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This work is concerned with deriving a macroscopic ®ltration law for describing transient linear viscoelastic ¯uid ¯ow in porous media. This is performed using a homogenisation technique, i.e. by upscaling the heterogeneity scale description. The macroscopic ®ltration law is expressed in Fourier space as a generalised Darcy's law with a dynamic permeability tensor. This model is valid at low Reynolds and Deborah numbers. Analytical results are determined in the particular case of the ¯ow of an Oldroyd ¯uid in a bundle of capillary tubes and are compared to those obtained by a corresponding phenomenological model.

Introduction

Viscoelastic ¯uid ¯ow in porous media is of interest for many engineering ®elds such as enhanced oil recovery, paper and textile coating, and composite manufacturing processes. The general linear viscoelastic model of ¯uid can describe some of the time-dependent motions of polymeric ¯uids, although it describes a restricted class of ¯ows with very small displacement gradients.

Modelling of polymeric ¯ow in porous media has motivated many studies that essentially focus on the numerical simulation of viscoelastic ¯uid ¯ow in a speci®c pore geometry model, such as capillary tubes, indulating tubes, packs of spheres or cylinders. A good review of these studies can be found in [START_REF] Skartsis | Polymeric ¯ow through ®brous media[END_REF]. Apparently, only a few mathematical macroscopic ®ltration models have been proposed concerning viscoelastic ¯uid ¯ow in porous media. By analogy with Maxwell's model, the following phenomenological model has been introduced [START_REF] Alishayev | Proceedings of moscow pedagogy institute[END_REF]:
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Then, on the basis of Oldroyd's model, the following ®ltration law for describing both relaxation and retardation phenomena was suggested [START_REF] Alishayev | About retardation phenomena in ®ltration theory[END_REF]:
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In this paper, we use the homogenisation theory for determining the macroscopic behaviour of viscoelastic ¯uid ¯ow in porous media at low Reynolds and Deborah numbers. Homogenisation techniques allow determination of an equivalent macroscopic behaviour by upscaling the description at the heterogeneity scale. No speci®c geometry is at issue, the work is aimed towards deriving a general macroscopic mathematical model. Homogenisation method is introduced in Section 2. Section 3 sets out to derive the macroscopic behaviour of linear viscoelastic ¯uid ¯ow in porous media. In Fourier space, the derived macroscopic ®ltration law is a generalised Darcy's law with a dynamic permeability ũx. When inversed this law expresses a momentum balance in terms of a dynamic resistivity r x ũÀ1 x. This latter writing allows better physical interpretation as it shows how the ¯uid stress is related to both the viscous dissipation and the apparent density. Finally, in Section 4 the results in the particular case of the ¯ow of an Oldroyd ¯uid in a bundle of capillary tubes are examined. It is shown that negative apparent density may occur. It turns out that the results obtained via homogenisation strongly dier from those provided by model (2).

Introduction to homogenisation

Concept of homogenisability

Modelling heterogeneous physical systems such as ¯uid ¯ow in porous media turns out to be a dicult task. Nonetheless, the internal disorder may allow a large-scale continuous description. In other words, under speci®c conditions physical processes can be described by means of equations with transfer coecients that are independent of the macroscopic boundary conditions. The essence of homogenisation techniques is to determine an equivalent macroscopic continuous behaviour by upscaling the description at the heterogeneity scale.

Homogenisation is possible if the density of heterogeneities is suciently high. For a material with a random structure, this intuitive condition is expressed by the existence of a Representative Elementary Volume (REV). In the context of a periodic medium, the REV is simply the period. The fundamental assumption behind homogenisation is the separation of scales, which can be expressed as follows:
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where l is the characteristic size of the REV and L the characteristic macroscopic length. As this assumption conjures up a geometrical separation of scales, we shall draw attention to the fact that this fundamental condition must also be veri®ed regarding the phenomenon. For instance, in the case of wave propagation, l must also be small compared to the wavelength.

Homogenisation for periodic structures

Fundamental assumptions

In the present study, we use the method of homogenisation for periodic structures ± also called method of multiple scales ± introduced in [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF][START_REF] Sanchez-Palencia | Non-homogeneous Media and Vibration Theory[END_REF]. As mentioned above, the fundamental assumption is the separation of scales and the key parameter of the method is the small parameter
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in which L is the macroscopic characteristic length and, depending on the problem under consideration, is either geometrical (i.e. sample size) or related to the excitation (e.g. wavelength).

The medium is also assumed to be periodic; the period, denoted X, is O(l). This assumption is actually not a restriction.

Methodology

We use the approach suggested in [START_REF] Auriaul | Heterogeneous medium: Is an equivalent description possible?[END_REF], by which the problem is tackled in a physical rather than mathematical manner. Indeed, it oers the additional bene®t that conditions of homogenisability are expressly stated. This formulation of the method is on the basis of de®nition and estimation of the set of non-dimensional numbers arising from the description at the local scale. It allows determination of the macroscopic behaviour without any prerequisite on the form of the macroscopic equations.

2.2.2.1. Separation of space variables. As a result of the separation of scales, two non-dimensional space variables may be de®ned:

ỹ l non-dimensional microscopic space variableY 5 x v non-dimensional macroscopic space variableY 6 
where is the physical space variable.

If the condition of separation of scales is veri®ed, then ỹ and x appear as two independent space variables. As a consequence, all physical variables of the problem are, a priori, functions of both ỹ and x: / /ỹYxY tX 2.2.2.2. Principle of the method: asymptotic analysis. The homogenisation method of multiple scales is based on the fundamental statement that if the scales are well separated, then all physical variables can be looked for in the form of asymptotic expansions in powers of e: / / 0 ỹYxY t e/ 1 ỹYxY t Á Á Á Y 8

in which functions / i are ỹ-periodic.

Normalisation.

The purpose of normalisation is to de®ne and to estimate the set of nondimensional numbers that characterise the local description. The scope is to express the local description in a non-dimensional form. For estimating the non-dimensional numbers, the choice of a reference characteristic length is required. This arbitrary choice does not aect the ®nal result.

Let us consider L as the reference length. The choice of the non-dimensional gradient operator is conditioned by that of the reference length. In eect, the partial derivative with respect to the physical space variable, , can be written as
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Since L is the reference characteristic length, the non-dimensional gradient operator is therefore given by e À1 ry rx Y 10

where ry and rx are the gradient operators with respect to variables ỹ and x, respectively. The non-dimensional numbers are estimated with respect to the small parameter e. For instance, consider a given non-dimensional number Q. When using L as the reference length, the estimation of Q is denoted v , and v is said to be of the order of e q when e q1 ( v ( e qÀ1 X 11

Once all non-dimensional numbers have been estimated, the local description may then be written in the form

i e i e i 0Y 12 
in which all operators e i are non-dimensional operators.

Derivation of the macroscopic description.

The method consists in incorporating the asymptotic expansions of the physical variables in the non-dimensional local description. Solving the boundary-value problems arising at the successive orders of e leads to the macroscopic description. In particular, a balance equation at a given order will yield

ry Á / i1 rx Á / i 0Y
where / i has previously been de®ned while solving a boundary-value problem at a former order. This equation expresses the balance, over the period, of the quantity / i1 , in the presence of the source term rx Á / i . This is physically consistent only if the source term is average to zero. In eect, integration of (13) over the period gives

rx Á / i h i X 0Y 14 
in which the average over the period, hÁi X , is de®ned by

hÁi X 1 X X Á dXX 15 
Eq. ( 14) is called the `compatibility condition' and leads to the macroscopic behaviour:

rx Á h/ i i X 0X 16 
3. Homogenisation of linear viscoelastic ¯uid ¯ow in porous media

Local description and estimations

Consider a rigid periodic porous medium, whose period X is Ol and characterises the porescale. Within the period, the solid and the pore spaces occupy domains X s and X l , respectively, and their common boundary is denoted C (Fig. 1). We assume the scales to be separated, i.e. the characteristic macroscopic length, L, is such that The pore space is saturated by an incompressible linear viscoelastic ¯uid. For slow ¯ows (i.e. for negligible Reynolds number), the momentum balance equation can be linearised:
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For a linear viscoelastic ¯uid, the deviatoric part of the stress tensor, s, is such that
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where the k k 's and the h k 's, k 1Y F F F Y n, are positive constants that represent relaxation and retardation characteristic times, respectively. The linear viscoelastic model ( 18), ( 19) is valid if all relaxation and retardation times are small compared to the characteristic time of the local ¯ow:
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in which V is a characteristic ¯ow velocity. For viscoelastic ¯uids, the key dimensionless number is the Deborah number, De. It is de®ned as the ratio of the largest characteristic time of the ¯uid to the characteristic time of the ¯ow:

he Max k k l Y h k l ! k 1Y F F F Y nX 21 
Thus, condition (20) can also be expressed as
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This condition means that the distance covered by a ¯uid particle during any k k or h k is very small compared to the characteristic size of the pore which is Ol.

Hence the linear viscoelastic model ( 18), ( 19) is valid for low Reynolds and Deborah numbers. Combining Eqs. ( 18) and (19) gives the local momentum balance equation:
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The mass balance equation is written as r Áṽ 0Y 24 and a no-slip condition is considered on the boundary

ṽa C 0X 25 
Eqs. (23)±(25) constitute the local description.

To get viscoelastic eects on the macroscopic behaviour, the relaxation and retardation characteristic times must be of the same order of magnitude as the dynamic characteristic time, i.e. the characteristic time introduced by the term q oṽaot, which we denote by T. Therefore, we assume
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From the momentum balance equation arise the following dimensionless numbers:

j rpj jlDṽj Y 27 
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Let us choose L as the reference characteristic length. The order of magnitude of v is given by the physics. In eect, the local ¯ow, characterised by the term lDṽ is due to the macroscopic pressure gradient. As a result, we have
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d is the characteristic increment of pressure over the distance L. Thus, we deduce
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Now, in order to get macroscopic transient eects, the transient term, q oṽaot, must be locally, i.e. with respect to the microscopic characteristic length, l, of the same order of magnitude as the viscous term, lDṽ:

jlDṽj l q oṽ ot l Y 33
from which we deduce the order of magnitude of the transient Reynolds number:
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Finally, according to (26), we deduce
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The normalised local description is the following:
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in which all quantities are now dimensionless.

In Fourier space the normalised local description is written as qṽ À rp e 2 lDṽY 40 r Áṽ 0Y 41

ṽa C 0Y 42 
where q ixqY 43 l liY xY 44 and
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Derivation of the macroscopic description

We now introduce the multiple scale coordinates ỹ and x and the perturbation expansions

pỹYxY t p 0 ỹYxY t ep 1 ỹYxY t F F F Y 46 ṽỹYxY t ṽ0 ỹYxY t eṽ 1 ỹYxY t F F F Y 47
where ṽ i and p i are ỹ-periodic.

Incorporating expansions ( 46) and ( 47) in (40) leads at the two ®rst orders Oe À1 and Oe 0 : ry p 0 0Y 48 qṽ 0 lD y ṽ 0 r y p 1 À rx p 0 X 49

Similarly, from (41), we get ry Áṽ 0 0Y 50 ry ṽ 1 rx ṽ 0 0X 51

Finally, boundary-condition (42) gives
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The method consists now in deducing the boundary-value problems at successive orders and in solving them over the period.

First-order problem.

ry p 0 0X 53 It gives
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Second-order problem. qṽ 0 lD y ṽ 0 À r y p 1 À rx p 0 Y 55 ry Áṽ 0 0Y 56 ṽ 0 a C 0Y 57 (ṽ 0 and p 1 are ỹ-periodic).

Let VX be the Hilbert space of X-periodic and complex-valued vectors ã, that are de®ned over X l and such that: ry Á ã 0 and ãa C 0. VX is equipped with the following inner product:

ãY b VX X l oa i oy j o bi oy j a i bi 3 dXY 58
where b is the conjugate of b.

The weak formulation of (55)±( 57) is given by

Vã P VX X ṽ0 Yã VX À X l op 0 ox i ãi dXY 59
where ãY b VX is a sesquilinear form and is de®ned by

ãY b VX X l l oa i oy j o bi oy j qa i bi 3 dXX 60 
It can be shown that eãYã VX b 0. Hence, by Lax-Milgram Lemma, there is a unique solution to (59). Let kj be the particular solution of (59) for op 0 aox i d ij j fixed. Thus, ṽ 0 is written as

ṽ0 À kỹY x rx p 0 X 61 
Third-order problem.

ry ṽ1 rx ṽ 0 0Y 62 
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Integrating (62) over X and then using the divergence theorem, boundary condition (63) and the condition of periodicity leads to the macroscopic description:

rx Á hṽ 0 i X 0Y 64 in which
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Eq. ( 65) is the generalised Darcy's law [START_REF] Auriault | Dynamic behaviour of a porous medium saturated by a newtonian ¯uid[END_REF]. ũ is a x dependent, complex-valued second order tensor and is called the `dynamic permeability'. When x 0, ũ is the intrinsic permeability. ũ is a symmetrical tensor; its real part is de®nite positive whereas its imaginary part is de®nite negative. As a result, ũ is inversible. Let rx be the inverse tensor of ũ: rx ũÀ1 x rr i ri Y 67 r x is the dynamic resistivity.

In terms of the dynamic resistivity, the ®ltration law (65) is expressed as follows:

rx p 0 À r xhṽ 0 i X Y 68 or rx np 0 À Á Àn rr xhṽ 0 i X À n ri x x o ot hṽ 0 i X Y 69
where n jX l j jXj is the porosity. At constant pulsation, Eq. ( 69) is a real-valued Darcy's law. Written in the above form, the seepage law expresses a momentum balance: the partial pressure np 0 is the ¯uid stress, the term n rr x is related to the viscous dissipation, and n ri xax is the apparent density of the ¯uid in the porous medium.

Results for the ®ltration of an Oldroyd ¯uid in a bundle of capillary tubes

The purpose of this section is to examine the macroscopic ®ltration law obtained for the ¯ow of an Oldroyd ¯uid in a bundle of capillary tubes (Fig. 2).

The model of Oldroyd is a simpli®cation of the generalised linear viscoelastic model (19): in which k and h are the relaxation and the retardation characteristic times, respectively. In Fourier space, model (70) can also be expressed as follows:
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When k h, relation (70) represents a viscous Newtonian ¯uid, whereas h 0Y k T 0 characterises a Maxwellian ¯uid. If we assume, according to Biot [START_REF] Biot | Theory of stress±strain relations in anisotropic viscoelasticity and relaxation phenomena[END_REF][START_REF] Biot | Linear thermodynamics and the mechanics of solids[END_REF][START_REF] Biot | Mechanics of Incremental Deformation[END_REF] that there exist hidden variables and that the model may be expressed in Lagrangian form

s ij oW oe ij oD oh ij Y 72
where ẽ is the deformation, W the potential energy and D the dissipation, then, we obtain

s ij lx 2 k À h 1 x 2 k 2 ẽ l 1 x 2 kh 1 x 2 k 2 hX 73
Thus, assuming the potential energy being positive semi-de®nite yields

k À h P 0X 74 
Models made of dashpots and springs do verify this condition. Other investigations based on the kinetic theory of dilute solution of elastic dumbbels also yield to condition (74) (see [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF]). However, there is no convincing argument that it should be applied to actual materials. Therefore, for the sake of generality, we disregard it in the following.

According to the results obtained in Section 3, the macroscopic ®ltration law of the ¯ow of an Oldroyd ¯uid in a bundle of capillary tubes of radius a is described by

hv 0 i X Àux dp 0 dx Y 75
where the dynamic permeability, ux, is

u n p 2 0 2prkrY x drY 76 
in which cylindrical coordinates (rY hY x) are used. k is such that v 0 À k dp 0 adx is the solution of the local problem (55)±(57), which in a single capillary tube is expressed as

l d 2 v 0 dr 2 1 r dv 0 dr À qv 0 dp 0 dx Y 77 v 0 0Y 78 where q ixqY l lY m l q Y 1 ixh 1 ixk X 79
The solution of (77) and ( 78) is

v 0 ÀkrY x dp 0 dx Y k 1 q 1 H f d À t 0 i ixm À1 p r t 0 i ixm À1 p I g eY 80 
from which we deduce the expression for the dynamic permeability ux:

u À n q t 2 i ixm À1 p t 0 i ixm À1 p X 81
t 2 and t 0 are the Bessel functions. Now let us express seepage law (75) in the form of a momentum balance (as in (69):

À rnp 0 Ànr hv 0 i Ànr r hv 0 i À nr i x
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Low frequencies. For low frequencies, it is easy to show that the behaviour is given by

nr r 8l 2 Y nr i x q 4 3 8m 2 h À k X 84
As expected, the dissipation term, nr r , is that of a Newtonian ¯uid of viscosity l. For a Newtonian ¯uid, i.e. for k h, we retrieve the following result for the apparent density,

nr i x 4 3 qY 85 
that characterises the added mass density as shown by Biot, [START_REF] Biot | Theory of propagation of elastic waves in a ¯uid-saturated porous solid. I Low-frequency range[END_REF]. Furthermore, we see that the apparent density becomes negative when

k À h b 2 6m
X 86

High frequencies. For high frequencies, the apparent density tends to the ¯uid density when k T 0, lim

x3I nr i x qY 87 
and it tends to a constant which is dierent from q when k 0.

As for the dissipation, two dierent behaviours appear when the frequency is high: lim x3I nr r constant if k T 0 and h 0 or if k 0 and h T 0Y lim x3I nr r $ x p otherwiseX General case. In general cases, ®ve distinct behaviours for the monochromatic seepage law may be distinguished. 1. Newtonian ¯uids, k h. K and H are shown in Fig. 3. This is the classical case of the dynamics of a Newtonian ¯uid in a porous medium which has been investigated by Biot, [START_REF] Biot | Theory of propagation of elastic waves in a ¯uid-saturated porous solid. II Higher-frequency range[END_REF], and revisited in [START_REF] Levy | Propagation of waves in a ¯uid saturated porous elastic solid[END_REF][START_REF] Auriault | Dynamic behaviour of a porous medium saturated by a newtonian ¯uid[END_REF] from the homogenisation point of view. The behaviour shows an added mass density for small values of x. 2. Maxwell ¯uids, h 0Y k T 0. This case has already been investigated by volume averaging in [START_REF] Opez De | Flow of Maxwell ¯uids in porous media[END_REF]. K and H are shown in Fig. 4. Note the negative apparent density for small values of x. 3. Second order ¯uid with vanishing second normal stress coecient, i.e. Oldroyd ¯uid with h T 0Y k 0. The curves are presented in Fig. 5. Both the apparent density and the dissipation are independent of the frequency. Condition (74) is not checked in this case. 4. Oldroyd ¯uid with k T 0Y h T 0Y k À h b 0. The apparent density is negative at low frequencies and the dissipation presents a minimum (see Fig. 6). 5. Oldroyd ¯uid with k T 0Y h T 0Y k À h `0. The behaviour of H is similar to that obtained for a Newtonian ¯uid (k h). However K and H show an additional plateau (see Fig. 7). Condition (74) is not checked in this case.

Comparison with the phenomenological model (2). Let us consider the phenomenological model of [START_REF] Alishayev | About retardation phenomena in ®ltration theory[END_REF] that has been mentioned in the introduction (see Eq. ( 2)). This model is built by analogy with the Oldroyd ¯uid model as an attempt to describe the ®ltration of an Oldroyd ¯uid in a porous medium. In Fourier space it is written as

1 ixk v ṽ À k l 1 ixk p rpY 88 
Fig. 5. Oldroyd ¯uid, k 0Y h 0X4. As in Fig. 3, now with r à r n 2 r r a2l, r à i 0X1nr i aqx.

Fig. 4. Maxwell ¯uid, k 0X02. As in Fig. 3, now with r à r n 2 r r a2l, r à i 0X1nr i aqx.

from which we de®ne a phenomenological dynamic permeability, u ph and the corresponding phenomenological dynamic resistivity: The main pro®les of u ph and r ph are shown in Fig. 8. It is clear that these results strongly dier from those obtained via homogenisation. The analysis is easier by comparing dynamic resistivities rather than dynamic permeabilities, as physically, H is a more meaningful quantity. We see that the pro®le of H approaches the Newtonian ¯uid behaviour, only, (Fig. 8 case 1), with the restriction that the apparent density remains constant whereas it varies with respect to x for a Newtonian ¯uid.

u ph k l 1 ixk p 1 ixk v Y r ph 1 u ph X 89 

Conclusions

We have used the homogenisation method so as to derive a general ®ltration law describing the ¯ow of a linear viscoelastic ¯uid in a porous medium. This model is valid under quite restrictive conditions as in particular the Reynolds and Deborah numbers must be low. Anyhow this model is rigorous within its domain of validity. It is expressed either as a generalised Darcy's law (65) with a dynamic permeability tensor ũx, or as a momentum balance (68) in terms of the dynamic resistivity tensor r x u À1 .

The results obtained in the particular case of the ¯ow of an Oldroyd ¯uid in a bundle of capillary tubes show that the viscoelastic behaviour strongly diers from the Newtonian behaviour. It also shows that negative apparent densities can be obtained. Finally, comparison of these results with those obtained for model [START_REF] Alishayev | Proceedings of moscow pedagogy institute[END_REF] shows that the question of an appropriate phenomenological ®ltration law for describing the ¯ow of an Oldroyd ¯uid in a porous medium is still open. 

Fig. 1 .

 1 Fig. 1. Porous medium.

Fig. 2 .

 2 Fig. 2. Bundle of capillary tubes: (a) capillary tube with respect to variable ỹ; (b) cross-section of the medium with respect to variable x.

Fig. 3 .

 3 Fig. 3. Newtonian ¯uid: (a) dynamic permeability: bold: u à r 2lu r an 2 , dashed: u à i 2lu i an 2 ; (b) dynamic resistivity: bold: r à r 0X1n 2 r r a2l, dashed: r à i nr i aqx, dimensionless frequency: x à x 2 a2m.

Fig. 6 .Fig. 7 .

 67 Fig. 6. Oldroyd ¯uid, k b h T 0. As in Fig. 3, now with r à r n 2 r r a2l, r à i 0X1nr i aqx (k 0X04Y h 0X01Y m 10 À4 m 2 asY 10 À3 mX

Fig. 8 .

 8 Fig. 8. Phenomenological model: (a) dynamic permeability: bold: u à r u ph r ak 0 , dashed: u à i u ph i ak 0 ; (b) dynamic resistivity: bold: r à r r ph r ak 0 , dashed: r à i r ph r ak 0 , 1:k p 0Y k v 0X4, 2: k p 0X4Y k v 1, 3: k p 1Y k v 0X4, 4: k p 0X4Y k v 0.
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