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Abstract

This work is concerned with deriving a macroscopic ®ltration law for describing transient linear visco-
elastic ¯uid ¯ow in porous media. This is performed using a homogenisation technique, i.e. by upscaling the 
heterogeneity scale description. The macroscopic ®ltration law is expressed in Fourier space as a generalised 
Darcy's law with a dynamic permeability tensor. This model is valid at low Reynolds and Deborah 
numbers. Analytical results are determined in the particular case of the ¯ow of an Oldroyd ¯uid in a bundle 
of capillary tubes and are compared to those obtained by a corresponding phenomenological model. 
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1. Introduction

Viscoelastic ¯uid ¯ow in porous media is of interest for many engineering ®elds such as en-
hanced oil recovery, paper and textile coating, and composite manufacturing processes. The
general linear viscoelastic model of ¯uid can describe some of the time-dependent motions of
polymeric ¯uids, although it describes a restricted class of ¯ows with very small displacement
gradients.

Modelling of polymeric ¯ow in porous media has motivated many studies that essentially focus
on the numerical simulation of viscoelastic ¯uid ¯ow in a speci®c pore geometry model, such as
capillary tubes, indulating tubes, packs of spheres or cylinders. A good review of these studies can
be found in [1]. Apparently, only a few mathematical macroscopic ®ltration models have been



proposed concerning viscoelastic ¯uid ¯ow in porous media. By analogy with Maxwell's model,
the following phenomenological model has been introduced [2]:
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Then, on the basis of Oldroyd's model, the following ®ltration law for describing both relaxation
and retardation phenomena was suggested [3]:
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In this paper, we use the homogenisation theory for determining the macroscopic behaviour of
viscoelastic ¯uid ¯ow in porous media at low Reynolds and Deborah numbers. Homogenisation
techniques allow determination of an equivalent macroscopic behaviour by upscaling the de-
scription at the heterogeneity scale. No speci®c geometry is at issue, the work is aimed towards
deriving a general macroscopic mathematical model. Homogenisation method is introduced in
Section 2. Section 3 sets out to derive the macroscopic behaviour of linear viscoelastic ¯uid ¯ow in
porous media. In Fourier space, the derived macroscopic ®ltration law is a generalised Darcy's
law with a dynamic permeability ~K�x�. When inversed this law expresses a momentum balance in
terms of a dynamic resistivity ~H�x� � ~Kÿ1�x�. This latter writing allows better physical inter-
pretation as it shows how the ¯uid stress is related to both the viscous dissipation and the ap-
parent density. Finally, in Section 4 the results in the particular case of the ¯ow of an Oldroyd
¯uid in a bundle of capillary tubes are examined. It is shown that negative apparent density may
occur. It turns out that the results obtained via homogenisation strongly di�er from those pro-
vided by model (2).

2. Introduction to homogenisation

2.1. Concept of homogenisability

Modelling heterogeneous physical systems such as ¯uid ¯ow in porous media turns out to be a
di�cult task. Nonetheless, the internal disorder may allow a large-scale continuous description. In
other words, under speci®c conditions physical processes can be described by means of equations
with transfer coe�cients that are independent of the macroscopic boundary conditions. The es-
sence of homogenisation techniques is to determine an equivalent macroscopic continuous be-
haviour by upscaling the description at the heterogeneity scale.

Homogenisation is possible if the density of heterogeneities is su�ciently high. For a material
with a random structure, this intuitive condition is expressed by the existence of a Representative
Elementary Volume (REV). In the context of a periodic medium, the REV is simply the period.
The fundamental assumption behind homogenisation is the separation of scales, which can be
expressed as follows:



l� L; �3�

where l is the characteristic size of the REV and L the characteristic macroscopic length. As this
assumption conjures up a geometrical separation of scales, we shall draw attention to the fact that
this fundamental condition must also be veri®ed regarding the phenomenon. For instance, in the
case of wave propagation, l must also be small compared to the wavelength.

2.2. Homogenisation for periodic structures

2.2.1. Fundamental assumptions
In the present study, we use the method of homogenisation for periodic structures ± also called

method of multiple scales ± introduced in [4,5]. As mentioned above, the fundamental assumption
is the separation of scales and the key parameter of the method is the small parameter

e � l
L
� 1; �4�

in which L is the macroscopic characteristic length and, depending on the problem under con-
sideration, is either geometrical (i.e. sample size) or related to the excitation (e.g. wavelength).

The medium is also assumed to be periodic; the period, denoted X, is O(l). This assumption is
actually not a restriction.

2.2.2. Methodology
We use the approach suggested in [6], by which the problem is tackled in a physical rather than

mathematical manner. Indeed, it o�ers the additional bene®t that conditions of homogenisability
are expressly stated. This formulation of the method is on the basis of de®nition and estimation of
the set of non-dimensional numbers arising from the description at the local scale. It allows de-
termination of the macroscopic behaviour without any prerequisite on the form of the macro-
scopic equations.

2.2.2.1. Separation of space variables. As a result of the separation of scales, two non-dimensional
space variables may be de®ned:

~y �
~X
l
�non-dimensional microscopic space variable�; �5�

~x �
~X
L
�non-dimensional macroscopic space variable�; �6�

where ~X is the physical space variable.
If the condition of separation of scales is veri®ed, then~y and~x appear as two independent space

variables. As a consequence, all physical variables of the problem are, a priori, functions of both~y
and~x:

/ � /�~y;~x; t�: �7�



2.2.2.2. Principle of the method: asymptotic analysis. The homogenisation method of multiple
scales is based on the fundamental statement that if the scales are well separated, then all physical
variables can be looked for in the form of asymptotic expansions in powers of e:

/ � /0�~y;~x; t� � e/1�~y;~x; t� � � � � ; �8�

in which functions /i are ~y-periodic.

2.2.2.3. Normalisation. The purpose of normalisation is to de®ne and to estimate the set of non-
dimensional numbers that characterise the local description. The scope is to express the local
description in a non-dimensional form. For estimating the non-dimensional numbers, the choice
of a reference characteristic length is required. This arbitrary choice does not a�ect the ®nal result.
Let us consider L as the reference length. The choice of the non-dimensional gradient operator is
conditioned by that of the reference length. In e�ect, the partial derivative with respect to the
physical space variable, ~X , can be written as

o
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Since L is the reference characteristic length, the non-dimensional gradient operator is therefore
given by

eÿ1 ~ry � ~rx; �10�

where ~ry and ~rx are the gradient operators with respect to variables~y and~x, respectively.
The non-dimensional numbers are estimated with respect to the small parameter e. For in-

stance, consider a given non-dimensional number Q. When using L as the reference length, the
estimation of Q is denoted QL, and QL is said to be of the order of eq when

eq�1 � QL � eqÿ1: �11�

Once all non-dimensional numbers have been estimated, the local description may then be written
in the formX

i

eiAi � 0; �12�

in which all operators Ai are non-dimensional operators.

2.2.2.4. Derivation of the macroscopic description. The method consists in incorporating the as-
ymptotic expansions of the physical variables in the non-dimensional local description. Solving
the boundary-value problems arising at the successive orders of e leads to the macroscopic de-
scription. In particular, a balance equation at a given order will yield



~ry � /i�1 � ~rx � /i � 0; �13�

where /i has previously been de®ned while solving a boundary-value problem at a former order.
This equation expresses the balance, over the period, of the quantity /i�1, in the presence of the

source term ~rx � /i. This is physically consistent only if the source term is average to zero. In
e�ect, integration of (13) over the period gives

~rx � /i
D E

X
� 0; �14�

in which the average over the period, h�iX, is de®ned by

h�iX �
1

X

Z
X
� dX: �15�

Eq. (14) is called the `compatibility condition' and leads to the macroscopic behaviour:

~rx � h/iiX � 0: �16�

3. Homogenisation of linear viscoelastic ¯uid ¯ow in porous media

3.1. Local description and estimations

Consider a rigid periodic porous medium, whose period X is O�l� and characterises the pore-
scale. Within the period, the solid and the pore spaces occupy domains Xs and Xl, respectively,
and their common boundary is denoted C (Fig. 1). We assume the scales to be separated, i.e. the
characteristic macroscopic length, L, is such that

e � l
L
� 1: �17�

Fig. 1. Porous medium.



The pore space is saturated by an incompressible linear viscoelastic ¯uid. For slow ¯ows (i.e. for
negligible Reynolds number), the momentum balance equation can be linearised:

q
o~v
ot
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For a linear viscoelastic ¯uid, the deviatoric part of the stress tensor, ~s, is such that
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where the kk's and the hk's, k � 1; . . . ; n, are positive constants that represent relaxation and re-
tardation characteristic times, respectively.

The linear viscoelastic model (18), (19) is valid if all relaxation and retardation times are small
compared to the characteristic time of the local ¯ow:

kk � l
V
; hk � l

V
�k � 1; . . . ; n�; �20�

in which V is a characteristic ¯ow velocity.
For viscoelastic ¯uids, the key dimensionless number is the Deborah number, De. It is de®ned

as the ratio of the largest characteristic time of the ¯uid to the characteristic time of the ¯ow:

De �Max
kkV

l
;
hkV

l

� �
�k � 1; . . . ; n�: �21�

Thus, condition (20) can also be expressed as

De� 1: �22�
This condition means that the distance covered by a ¯uid particle during any kk or hk is very small
compared to the characteristic size of the pore which is O�l�.

Hence the linear viscoelastic model (18), (19) is valid for low Reynolds and Deborah numbers.
Combining Eqs. (18) and (19) gives the local momentum balance equation:
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The mass balance equation is written as

~r �~v � 0; �24�
and a no-slip condition is considered on the boundary

~v=C �~0: �25�

Eqs. (23)±(25) constitute the local description.



To get viscoelastic e�ects on the macroscopic behaviour, the relaxation and retardation
characteristic times must be of the same order of magnitude as the dynamic characteristic time,
i.e. the characteristic time introduced by the term q o~v=ot, which we denote by T. Therefore, we
assume

T
kk
� O�1�; T

hk
� O�1� �k � 1; . . . ; n�: �26�

From the momentum balance equation arise the following dimensionless numbers:

Q � j
~rpj
jlD~vj ; �27�

Ret � jq o~v=otj
jlD~vj ; �28�
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Let us choose L as the reference characteristic length.
The order of magnitude of QL is given by the physics. In e�ect, the local ¯ow, characterised by

the term lD~v is due to the macroscopic pressure gradient. As a result, we have

l
V
l2
� O

dP
L

� �
: �31�

dP is the characteristic increment of pressure over the distance L.
Thus, we deduce

QL � j
~rpjL
jlD~vjL

� dP=L
lV =L2

� O�eÿ2�: �32�

Now, in order to get macroscopic transient e�ects, the transient term, q o~v=ot, must be locally, i.e.
with respect to the microscopic characteristic length, l, of the same order of magnitude as the
viscous term, lD~v:
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from which we deduce the order of magnitude of the transient Reynolds number:
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Finally, according to (26), we deduce
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The normalised local description is the following:
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~r �~v � 0; �38�
~v=C �~0; �39�

in which all quantities are now dimensionless.
In Fourier space the normalised local description is written as

~q~v � ÿ ~rp � e2 ~lD~v; �40�
~r �~v � 0; �41�
~v=C �~0; �42�

where

~q � ixq; �43�
~l � lS�i;x�; �44�

and
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3.2. Derivation of the macroscopic description

We now introduce the multiple scale coordinates ~y and~x and the perturbation expansions

p�~y;~x; t� � p0�~y;~x; t� � ep1�~y;~x; t� � . . . ; �46�
~v�~y;~x; t� �~v0�~y;~x; t� � e~v1�~y;~x; t� � . . . ; �47�

where~v i and pi are ~y-periodic.
Incorporating expansions (46) and (47) in (40) leads at the two ®rst orders O�eÿ1� and O�e0�:

~ryp0 �~0; �48�
~q~v 0 � ~lDy~v 0ryp1 ÿ ~rxp0: �49�

Similarly, from (41), we get

~ry �~v 0 � 0; �50�
~ry~v 1 � ~rx~v 0 � 0: �51�

Finally, boundary-condition (42) gives

~v 0=C �~v 1=C � � � � �~0: �52�

The method consists now in deducing the boundary-value problems at successive orders and in
solving them over the period.

First-order problem.

~ryp0 �~0: �53�

It gives

p0 � p0�~x; t�: �54�

Second-order problem.

~q~v 0 � ~lDy~v 0 ÿryp1 ÿ ~rxp0; �55�
~ry �~v 0 � 0; �56�
~v 0=C �~0; �57�

(~v 0 and p1 are ~y-periodic).
Let V�X� be the Hilbert space of X-periodic and complex-valued vectors ~a, that are de®ned

over Xl and such that: ~ry �~a � 0 and~a=C �~0. V�X� is equipped with the following inner product:
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where
~~b is the conjugate of ~b.

The weak formulation of (55)±(57) is given by
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where a�~a;~b�V�X� is a sesquilinear form and is de®ned by
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It can be shown that Re�a�~a;~a�V�X�� > 0. Hence, by Lax-Milgram Lemma, there is a unique so-
lution to (59). Let ~kj be the particular solution of (59) for op0=oxi � dij �j fixed�. Thus, ~v 0 is
written as

~v0 � ÿ~k�~y;x� ~rxp0: �61�

Third-order problem.

~ry~v1 � ~rx~v 0 � 0; �62�
~v1=C �~0: �63�

Integrating (62) over X and then using the divergence theorem, boundary condition (63) and the
condition of periodicity leads to the macroscopic description:

~rx � h~v 0iX � 0; �64�

in which

h~v 0iX � ÿ ~K�x� ~rxp0; �65�

where

~K � h~kiX; h�iX �
1

jXj
Z
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� dX: �66�

Eq. (65) is the generalised Darcy's law [7]. ~K is a x dependent, complex-valued second order
tensor and is called the `dynamic permeability'. When x � 0, ~K is the intrinsic permeability. ~K is a
symmetrical tensor; its real part is de®nite positive whereas its imaginary part is de®nite negative.
As a result, ~K is inversible. Let ~H�x� be the inverse tensor of ~K:



~H�x� � ~Kÿ1�x� � ~Hr � i ~Hi; �67�
~H�x� is the dynamic resistivity.

In terms of the dynamic resistivity, the ®ltration law (65) is expressed as follows:

~rxp0 � ÿ ~H�x�h~v 0iX; �68�

or
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where

n � jXlj
jXj

is the porosity.
At constant pulsation, Eq. (69) is a real-valued Darcy's law. Written in the above form, the

seepage law expresses a momentum balance: the partial pressure np0 is the ¯uid stress, the term
n ~Hr�x� is related to the viscous dissipation, and n ~Hi�x�=x is the apparent density of the ¯uid in
the porous medium.

4. Results for the ®ltration of an Oldroyd ¯uid in a bundle of capillary tubes

The purpose of this section is to examine the macroscopic ®ltration law obtained for the ¯ow of
an Oldroyd ¯uid in a bundle of capillary tubes (Fig. 2).

The model of Oldroyd is a simpli®cation of the generalised linear viscoelastic model (19):

~s� k
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� 2l ~D� h

o ~D
ot

!
; �70�

Fig. 2. Bundle of capillary tubes: (a) capillary tube with respect to variable ~y; (b) cross-section of the medium with

respect to variable~x.



in which k and h are the relaxation and the retardation characteristic times, respectively. In
Fourier space, model (70) can also be expressed as follows:

~s � 2lS ~D; S � 1� ixh
1� ixk

: �71�

When k � h, relation (70) represents a viscous Newtonian ¯uid, whereas h � 0; k 6� 0 characterises
a Maxwellian ¯uid. If we assume, according to Biot [8,11,12] that there exist hidden variables and
that the model may be expressed in Lagrangian form

sij � oW
oeij
� oD

oDij
; �72�

where ~e is the deformation, W the potential energy and D the dissipation, then, we obtain

sij � lx2 kÿ h

1� x2k2
~e� l

1� x2kh

1� x2k2
~D: �73�

Thus, assuming the potential energy being positive semi-de®nite yields

kÿ hP 0: �74�

Models made of dashpots and springs do verify this condition. Other investigations based on the
kinetic theory of dilute solution of elastic dumbbels also yield to condition (74) (see [13]).
However, there is no convincing argument that it should be applied to actual materials. Therefore,
for the sake of generality, we disregard it in the following.

According to the results obtained in Section 3, the macroscopic ®ltration law of the ¯ow of an
Oldroyd ¯uid in a bundle of capillary tubes of radius a is described by

hv0iX � ÿK�x� dp0

dx
; �75�

where the dynamic permeability, K�x�, is

K � n
pa2

Z a

0

2prk�r;x� dr; �76�

in which cylindrical coordinates (r; h; x) are used. ~k is such that v0 � ÿ~k dp0=dx is the solution of
the local problem (55)±(57), which in a single capillary tube is expressed as
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where

~q � ixq; ~l � lS; ~m � ~l
q
; S � 1� ixh

1� ixk
: �79�

The solution of (77) and (78) is
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from which we deduce the expression for the dynamic permeability K�x�:
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J2 and J0 are the Bessel functions.
Now let us express seepage law (75) in the form of a momentum balance (as in (69):

ÿrnp0 � ÿnHhv0i � ÿnHrhv0i ÿ nHi

x
dhv0i

dt
; �82�

H � Hr � iHi � Kÿ1: �83�

Low frequencies. For low frequencies, it is easy to show that the behaviour is given by

nHr � 8l
a2
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nHi

x
� q
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� 8m
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�hÿ k�

�
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As expected, the dissipation term, nHr, is that of a Newtonian ¯uid of viscosity l.
For a Newtonian ¯uid, i.e. for k � h, we retrieve the following result for the apparent density,

nHi

x
� 4

3
q; �85�

that characterises the added mass density as shown by Biot, [9]. Furthermore, we see that the
apparent density becomes negative when

kÿ h >
a2

6m
: �86�

High frequencies. For high frequencies, the apparent density tends to the ¯uid density when
k 6� 0,

lim
x!1

nHi

x
� q; �87�

and it tends to a constant which is di�erent from q when k � 0.



As for the dissipation, two di�erent behaviours appear when the frequency is high:

limx!1 nHr � constant if k 6� 0 and h � 0 or if k � 0 and h 6� 0;
limx!1 nHr �

����
x
p

otherwise:

General case. In general cases, ®ve distinct behaviours for the monochromatic seepage law may
be distinguished.
1. Newtonian ¯uids, k � h. K and H are shown in Fig. 3. This is the classical case of the dynamics

of a Newtonian ¯uid in a porous medium which has been investigated by Biot, [10], and revis-
ited in [14,7] from the homogenisation point of view. The behaviour shows an added mass den-
sity for small values of x.

2. Maxwell ¯uids, h � 0; k 6� 0. This case has already been investigated by volume averaging in
[15]. K and H are shown in Fig. 4. Note the negative apparent density for small values of x.

3. Second order ¯uid with vanishing second normal stress coe�cient, i.e. Oldroyd ¯uid with
h 6� 0; k � 0. The curves are presented in Fig. 5. Both the apparent density and the dissipation
are independent of the frequency. Condition (74) is not checked in this case.

4. Oldroyd ¯uid with k 6� 0; h 6� 0; kÿ h > 0. The apparent density is negative at low frequencies
and the dissipation presents a minimum (see Fig. 6).

5. Oldroyd ¯uid with k 6� 0; h 6� 0; kÿ h < 0. The behaviour of H is similar to that obtained for a
Newtonian ¯uid (k � h). However K and H show an additional plateau (see Fig. 7). Condition
(74) is not checked in this case.
Comparison with the phenomenological model (2). Let us consider the phenomenological model

of [3] that has been mentioned in the introduction (see Eq. (2)). This model is built by analogy

Fig. 3. Newtonian ¯uid: (a) dynamic permeability: bold: K�r � 2lKr=na2, dashed: K�i � 2lKi=na2; (b) dynamic resisti-

vity: bold: H �r � 0:1na2Hr=2l, dashed: H �i � nHi=qx, dimensionless frequency: x� � xa2=2m.



with the Oldroyd ¯uid model as an attempt to describe the ®ltration of an Oldroyd ¯uid in a
porous medium. In Fourier space it is written as

�1� ixkv�~v � ÿ k
l
�1� ixkp� ~rp; �88�

Fig. 5. Oldroyd ¯uid, k � 0; h � 0:4. As in Fig. 3, now with H �r � na2Hr=2l, H �i � 0:1nHi=qx.

Fig. 4. Maxwell ¯uid, k � 0:02. As in Fig. 3, now with H �r � na2Hr=2l, H �i � 0:1nHi=qx.



from which we de®ne a phenomenological dynamic permeability, Kph and the corresponding
phenomenological dynamic resistivity:

Kph � k
l

1� ixkp

1� ixkv
; Hph � 1

Kph
: �89�

Fig. 6. Oldroyd ¯uid, k > h 6� 0. As in Fig. 3, now with H �r � na2Hr=2l, H �i � 0:1nHi=qx
(k � 0:04; h � 0:01; m � 10ÿ4 m2=s; a � 10ÿ3 m�:

Fig. 7. Oldroyd ¯uid, h > k 6� 0. As in Fig. 3, now with H �r � na2Hr=2l, H �i � 0:1nHi=qx
(k � 0:01; h � 0:04; m � 10ÿ4 m2=s; a � 10ÿ3 m�:



The main pro®les of Kph and Hph are shown in Fig. 8. It is clear that these results strongly di�er
from those obtained via homogenisation. The analysis is easier by comparing dynamic resistivities
rather than dynamic permeabilities, as physically, H is a more meaningful quantity. We see that
the pro®le of H approaches the Newtonian ¯uid behaviour, only, (Fig. 8 case 1), with the re-
striction that the apparent density remains constant whereas it varies with respect to x for a
Newtonian ¯uid.

5. Conclusions

We have used the homogenisation method so as to derive a general ®ltration law describing the
¯ow of a linear viscoelastic ¯uid in a porous medium. This model is valid under quite restrictive
conditions as in particular the Reynolds and Deborah numbers must be low. Anyhow this model
is rigorous within its domain of validity. It is expressed either as a generalised Darcy's law (65)
with a dynamic permeability tensor ~K�x�, or as a momentum balance (68) in terms of the dynamic
resistivity tensor ~H�x� � Kÿ1.

The results obtained in the particular case of the ¯ow of an Oldroyd ¯uid in a bundle of
capillary tubes show that the viscoelastic behaviour strongly di�ers from the Newtonian behav-
iour. It also shows that negative apparent densities can be obtained. Finally, comparison of these
results with those obtained for model (2) shows that the question of an appropriate phenome-
nological ®ltration law for describing the ¯ow of an Oldroyd ¯uid in a porous medium is still
open.

Fig. 8. Phenomenological model: (a) dynamic permeability: bold: K�r � Kph
r =k0, dashed: K�i � Kph

i =k0; (b) dynamic

resistivity: bold: H �r � H ph
r =k0, dashed: H �i � H ph

r =k0, 1: kp � 0; kv � 0:4, 2: kp � 0:4; kv � 1, 3: kp � 1; kv � 0:4, 4:

kp � 0:4; kv � 0.
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