

Uranium and radium diffusion in organic-rich sediments (sapropels)

A. Gourgiotis, J.-L. Reyss, N. Frank, Abel Guihou, C. Anagnostou

▶ To cite this version:

A. Gourgiotis, J.-L. Reyss, N. Frank, Abel Guihou, C. Anagnostou. Uranium and radium diffusion in organic-rich sediments (sapropels). Geochemistry, Geophysics, Geosystems, 2011, 12 (9), 10.1029/2011GC003646. hal-01714179

HAL Id: hal-01714179 https://hal.science/hal-01714179

Submitted on 21 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Published by AGU and the Geochemical Society

Uranium and radium diffusion in organic-rich sediments (sapropels)

A. Gourgiotis, J.-L. Reyss, and N. Frank

Laboratoire des Sciences du Climat et de l'Environnement, Vallée Bâtiment 12, avenue de la Terrasse, F-91198 Gif-sur-Yvette CEDEX, France (alkis.gourgiotis@lsce.ipsl.fr)

A. Guihou

Lamont Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York 10964-8000, USA

C. Anagnostou

Hellenic Centre for Marine Research, Institute of Oceanography, 46.7 km Athens-Sounio Avenue, GR-19013 Anavyssos, Attiki, Greece

[1] Among the late Quaternary Mediterranean sapropels, the S5 (125 ka) is one of the best preserved due to its high organic carbon content that has limited postdepositional oxidation. The high uranium content in this sapropel, >40 dpm g⁻¹, makes this layer interesting for studying uranium series disequilibrium in organic-rich sediments. For this reason, the present work provides isotopic measurements of the U decay series in a S5 sapropel by applying more precise mass spectrometric methods, TIMS/MC-ICPMS, and gamma spectrometry. Assuming that U in the sapropel mostly originated from seawater the $(^{234}U/^{238}U)$, $(^{230}Th/^{238}U)$, $(^{226}Ra/^{230}Th)$ and $(^{231}Pa/^{235}U)$ activity ratios show systematic deviations from the theoretical values for a closed-system evolution of the U series over the 125 ka since sapropel formation. The radiogenic $^{234}U_{rad}$ and ^{226}Ra show clear evidence of migration in the sapropel with modeled diffusion coefficients of (7.1 ± 1.1) × 10⁻¹² cm² s⁻¹ and (1.6 ± 0.2) × 10⁻¹⁰ cm² s⁻¹, respectively. The diffusion of $^{234}U_{rad}$ cannot explain the high $(^{230}Th/^{238}U)$ and $(^{231}Pa/^{235}U)$ activity ratios observed in the sapropel. Two possible mechanisms or a combination of both are proposed for explaining the irregular $(^{230}Th/^{238}U)$ and $(^{231}Pa/^{235}U)$ activity profiles in sapropel S5. The first one is an enhanced export flux of $^{230}Th_{xs}$ and $^{231}Pa_{xs}$ in the sapropel and the poorly understood processes that might lead to U_{auth} migration in anoxic sediments still limit a final explanation for the deviation of $(^{230}Th/^{238}U)$ and $(^{231}Pa/^{235}U)$ and $(^{231}Pa/^{235}U)$ activity ratios from their expected theoretical values.

Components: 9700 words, 6 figures, 2 tables.

Keywords: Radium; diffusion; protactinium; sarpopels; sediments; uranium.

Index Terms: 1040 Geochemistry: Radiogenic isotope geochemistry; 1051 Geochemistry: Sedimentary geochemistry; 1120 Geochronology: Isotopic disequilibrium dating.

Received 1 April 2011; Revised 27 July 2011; Accepted 28 July 2011; Published 21 September 2011.

Gourgiotis, A., J.-L. Reyss, N. Frank, A. Guihou, and C. Anagnostou (2011), Uranium and radium diffusion in organic-rich sediments (sapropels), *Geochem. Geophys. Geosyst.*, *12*, Q09012, doi:10.1029/2011GC003646.

GOURGIOTIS ET AL.: RADIONUCLIDES DIFFUSION IN SEDIMENTS 10.1029/2011GC003646

1. Introduction

Geochemistry

Geophysics Geosystems

[2] Sediment cores from the eastern Mediterranean Sea contain numerous dark colored layers rich in organic carbon and commonly laminated. These organic-rich layers are called sapropels (from the Greek sapros \rightarrow rotten and pelos \rightarrow soil) provided their thickness exceeds 1 cm and the total organic carbon (Corg) content exceeds 2% [Kidd et al., 1978]. Among the late Quaternary Mediterranean sapropels (S1 to S11), the S5 (125 ka) is one of the best preserved due to its high organic carbon content [Löwemark et al., 2006]. Two different models have been proposed for sapropel formation. The first one is the stagnation model that assumes that reduced or nonexistent deep-water ventilation, due to stratification of the water column, leads to anoxic conditions at seafloor and consequently to preservation of organic material [Aksu et al., 1995; Cita et al., 1977; Thunell and Williams, 1989]. The second one is the productivity model, which proposes elevated primary production due to the increased nutrient availability in the surface water [Castradori, 1993; De Lange and ten Haven, 1983]. A combination of these two models, reduced deep-water ventilation and increased productivity in the surface water, has been proposed by more recent studies [Emeis et al., 2000a, 2000b; Rohling, 1994; Warning and Brumsack, 2000].

[3] The chronology of the sapropel layers has previously been determined by oxygen isotope stratigraphy, biostratigraphy, tephrochronology and radiocarbon ¹⁴C dating for the youngest ones [Hilgen, 1991; Jorissen et al., 1993; Lourens et al., 1996; Paterne et al., 1986; Thomson, 1982]. Pioneering work based on alpha spectrometry, by Mangini and Dominik [1979] and later by Severmann and Thomson [1998], tried to use U series daughters (U/Th) in order to provide more accurate and precise sapropel ages. However, precise U series chronologies were not achieved due to postdepositional diagenesis leading to opensystem evolution of the U-series nuclides in sapropels. Severmann and Thomson [1998] proposed the ²³¹Pa/²³⁵U dating technique as a possible alternative for dating sapropels but the much lower detection limits required for ²³⁵U and ²³¹Pa are not easily achievable by traditional alpha spectrometry.

[4] This work provides isotopic analysis of the U series nuclides (²³⁸U, ²³⁴U, ²³⁵U, ²³⁰Th, ²³²Th, ²³¹Pa) for one Mediterranean S5 sapropel by using mass spectrometric methods, TIMS and MC-ICPMS. In addition, ²²⁶Ra activities were acquired using low

level gamma spectrometry. The Mn and organic contents of the sapropel and overlying sediments were also measured.

[5] In the following, the activity ratio distributions of $(^{234}\text{U}/^{238}\text{U})$, $(^{230}\text{Th}/^{238}\text{U})$, $(^{226}\text{Ra}/^{230}\text{Th})$ and $(^{231}\text{Pa}/^{235}\text{U})$ are discussed in comparison with the expected theoretical closed system of the U series nuclides under the presumption of a seawater uranium origin. Our objective is to shed new light on the diffusion of radionuclides in organic-rich sediments and to refine the diffusion coefficients needed to potentially date such archives using U series opensystem models in the future.

2. Material and Methods

[6] Here, we have investigated in great detail the so-called S5 sapropel (125 ka) from a gravity core (ADE3–24) collected in the Eastern Mediterranean sea (33°66'N, 20°86'E) at a depth of 2630 m. The core (2.45 m long) sealed in a PVC liner was stored in a constant temperature room (\sim 10°C) for one year. One hour after the core opening in the laboratory, the sapropel layer was sampled every cm. All samples were dried at 50°C and ground in an agate mortar and sealed in plastic tubes for further geochemical analysis.

[7] In this core, the S5 sapropel is 11.5 cm thick, faintly laminated layer, and it is located between the core depths 214.0 cm and 225.5 cm.

[8] For U-Th analysis, the total sample dissolution method was used and all samples were spiked with a mixed $^{233}U^{-236}U^{-229}$ Th spike. U and Th were separated and purified by ion-exchange chemistry [*Lawrence et al.*, 1987] and were deposited on rhenium filaments. The samples were analyzed using a thermal ionization mass spectrometer (Finnigan MAT262) at LSCE–Gif-sur-Yvette. Mass fractionation of $^{234}U/^{235}U$ isotopic ratio and ^{235}U concentrations were estimated using the known $^{233}U/^{236}U$ ratio and ^{236}U concentration in the spike, respectively.

[9] For thorium isotope ratio measurement the ²³²Th/²²⁹Th and ²²⁹Th/²³⁰Th ratios were measured separately (in a two different runs) due to the high ²³²Th abundance, and no corrections for isotope ratio fractionation were applied. For the ²³⁰Th/²³⁸U isotope ratio an external correction (linear law) was done by using a sample-standard bracketing procedure every two samples. The bracketing procedure was performed by using the HU-1 reference material and the values reported by *Cheng et al.* [2000]. The

GOURGIOTIS ET AL.: RADIONUCLIDES DIFFUSION IN SEDIMENTS 10.1029/2011GC003646

reproducibility of $(^{234}U/^{238}U)$ activity ratios and U concentrations are better than 4‰ and that of $(^{230}Th/^{238}U)$ activity ratios are better than 8‰.

Geochemistry

Geophysics Geosystems

[10] Full procedural blanks had an average value of 3.8 ng for 238 U, 30 fg for 230 Th and 0.3 ng for 232 Th and are negligible with respect to the amounts of 238 U, 234 U, 230 Th and 232 Th in the analyzed sample aliquot.

[11] For ²²⁶Ra nuclide determination, powdered samples weighing between 1.8 g and 2 g were sealed in plastic cylindrical tubes and were analyzed at the underground laboratory of Modane (Laboratoire Souterrain de Modane, French Alps) by using low level gamma spectrometry. High-efficiency, low-background, well-type germanium detectors (430 cm³ and 950 cm³ active volume) were used [Reyss et al., 1995]. These detectors are shielded from cosmic radiation by 1700 m of rocks, which results in very low background less than 0.6 cpm between 30 and 2700 keV. Because ²²⁶Ra activity is determined from the ²¹⁴Pb (295 and 352 keV) and ²¹⁴Bi (609 keV) peaks, gamma analyses were performed about one month after the samples were sealed in order to assure ensure radioactive equilibrium between the isotopes.

[12] ²³¹Pa measurements were carried out using about 50 mg of sediment for each sample. The samples were spiked with ²³³Pa and ²³⁶U prior to total digestion. The Pa and U fractions were separated and purified using anion exchange chromatography AG1x8 BioRad® [*Guihou et al.*, 2010]. The Pa and U fractions were analyzed using a MC-ICPMS (Nu 500 HR at Laboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon, France). Ratios were corrected for instrumental background noise, blank contributions and tailing of ²³²Th on mass 231 and 233. The overall correction was below 5% for Pa and 5‰ for U. The instrumental mass bias was monitored by standard bracketing with the IRMM 184 uranium isotopic standard.

[13] Mn contents were determined using X-ray micro fluorescence with a iMOXS X-ray source combined to a JEOL 840 Scanning Electron Microscope (SEM). Multielement spectra were obtained with an Energy Dispersive Spectrometer (EDS) equipped with a high purity Ge detector from PGT. X-ray micro fluorescence analyses were performed on a few milligrams of compacted sediment powders and USGS rocks were used as standards. No specific sample preparation was required.

[14] For organic carbon analyses two different measurements were done on each sediment sample:

total carbon on bulk sediment, and organic carbon after sediment leaching with 0.6N HCl for 3–4 days until no further gas bubbling is recognized. About 15–20 mg of sediment was weighed using tin cups for measurement (with a precision of 1 μ g). The sample was combusted in a Fisons Instrument NA 1500 Element Analyzer and carbon content determined by the Eager software. An acetanilide standard (71.07%wt of carbon) was inserted every 10 samples. Assuming that mineral carbon exists only in the form CaCO₃, the organic carbon content in bulk sediment was deduced. Results are reported in weight % of organic carbon/bulk sediment.

3. Results and Discussion

3.1. Uranium Series Radionuclide Profiles in the S5 Sapropel

[15] High organic carbon (C_{org}) contents and high uranium (^{234}U , ^{238}U) activities are observed in the sapropel unit compared with the surroundings sediments (Figures 1a and 1b; see also Table 1). The high uranium activities are the result of anoxic conditions prevailing during sapropel formation. Dissolved seawater U(VI+) is reduced to U(IV+) under anoxic conditions and is removed from solution into marine sediments [Anderson et al., 1989a; Barnes and Cochran, 1990; Barnes and Cochran, 1991; Cochran et al., 1986; Klinkhammer and Palmer, 1991; McManus et al., 2005]. However, particulate nonlithogenic uranium has been observed in the Santa Barbara Basin sediment showing evidence for an association of U with organic matter in seawater [Zheng et al., 2002]. We consider that during uranium removal from seawater, either by precipitation in the sediments and/or in form of particulate nonlithogenic uranium, no significant isotopic fractionation between ²³⁴U and ²³⁸U is observed. Therefore, the seawater-derived uranium in the sediments acquires the isotopic fingerprint of seawater with a $(^{234}U/^{238}U)$ activity ratio equal to 1.147 [Andersen et al., 2010; Chen et al., 1986]. This uranium is called authigenic (U_{auth}) and is the most important uranium fraction in Mediterranean sapropels [Mangini and Dominik, 1979; Severmann and Thomson, 1998; Thomson, 1982]. U_{auth} dominates largely over the detrital uranium (U_{det}) originating from mineral lattices of the terrigenious sediment fraction. However, this view for a marine origin of uranium in sapropels has been challenged by Bernat et al. [1989] who suggested that the uranium is derived almost entirely from terrigenous material [Bernat et al., 1989].

Figure 1. Vertical distribution of (a) Mn and C_{org} and (b) 238 U decay products and 232 Th in the studied core. The Mn-rich zone and the sapropel unit are marked by the striped and the shaded areas, respectively. Error bars are included in the symbols and are expressed at a 95% confidence level.

[16] In contrast to the uranium in the sapropels, 232 Th is primordial and exclusively derived from detrital material of erosional debris. 232 Th activity in the sapropel is consistently lower than 1.3 dpm g⁻¹ with little variation with depth. (Figure 1b).

Geochemistry Geophysics Geosystems

[17] Sedimentary ²³⁰Th consists of three distinct sources: (1) detrital ²³⁰Th_{det} from terrigenous minerals, (2) nonsupported excess of ²³⁰Th_{xs} produced in seawater from the decay of dissolved ²³⁴U, and (3) authigenic ²³⁰Th_{auth} produced within the sediments from radioactive decay of ²³⁴U_{auth}. Because ²³⁰Th_{xs} is rapidly scavenged from the water column by adsorption on the surfaces of sinking particles, the flux of ²³⁰Th_{xs} to the seafloor is considered to be close to its rate of production by ²³⁴U decay in the overlying water column [*Henderson et al.*, 1999a; *Yu et al.*, 2001]. Once stored in the sediment, ²³⁰Th_{xs} decays according to its half-life of 75.7 ka. Due to high ²³⁴U_{auth} activities in sapropel and because of the age of S5 (125 ka), sufficient time has elapsed leading to a distinct ingrowth of the ²³⁰Th activity toward radioactive equilibrium with ²³⁴U. This leads to ²³⁴U and ²³⁰Th profiles, which are rather similar (Figure 1b).

[18] Like ²³⁰Th, three different sources for sedimentary ²²⁶Ra have also to be distinguished: (1) detrital ²²⁶Ra_{det} locked in the mineral lattices of erosional debris, (2) ²²⁶Ra_{xs} derived from the seawater by in situ formed settling barite minerals [*Bishop*, 1988; Stroobants et al., 1991], and (3) authigenic ²²⁶Ra_{auth} produced in sediment by radioactive decay of ²³⁰Th (²³⁰Th_{auth} and/or ²³⁰Th_{xs}). ²²⁶Ra_{xs} decays with a half-life of 1.6 ka and thus in S5 sapropel has totally decayed, such that ²²⁶Ra should be in secular equilibrium with ²³⁰Th. ²²⁶Ra activity profile in the sapropel is similar to that of ²³⁰Th due to the ingrowth of ²²⁶Ra_{auth} activity toward radioactive equilibrium with ²³⁰Th (Figure 1b).

3.2. Evidence for Postdepositional Diffusion of Uranium Decay Products

3.2.1. Authigenic Versus Detrital Sources in the S5 Sapropel

[19] Activity ratios for the detrital component in the sapropel are estimated from the measured ²³²Th activity and an inferred (²³⁸U_{det}/²³²Th) activity ratio for the detrital material, assuming that all decay products of ²³⁸U are in secular equilibrium, hence (²³⁸U_{det}) = (²³⁴U_{det}) = (²³⁰Th_{det}) = (²²⁶Ra_{det}). The detrital (²³⁸U_{det}/²³²Th) activity ratio for the eastern Mediterranean Sea used in this work is equal to 0.76 ± 0.1 [*Thomson*, 1982]. This value is in a good agreement with previous in-house measurements of Mediterranean sediment cores (0.69–0.83, J.-L. Reyss, unpublished data, 2004). Broadly similar mean (²³⁸U_{det}/²³²Th) activity ratios have also been suggested for Atlantic (0.6 ± 0.1), Pacific (0.7 ± 0.1)

Table	1. Summary c	of C _{org} , Mn,	and U Series	Isotopic Data for	r the S5 Sapro	pel ^a						
Depth	Corg	Mn	232 Th	²³⁸ U	230 Th	226 Ra	231 Pa	²³⁴ U/ ²³⁸ U	²³⁰ Th/ ²³⁸ U	$^{230}{ m Th}/^{234}{ m U}$	²²⁶ Ra/ ²³⁰ Th	$^{231}Pa/^{235}U$
(cm)	(%)	(mdd)	(dpm/g)	(dpm/g)	(dpm/g)	(dpm/g)	(dpm/g)	Activity Ratio	Activity Ratio	Activity Ratio	Activity Ratio	Activity Ratio
208.5		1023 ± 48	1.63 ± 0.02	3.117 ± 0.008	2.35 ± 0.27	2.17 ± 0.05		1.182 ± 0.013	0.755 ± 0.086	0.639 ± 0.073	0.92 ± 0.11	
209.5	0.129 ± 0.003	1205 ± 56	1.26 ± 0.02	3.617 ± 0.004	3.36 ± 0.04	2.51 ± 0.12		1.191 ± 0.006	0.930 ± 0.012	0.781 ± 0.011	0.75 ± 0.04	
210.5	0.130 ± 0.003	1023 ± 48	1.19 ± 0.01	5.778 ± 0.007	4.64 ± 0.05	3.01 ± 0.09		1.218 ± 0.004	0.803 ± 0.008	0.660 ± 0.007	0.65 ± 0.02	
211.5	0.064 ± 0.001	2730 ± 136	$5\ 1.05\pm 0.01$	7.537 ± 0.010	5.36 ± 0.11	4.50 ± 0.12		1.221 ± 0.004	0.711 ± 0.014	0.582 ± 0.012	0.84 ± 0.03	
212.5		2138 ± 106	$5\ 1.20\pm 0.01$	6.482 ± 0.013	5.64 ± 0.04	10.91 ± 0.23		1.231 ± 0.006	0.869 ± 0.007	0.706 ± 0.006	1.94 ± 0.04	
213.5	0.596 ± 0.012	1026 ± 51	1.44 ± 0.04	5.165 ± 0.010	5.85 ± 0.14	11.99 ± 0.26		1.213 ± 0.006	1.133 ± 0.028	0.934 ± 0.024	2.05 ± 0.07	
214.5	6.652 ± 0.133	478 ± 25	0.63 ± 0.03	7.821 ± 0.011	8.61 ± 0.08	11.03 ± 0.24		1.147 ± 0.009	1.101 ± 0.010	0.960 ± 0.011	1.28 ± 0.03	
216.5	7.890 ± 0.158		0.91 ± 0.01	26.270 ± 0.165	. *	17.20 ± 0.30		0.999 ± 0.009				
217.5	9.672 ± 0.193	555 ± 29	1.29 ± 0.03	47.570 ± 0.081	39.67 ± 0.25	27.20 ± 0.30 2	2.09 ± 0.06	0.971 ± 0.004	0.834 ± 0.005	0.859 ± 0.006	0.69 ± 0.01	0.953 ± 0.027
219.5	4.670 ± 0.093	784 ± 39	0.90 ± 0.02	43.248 ± 0.030	34.58 ± 0.46	22.51 ± 0.32 2	2.27 ± 0.05	0.992 ± 0.006	0.800 ± 0.011	0.807 ± 0.012	0.65 ± 0.01	1.137 ± 0.024
221.5	8.774 ± 0.175	670 ± 33	0.73 ± 0.01	43.944 ± 0.011	36.10 ± 0.37	28.12 ± 0.48 2	2.51 ± 0.05	0.987 ± 0.005	0.821 ± 0.008	0.832 ± 0.009	0.78 ± 0.02	1.239 ± 0.026
222.5	5.410 ± 0.108	708 ± 36	0.83 ± 0.01	35.941 ± 0.072	30.04 ± 0.19	19.00 ± 0.30		1.015 ± 0.004	0.836 ± 0.005	0.824 ± 0.006	0.63 ± 0.01	
223.5	6.224 ± 0.124	691 ± 5	1.04 ± 0.02	44.657 ± 0.014	35.68 ± 0.18	22.60 ± 0.30 2	2.02 ± 0.05	1.002 ± 0.004	0.799 ± 0.004	0.797 ± 0.005	0.63 ± 0.01	0.979 ± 0.025
225.25	1.430 ± 0.029	641 ± 32	0.96 ± 0.01	14.331 ± 0.023	12.83 ± 0.15	10.20 ± 0.30		1.123 ± 0.007	0.895 ± 0.010	0.797 ± 0.010	0.80 ± 0.03	
226.5	0.699 ± 0.014	671 ± 34	3.95 ± 0.04	10.172 ± 0.033	9.69 ± 0.09	7.92 ± 0.23		1.135 ± 0.006	0.953 ± 0.009	0.839 ± 0.009	0.82 ± 0.02	
^a Sam	ples that comprise	s the sapropel	unit are shown i	in bold. Weighting	errors are taken	into account for	concentration	is and activities fi	nal error calculati	on. Errors are exp	ressed at a 95%	confidence level.

and Southern Ocean (0.4 ± 0.1) [Henderson and Anderson, 2003]. The calculated average contribution of the detrital fraction to the total activities of ²³⁴U, ²³⁸U, ²³⁰Th and ²²⁶Ra of the sapropel is < 4%. Furthermore, if the assumption for secular equilibrium between the decay products of ²³⁸U_{det} is not respected due to the alpha recoil effect [*Fleischer*, 1988], the (²³⁴U/²³⁸U)_{det}, (²³⁰Th/²³⁸U)_{det}, (²²⁶Ra/²³⁸U)_{det} activity ratios should be <1. In this case, the detrital faction contribution to the total activities of the isotopes is even smaller. The relative difference between uncorrected and detrital-free activity ratios is found to be <0.8% for (²³⁴U/²³⁸U) and (²³⁰Th/²³⁸U) and <1.7% for (²²⁶Ra/²³⁰Th). This difference is within the analytical errors of the activity ratios and thus the detrital contribution in the sapropel can be neglected.

3.2.2. Radiogenic ²³⁴U_{rad} Diffusion

[20] The primary control on the $(^{234}U/^{238}U)$ activity ratio in the sapropel at the time of its formation is the relative contribution of authigenic and detrital U. As mentioned above, the detrital contribution does not significantly change this ratio in the S5 sapropel. Therefore, the $(^{234}U/^{238}U)$ activity ratio in the S5 sapropel is mostly controlled by authigenic uranium that has acquired the isotopic fingerprint of the seawater that prevailed during sapropel formation. Considering that the seawater $(^{234}U/^{238}U)$ activity ratio was presumably identical to the one of modern seawater (1.147) for the period of time that covers the age of S5 sapropel [Henderson, 2002], the theoretical activity ratio expected from radioactive decay of ²³⁴U and for a closed-system evolution over 125 ka should be ~1.10. Therefore, the theoretical expected value for the $(^{234}U/^{238}U)$ activity ratio measured in the S5 sapropel today is ~1.10. However, the measured $(^{234}U/^{238}U)$ activity ratios in the sapropel (Figure 2a) are markedly different from this expected value. The observed lower ratios close to the secular equilibrium in the center of the sapropel and the higher values (~ 1.15) at the top and base of the sapropel lead to apparent ages (calculated from the $^{234}U/^{238}U$ activity ratio assuming an initial ²³⁴U/²³⁸U ratio equal to 1.147) that are in strong contradiction with the known age of the S5 sapropel (125 ka) [Lourens et al., 1996; Löwemark et al., 2006]. It appears that the in situ formed radiogenic $^{234}U_{rad}$ diffuses preferentially away from the $^{238}U_{auth}$ peak, resulting in low and high ($^{234}U/^{238}U$) activity ratios in the center and at the edges of the sapropel, respectively (Figure 2a) [Mangini and Dominik, 1979; Severmann and Thomson, 1998]. During alpha decay of $^{238}U_{auth}$, the recoil energy

Geochemistry Geophysics Geosystems

Figure 2. Depth variations in activity ratios through the Mn-rich zone (striped area) and the S5 sapropel (shaded area). The dashed lines represent the theoretical activity ratio values for the sapropel, assuming a seawater origin for U and a closed-system evolution with no initial 230 Th or 226 Ra. Error bars are included in the symbols and are expressed at a 95% confidence level.

given to the daughter ²³⁴Th damages locally chemical bounding and is sufficient in many cases to cause the daughter ²³⁴Th to be displaced from its lattice site to an interstitial location where it then rapidly decays, producing ²³⁴U_{rad} [*Fleischer*, 1988]. This process makes ²³⁴U_{rad} more reactive and prone to preferential diffusion relative to ²³⁸U_{auth}. The violation of the closed-system evolution of the S5 sapropel due to the preferential migration of ²³⁴U_{rad} was the most important drawback for *Mangini and Dominik* [1979] and later *Severmann and Thomson* [1998] for obtaining the correct age of the S5 sapropel by employing the ²³⁰Th/²³⁴U disequilibrium dating method.

3.2.3. ²³⁰Th_{xs} Versus U_{auth} Diffusion

Geochemistry Geophysics Geosystems

[21] The (230 Th/ 238 U) activity ratio in the S5 sapropel is primarily controlled by the radioactive ingrowth of 230 Th_{auth} toward radioactive equilibrium with 234 U. The theoretical 230 Th/ 238 U activity ratio after 125 ka for a closed-system evolution of the 238 U chain, with an initial (234 U/ 238 U) activity ratio equal to 1.147, and without 230 Th initially present, is ~0.76. As can be seen from Figure 2b the measured (230 Th/ 238 U) activity ratios in the S5 sapropel are higher compared to the theoretical value. Considering that the detrital fraction does not significantly change the (230 Th/ 238 U) activity ratio, we propose two possible processes to explain this deviation.

3.2.3.1. ²³⁰Th_{xs} Contribution in the S5 Sapropel

[22] An estimate of the 230 Th_{xs} fraction in the S5 sapropel, neglecting the detrital fraction, is given by the following equation:

$${}^{230}Th_{xs} = \left[\left(\frac{230}{238} Th \right)_{meas} - 0.76 \right] \times {}^{238}U_{meas}$$
(1)

where ²³⁸U_{meas} and (²³⁰Th/²³⁸U)_{meas} are the measured ²³⁸U activity and (²³⁰Th/²³⁸U) activity ratio of the sapropel, respectively. The value 0.76 is the theoretical (²³⁰Th/²³⁸U) activity ratio for a closedsystem evolution of the ²³⁸U to ²³⁰Th. The calculated ²³⁰Th_{xs} values for the S5 sapropel are given in Table 2 (closed system). A relationship can be established between the calculated ²³⁰Th_{xs} activity in the sapropel and the sedimentation rate *S*, assuming that during sapropel formation the flux of scavenged ²³⁰Th_{xs} was equal to its production rate in the overlying water column:

$$S = \frac{P_{Th} \times Z}{DBD \times {}^{230}Th_{xs}} \times e^{-\lambda_{230}t}$$
(2)

where P_{Th} is the production rate of ²³⁰Th in seawater, Z is the sediment core water depth, *DBD* is the dry bulk density of the sapropel, λ_{230} the decay constant for the ²³⁰Th, and t the time elapsed after ²³⁰Th_{xs} deposition in the sapropel. An estimate of the sedimentation rate for the different ²³⁰Th_{xs} activities of the S5 sapropel can be obtained from the equation 2, by using $P_{Th} = 2.67$ dpm cm⁻² ka⁻¹ km⁻¹ [*Francois et al.*, 2004], Z = 2.63 km, an average dry

	²³⁰ Th _{xs}	$(^{231}$ Pa $/^{230}$ Th $)_{xs.0}$			
Depth (cm)	Closed System	Open System	²³¹ Pa _{xs} (dpm/g)	Closed System	Open System
214.5	2.66 ± 0.08	2.11 ± 0.08			
217.5	3.52 ± 0.26	5.69 ± 0.26	0.051 ± 0.049	0.065 ± 0.063	0.040 ± 0.039
219.5	1.71 ± 0.46	3.14 ± 0.46	0.413 ± 0.048	1.084 ± 0.317	0.591 ± 0.110
221.5	2.70 ± 0.37	4.19 ± 0.37	0.625 ± 0.052	1.038 ± 0.167	0.668 ± 0.081
222.5	2.72 ± 0.19	3.84 ± 0.19			
223.5	1.74 ± 0.18	3.71 ± 0.18	0.101 ± 0.051	0.261 ± 0.134	0.122 ± 0.062
225.25	1.93 ± 0.15	0.99 ± 0.15			

Table 2. Values of ²³⁰Th_{xs}, ²³¹Pa_{xs}, and Age-Corrected (²³¹Pa/²³⁰Th)_{xs,o} for the S5 Sapropel^a

^aThe ²³⁰Th_{xs} and, by consequence, the (²³¹Pa/²³⁰Th)_{xs,0} ratios are calculated by considering a closed-system evolution of the sapropel ("Closed System" entries) and with the model ("Open System" entries) that takes into account the impact of ²³⁴U_{rad} diffusion on ²³⁰Th_{auth} formation. For age correction all sapropel samples are assumed to be the same age (125 ka). Errors are expressed at a 95% confidence level.

bulk density for the sapropel of about 1 g cm^{-3} [Diester-Haass et al., 1998; Nijenhuis et al., 2001], $\lambda_{230} = 9.16 \times 10^{-3} \text{ ka}^{-1}$, and t = 125 ka as an average age for the S5. The estimated sedimentation rate during S5 sapropel formation varies between 0.6 and 1.3 cm ka⁻¹ (Figure 3). This range of sedimentation rates during S5 sapropel formation appears low compared to what would be expected from previous studies. Considering that the average sedimentation rate of the eastern Mediterranean Sea is of about 2 cm ka⁻¹ [Murat and Got, 1989] and that S5 sapropel corresponds to an episode of increasing input of freshwater and high primary productivity [*Emeis* and Sakamoto, 1998; Löwemark et al., 2006; Osborne et al., 2010; Rohling et al., 2006; Weldeab et al., 2003], the estimated sedimentation rate for the S5 sapropel should not be less than 2 cm ka⁻¹. This underestimation of the sedimentation rate can probably be explained by a disturbance of the balance between the flux of 230 Th_{xs} scavenged from the water column and its rate of production. The underlying assumption that the flux of 230 Th_{xs} scavenged to the seafloor was exactly equal to its rate of production in the overlying water during S5 sapropel formation might not be valid under conditions where there is a large vertical particle flux. There is a process known as 'boundary scavenging' [Spencer et al., 1981] in which a somewhat higher flux of 230 Th_{xs} relative to its production rate is observed in regions of high particle flux. As can be seen from the equation 2 a somewhat higher flux of 230 Th_{xs} than the production rate should underestimate the sedimentation rate of the sapropel. However, the very short residence time of 230 Th_{xs} (10– 50 years) in seawater indicates that the processes that can disturb the balance between the flux of $^{230}\text{Th}_{xs}$ and its rate of production must be limited and thus the flux of $^{230}\text{Th}_{xs}$ should always be close to its rate of production [Anderson et al., 1990].

3.2.3.2. Diffusion of U_{auth}

[23] The diffusion of U_{auth} in the center of the sapropel unit might be an alternative process that could explain the observed high (²³⁰Th/²³⁸U) activity ratio. Considering that ²³⁰Th is immobile due to its high particle reactivity, diffusion of U_{auth} away from the U concentration peak in the center of the sapropel would result in a higher (²³⁰Th/²³⁸U) ratio compared with the expected value assuming a closed-system evolution. Although U(IV) is considered geochemically immobile, the occurrence of

Figure 3. Estimated sedimentation rates for the S5 sapropel, calculated using three different methods (see text for details): (1) using the calculated 230 Th_{xs} for a closed-system evolution with no 234 U_{rad} migration (squares), (2) by taking into account the 234 U_{rad} migration (open dots), and (3) by using the 231 Pa_{xs} (diamonds). The dashed line represents the average sedimentation rate for the eastern Mediterranean Sea [*Murat and Got*, 1989].

high dissolved U concentrations in pore waters of anoxic sediments has already been reported [Anderson et al., 1989b; Chaillou et al., 2002; Cochran et al., 1986]. In most cases the authors attributed this presence to air contamination during the process of sampling the pore waters that induced reoxidation of U(IV) to soluble U(VI). However, oxidation of U(IV) to U(VI) by nitrogen species under anoxic conditions [Finneran et al., 2002], and the production of authigenic colloidal U(IV) by microbial remediation, has also been demonstrated [*Fredrickson et al.*, 2000]. In our case, gamma measurement of 234 Th in one sample from the sapropel, two days after opening of the core in the laboratory, was found to be in secular equilibrium with ²³⁸U measured by TIMS. We believe that, even if U has been oxidized after the core opening it should not diffuse in the sapropel. Therefore, we propose that if U_{auth} diffusion in the sapropel occurred, it would have been a continuous process over the last 125 ka since the sapropel formation. However, the remaining 230 Th_{xs} in the sapropel and the poorly understood processes favoring U diffusion in anoxic sediments make U_{auth} diffusion in the sapropel unclear.

Geochemistry

Geophysics Geosystems

3.2.4. Is Diffusion Process in S5 Sapropel Still Active?

[24] The $(^{226}\text{Ra}/^{230}\text{Th})$ activity ratio can be used as a tool for investigating if migration of radionuclides in the S5 sapropel was continuously active up until the present day or if it was inhibited several thousand of years after S5 sapropel deposition by processes like sediment compaction. It is well known that the ²²⁶Ra nuclide has a high mobility in pore waters of near surface sediments [Cochran, 1980; Cochran and Krishnaswami, 1980; Ku, 1965] and in organicrich turbidites [Colley and Thomson, 1992]. Considering that 230 Th in sediments is immobile and that the half-life of 226 Ra is just 1.6 ka, the return to secular equilibrium of $(^{226}\text{Ra}/^{230}\text{Th})$ activity ratio after a system disturbance (gain or loss of ²²⁶Ra) is rapid (≤9.6 ka). Therefore, disequilibrium between 226 Ra and 230 Th in the S5 sapropel indicates the active migration of 226 Ra (and probably of $^{234}U_{rad})$ since the last 115 ka. Indeed, as can be seen from the Figure 2c²²⁶Ra shows clear evidence of diffusion in the S5 sapropel. Diffusion of 226 Ra away from 230 Th peak emphasizes the (226 Ra/ 230 Th) ratio depletion at the 230 Th peak. On the contrary, excess of 226 Ra is observed only in the top of the sapropel unit showing probably a preferential upwards migration of ²²⁶Ra (Figure 2c).

3.2.5. Mn-Rich Zone: Evidence for Outward Nuclide Diffusion From the Sapropel

[25] Bottom water reoxygenation after sapropel formation generated a progressive downward migrating oxidation front that has burnt down the high C_{org} contents of the top of the S5 sapropel. When the oxidation front meets the dissolved Mn(II) in the sapropel pore water that is used as a terminal electron acceptor, Mn precipitates forming a Mn-oxide peak (Mn-rich zone). For this reason C_{org} content is very low in the Mn-rich zone and sharply increases at the upper edge of the S5 sapropel (Figure 1a).

[26] This phenomenon has been intensely studied for the most recent S1 sapropel [*De Lange et al.*, 1999; *Jung et al.*, 1997; *Mercone et al.*, 2001; *ten Haven et al.*, 1988; *Thomson et al.*, 1999].

[27] During the early stages of sapropel burn-down significant amounts of U_{auth} is released to pore water and diffuses along the concentration gradient. Part of the dissolved U diffuses back into the ocean and in many cases a downward migration and redeposition of U below the oxidation front has been observed [Colley et al., 1989; Mangini et al., 2001]. Here, small but significant ²³⁴U and ²³⁸U peaks were observed in the Mn-rich zone (Figure 1b). We believe that after oxidation a part of the mobilized U coprecipitates with Mn-oxides (due to the high U affinities with Mn) forming a characteristic U peak in the Mn-rich zone. Therefore, U in the Mn-rich zone is a mixture of U_{det} and U_{auth} with a $(^{234}U/^{238}U)_{det}$ ratio ≤ 1 and a $(^{234}U/^{238}U)_{auth}$ ratio after 125 ka equal to ~1.10. The high $(^{234}U/^{238}U)$ activity ratios (>1.2) observed in the Mn-rich zone (Figure 2a) clearly point toward a continuous outward ²³⁴U_{rad} diffusion from the sapropel and fixation in the Mn-rich zone. We should point out that pelagic sediments generate $^{234}U_{rad}$ in the pore waters as well, but here we consider that the sapropel with high uranium contents is at the origin of $^{234}U_{rad}$ in the pore waters.

^[28] High variations of the $(^{230}\text{Th}/^{238}\text{U})$ activity ratio in the Mn-rich zone are observed (Figure 2b). Theses variations could be explained by the low $^{230}\text{Th}_{auth}$ in situ produced by U_{auth} decay and the high $^{230}\text{Th}_{det}$ and $^{230}\text{Th}_{xs}$ contributions.

[29] A small but significant ²²⁶Ra peak is also observed at the bottom of the Mn-rich zone (Figure 1b). Higher ²²⁶Ra affinities for Mn than U might be probably the reason for U and ²²⁶Ra decoupled peaks (Figure 1b). The high ²²⁶Ra excess

Geochemistry Geophysics Geosystems

Figure 4. The model ²³⁸U initial conditions derived from the ²³⁸U measured profile and the initial ($^{234}U/^{238}U$), ($^{230}Th/^{238}U$) and ($^{226}Ra/^{230}Th$) activity ratios. The outermost black areas represent the boundary boxes used in the model.

at the bottom of the Mn-rich zone (Figure 2c) shows clear evidence of continuous diffusion of ²²⁶Ra out of the sapropel and fixation in the Mn-rich zone. Thus we believe that continuous supply of ²²⁶Ra originating form the sapropel dominates ²²⁶Ra loss by radioactive decay maintaining the high (²²⁶Ra/²³⁰Th) activity ratios in the bottom of the Mn-rich zone.

3.3. Estimation of Diffusion Coefficients

3.3.1. One-Dimensional Diffusion Box Model

[30] In order to test the influence of nuclide diffusion on $(^{234}\text{U}/^{238}\text{U})$, $(^{230}\text{Th}/^{238}\text{U})$ and $(^{226}\text{Ra}/^{230}\text{Th})$ ratios for S5 sapropel, a simple 1-D diffusion box model was developed. By tuning the model to generate activity ratio profiles that match the observed profiles, an estimate of the diffusion coefficients was made. The processes that are modeled are diffusion of $^{234}\text{U}_{rad}$ and ^{226}Ra and radioactive decay of the $^{238}\text{U} \rightarrow ^{234}\text{U} \rightarrow ^{230}\text{Th} \rightarrow ^{226}\text{Ra}$ chain. ^{230}Th is considered as immobile due to its high particle reactivity. The intermediate daughter radionuclides of the decay chain may be ignored because their half-lives are too short to consider significant diffusion from the production site. The model system equation follows the next form:

$$\frac{dN_{238}^i}{dt} = -\lambda_{238}N_{238}^i \tag{3}$$

$$\frac{dN_{234}^i}{dt} = -\lambda_{234}N_{234}^i \tag{4}$$

$$\frac{dN_{234}^{rad(i)}}{dt} = \lambda_{238}N_{238}^i - \lambda_{234}N_{234}^{rad(i)} + D_{rad}\frac{\partial^2 N_{234}^{rad}}{\partial z^2}$$
(5)

$$\frac{dN_{230}^{i}}{dt} = \lambda_{234}N_{234}^{i} + \lambda_{234}N_{234}^{rad(i)} - \lambda_{230}N_{230}^{i} \tag{6}$$

$$\frac{dN_{226}^i}{dt} = \lambda_{230}N_{230}^i - \lambda_{226}N_{226}^i + D_{Ra}\frac{\partial^2 N_{226}}{\partial z^2}$$
(7)

where N_{238}^{i} , N_{234}^{i} , N_{234}^{i} , N_{230}^{i} , N_{226}^{i} are the number of nuclides for box *«i»* of $^{238}U_{auth}$, $^{234}U_{auth}$, $^{234}U_{rad}$, ^{230}Th and ^{226}Ra , respectively; λ_{238} , λ_{234} , λ_{230} , λ_{226} are the radioactive decay constants for 238 U, 234 U, 230 Th and 226 Ra respectively; and *t* is the time before present since S5 formation (i.e., 125 ka). D_{rad} and D_{Ra} are the diffusion coefficients for 234 U_{rad} and 226 Ra, respectively. As can be seen from the equation 5, radiogenic 234 U_{rad} is considered separately as in the approach of *Robinson et al.* [2006], who tried to model diffusion of 234 U_{rad} in deep water corals. The initial conditions of the model are derived by dividing the 238 U measured profile in 37 parallel boxes of 3.1 mm width and using the 238 U activities of the center of the boxes (Figure 4).

[31] In addition to ²³⁸U initial activities, the initial (²³⁴U/²³⁸U) ratio in the sapropel is considered to be equal to the modern seawater value of 1.147 and no initial ²³⁰Th and ²²⁶Ra are present (²³⁰Th/²³⁸U = ²²⁶Ra/²³⁰Th = 0) (Figure 4). We should point out that for the initial model conditions we consider that the oxidation of the upper edge of the sapropel, that can modify the shape of the ²³⁸U profile, is a rapid phenomenon compared to the age of the S5 sapropel. For the model boundary conditions a low ²³⁸U activity of about 2 dpm g⁻¹ is used and the radioactive chain ²³⁸U \rightarrow ²³⁴U \rightarrow ²³⁰Th \rightarrow ²²⁶Ra is considered to be in secular equilibrium. The best fit of the model is assessed by minimizing the Sums of Squares of Differences (SSD) between the model output and measured activity ratios. The fit error typically of about 15% is given as the uncertainty in the diffusion coefficients.

Figure 5. Best fit model (open dots) for the $(^{234}U/^{238}U)$, $(^{230}Th/^{238}U)$ and $(^{226}Ra/^{230}Th)$ activity ratio profiles (squares) through the S5 sapropel.

3.3.2. $^{234}U_{rad}$, ^{226}Ra Diffusion Coefficients and $^{230}Th_{xs}$ Revaluation

Geochemistry Geophysics Geosystems

[32] The model allows running processes of radioactive decay and diffusion for 125 ka. The best fit for the $(^{234}U/^{238}U)$ ratio is obtained for a diffusion coefficient D_{rad} of about $(7.1 \pm 1.1) \times 10^{-12}$ cm² s⁻¹ (Figure 5a). This value is in a good agreement with the diffusion coefficient reported by Mangini and *Dominik* [1979] who propose a D_{rad} value for a S5 sapropel varying between 10^{-11} and 10^{-12} cm² s⁻¹. Other scientific works have reported higher D_{rad} values $(1-4.5 \times 10^{-8} \text{ cm}^2 \text{ s}^{-1})$ from a variety of sediment types [Henderson et al., 1999b; Ku, 1965]. In organic-rich turbidites of Madeira Abyssal Plain a good chemical closure in the ${}^{238}U \rightarrow {}^{230}Th$ decay sequence has reported with D_{rad} diffusion coefficients $<10^{-15} - 10^{-14}$ cm² s⁻¹ [Colley and Thomson, 1990; Colley and Thomson, 1992]. The $D_{rad} \sim 7 \times 10^{-12}$ cm² s⁻¹ found for the S5 sapropel is 10^{5} -10⁶ times lower than for conservative species in marine sediments [Li and Gregory, 1974]. This suggests that prevailing reducing conditions in sapropels or turbidites are probably the cause of the apparent retardation of the diffusion of $^{234}U_{rad}$ atoms.

[33] Based on our best estimate of D_{rad} , the model allows calculation of the (²³⁰Th/²³⁸U) ratio taking into account the impact of the ²³⁴U_{rad} diffusion on the ²³⁰Th radioactive ingrowth toward ²³⁸U. As can be seen from Figure 5b, the modeled (²³⁰Th/²³⁸U) profile is systematically lower than the measured one. This model deviation from the experimental data can be explained by the contribution of ²³⁰Th_{xs} initially present in the sapropel. Therefore, a simple subtraction of modeled and measured (²³⁰Th/²³⁸U) ratios can be used for the recalculation of the 230 Th_{xs} (Table 2). This approach for 230 Th_{xs} calculation seems more realistic because the theoretical value of 0.76 that was used in the section 3.2.3 for calculating 230 Th_{xs} is for a closed-system evolution (without 234 U_{rad} diffusion).

[34] From the recalculated ²³⁰Th_{xs} and by using the equation 2 a revaluation of the sedimentation rate during S5 sapropel formation can be made. The revaluated sedimentation rate for the center of the sapropel unit is even lower compared to the sedimentation rate calculated in the section 3.2.3 and equals to ~0.5 cm ka⁻¹ (Figure 3, open dots). This lower average sedimentation rate boost the discordance between the mechanisms of S5 sapropel formation that have been advanced and the estimated sedimentation rate from ²³⁰Th_{xs} in this work. This discordance, as mentioned above, involves a disturbance of the seawater ²³⁰Th_{xs} flux during sapropel formation and/or U_{auth} diffusion.

[35] A new version of the model taking into account not only the ²³⁴U_{rad} diffusion but also the diffusion of the U_{auth} should be a good approach to test the impact of the U_{auth} diffusion on the (²³⁰Th/²³⁸U) ratio. However, one major drawback for testing U_{auth} diffusion is lack of knowledge on the initial U conditions because continuous U_{auth} diffusion inhibits the use of the measured profile as initial conditions.

[36] The best fit for the $(^{226}\text{Ra}/^{230}\text{Th})$ ratio between the modeled and the measured profiles is obtained for a diffusion coefficient D_{Ra} of about $(1.6 \pm 0.2) \times 10^{-10} \text{cm}^2 \text{ s}^{-1}$ (Figure 5c). This value is comparable to the diffusion coefficient reported by *Colley and Thomson* [1992] ($D_{Ra} \sim 7 \times 10^{-10} \text{ cm}^2 \text{ s}^{-1}$) for deep

Geochemistry Geophysics Geosystems

Figure 6. $(^{231}\text{Pa}/^{235}\text{U})$ activity ratio profile through the S5 sapropel. The dashed line represents the theoretical activity ratio, assuming a closed-system evolution for the sapropel with no initial ^{231}Pa . Error bars are expressed at a 95% confidence level.

sea turbidites with the presumption that 100% of 226 Ra is mobile. The model poor precision for the lower edge of the sapropel is probably due to a preferential upward diffusion of 226 Ra that has not been taken into account in the model.

3.4. ²³⁵U Decay Chain as an Alternative Dating Tool

[37] In order to avoid system closure problems due to $^{234}U_{rad}$ migration the ^{235}U decay chain was studied. The $^{235}U \rightarrow ^{231}Th \rightarrow ^{231}Pa$ chain is independent of the mobility of radiogenic $^{234}U_{rad}$ and geochemistry of ^{231}Pa (32.76 ka) is similar to that of ^{230}Th showing high affinities with particle surfaces and thus can be considered as immobile. The intermediate ^{231}Th nuclide can be ignored because of its very short half-life (25.5h). Therefore, the radioactive ingrowth of ^{231}Pa toward ^{235}U can be used as an alternative dating tool for the S5 sapropel.

[38] Like ²³⁰Th and ²²⁶Ra three distinct sources have also to be distinguished for sedimentary ²³¹Pa: (1) detrital ²³¹Pa_{det} locked in the mineral lattices and which is considered in secular equilibrium with ²³⁵U_{det}, (2) authigenic ²³¹Pa_{auth} produced in the sediments from the radioactive decay of the seawater derived ²³⁵U_{auth}, and (3) ²³¹Pa_{xs} scavenged from the water column by adsorption on the settling particles. [39] As stated in the section 3.2.1., due to low 232 Th activities in sapropel compared with the high U activities, the detrital fraction can be neglected. The relative difference between the uncorrected and the detrital-free (231 Pa/ 235 U) ratio varies between 0.01% and 0.3% which is smaller than the analytical uncertainty (~2%).

[40] For ²³¹Pa analyses four samples from the center of the sapropel with high ²³⁸U activities and similar (²³⁴U/²³⁸U) ratios were selected. Considering a closed-system evolution for the sapropel without initial ²³¹Pa present and for 125 ka elapsed after system closure the theoretical (²³¹Pa/²³⁵U) activity ratio must be equal to 0.93. As can be seen from the Figure 6 the measured (²³¹Pa/²³⁵U) ratios in the center of the sapropel unit are surprisingly higher compared to the expected theoretical value. Thus, the ²³¹Pa_{xs} contribution in the sapropel was investigated as a potential explanation for the high (²³¹Pa/²³⁵U) ratios. An estimate of the ²³¹Pa_{xs} for the S5 sapropel is provided by using the following equation:

$${}^{231}Pa_{xs} = \left[\left(\frac{{}^{231}Pa}{{}^{235}U} \right)_{meas} - 0.93 \right] \times \frac{{}^{238}U_{meas}}{21.72}$$
(8)

where $\binom{2^{31}\text{Pa}}{2^{35}}\text{U}_{\text{meas}}$ is the measured $\binom{2^{31}\text{Pa}}{2^{35}}\text{U}$ ratio and $\binom{2^{38}\text{U}_{\text{meas}}}{2^{38}}$ is the measured $\binom{2^{31}\text{Pa}}{2^{38}}\text{U}$ activity. The calculated values of the $\binom{2^{31}\text{Pa}_{xs}}{2^{31}}$ are given the Table 2. The $\binom{2^{31}\text{Pa}}{2^{31}}$ production rate in the seawater can be calculated according to equation (9):

$$\begin{split} P_{Pa} &= 0.115 \text{ dpm } l^{-1} \times 2.11 \times 10^{-2} \text{ ka}^{-1} \times 100 \text{ l cm}^{-2} \text{ km}^{-1} \\ &= 0.243 \text{ dpm cm}^{-2} \text{ km}^{-1} \text{ ka}^{-1} \end{split}$$

where 0.115 dpm l⁻¹ is the seawater ²³⁵U activity for a salinity of 35 ‰ [*Pates and Muir*, 2007], 2.11 × 10^{-2} ka⁻¹ is the decay constant of ²³¹Pa and, $100 \ 1 \ \text{cm}^{-2} \ \text{km}^{-1}$ is the volume of water per km height over an area of 1 cm².

[41] Assuming that during S5 sapropel formation the flux of scavenged ²³¹Pa_{xs} was equal to its production rate in the water column, the equation 2 can be rewritten for ²³¹Pa allowing the evaluation of the sedimentation rate. As can be seen from the Figure 3 (diamonds), the high ²³¹Pa_{xs} values lead to unrealistic low sedimentation rates for the center of the S5 sapropel. We calculated, the (²³¹Pa/²³⁰Th) excess corrected to the time of deposition in the sediment $((^{231}Pa/^{230}Th)_{xs,0})$ to infer any effect of boundary scavenging on ²³⁰Th and ²³¹Pa during the deposition of the sapropel [*Bacon*, 1988; *Francois et al.*, 2007]. This ratio was calculated (1) considering a closed-system evolution for the ²³⁰Th_{xs} and (2) by taking

into account the ²³⁴U_{rad} diffusion (open system). As can be seen from Table 2, the (²³¹Pa/²³⁰Th)_{xs,0} values for the open system are significantly lower compared with the values of the closed system. The open-system approach for calculating the (²³¹Pa/²³⁰Th)_{xs,0} seems to be more realistic because of ²³⁴U_{rad} diffusion that has been taken into account in the ²³⁰Th_{xs} calculation.

Geochemistry

Geophysics Geosystems

[42] At present, there are no similar data for the modern Mediterranean Sea for comparison. For the samples 217.5 and 225.25 the high uncertainty on the $(^{231}\text{Pa}/^{230}\text{Th})_{xs,0}$ values does not allow a satisfactory interpretation. However, it seems that the $(^{231}\text{Pa}/^{230}\text{Th})_{xs,0}$ $(^{231}\text{Pa}/^{230}\text{Th})_{xs,0}$ values of samples 219.5 and 221.5 are unrealistically high for both open- and closedsystem calculations. Such high ratios have never been found, even in high productivity, high opal flux regions such as the Southern Ocean [Anderson et al., 2009; Walter et al., 1997] or the Equatorial Pacific [Bradtmiller et al., 2006; Pichat et al., 2004]. Although we cannot completely rule out the possibility of enhanced boundary scavenging during sapropel formation, these unrealistically high $(^{2^{31}}Pa/^{230}Th)_{xs,0}$ ratios call probably for other processes like a combination of U_{auth} diffusion over the time and an enhanced boundary scavenging during sapropel formation. The study of well-preserved sapropels older than S5 (e.g., S7–S11) in which the 230 Th_{xs} and 231 Pa_{xs} has completely decayed away, might provide a more suitable case for investigating U_{auth} migration processes.

4. Conclusion

[43] This work provides isotopic measurements of the U decay series across a ~125 ka S5 sapropel layer from the Mediterranean Sea, using more precise mass spectrometric methods (TIMS/MC-ICPMS) and high-efficiency low-background gamma spectrometry. The exceptionally high organic carbon concentration of the S5 sapropel limits postdepositional oxidation and makes this sapropel among one of the best preserved. Deviation of the $(^{234}U/^{238}U)$ activity ratio from the theoretical value, assuming a seawater U origin and a closed-system evolution, confirms $^{234}U_{rad}$ migration away from the U peak in the center of the sapropel. In addition, the fact that ²²⁶Ra with a short half-life is not in secular equilibrium with 230 Th, shows that migration of 226 Ra (and probably of $^{234}U_{rad}$) is a quasi-continuous process acting since the formation of S5. Apparently this migration is not limited to the inside of the sapropel. High $(^{234}U/^{238}U)$ and $(^{226}Ra/^{230}Th)$ activity ratios in the overlying Mn-rich zone show

evidence of nuclide migration out of the sapropel. In order to constrain diffusion coefficients for ${}^{234}U_{rad}$ and ²²⁶Ra a simple 1-D diffusion model was developed. The best fit between the model output and the measured $(^{234}U/^{238}U)$, $(^{226}Ra/^{230}Th)$ profiles was obtained for D_{rad} and D_{Ra} equal to (7.1 ± 1.1) × 10⁻¹² cm² s⁻¹ and (1.6 ± 0.2) × 10⁻¹⁰ cm² s⁻¹, respectively. However, 234 U_{rad} diffusion cannot explain the high (230 Th/ 238 U) activity ratio values observed in the sapropel. Two possible mechanisms or a combination of both of them are proposed for explaining the irregular $(^{230}\text{Th}/^{238}\text{U})$ activity profile in the S5 sapropel. The first one is an important flux of ²³⁰Th_{xs} higher than its production rate in the water column during sapropel formation and the second one is diffusion of U_{auth} in the sapropel. We believe that, if U_{auth} diffusion in the sapropel exists, the scenario of U diffusion after the core opening seems unlikely because 234 Th was found to be in secular equilibrium with 238 U two days after the core opening. It was hoped that the use of the $(^{231}\text{Pa}/^{235}\text{U})$ ratio might be an alternative dating tool for the sapropel S5. Unfortunately, surprisingly high $(^{231}\text{Pa}/^{235}\text{U})$ activity ratios compared to the theoretical value are observed in the center of the S5 sapropel. A high 231 Pa_{xs} flux during sapropel for-mation and/or U_{auth} migration is proposed in order to explain the high (231 Pa/ 235 U) activity ratios. The study of sapropels older than S5, in which the ²³⁰Th_{xs} and ²³¹Pa_{xs} has completely decayed away, should provide a better example to investigate U_{auth} migration processes.

Acknowledgments

[44] The authors warmly thank A. Mangini, A. Thomas, D. Peate, S. Severmann and Y. Zheng for their constructive comments that profoundly improved this paper. We would like also to thank E. Robin for Mn measurements.

References

- Aksu, A. E., D. Yasar, and P. J. Mudie (1995), Paleoclimatic and paleoceanographic conditions leading to development of sapropel layer SI in the Aegean Sea, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, *116*(1–2), 71–101, doi:10.1016/0031-0182(94)00092-M.
- Andersen, M. B., C. H. Stirling, B. Zimmermann, and A. N. Halliday (2010), Precise determination of the open ocean ²³⁴U/²³⁸U composition, *Geochem. Geophys. Geosyst.*, 11, Q12003, doi:10.1029/2010GC003318.
- Anderson, R. F., M. Q. Fleisher, and A. P. LeHuray (1989a), Concentration, oxidation state, and particulate flux of uranium in the Black Sea, *Geochim. Cosmochim. Acta*, 53(9), 2215–2224, doi:10.1016/0016-7037(89)90345-1.

- Anderson, R. F., A. P. Lehuray, M. Q. Fleisher, and J. W. Murray (1989b), Uranium deposition in Saanich Inlet sediments, Vancouver Island, *Geochim. Cosmochim. Acta*, 53(9), 2205–2213, doi:10.1016/0016-7037(89)90344-X.
- Anderson, R. F., Y. Lao, W. S. Broecker, S. E. Trumbore, H. J. Hofmann, and W. Wolfli (1990), Boundary scavenging in the Pacific Ocean: A comparison of ¹⁰Be and ²³¹Pa, *Earth Planet. Sci. Lett.*, 96(3–4), 287–304, doi:10.1016/0012-821X(90)90008-L.
- Anderson, R. F., S. Ali, L. I. Bradtmiller, S. H. H. Nielsen, M. Q. Fleisher, B. E. Anderson, and L. H. Burckle (2009), Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO₂, *Science*, 323(5920), 1443–1448, doi:10.1126/science.1167441.
- Bacon, M. P. (1988), Tracers of chemical scavenging in the ocean—Boundary effects and large-scale chemical fractionation, *Philos. Trans. R. Soc. London, Ser. A*, 325(1583), 147–160.
- Barnes, C. E., and J. K. Cochran (1990), Uranium removal in oceanic sediments and the oceanic U balance, *Earth Planet. Sci. Lett.*, 97(1–2), 94–101, doi:10.1016/0012-821X(90) 90101-3.
- Barnes, E. C., and J. K. Cochran (1991), Geochemistry of uranium in Black Sea sediments, *Deep Sea Res. Part A*, 38, S1237–S1254, doi:10.1016/S0198-0149(10)80032-9.
- Bernat, M., A. Buscail, A. Monaco, H. Got, and B. Chassefiere (1989), Concentrations en uranium et desequilibres radioactifs Io–U en Mediterranee orientale—Discussion sur l'origine des sapropeles, *Chem. Geol.*, 75(4), 329–337, doi:10.1016/0009-2541(89)90005-3.
- Bishop, J. K. B. (1988), The barite-opal-organic carbon association in oceanic particulate matter, *Nature*, 332(6162), 341–343, doi:10.1038/332341a0.
- Bradtmiller, L. I., R. F. Anderson, M. Q. Fleisher, and L. H. Burckle (2006), Diatom productivity in the equatorial Pacific Ocean from the last glacial period to the present: A test of the silicic acid leakage hypothesis, *Paleoceanography*, 21, PA4201, doi:10.1029/2006PA001282.
- Castradori, D. (1993), Calcareous nannofossils and the origin of the eastern Mediterranean sapropels, *Paleoceanography*, *8*(4), 459–471, doi:10.1029/93PA00756.
- Chaillou, G., P. Anschutz, G. Lavaux, J. Schafer, and G. Blanc (2002), The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay, *Mar. Chem.*, 80(1), 41–59, doi:10.1016/S0304-4203(02)00097-X.
- Chen, J. H., R. L. Edwards, and G. J. Wasserburg (1986), ²³⁸U, ²³⁴U and ²³²Th in seawater, *Earth Planet. Sci. Lett.*, 80, 241–251, doi:10.1016/0012-821X(86)90108-1.
- Cheng, H., R. L. Edwards, J. Hoff, C. D. Gallup, D. A. Richards, and Y. Asmerom (2000), The half-lives of uranium-234 and thorium-230, *Chem. Geol.*, *169*, 17–33, doi:10.1016/S0009-2541(99)00157-6.
- Cita, M. B., C. Vergnaud-Grazzini, C. Robert, H. Chamley, N. Ciaranfi, and S. Donofrio (1977), Paleoclimatic record of a long deep sea core from the eastern Mediterranean, *Quat. Res.*, 8(2), 205–235, doi:10.1016/0033-5894(77) 90046-1.
- Cochran, J. K. (1980), The flux of ²²⁶Ra from deep-sea sediments, *Earth Planet. Sci. Lett.*, 49(2), 381–392, doi:10.1016/ 0012-821X(80)90080-1.
- Cochran, J. K., and S. Krishnaswami (1980), Radium, thorium, uranium, and ²¹⁰Pb in deep-sea sediments and sediment pore waters from the north equatorial Pacific, *Am. J. Sci.*, *280*(9), 849–889, doi:10.2475/ajs.280.9.849.

- Cochran, J. K., A. E. Carey, E. R. Sholkovitz, and L. D. Surprenant (1986), The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters, *Geochim. Cosmochim. Acta*, 50(5), 663–680, doi:10.1016/0016-7037(86)90344-3.
- Colley, S., and J. Thomson (1990), Limited diffusion of U-series radionuclides at depth in deep-sea sediments, *Nature*, 346(6281), 260–263, doi:10.1038/346260a0.
- Colley, S., and J. Thomson (1992), Behaviour and mobility of U series radionuclides in Madeira Abyssal Plain turbidites over the past 750,000 years, *Mar. Geol.*, 109(1–2), 141–158, doi:10.1016/0025-3227(92)90225-7.
- Colley, S., J. Thomson, and J. Toole (1989), Uranium relocations and derivation of quasi-isochrons for a turbidite/pelagic sequence in the northeast Atlantic, *Geochim. Cosmochim. Acta*, 53(6), 1223–1234, doi:10.1016/0016-7037(89)90058-6.
- De Lange, G. J., and H. L. ten Haven (1983), Recent Sapropel Formation in the Eastern Mediterranean, *Nature*, *305*(5937), 797–798, doi:10.1038/305797a0.
- De Lange, G. J., P. J. M. Van Santvoort, C. Langereis, J. Thomson, C. Corselli, A. Michard, M. Rossignol-Strick, M. Paterne, and G. Anastasakis (1999), Palaeo-environmental variations in eastern Mediterranean sediments: A multidisciplinary approach in a prehistoric setting, *Prog. Oceanogr.*, 44(1–3), 369–386, doi:10.1016/S0079-6611(99)00037-3.
- Diester-Haass, L., C. Robert, and H. Chamley (1998), Paleoproductivity and climate variations during sapropel deposition in the eastern Mediterranean Sea, *Proc. Ocean Drill. Program Sci. Results*, 160, 227–247.
- Emeis, K.-C., and T. Sakamoto (1998), The sapropel theme of Leg 160, Proc. Ocean Drill. Program Sci. Results, 160, 29–36.
- Emeis, K.-C., T. Sakamoto, R. Wehausen, and H.-J. Brumsack (2000a), The sapropel record of the eastern Mediterranean Sea—Results of Ocean Drilling Program Leg 160, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 158(3–4), 371–395, doi:10.1016/S0031-0182(00)00059-6.
- Emeis, K.-C., U. Struck, H.-M. Schulz, R. Rosenberg, S. Bernasconi, H. Erlenkeuser, T. Sakamoto, and F. Martinez-Ruiz (2000b), Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 158(3-4), 259-280, doi:10.1016/S0031-0182(00)00053-5.
- Finneran, K. T., R. T. Anderson, K. P. Nevin, and D. R. Lovley (2002), Potential for bioremediation of uraniumcontaminated aquifers with microbial U(VI) reduction, *Soil Sediment Contam.*, 11(3), 339–357, doi:10.1080/ 20025891106781.
- Fleischer, R. L. (1988), Alpha-recoil damage: Relation to isotopic disequilibrium and leaching of radionuclides, *Geochim. Cosmochim. Acta*, 52(6), 1459–1466, doi:10.1016/0016-7037(88)90216-5.
- Francois, R., M. Frank, M. M. Rutgers van der Loeff, and M. P. Bacon (2004), ²³⁰Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary, *Paleoceanography*, 19, PA1018, doi:10.1029/2003PA000939.
- Francois, R., et al. (2007), Comment on "Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific?" by M. Lyle et al, *Paleoceanography*, 22, PA1216, doi:10.1029/2005PA001235.
- Fredrickson, J. K., J. M. Zachara, D. W. Kennedy, M. C. Duff, Y. A. Gorby, S. M. W. Li, and K. M. Krupka (2000), Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a

dissimilatory metal-reducing bacterium, *Geochim. Cosmochim. Acta*, *64*(18), 3085–3098, doi:10.1016/S0016-7037 (00)00397-5.

Geochemistry

Geophysics

Geosystems

- Guihou, A., S. Pichat, S. Nave, A. Govin, L. Labeyrie, E. Michel, and C. Waelbroeck (2010), Late slowdown of the Atlantic Meridional Overturning Circulation during the Last Glacial Inception: New constraints from sedimentary (²³¹Pa/²³⁰Th), *Earth Planet. Sci. Lett.*, 289(3–4), 520–529, doi:10.1016/j.epsl.2009.11.045.
- Henderson, G. M. (2002), Seawater (²³⁴U/²³⁸U) during the last 800 thousand years, *Earth Planet. Sci. Lett.*, *199*(1–2), 97–110, doi:10.1016/S0012-821X(02)00556-3.
- Henderson, G. M., and R. F. Anderson (2003), The U-series toolbox for paleoceanography, *Rev. Mineral. Geochem.*, 52(1), 493–531, doi:10.2113/0520493.
- Henderson, G. M., C. Heinze, R. F. Anderson, and A. M. E. Winguth (1999a), Global distribution of the ²³⁰Th flux to ocean sediments constrained by GCM modelling, *Deep Sea Res.*, *Part I*, 46(11), 1861–1893, doi:10.1016/S0967-0637(99)00030-8.
- Henderson, G. M., N. C. Slowey, and G. A. Haddad (1999b), Fluid flow through carbonate platforms: Constraints from ²³⁴U/²³⁸U and Cl⁻ in Bahamas pore-waters, *Earth Planet. Sci. Lett.*, *169*(1–2), 99–111, doi:10.1016/S0012-821X(99) 00065-5.
- Hilgen, F. J. (1991), Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale, *Earth Planet. Sci. Lett.*, 104(2–4), 226–244, doi:10.1016/0012-821X(91) 90206-W.
- Jorissen, F. J., A. Asioli, A. M. Borsetti, L. Capotondi, J. P. de Visser, F. J. Hilgen, E. J. Rohling, K. van der Borg, C. Vergnaud Grazzini, and W. J. Zachariasse (1993), Late Quaternary central Mediterranean biochronology, *Mar. Micropaleontol.*, 21(1–3), 169–189, doi:10.1016/0377-8398 (93)90014-O.
- Jung, M., J. Ilmberger, A. Mangini, and K.-C. Emeis (1997), Why some Mediterranean sapropels survived burn-down (and others did not), *Mar. Geol.*, 141(1-4), 51-60, doi:10.1016/S0025-3227(97)00031-5.
- Kidd, R. B., M. B. Cita, and W. B. F. Ryan (1978), Stratigraphy of eastern Mediterranean sapropel sequences recovered during Leg 42A and their paleoenvironmental significance, *Initial Rep. Deep Sea Drill. Proj.*, 42A, 421–443.
- Klinkhammer, G. P., and M. R. Palmer (1991), Uranium in the oceans: Where it goes and why, *Geochim. Cosmochim. Acta*, *55*(7), 1799–1806, doi:10.1016/0016-7037(91)90024-Y.
- Ku, T.-L. (1965), An evaluation of the ²³⁴U/²³⁸U method as a tool for dating pelagic sediments, *J. Geophys. Res.*, 70(14), 3457–3474, doi:10.1029/JZ070i014p03457.
- Lawrence, E. R., J. H. Chen, and G. J. Wasserburg (1987), ²³⁸U-²³⁴U-²³⁰Th-²³²Th systematics and the precise measurement of time over the past 500,000 years, *Earth Planet. Sci. Lett.*, 81(2–3), 175–192, doi:10.1016/0012-821X(87)90154-3.
- Li, Y.-H., and S. Gregory (1974), Diffusion of ions in sea water and in deep-sea sediments, *Geochim. Cosmochim. Acta*, 38(5), 703–714, doi:10.1016/0016-7037(74)90145-8.
- Lourens, L. J., A. Antonarakou, F. J. Hilgen, A. A. M. Van Hoof, C. Vergnaud-Grazzini, and W. J. Zachariasse (1996), Evaluation of the Plio-Pleistocene astronomical timescale, *Paleoceanography*, *11*(4), 391–413, doi:10.1029/96PA01125.
- Löwemark, L., Y. Lin, H.-F. Chen, T.-N. Yang, C. Beier, F. Werner, C.-Y. Lee, S.-R. Song, and S.-J. Kao (2006), Sapropel burn-down and ichnological response to late Qua-

ternary sapropel formation in two ~400 ky records from the eastern Mediterranean Sea, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, *239*(3–4), 406–425, doi:10.1016/j. palaeo.2006.02.013.

- Mangini, A., and J. Dominik (1979), Late Quaternary sapropel on the Mediterranean Ridge: U-budget and evidence for low sedimentation rates, *Sediment. Geol.*, 23(1–4), 113–125, doi:10.1016/0037-0738(79)90009-5.
- Mangini, A., M. Jung, and S. Laukenmann (2001), What do we learn from peaks of uranium and of manganese in deep sea sediments?, *Mar. Geol.*, 177(1–2), 63–78, doi:10.1016/ S0025-3227(01)00124-4.
- McManus, J., W. M. Berelson, G. P. Klinkhammer, D. E. Hammond, and C. Holm (2005), Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain, *Geochim. Cosmochim. Acta*, 69(1), 95–108, doi:10.1016/j.gca.2004.06.023.
- Mercone, D., J. Thomson, R. H. Abu-Zied, I. W. Croudace, and E. J. Rohling (2001), High-resolution geochemical and micropalaeontological profiling of the most recent eastern Mediterranean sapropel, *Mar. Geol.*, 177(1–2), 25–44, doi:10.1016/S0025-3227(01)00122-0.
- Murat, A., and H. Got (1989), Middle and late Quaternary depositional sequences and cycles in the eastern Mediterranean—Reply, *Sedimentology*, 36(1), 156–158, doi:10.1111/ j.1365-3091.1989.tb00828.x.
- Nijenhuis, I. A., J. Becker, and G. J. De Lange (2001), Geochemistry of coeval marine sediments in Mediterranean ODP cores and a land section: Implications for sapropel formation models, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 165(1–2), 97–112, doi:10.1016/S0031-0182(00)00155-3.
- Osborne, A. H., G. Marino, D. Vance, and E. J. Rohling (2010), Eastern Mediterranean surface water Nd during Eemian sapropel S5: Monitoring northerly (mid-latitude) versus southerly (sub-tropical) freshwater contributions, *Quat. Sci. Rev.*, 29(19–20), 2473–2483, doi:10.1016/j. quascirev.2010.05.015.
- Paterne, M., F. Guichard, J. Labeyrie, P. Y. Gillot, and J. C. Duplessy (1986), Tyrrhenian Sea tephrochronology of the oxygen isotope record for the past 60,000 years, *Mar. Geol.*, 72(3–4), 259–285, doi:10.1016/0025-3227(86)90123-4.
- Pates, J. M., and G. K. P. Muir (2007), U-salinity relationships in the Mediterranean: Implications for Th-234: U-238 particle flux studies, *Mar. Chem.*, *106*(3–4), 530–545, doi:10.1016/j.marchem.2007.05.006.
- Pichat, S., K. W. W. Sims, R. Francois, J. F. McManus, S. B. Leger, and F. Albarede (2004), Lower export production during glacial periods in the equatorial Pacific derived from (²³¹Pa/²³⁰Th)_{xs,0} measurements in deep-sea sediments, *Paleoceanography*, 19, PA4023, doi:10.1029/2003PA000994.
- Reyss, J.-L., S. Schmidt, F. Legeleux, and P. Bonté (1995), Large, low background well-type detectors for measurements of environmental radioactivity, *Nucl. Instrum. Methods Phys. Res., Sect. A*, 357(2–3), 391–397, doi:10.1016/0168-9002(95) 00021-6.
- Robinson, L. F., J. F. Adkins, D. P. Fernandez, D. S. Burnett, S. L. Wang, A. C. Gagnon, and N. Krakauer (2006), Primary U distribution in scleractinian corals and its implications for U series dating, *Geochem. Geophys. Geosyst.*, 7, Q05022, doi:10.1029/2005GC001138.
- Rohling, E. J. (1994), Review and new aspects concerning the formation of eastern Mediterranean sapropels, *Mar. Geol.*, *122*(1–2), 1–28, doi:10.1016/0025-3227(94)90202-X.
- Rohling, E. J., E. C. Hopmans, and J. S. S. Damste (2006), Water column dynamics during the last interglacial anoxic

event in the Mediterranean (sapropel S5), *Paleoceanography*, 21, PA2018, doi:10.1029/2005PA001237.

Geochemistry

Geophysics

Geosystems

- Severmann, S., and J. Thomson (1998), Investigation of the ingrowth of radioactive daughters of in Mediterranean sapropels as a potential dating tool, *Chem. Geol.*, *150*(3–4), 317–330, doi:10.1016/S0009-2541(98)00113-2.
- Spencer, D. W., M. P. Bacon, and P. G. Brewer (1981), Models of the distribution of ²¹⁰Pb in a section across the north equatorial Atlantic Ocean, J. Mar. Res., 39(1), 119–138.
- Stroobants, N., F. Dehairs, L. Goeyens, N. Vanderheijden, and R. van Grieken (1991), Barite formation in the Southern Ocean water column, *Mar. Chem.*, *35*, 411–421, doi:10.1016/S0304-4203(09)90033-0.
- ten Haven, H. L., J. W. de Leeuw, P. A. Schenck, and G. T. Klaver (1988), Geochemistry of Mediterranean sediments. Bromine/organic carbon and uranium/organic carbon ratios as indicators for different sources of input and post-depositional oxidation, respectively, *Org. Geochem.*, *13*(1–3), 255–261, doi:10.1016/0146-6380(88)90044-7.
- Thomson, J. (1982), Holocene sedimentation rates on the Hellenic outer ridge: A comparison by 14 C and 230 Th_{excess} methods, *Sediment. Geol.*, 32(1–2), 99–110, doi:10.1016/0037-0738(82)90016-1.
- Thomson, J., D. Mercone, G. J. De Lange, and P. J. M. Van Santvoort (1999), Review of recent advances in the interpretation of eastern Mediterranean sapropel S1 from geochemical evidence, *Mar. Geol.*, *153*(1–4), 77–89, doi:10.1016/ S0025-3227(98)00089-9.
- Thunell, R. C., and D. F. Williams (1989), Glacial-Holocene salinity changes in the Mediterranean Sea: Hydrographic

and depositional effects, *Nature*, *338*(6215), 493–496, doi:10.1038/338493a0.

- Walter, H. J., M. M. Rutgers van der Loeff, and H. Hoeltzen (1997), Enhanced scavenging of ²³¹Pa relative to ²³⁰Th in the south Atlantic south of the Polar front: Implications for the use of the ²³¹Pa/²³⁰Th ratio as a paleoproductivity proxy, *Earth Planet. Sci. Lett.*, *149*(1–4), 85–100, doi:10.1016/S0012-821X(97)00068-X.
- Warning, B., and H. J. Brumsack (2000), Trace metal signatures of eastern Mediterranean sapropels, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 158(3–4), 293–309, doi:10.1016/S0031-0182(00)00055-9.
- Weldeab, S., K.-C. Emeis, C. Hemleben, G. Schmiedl, and H. Schulz (2003), Spatial productivity variations during formation of sapropels S5 and S6 in the Mediterranean Sea: Evidence from Ba contents, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 191(2), 169–190, doi:10.1016/S0031-0182(02) 00711-3.
- Yu, E. F., R. Francois, M. P. Bacon, S. Honjo, A. P. Fleer, S. J. Manganini, M. M. Rutgers van der Loeff, and V. Ittekot (2001), Trapping efficiency of bottom-tethered sediment traps estimated from the intercepted fluxes of ²³⁰Th and ²³¹Pa, *Deep Sea Res., Part I*, 48(3), 865–889, doi:10.1016/ S0967-0637(00)00067-4.
- Zheng, Y., R. F. Anderson, A. Van Geen, and M. Q. Fleisher (2002), Preservation of particulate non-lithogenic uranium in marine sediments, *Geochim. Cosmochim. Acta*, 66(17), 3085–3092, doi:10.1016/S0016-7037(01)00632-9.