our framework. Nevertheless,
information about implementation is formalised and embedded into
narrated operators, narrated analysis processes and steps. It consists
in indicating which analysis tools can perform the specified task,
and the associated operations and configurations. Thus, implemen-
tation information acts as an injective functionτ : NOP×NAP → T ,
allowing a narrated operation to be instantiated in an analysis tool.

4.1.5 Openness. Disparate implementation of analysis tools has
a direct impact on the openness of analysis processes. This creates
semantic divergences when analysis processes are used outside
their former context. To address this issue, our framework uses the
semantic web and proposes a controlled vocabularyW . It is defined
as a set of semantic terms {w1, . . . ,wn }, wherewi ∈W , i ≤ n,n =
card(W ). These terms are represented by their Internationalized

Resource Identifier (IRI) in the framework. Therefore, works such
as xAPI or wf4ever can be used in the controlled vocabularyW to
promote interoperability and uniformity.

These semantic terms are used to describe the framework ele-
ments. To do so, a semantic term is either a semantic classwv

i ∈W
v ,

W v ⊆ V or a semantic propertywp
i ∈W

p , such asW =W v ∪W p .
A directed edge aj = {v0,v1} is used with a wp

i semantic prop-
erty to create a semantic triple a′j such as a′j = (v0,w

p
i ,v1). The

conveyed semantic of the relation between two elements is then
expressed in our framework.

It is possible to enrich the controlled vocabulary with new terms
and use them afterwards. Thus, for n new semantic terms, we
defined the vocabulary enrichment asW ∪ {w1, . . . ,wi , . . . ,wn },
where 0 < i ≤ n. We believe that this property can also lead to a
unified and shared vocabulary inside the TEL community.

As a comprehension example, let us consider Figure 3. The nar-
rated operator is named Correlation. This name is a narrative
element of the class name, semantically identified by the term
<IRI:name>, which has been instantiated. Here, <IRI:Correlation>
is its content, also a semantic term. The graphs of variables (in-
puts, outputs and patterns) are also semantically enriched. Terms
are used for the relations and for the variables. Here, use of xAPI
vocabulary could become extremely relevant to gain even more
interoperability.

4.1.6 Adaptability. Finally, we were interested in making the
narrated analysis processes adaptable. We have observed that adapt-
ability and context are closely related. However, this important in-
formation is either not representable or sparse and badly structured
in the analysis tools. This lack is at the origin of the efforts made in
works concerning additional resources attached to workflows [4].
Therefore, we propose a formalisation of the context of an analysis
in our framework.

We propose to formalise the context C in three categories; C1

category, which defines the analysis context itself (i.e. dependencies
generated by the elements used in the analysis);C2 category, which
defines the utilisation context of the analysis (i.e. pedagogical situ-
ation in which a process is usable); and C3 category, which defines
the viability context of produced knowledge (i.e. the scope in which
knowledge is supposed to be relevant), such as C = {C1,C2,C3}.

The context C is extracted from an implemented analysis by
studying its available resources and understanding their relation
to the analysis. However, even data itself can have a direct impact
on contexts. That is why our framework can represent the effects
of data on the context C , mostly through the narrative elements.
Figure 2 shows the relations existing between different elements of
the framework.

Definition 4.6. Letψ be a function extracting the context of an
implemented analysis from an analysis tool to our framework, such
asψi : Ti → N . Let κ be a function extracting specificities of an im-
plemented operation from an analysis tool to our framework, such
as κi : OPi × BiOP → N . The function extracting the related infor-
mation of an implemented operation (5) is defined as the following
combination of these two functions above:

ϕi = κi +ψi (7)
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These structured contexts are used in our ontology to indicate
critical points in narrated analysis processes and steps. Thus, con-
texts are semantically related to these elements. Contexts are also
used to specialise the generic behaviour of a narrated operator
when it is used inside a step. This is illustrated by the function
ParameterInfluence, VariableContextualisation and VariablesRelation
in Algorithm 1. Algorithm 1 presents, at a step z ∈ Z , the state
transition of an input graph of variables Iz processed by a narrated
operator NOPz , and the resulting output graph of variablesOz . The
γ state transition function first requires that all variables of the
NOPz input pattern are associated with an input variable of the
input graph. The same applies to the parameters. Then, according
to the NOPz behaviour defined by its output pattern, the new graph
Oz is produced with the new variables and relations contextualised.

Algorithm 1 γ state transition function
Require: Ez , Pz ,Bz ∈ NOPz , Iz ∈ I ∈ G, z ∈ Z

for all e ∈ Ez do
ve ← AssociateVariable(e, Iz )
U ← {e,ve }

end for
for all p ∈ Pz do
vp ← ParameterInfluence(p, Iz )
if vp , ∅ then
U ′ ← {p,vp }

end if
end for
Oz ← Iz
for all b ∈ Bz do
V ←VariableContextualisation(b, z,U ,U ′), V ∈ Oz
if U , ∅ ∨U ′ , ∅ then

for all u ∈ U do
A← {u,b,VariablesRelation(u, z)},A ∈ Oz

end for
for all u ′ ∈ U ′ do
A← {u ′,b, VariablesRelation(u ′, z)},A ∈ Oz

end for
end if

end for

As a final example, let us consider again the step presented in
Figure 3 which defines a correlation between the age of a student,
his/her grades, his/her events and videos played in a MOOC. The
threshold used to define whether or not variables are correlated is,
in fact, contextualised by a MOOC environment (i.e. corresponds
to C1). In a more pervasive learning context for example (also C1),
it could be hypothesized that the correlation threshold should be
relaxed, due to the diversity of resources available to the student.
Therefore, taking context specificities into account leads to adap-
tation recommendations before reusing this step, thus possibly
avoiding misuses and misinterpretations.

5 INSTANTIATION OF OUR FRAMEWORK
We have developed the prototype CAPTEN (Capitalization of Anal-
ysis Processes for Technology Enhanced learNing) for the capitalisa-
tion of analysis processes of learning traces. The prototype currently

implements an important subset of our ontological framework. All
the elements presented in Figure 2 have been implemented, at least
partially, and can be used to represent analyses. It is a client side
application, based on web technologies. It is available online3 and
can be installed locally. This section explains the methodology
used to reify several existing analysis processes in our instantiated
framework. We then comment the impact of the narration.

5.1 Reifying Analyses in CAPTEN
Before importing existing analysis processes in our prototype, we
populated it with common operators and TEL concepts. First, we
looked into which TEL terminologies were likely to be used. To
do so, we manually studied several datasets and papers in order
to extract recurring terminologies, such as Student or the answers
action. We then defined them in the vocabulary of the prototype,
with a built-in interface.

Afterwards, we consulted 5 analysis tools: Orange/UnderTracks,
SPAD, R, Knime, Weka. We looked for basic operations, such as
addition or filter. The goal was to identify which operations are
common in the majority of these tools (majority was defined as at
least 4 tools out of 5). These common operators were then defined
in our prototype as narrated operators. The 3 patterns of a narrated
operator were defined by observing the common behaviour of each
operator inside its analysis tool.

On completion of population, we selected 9 TEL analyses. These
analyses were mainly derived from our current research project.
The reason for this choice is related to the convenience of analy-
sis accessibility and the discussion between the initial analyst(s)
and ourselves. The description of the 9 analyses used are accessi-
ble online4. These analyses were also chosen because they were
implemented using different analysis tools - sometimes twice or
more. Some of them were tabular tools (e.g. Excel), programmatic
tools (e.g. R), visual tools (e.g. UnderTracks/Orange) or scientific
prototypes (e.g. Usage Tracking Language [9]).

Each analysis was treated independently of the others. For each
analysis, we first began by studying the needs it meets, as well as
its goals. We then searched for contextual information within asso-
ciated documentation and data, before carefully studying the initial
data used in the analysis process and identifying their associated
variables. Then, we extracted the relations existing between these
identified variables, mainly thanks to documentation. Following
this, we defined the corresponding graph of variables, by using a
dedicated graph editing interface from our prototype.

Subsequently, for each analysis, we vetted each operation. This
time consuming task had several goals. First, to identify the op-
eration used, as well as its settings, its processed inputs, and the
resulting outputs. Second, to correctly understand the intent be-
hind applying such an operation. The final goal was to extract the
information conveyed by the operation. Finally, we associated these
elements with their related abstract concepts inside the prototype.
An encountered operation did not always have a direct match with
a narrated operator. The reason for this is either that the narrated
operator representing this operation concept had not yet been de-
scribed in our prototype, or the concerned operation is impaired

3https://github.com/alexislebis/CAPTEN
4https://hubble.lip6.fr/

https://github.com/alexislebis/CAPTEN
https://hubble.lip6.fr/
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by technical specificities. For the former case, we created the ded-
icated narrated operator, while for the latter, we considered the
contiguous operations of the operation concerned, in order to shape
a consistent operation concept. We then matched this association
with a narrated operator.

We then defined a step with the corresponding narrated op-
erator and the input graph of variables. The output graph was
automatically processed by our prototype, under our supervision.
We manually specialised some generated variables and relations
to match their actual meaning. The information extracted, related
to the analysis, was associated with narrative elements placed in
relation with this analysis. Finally, we identified which variables
had to be considered as the relevant results, according to the initial
analysis.

5.2 Discussion
We successfully implemented the 9 existing analyses into our pro-
totype. Several times, inside an analysis, a sub narrated analysis
process could be defined, with its own goal. We therefore defined it
too. This sub narrated analysis process was then used as a narrated
operator for the main narrated analysis process. Also, we encoun-
tered some difficulties in managing operations which implicitly act
as a for each operation or a group by operation. We suspect that
these operations convey several goals at a time. However, these
goals do not seem to be to be consistent depending on analyses. We
addressed these issues by breaking them down into sub narrated
analysis processes.

Furthermore, the quality of narrated analysis processes is closely
related to the efforts deployed to narrate it. The task of reifying
an existing analysis in our prototype was a meticulous and time
consuming one, requiring huge efforts to understand the analysis, as
well as a deconstruction-based approach. This is because technical
format specificities have to be understood in order to properly
match elements of analysis tools to elements of our framework.
However, we expect fewer efforts to be required if the analyst who
performed the analysis is the actor of this reification.

6 EXPERIMENTATIONS
6.1 Protocol
To further test our approach and its relevance for the TEL commu-
nity, we conducted experimentations. Figure 4 shows the capitali-
sation cycle. The reification phase that we performed in section 5
tests the green part of the capitalisation cycle, namely the capitali-
sation of the implemented analyses. However, in order to consider
that these reified analyses are effectively capitalised, the reuse and
adaptation properties of the narrated analysis processes for other
needs have to be tested (as defined by Figure 1). Therefore, the goal
of these experimentations was to evaluate how end-users of our
platform understand and possibly find, reuse and adapt relevant
narrated analysis processes (or a sub-part of them) to their needs.
This results in evaluating both the blue and red parts of Figure 4.

The experimentations involved 6 persons, one person at a time.
Each experimentation lasted three hours per person. These persons
are all used to working in the TEL field. They themselves evaluated
their expertise level as to the analysis of learning traces, on a scale
from 0 to 10 meaning "no expertise at all" and "expert", respectively.

Figure 4: Illustration of the capitalisation cycle and the three
major phases related to capitalised analyses.

While results were disparate, on average they were all used to
conducting such analyses (mean x̄ = 5.83, variance σ 2 = 2.47 ).
Therefore, our approach was tested with different analyst profiles.

The first part of the experimentation was dedicated to presenting
the analyst with our narrative approach, via the CAPTEN proto-
type. A predefined narrated analysis process, as well as its related
elements, was presented and explained. The theory behind the
framework elements was also explained. This part lasted approx-
imately half an hour, depending on the questions asked by the
evaluated analyst.

During the second part of the experimentation, the evaluated
analyst had to lead an analysis in order to answer one analysis
need (or more, if time permitted). He/she had a choice between two
predefined needs. The first need was as follows: "Predict a student
certification at the end of a course". The second need was as follows:
"Identify student profiles, and if possible, by course". Both needs were
to be answered using a MOOC dataset [21] that we provided, as
well as its official documentation. For an hour and half, the analyst
was autonomous. He/she was allowed to access any information
medium to help him/her in the analysis task, excepted the CAPTEN
prototype. Moreover, the analyst was free to choose the analysis
tools he/she wanted. No help was provided concerning the analysis
task.

Afterwards, if the analyst completed his/her analysis (2 out of
the 6 persons did), or if he/she encountered difficulties preventing
him/her from continuing the analysis (3 out of the 6 persons), or if
there was no time to continue the analysis (1 out of the 6 persons),
we made CAPTEN accessible to the analyst. We loaded into the
prototype the narrated analysis processes reified previously (see
section 5). The goal of using CAPTEN depended on the state of
progress of the analysis. If completed, it was mostly to improve
the quality of the analysis implemented by the analyst, and to
give him/her new insights into what can be obtained. Otherwise,
it mostly consisted of assistance in helping him/her to finish the
analysis, or at least to improve the overall quality. To do so, analysts
had to search inside CAPTEN for narrated analysis processes, or
sub parts of them, that could be adapted and reused. While the
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analysts were as far as possible autonomous, we sometimes had to
intervene for ergonomic reasons, in order to explain the prototype
interfaces and to assist in their navigation.

Finally, the last fifteen minutes were dedicated to answering
questions on a form that evaluated various aspects of the experi-
mentation. It also evaluated the analyst’s opinion of our proposition
and how our approach fits into the TEL field. All the experimental
materials (including the results of the linear scales used to calculate
the means and variances below) are available online5.

6.2 Results and discussions
As a first observation, the two needs were approximately equally
chosen by the analysts (4 persons chose the first one, 2 the second).
In any case, all the evaluated analysts have stated they already had
an idea how to design the analysis in order to address the need.
This seems coherent since we let them choose between the needs.
However, one person did not knowwhat was to be sought to answer
the need, although he/she had an idea of what analysis to perform.
We believe that analysts have some analysis patterns in their mind
and that these are triggered by keywords. However, these patterns
are then specialised according to the context. This could explain
why this person had an idea about how to design the analysis
without knowing its answer. The other analysts tended to choose
the need they could answer (4 out of the 6 persons, independently
of needs).

During the experimentation, the evaluated analysts manipulated
a diversity of analysis tools, sometimes two at a time (this was
the case for two analyses). Five analysis tools were used: Excel,
RapidMiner, R, Coheris Analytics SPAD and SAS Enterprise Miner.
The choice criterion was almost always related to the expertise
of the analyst with the tool (4 out of 6 persons). However, tool
efficiency also became a choice criterion for three persons (arguably
related to the allotted time of the experimentation analysis phase).

To the question "Was CAPTEN helpful to your analysis?", one
person answered "No, CAPTEN does not help me". This answer is
important and has narrowed down our thought about when cap-
italisation can be helpful. Indeed, the profile type of this analyst
was an expert one. He/she has already worked on very similar case
contexts (also using similar datasets) and led several similar analy-
ses related to student profiles in MOOC. Therefore, we suspect that
these kinds of expert profiles are not the first to be concerned by
the assistance provided by the capitalisation. They will inherently
rely on their own significant expertise. However, these kinds of
expert profiles are important for acting as a provider of capitalised
analyses and to improve them (the green part in Figure 4 and the
retroactive arrow in the red part).

To that same question, the other 5 evaluated analysts answered
that "Yes, it helped me to improve my analysis". Four of them spec-
ified that they reused narrated analysis processes, or sometimes
sub-parts, inside their own analysis process, in order to improve
it. The last person indicated that CAPTEN gave him/her insights
into other analysis methods and that it helped him/her to conclude
his/her initial analysis. CAPTEN was also used to search for precise
information (4 out of the 5 persons). Some information was related
to the choice of the appropriate variables for the analysis, while

5https://liris.cnrs.fr/~alebis/research/CAPTEN/capten_xp.html

Framework Elements (# of analysts) Trace (2) Context (3) Analysis (5)
Narrated Analysis Process 1 3 5

Narrated Operator 1 0 3
Graph of Variables 1 1 4

Step 2 3 5
Knowledge 0 0 4

Narrative Element 0 2 5

Table 1: Overview of the effect of the framework elements
that helped analysts to understand traces, contexts and nar-
rated analysis processes. The number in each cell indicates
how many analysts were concerned by an element.

other information concerned consistency of operations and how
andwhere to use these operations in the analysis. These preliminary
results support the relevance of our approach regarding capitalisa-
tion via narration. The last column of in Table 1 is an observation
of the helpfulness of framework elements in understanding the
narrated analyses (it concerns all 5 analysts).

We then observed these five analysts to find out how they reused
and adapted the chosen narrated analysis processes. We used a
scaled notation from 0 to 5 meaning "absolutely not" and "totally",
respectively. To the question asking if they managed to adapt the
narrated analysis processes that they chose, we have a mean of
x̄ = 3, and a variance of σ 2 = 2. Since adaptation of an analysis is
a complex task, these preliminary results are very motivating. It
shows that the subset of our ontology implemented in our proto-
type already has a strong impact on adaptability. To the question
related to the reuse of the chosen narrated analysis processes, we
have a mean of x̄ = 1.6 and a variance of σ 2 = 1.36. Analysts
feedback shows that these results are mostly related to the lack
of dedicated implementation instructions. Indeed, the prototype,
which is still in its early development phase, currently encompasses
implementation information in narrative elements and not in a
dedicated structure.

We further investigated reuse and adaptability entanglement
with data, contexts and goals. Our goal in this case was to outline
the similarity level required between information available during
the analysis and information encompassed by a narrated analysis,
in order to perform reuse and adaptation tasks. We used a scaled
notation from 0 to 5 meaning "independent" and "identical", respec-
tively, to collect feedback. Concerning data, we obtain an estimated
level of required similarity of x̄ = 2.6, with a variance σ 2 = 1.04.
Concerning context, we obtain a higher level of similarity required,
with a mean of x̄ = 3.4 and a variance of σ 2 = 0.64. Finally, with
respect to similarity of goals, we have x̄ = 2.4, with a variance of
σ 2 = 0.24. These preliminary results reinforce our intuition about
the dependencies of analyses on contexts.

Our prototype has been well endorsed as an assistance to reuse
and adaptation of analysis processes (x̄ = 6,σ 2 = 2, on a scale
from 0 to 10 meaning "useless" and "indispensable", respectively).
Our approach was greatly preferred to textual approaches and also
preferred to workflow approaches. Moreover, we track the side
effect that our prototype had on the comprehension of the traces
and the context of the analysis. Two analysts indicate that they were
able to improve their initial comprehension of traces by consulting
several narrated analysis processes in CAPTEN. The second column
of Table 1 shows, for these two analysts, which elements were

https://liris.cnrs.fr/~alebis/research/CAPTEN/capten_xp.html
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involved in this improvement. Three analysts also indicate that
their context comprehension of the analysis had been improved
thanks to CAPTEN. The third column of Table 1 shows, for these
three analysts, which elements were involved in this improvement.

We also collected feedback from analysts as to what CAPTEN
had provided them with. Besides the fact that CAPTEN was a sup-
port to analysis elaboration, we can extract three major assistance
areas. The first concerns assistance in analysis setting and design
(e.g. "review some operator settings"). The second concerns compre-
hension of the analysis and the needs (e.g. "to search for new types of
results [for the analysis]"). Finally, the third area concerns assistance
regarding analysis quality (e.g. "to have another method to compare
myself").

As a global observation, our narrative approach for capitalisa-
tion of analysis processes of learning traces assisted the majority
of the analysts evaluated in their analysis. This narrative approach
provided them with the possibilities to reuse, with proper contex-
tualised adaptations, existing analysis processes to their needs.

To conclude, the theory behind CAPTEN was understood by
those who were evaluated. These experimentations yield strong
preliminary results about the reuse and adaptability of already
capitalised analysis processes. Finally, our approach was rated as
a potential candidate for the capitalisation of analysis processes
inside the TEL community (x̄ = 8, 17, σ 2 = 0, 47, based on a 0 to 10
notation meaning "useless" and "fulfil the goal", respectively).

7 CONCLUSION
This paper presents an approach for capitalising analysis processes
of learning traces inside the TEL community. It uses an ontological
framework dedicated to their narration. We also propose a formali-
sation of our ontological framework. The experimental results seem
to confirm that it is possible to shift the actual paradigm of analysis
processes to one based on a narrative approach. This will lead to
inherently comprehensible and open analysis processes. Moreover,
this will enable analysis processes to be designed with real reuse
and adaptation properties.

The major challenge behind this approach is to group TEL ef-
forts and to provide a new way of designing analyses inside the
community. By reusing and adaptingwhat already exists in our com-
munity, we believe that co-constructed emergent behaviours will
emerge. The results will be a generalised involvement, reinforcing
the dynamics inside the TEL community, and will also contribute
to an improvement of the overall scientific and pedagogical quality.
Moreover, it will foster the emergence of new needs, techniques
and specificities related to the TEL field (such as the common TEL
vocabulary we expect to see emerge, as explained in section 4.1.5).

We plan to further evaluate our framework by reifying other
analyses existing in the learning analytics literature. Furthermore,
our principal focus will concern assistance regarding capitalisation.
We have made our framework inference-ready. We seek to create
inference rules and to automate them. The goal is to assist people
involved in analyses, from consultation to adaptation of analyses
to other contexts. This introduces exciting analysis co-construction
prospects between the TEL community and knowledge-based sys-
tems.
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