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Abstract*This paper is devoted to the determination of the acoustic characteristics of a porous 
medium saturated by air[ The analysis of sound propagation in such a medium is performed using
an homogenization technique[ This theory is suitable since acoustic wavelengths are much greater
than the usual pore size[ The macroscopic descriptions involve the e}ects of air viscosity\ inertial 
forces and heat transfer[

The _rst part of the paper deals with single porosity materials[ Two cases are investigated ] "i#
a medium with large pores in which thermal exchanges are negligible ̂  "ii# a medium with smaller 
pores for which thermal exchanges must be accounted for[

The second part is concerned with dual porosity media\ i[e[ when the grains themselves are also 
porous[ Neglecting heat transfer _rst yields a simpli_ed macroscopic description[ This simply dual 
porosity model is then improved by considering thermal e}ects[

These results show that new porous materials could be evolved by introducing a microporosity 
structure that would give enhanced absorption properties over a wide range of frequencies[ Þ 0887 
Elsevier Science Ltd[ All rights reserved[

0[ INTRODUCTION

Dry porous media\ i[e[ media saturated by air\ present interesting acoustic properties for 
reducing the level of ambient noise[ Inside buildings\ such media are now very frequently 
used as wall lining[ On the outside\ the design of anti!noise walls\ for instance\ takes 
advantage of these properties to reduce sound intensity in the vicinity of railways or 
motorways[ The materials used for this purpose are often coarse\ made of granular aggre!
gates and have a pore size ranging from few millimetres to few centimetres[ Another 
example is that of porous road surfacing used in road engineering[ These materials\ which 
present a large intrinsic permeability "09−8 m1# are known for decreasing tra.c noise from 
19Ð09 dB "Bar and Delanne\ 0882#[

The key point about absorption is that when an acoustic wave arrives on a previous 
surface\ air is pushed within the pores[ Therefore\ only a partial re~ection of the wave 
occurs\ and the transmitted wave is damped[ The description of these phenomena requires 
the physical analysis of gas ~ow in the pores[ The reader is referred to Allard "0882# for a 
detailed presentation of these aspects[

In this paper we use the four main following hypotheses ]



"i# the porous skeleton is assumed to be perfectly rigid because of the weak level of
acoustic pressure\

"ii# air is considered as a viscous ~uid and its ~ow in the pores is governed by NavierÐ
Stokes equation\

"iii# air compressibility is a}ected by thermal exchanges with the solid\ which are described
by Fourier|s equation\

"iv# since acoustic motions are very small\ convection or advection e}ects are negligible\
so that the non!linear terms are ignored[

In order to derive the acoustic behaviour of such a medium\ we use the homogenization
method developed by Sanchez!Palencia "0879#[ The two fundamental assumptions which
have to be satis_ed for applying this method are _rstly\ the existence of a representative
elementary volume "REV# and secondly\ the separation of scales\ which imposes the
condition that the macroscopic size*here the acoustic wavelength*must be much greater
than the characteristic size of the REV[

Basically\ the homogenization technique is an asymptotic method based on two space!
variables\ i[e[ one for each scale[ The macroscopic description which corresponds to the
_rst signi_cant order\ is an approximation of the real behaviour[ An estimation of the
accuracy of the homogenized behaviour is given by the scale ratio of the macroscopic
characteristic length to the macroscopic characteristic length[

This approach initially developed for solving two scale problems was recently extended
for solving three scale problems by Auriault and Boutin "0882Ð0883#[ In the present work\
both circumstances are considered since we focus on single porosity materials in the _rst
part "two scales# and on dual porosity media\ i[e[ when the solid matrix material is also
porous "three scales#\ in the second part[

In Section 1\ two models for single porosity media are presented[ We _rst consider the
case of coarse materials having large pores\ so that the assumption of adiabatic per!
turbations in air is valid[ The macroscopic description can be compared to Biot|s theory[
However\ since the solid is rigid\ the only acoustic wave is of the P1 type "Biot\ 0845#[ For
_ner materials\ thermal exchanges have to be taken into account[ The homogenization
approach leads to the same model as that presented by Attenborough "0872#[ This descrip!
tion includes two dissipative e}ects\ one due to the viscosity and the other due to thermal
non!equilibrium\ and is in close agreement with the measurements performed on porous
materials\ for example by Allard et al[ "0882#[

In Section 2\ the possibility of enhancing absorption properties by considering dual
porosity media is investigated[ In this case the grains of the skeleton are also assumed to
be porous[ This con_guration can easily be realised for coarse materials[ The following
analysis also allows to investigate the case where there is a wide range of pore!sizes[

Modelling dual porosity media has already been performed in petroleum engineering\
in order to model fractured porous reservoirs[ The _rst work on quasi!static ~ow through
dual porosity reservoirs was developed by Barenblatt et al[ "0859# using a phenomenological
approach[ Statics and dynamics in such media were treated using an homogenization
method in Auriault and Royer "0882#\ Royer and Auriault "0883#\ Royer et al[ "0885#\
Royer "0883#\ Boutin "0883#\ Auriault and Boutin "0882Ð0883#[ It was proved in these
latter papers that the most interesting case is obtained when scale ratios between wavelength
and pores\ and between pores and micropores are identical[ The question of dual porosity
media within the context of acoustics has already been tackled in Boutin et al[ "0885#[ To
our knowledge\ this was the _rst study on the subject[ The models which are presented in
Section 1 "single porosity media# are no longer valid when there is a microporous system[
In e}ect\ the physics in the micropores is di}erent from that in the pores[

Firstly\ a simple macroscopic model of dual porosity is derived by assuming adiabatic
perturbations for air in the pore space\ and isothermal conditions in the micropore space[
The di}erence between this model and the single porosity model is the coupling of air ~ux
between pores and micropores\ which is related to the di}usion of the pore pressure in the
micropores[ This phenomenon shows memory e}ects that results in an additional dis!
sipation e}ect at high frequencies[ Then\ the description is improved by taking thermal



exchanges into account in both pores and micropores[ At high frequencies\ this provides
another dissipation term due to the thermal non!equilibrium in the micropores[ Finally\
the characteristic frequencies associated with the di}erent contributions to dissipation
"viscosity\ thermal exchanges\ pressure di}usion# are calculated for two distinct dual
porosity con_gurations[ Two simple numerical results are presented[

1[ SINGLE POROSITY MEDIUM

In this section we deduce the acoustic properties of a single porosity medium by using
the homogenization method[ For the sake of simplicity we proceed in two steps[ In the _rst
part we consider a medium with large pores\ for which the adiabatic approximation can be
applied[ In the second part\ we develop the model to include the e}ects of thermal exchanges[
The study is conducted under harmonic regime[

These results and their derivation will be used again in Section 2 for modelling dual
porosity systems[ For this purpose\ the homogenization procedure is presented in detail in
the present section[

1[0[ Modellin` sound propa`ation throu`h a ri`id sin`le porosity medium

1[0[0[ Medium description[ The _rst main assumption\ which is common to all homo!
genization methods\ is the existence of a representative elementary volume "REV#[ With
the method of homogenization for periodic structures\ it is also assumed that the medium
is periodic\ and therefore\ that the REV is the periodic cell[

Thus\ consider the medium to be V!periodic and the period characteristic length to be
l[ The solid and the pores occupy the domains Vs and Vp\ respectively\ and their common
boundary is G "Fig[ 0#[

f�
=Vp =
=V=

is the porosity[ ð =ŁV �
0

=V= gVp

=dV denotes the average over the period

The second main assumption is the separation of scales[ It means that the microscopic
characteristic length l must be small compared to the macroscopic size of the volume and
to the wavelength[ Let L be the macroscopic characteristic length[ Therefore\ L is the
smallest length between the macroscopic size of the volume and the wavelength[ In acoustics\
L can be related to the wavelength by the following equality "Boutin and Auriault\ 0889# ]

L�
l

1p

The separation of scales is expressed as follows ]

o�
0
L

ð 0

1[0[1[ Governin` equations[ At the pore scale\ the ~ow of air through Vp is governed
by the momentum balance equation\ the mass balance equation\ the air state equation and
the adherence condition on the boundary G[

In this work\ all non!linear e}ects "convection\ advection# are neglected[ This assump!
tion is justi_ed by the low level of pressure which\ in the context of acoustics\ induces very
small perturbations[

To know the thermodynamical conditions of the system\ the pore size must be com!
pared to the thickness dt of the thermal layer\ in which thermal exchanges may occur[ Under
harmonic regime at pulsation v\ dt is de_ned as follows ]



Fig[ 0[ Single porosity medium ] description of the periodic cell at the pore scale[

dt �X
k

recpv

where re is the density\ cp is the speci_c mass capacity and k is the thermal conductivity of
the medium under consideration[ Typical thermal characteristics are shown in Table 0[

Table 0[ Typical thermal characteristic in air and in the grains

k "W:mK# r "kg:m2# Cp "J:Kg#

Air 9[915 0[12 0999
Grains 0[3 1499 726



 In the acoustic domain de_ned by

49Hz³ f³ 19 kHz 0f�
v

1p1
the thermal layer thickness in air and in the grains are such that ]

Air ] 02mm³ dt ³ 9[15mm

Grains ] 1[2mm³ dt ³ 35mm

In this section we assume the medium to be made of large pores\ as it is typically the case
in porus road surfacing[ For a characteristic pore size l¼ 0 mm\ the condition dt ³ l is
checked for each constituent and thus\ thermal exchanges can be neglected[ As a result\ air
can be considered as being in adiabatic conditions[ Hence\ we have the following relation!
ship between pressure and density variations ]

P

Pe
� g

r

re

where g is the speci_c heat ratio\ Pe and re are the pressure and the density at the equilibrium\
and P and r are pressure and density variations\ respectively[

Thus the governing equations are the following ]

Momentum balance "linearized NavierÐStokes equation# in Vp

mDv¦"l¦m#9"9 = v#−9P�re 1v

1t
"0#

where n is the velocity\ and m and l are the shear and the volume viscosities of air\
respectively[

Mass balance "continuity equation# in Vp

dr

dt
¦re9 = v� 9 "1#

Air state equation "adiabatic#

P�
Pe

re
gr "2#

Adherence condition on G

v:G � 9 "3#

1[0[2[ Dimensionless numbers[ The objective is to express the governing equations in a
dimensionless form[ For this purpose\ we may estimate the dimensionless numbers intro!
duced by both balance eqns "0#\ "1# ]

Q�
=9P=
=mDv=

\ Rt�
bre 1v

1tb
=mDv=

\ S�
b
dr

dt b
=re9 = v=

To evaluate these numbers\ we use P and V a characteristic values of the acoustic pressure
amplitude and of the velocity\ respectively[ From the physical point of view\ the ~ow is
forced by the macroscopic pressure gradient[ Then\ we have ]



=9P= �O 0
P
L1

In addition\ since the ~ow occurs in the pores\ the viscous forces are such that ]

=mDv= �O 0m
V

l11
Since we consider harmonic perturbations at pulsation v\ the order of magnitude of the
inertial term is given by ]

re 1v

1t
�O"revV#

Finally\ since we investigate sound propagation with a wavelength l�1pL\ the volume
variation of air is estimated by ]

=re"9 = v# = �O 0
reV
L 1

Let us consider the situation of greatest interest\ which is when the three forces in NavierÐ
Stokes equation are of the same order of magnitude[ In other words\ the pressure gradient
is balanced by both viscous and inertial terms[

revV�O 0
P
L1�O 0m

V

l11
From this we deduce ]

P
L

m
V

l1

�O"0#\ re 1v

1t
�O 0

P
L1

Let us note that this latter assumption means that the thickness of the viscous skin ]
dv �zm:rev is of the order of the pore size[ This is in good agreement with reality since
the kinematic air viscosity is ]

m

re
� 0[4×09−4 m1:s

which\ in the acoustic range of frequencies "49 HzÐ19 kHz#\ gives ]

09mm³ dv ³ 1[1mm

As for S\ since spatial volume variations are balanced by time density variations\ we have ]

=re"9 = v# = �O 0
reV
L 1�O"vr#

Now\ we choose the macroscopic characteristic length L as reference length[ The values of



Q\ Rt and S are then designated by QL\ RtL and SL\ respectively\ and their expressions are
the following ]

QL �

P
L

m
V

L1

\ RtL �O 0
revL1

m 1\ SL �O 2
vr

reV
L
3

Therefore\ considering the above physical analysis\ we get ]

QL �O"o−1#

RtL �O"o−1#

SL �O"0#

Thus\ when cast in dimensionless form with L as reference length\ the governing equations
for harmonic pulsations are written as follows "the term eivt is omitted# ]

o1mDv¦o1"l¦m#9"9 = v#−9P�ivrev "4#

ivr¦re9 = v� 9 "5#

P�
Pe

re
gr "6#

v:G � 9 "7#

Notice that all quantities are now dimensionless quantities\ but for the sake of simplicity\
we keep the same notations[

As a result of the separation of scales\ two independent dimensionless space variables
can be de_ned[ Let X be the physical space variable of the system[ We de_ne ]

, y�X:l as being the microscopic dimensionless space variable
, x�X:L as being the macroscopic dimensionless space variable

Pressure\ velocity and density _elds are\ a priori\ functions of both variables[
The gradient operator 9 is a scaled and dimensionless quantity as well[ It may now be

written as follows ]

9x¦o−09y

1[0[3[ Homo`enization[ The upscaling process may now be performed[ The variations
of pressure\ velocity and density amplitudes are looked for in the form of asymptotic
expansions in power of o ]

P"x\ y# � o9P9"x\ y#¦o0P0"x\ y#¦o1P1"x\ y#¦= = =

v"x\ y# � o9v9"x\ y#¦o0v0"x\ y#¦o1v1"x\ y#¦= = =

r"x\ y# � o9r9"x\ y#¦o0r0"x\ y#¦o1r1"x\ y#¦= = =

where Pi\ vi and ri are V!periodic\ with respect to the variable y[
These expansions must now be introduced in the dimensionless set of eqns "4#Ð"7#[

Then the boundary!value problems at the successive orders of o "de_ned over the periodic
cell#\ must be resolved so as to derive the macroscopic description[



From eqn "4#\ we get at the _rst two orders O"o−0# and O"o9# ]

9yP
9 � 9 "8#

mDyv
9¦"l¦m#9y"9y = v9#−9yP

0−9xP
9 �ivrev9 "09#

Similarly\ we get from "5# ]

9y = v9 � 9 "00#

ivr9¦re9x = v9¦re9y = v0 � 9 "01#

At the _rst order\ eqn "6# gives ]

P9 �
Pe

re
gr9 "02#

Finally\ the adherence condition "7# gives ]

v9:G � v0:G �= = =� 9 "03#

We may now proceed to solve the successive boundary!value problems[
From eqns "8# and "02# it is clear that ]

P9 �P9"x# "04#

r9 �r9"x# "05#

Equations "09#\ "00# and "03# describe the dynamic ~ow of an incompressible viscous ~uid
in a porous cell[ This speci_c problem involves dynamic permeability and was solved by
Levy "0868# and Auriault "0879#[ The velocity v9 is expressed as ]

v9 �−
k½

m
9xP

9 "06#

where k½ is a complex valued tensor which depends on the local variable\ y\ and also on the
dimensionless pulsation v:vc\ where vc is the characteristic pulsation\ of the order of m:rel1[

Now\ considering the V!periodicity of v0 together with the adherence condition "03#
and then integrating eqn "01# over the period yields ]

fivr9¦re9x =ðv9ŁV � 9 "07#

where

ðv9ŁV �−
K	

m
9xP

9 "08#

and

K	 �ðk½ŁV �
0

=V= gVp

k½ dV

Equations "02#\ "07# and "08# describe acoustics of a medium made of large pores saturated



by air[ K	 is the dynamic permeability tensor[ Combining these three equations\ the macro!
scopic description can be rewritten as follows ]

fiv

gPe
P9−9x = 0

K	
m

9xP
91� 9 "19#

1[0[4[ Properties of K	[ The acoustic features of the system are related to the properties
of the dynamic permeability K	[ These properties are described in detail for example in
Auriault et al[ "0874# or in Sheng and Zhou "0877# for a medium saturated by a liquid[ The
main results are summarised below for the case of an isotropic medium[

At low frequencies\ viscous e}ects are predominant and K tends towards the real!
valued intrinsic permeability ] K"9# �O"fl1#[ Thus\ in this case we _nd the classical Darcy|s
law[ K"9# is related to the ~ow resistivity\ s\ that is commonly used in acoustics\ by ]

s�m:K"9#[

At high frequencies\ inertial e}ects dominate and then K tends towards a pure imagin!
ary value ] K"�# �fm:ivrea�[ Hence\ at high frequencies\ the dynamic Darcy|s law tends
towards a classical dynamic equation in which air density is corrected by the tortuosity a�\
which highlights the in~uence of the {{added|| mass[ Low and high frequency domains are
delimited by a critical frequency value which is of the order of O"m:rel1#[ A more accurate
estimate of this frequency is obtained by equalising viscous and inertial e}ects of the
macroscopic ~ow ]

vc �
mf

K"9#ra�

"10#

The dynamic permeability may be related to the e}ective density*which is commonly used
in acoustics*by the following equality ]

re} 0
v

vc1�
fm

K 0
v

vc1
=

0
iv

Using dimensionless quantities\ this can also be expressed in the simple form ]

iv�r�K�� 0

where

v��
v

vc

K��
K

K"9#

r��
reff

a�re

Analytical expressions can be derived for very simple duct geometries "Biot\ 0845#[ For any
pore geometry\ Allard et al[ "0882# have proposed an expression for r�\ which gives the
correct asymptotic behaviour at low and high frequencies and includes the viscous layer
e}ects ]



r�� 0¦
z0¦iv�:F1

iv�
"11#

where F is a shape ratio ranging from z1 " for cylindrical pores# to 3\ with respect to the
pore geometry "Sheng and Zhou\ 0877#[

1[0[5[ Wave propa`ation[ The complex valued acoustic velocity C"v# may directly be
deduced from eqn "19#[ In the isotropic case we get ]

C1 �−
gPeKv

fim
�

Ca1iK�
a�

v

vc

"12#

where Ca is the sound velocity and is de_ned by ]

Ca�X
gPe

re

At low frequencies\ we get ]

C"v# ¼CaX
iv�
a�

which shows that the waves are di}usive[ Then\ the attenuation per wavelength tends
towards one\ whereas the rate of damping per metre increases with respect to zv�[

At high frequencies\ the acoustic celerity can be approached by ]

C"v# ¼
Ca

za�
$0−

0
1FX

0
iv�%

Therefore\ in this case the waves are propagative and attenuated[ The tortuosity reduces
the celerity[ The attenuation per wavelength decreases with respect to zv�\ whereas the
rate of damping per metre increases with respect to zv�[

1[1[ Addin` thermal effects
The above adiabatic analysis is valid for large pores[ For a more general description\

and in particular for smaller pores\ say l¾ 9[4 mm\ thermal e}ects must be accounted for[

1[1[0[ Heat transfer equations[ We may incorporate the equation of heat conduction
together with the air state equation ]

9 ="k9T# �iv"recpT−P# "13#

P�Pe 0
r

re
¦

T

Te1 "14#

where Te is the equilibrium temperature[
In order to express the boundary conditions at the solidÐair interface\ let us preliminary

estimate Ts\ the order of magnitude of the temperature variation in the skeleton[ On G\ the
temperature gradient is of the order of Ts:dts and T:dt` in the solid and in air\ respectively[
Thus\ the ~ux continuity sets that ]



ksTs

dts

�O 0
kT
dt`1

from which we deduce ]

Ts � 0
dtsk

dt`ks1O"T# � 0X
recpk

rscpsks1O"T#

The air thermal impedance is much smaller than the solid thermal impedance "Table 0#[ As
a result\ Ts is very small compared to T[ Therefore\ it will be assumed hereafter that the
skeleton remains under isothermal conditions and that thermal e}ects are signi_cant only
in the pores[ As a consequence\ the thermal boundary conditions may be expressed as ]

T:G � 9 "15#

Now\ eqns "13# and "14# may be scaled[ The relative variations of pressure\ temperature
and density are of the same order of magnitude[ Therefore we have ]

O 0
r

re1�O 0
T

Te1�O 0
P

Pe1
and\ as a consequence\

O"recpT# �O"P#

Thus\ the only dimensionless number to be estimated is ]

N�
=ivrecpT=
=9 ="k9T# =

Since thermal exchange are assumed to occur at the pore scale\ conduction and transient
terms in eqn "13# are of the same order of magnitude\ which expresses the fact that the
thickness of the thermal layer is of the order of the pore size ]

vrecpT�O 0k
T

l11
As above\ the reference length is the macroscopic characteristic length\ L[ We get ]

NL �O"o−1#

1[1[1[ Macroscopic behaviour[ As in 1[0\ the set of local dimensionless equations com!
prises eqns "4#\ "5# and "7#[ The adiabatic state eqn "6# is replaced by eqn "14#\ and _nally\
eqns "13# and "15# must be added to the set to account for thermal e}ects[ There is an
additional unknown\ T\ which\ like the other unknowns is looked for in the form of an
asymptotic expansion in power of o ]

T"x\ y# � o9T9"x\ y#¦o0T0"x\ y#¦o1T1"x\ y#¦= = =

From eqns "13# and "15# at the orders of O"o−1# and O"0#\ respectively\ the following
problem arises ]



9y = 0
k

ivrecp

9y

T9

Te1−
T9

Te
�−00−

0
g1

P9

Pe
"16#

T9:G � 9 "17#

This heat transfer problem in the periodic cell has already been solved for example in
Auriault "0872# and Boutin and Auriault "0882#[ The solution can be written in the following
form ]

T9 �
Te

Pe 00−
0
g1 `P9

where ` is a complex valued function which depends on the local variable y and on the
dimensionless pulsation v:vt\ where vt is a characteristic thermal pulsation which is of the
order of O"k:l1recp#[

Now\ considering eqn "14# at the _rst order gives ]

r9

re
�

P9

Pe
−

T9

Te
� 00−00−

0
g1 `1

P9

Pe
"18#

Equation "06#\ that gives the expression of v9 is still valid\ but the integration of eqn "01#
over the period is altered[ Instead of eqn "07#\ we get ]

ivðr9ŁV¦re9x =ðv9ŁV � 9 "29#

where

ðr9ŁV �fð"g−"g−0#GŁ
P9re

gPe
\ G�

0
=Vp = gVp

`dV "20#

and

ðv9ŁV �−
K	
m

9xP
9 "21#

Equations "29#Ð"21# give the macroscopic behaviour[ Eliminating the density and the
velocity\ the macroscopic description can be rewritten as follows ]

fiv $0−00−
0
g1G%

P9

Pe
−9x = 0

K	
m

9xP
91� 9 "22#

1[1[2[ Comments[ Equation "22# shows that the acoustic characteristics of the system
depend on the tensor K	 and on the function G[ The properties of K	 remain the same as in
the case of large pores "see paragraph 1[0[4#[ The complex valued function G describes the
frequency dependence of the thermal exchanges and the term ð0−"0−0:g#GŁ:Pe gives the
macroscopic e}ective complex valued compressibility[

At low frequencies\ transient thermal e}ects become negligible[ Thus\ considering the
isothermal condition for the solid\ the temperature variation tends towards zero[ G"9# �9
and the e}ective compressibility tends towards the isothermal compressibility "0:Pe#[

At high frequencies\ conduction e}ects are negligible except in close proximity to the
solid[ The perturbations occur in an adiabatic way in air[ G"�# �0\ and the compressibility
tends towards the adiabatic value "0:gPe#[



At medium frequencies\ i[e[ for pulsations of the order of k:l1recp\ there is a phase shift
between temperature and pressure\ and hence between density and pressure[ Consequently\
the e}ective compressibility is complex[ A more accurate expression of the thermal charac!
teristic pulsation is obtained by introducing the length Lt\ de_ned as the ratio of the volume
to the surface "Champoux and Allard\ 0880# ]

vt �
k

L1
t r

ecp

Lt �
=Vp =
=G=

For spherical or cylindrical pores\ G can be expressed analytically "Attenborough\ 0872 ^
Auriault\ 0872#[ For other geometries\ the following expression gives the correct asymptotic
behaviour at low and large frequencies "including the thermal layer e}ects# "Allard et al[\
0882# ]

G"vt�# � ð0¦zFt
1¦ivt�:ivt�Ł−0 "23#

where vt� is the dimensionless thermal frequency ] vt��v:vt and where Ft is a shape ratio
of the pore structure "Ft �1 for cylindrical pores and Ft �4:2 for spherical pores#[

The velocity of harmonic waves is determined from eqn "22#[ For isotropic cases we
get ]

C1 �C1
a

iK�v�
a� ðg−"g−0#GŁ

"24#

Notice that the macroscopic description includes two dissipative e}ects\ one due to the
viscosity\ the other one due to thermal exchanges[ However\ the thermal dissipation is
smaller than the viscous dissipation and has a more limited range of frequencies[ The
thermal contribution to the rate of attenuation per wave length "i[e[ to the rate of damping
per metre# is directly related to the phase "i[e[ to the imaginary part# of the complex valued
compressibility[

From the preceding analysis\ these e}ects are maximum for pulsations close to vt[ It
is important to note that whereas viscous and thermal layer thicknesses are of the same
order in air\ dv:dt �zmcp:k� 9[766\ the characteristic frequencies associated with viscous
and thermal dissipation can be very di}erent[ As a matter of fact\ the permeability essentially
depends on the small ducts in the media\ while thermal e}ects involve all the pores[ In
consequence we have the inequalities ]

K"9# ³L1
t and vt ³vc

This approach is in agreement with the phenomenological approaches of Attenborough
"0872# and Allard et al[ "0882#[ In the next section\ the possibility of enhancing absorption
properties by considering dual porosity media is examined[

2[ DUAL POROSITY MEDIUM

In this section\ we consider the case where the grains of the skeleton are also porous\
with an open porosity f?[ In other words\ Vs is a porous system[ Obviously\ the role of this
secondary porosity depends on the size of the micropores[ If the micropore size is of the
order of the pore size\ there is no distinction between both porous systems[ Thus\ considering
the whole porosity f¦"0−f#f?\ the description above can still be applied[ Now\ if the
micropores are very much smaller than the pores\ the grain permeability is very low[ Then\
the grains seem to be impervious\ and the above description is valid again\ considering only
the largest pores[ The case of interest\ which is studied below\ is obtained when the scale
ratio of the micropore size to the pore size is identical to the scale ratio of the pore size to



the wavelength "see for example Auriault and Royer\ 0882 ^ Royer and Auriault\ 0883 ^
Auriault and Boutin\ 0882Ð0883#[

2[0[ Modellin` sound propa`ation throu`h a ri`id dual porosity medium

2[0[0[ Medium description[ The description of the pores remains the same as before[
However\ since the grains are now porous\ we have to describe their microstructure[ Here
again we consider that the microporous system has a periodic distribution[ We assume that
the micropores are connected to each other and to the pores[ The characteristic length l? of
the microporous period V? is related to the pore size and to the macroscopic size by ]

l?
l
�O 0

l
L1�O"o# "25#

At the micropore scale\ the period V? consists of the solid and the micropores which occupy
the domains V?m and V?s\ respectively\ and their common boundary is G? "Fig[ 1#[

f?�
=V?m =
=V?s =

is the microporosity

ð =ŁV? �
0

=Vs = gV?m

=dV is the average over the micropore periodic cell

ð =ŁV �
0

=V= gVp

=dV is the average over the pore periodic cell

2[0[1[ Governin` equations[ For the sake of simplicity\ thermal e}ects are neglected in
this part[ The di}erence of both thermal regimes in the pores and micropores is accounted
for by assuming the porous system to be in adiabatic conditions\ and the miroporous system
to be in isothermal conditions[ Thus\ the air state equation in the micropores is written as
follows ]

Pm �
Pe

re
rm

Since the boundary of the grains\ G\ is not impervious\ the adherence condition "3# is no
longer valid[ The actual boundary conditions must now express the continuity of pressure
and ~ux "Auriault and Boutin\ 0882Ð0883#[

The governing equations are the following\ where k�m in the micropores and k� p
in the pores ]

Momentum balance "NavierÐStokes equation#

mDvk¦"l¦m#9"9 = vk#−9Pk �re 1vk

1t

Mass balance "continuity equation#

drk

dt
¦re9 = vk � 9



Fig[ 1[ Dual porosity medium "the grains are microporous# ] description of both periodic cells at
the pore scale and the micropore scale[

Air state equations

Pp �
Pe

re
grp

Pm �
Pe

re
rm



Boundary conditions on G

vp:G �ðvmŁV? �
0

=Vs = gV?m

vm dV

Pp �Pm

Adherence condition on G?

vm:G? � 9

2[0[2[ Dimensionless numbers in the pores[ Considering "25#\ the permeability of the
microporous grains is smaller than the pore permeability[ Thus\ air velocity through the
grains is small in comparison with air velocity between the grains[ Therefore\ the physics
of a single porosity medium remains valid in the pores of a dual porosity medium[ Hence\
estimations made in Section 1[0[3 are still valid at the pore scale ]

QpL �O"o−1# RtpL �O"o−1# SpL �O"0#

2[0[3[ Dimensionless numbers in the micropores[ We have now to estimate the dimen!
sionless numbers for the microporous system\ QmL\ RtmL and SmL[ For this purpose\ let us
_rst describe the physics at this scale[

At its boundary\ a microporous grain is submitted to a uniform harmonic pressure[
Therefore\ the continuity of stress does impose that ]

Pm �O"Pp#

One the one hand\ as a result of air compressibility\ this pressure leads to a volume variation
in all the micropores of a given grain[ Thus ]

vPp �O 0
PeVm

l 1
Using estimations in the pores gives the relative order of magnitude of velocities ]

Vm �O 0
vlPm

Pe 1�O 0
vlrp

re 1�O 0Vp

l
L1

So\ we have ]

=vm =
=vp =

�O"o# "26#

which expresses the fact that the air velocity is much greater in the pores than in the
micropores[ On the other hand\ the ~ux in the micropores is dominated by viscous e}ects
which induce a pressure gradient[ The balance of these two terms gives ]

mVm

l?1
�O"=9Pm =# "27#

so that



=9Pm = �O 0
P
l 1 "28#

This means that the pressure is non!uniformly di}used in the microporous grains[
Using the previous physical analysis\ we can now estimate the dimensionless numbers[

Considering L and Vp as characteristic length and velocity\ respectively\ we deduce that ]

QmL �O

F

G

G

G

G

f

P
L

mVp

L1

J

G

G

G

G

j

�O"o−1#

Since the transient Reynolds number has the same de_nition as at the pore scale\ we have ]

RtmL �O"o−1#

Finally\ the estimation of the Strouhal number in the micropores\ is given by ]

=re9 = vm = �O 0
reVm

l 1�O"vr#

Hence\ we deduce ]

SmL �O 2
vr

reVp

L 3�O"0#

2[0[4[ Dimensionless equations[ Therefore\ the dimensionless governing equations for
harmonic pulsations are ]

o1mDvk¦o1"l¦m#9"9 = vk#−9Pk � ivrevk "39#

ivrk¦re9 = vk � 9 "30#

Pp �
Pe

re
grp "31#

Pm �
Pe

re
rm "32#

vp:G �ðvmŁV? �
0

=Vs = gV?m

vm dV "33#

Pp �Pm onG "34#

vm:G? � 9 "35#

In comparison with the single porosity case "see paragraph 1[0[2#\ we have to introduce a
third dimensionless space variable for the micropores[



z�
X

l?

The dimensionless gradient operator 9 may now be written as follows ]

9M o−19z¦o−09y¦9x

2[0[5[ Homo`enization[ Each variable is looked for in the form of asymptotic expan!
sions in power of o ]

Pm"x\ y\ z# � o9P9
m"x\ y\ z#¦o0P0

m"x\ y\ z#¦o1P1
m"x\ y\ z#¦= = =

vm"x\ y\ z# � o0v0
m"x\ y\ z#¦o1v1

m"x\ y\ z#¦= = =

rm"x\ y\ z# � o9r9
m"x\ y\ z#¦o0r0

m"x\ y\ z#¦o1r1
m"x\ y\ z#¦= = =

Pp"x\ y# � o9P9
p "x\ y#¦o0P0

p "x\ y#¦o1P1
p "x\ y#¦= = =

vp"x\ y# � o9v9
p "x\ y#¦o0v0

p "x\ y#¦o1v1
p "x\ y#¦= = =

rp"x\ y# � o9r9
p "x\ y#¦o0r0

p "x\ y#¦o1r1
p "x\ y#¦= = =

All these quantities are V!periodic\ with respect to the variable y[ The quantities related to
the micropores are also V?!periodic\ with respect to the variable z[ Introducing these
expansions in the set of eqns "39#Ð"35#\ gives the following governing equations at the _rst
signi_cant orders[

In the micropores

Equation "3# and O"o−1# and O"o−0#

9zP
9
m � 9 "36#

mDzv
0
m¦"l¦m#9z"9z = v0

m#−9zP
0
m−9yP

9
m � 9 "37#

Equation "30# at O"o−0# and O"o9#

9z = v0
m � 9 "38#

ivr9¦re9z = v1
m¦re9y = v0

m � 9 "49#

Equation "32# at O"o9# and O"o0#

P9
m �

Pe

re
r9

m "40#

P0
m �

Pe

re
r0

m "41#



On the boundary G?

Equation "35# at O"o0# and O"o1#

v0
m:G? � 9 "42#

v1
m:G? � 9 "43#

In the pores

Apart from the boundary conditions\ we obtain the same set of equations as in the case of
single porosity[ The only di}erence is that variables are now indexed by p[ NavierÐStokes
equation "39# at O"o−0# and O"o9# leads to "8# and "09#\ respectively[ Mass balance eqn "30#
at O"o−0# and O"o9# gives "00# and "01#[ Equation "31# at O"o9# corresponds to "02#[

On the boundary G

Equation "34# at O"o9# and O"o0#

P9
p �P9

m "44#

P0
p �P0

m "45#

Equation "33# at O"o9# and O"o0#

v9
p :G �ðv9

mŁV? � 9 "46#

v0
p :G �ðv0

mŁV? "47#

The approach to the solution comprises three stages[ The ~ow in micropores and pores are
successively analysed and _nally the coupling ~ux between both scales is derived[

In the micropores

Equations "36# and "40# give ]

P9
m �P9

m"y\x#

r9
m �r9

m"y\x#

Equations "37#\ "38# and "42# lead to a classical steady!state Darcy|s ~ow in the micropores ]

v0
m �−

k½m

m
9yP

9
m "48#

This set of equations also determines P0
m and then r0

m is de_ned by eqn "41#[
Integration of "49# over the micropore period yields the mass balance in this domain ]

ivðr9
mŁV?¦re9y =ðv0

mŁV? � 9 "59#

Now\ using eqn "40# and averaging eqn "48# gives the equation governing the pressure
variation in Vs ]

f?iv

Pe
P9

m−9y = 0
K	m

m
9yP

9
m1� 9 "50#

where K	m �ðk½mŁV? is the steady ~ow intrinsic permeability of the microporous system[



In the pores

The resolution process is exactly the same as in Section 1[0[4[ We successively get ]

P9
p �P9

p "x# "51#

r9
p �r9

p "x# "52#

v9
p �−

k½p

m
9xP

9
p "53#

However\ the macroscopic mass balance obtained by integrating eqn "01# over Vp\ gives
now ]

ivðr9
pŁV¦reð9y = v0

pŁV¦re9x =ðv9
pŁV � 9 "54#

which can also be written ]

fiv

Peg
P9

p¦ð9y = v0
pŁV−9x = 0

K	p

m
9xP

9
p1� 9

In order to determine the additional term due to v0
p \ we must go back to the micropore

scale[ The actual pressure distribution in Vs is de_ned by eqns "50#\ "51# and "44#\ which
give the following boundary!value problem ]

f?iv

Pe
P9

m−9y = 0
K	m

m
9yP

9
m1� 9 in Vs

P9
m �P9

p "x# on G

Using the pressure di}erence\ this problem can be rewritten in the following equivalent
form ]

P?�P9
m−P9

p

f?iv

Pe
"P?¦P9

p #−9y = 0
K	m

m
9yP?1� 9 in Vs

P?� 9 on G

It turns out that the pressure di}erence is governed by a di}usion equation with a forcing
term[ Note that this boundary value problem looks like the heat transfer problem enco!
untered in eqns "16#Ð"17# for the temperature _eld[ We deduce that the pressure _elds in
the micropores and in the pores are related by ]

P?�−pP9
p

where the function p"y# is a complex\ depends on the local variable y and on the dimen!
sionless pulsation v:vd\ where vd is a characteristic di}usion pulsation\ which is of the
order of KmPe:l1mf?[ Then\ equation "50# can be written as follows ]



f?iv

Pe
"0−p#P9

p−9y = v0
m � 9 "55#

Finally\ the expression of ³9y = v0
p × V is derived by considering the boundary condition

"47# and integrating "55# over Vs ]

ð9y = v0
pŁV �

0
=V= gG

ðv0
mŁV? = ndS�f?"0−f#

iv

Pe
P9

p "0−P#

where

P�
0

=Vs = gVs

p"y# dV

Thus\ the macroscopic description is given by ]

ðf¦gf?"0−f#"0−P#Ł
iv

gPe
P9

p−9x = 0
K	p

m
9xP

9
p1� 9 "56#

2[0[6[ Comments[ The di}erence between the dual porosity model "56# and the single
porosity model "19# consists of a modi_cation of the porosity to a new complex valued
term[ This latter corresponds to the in~uence of air saturating the whole micropores of the
grains[ It highlights a coupling e}ect between pore and micropore air ~uxes\ which is due
to the di}usion of the pore pressure in the micropores[ This phenomenon is expressed by
the complex valued function P\ which depends on the dimensionless pulsation v�d �v:vd\
where the characteristic di}usion pulsation vd is of the order of KmPe:l1mf?[ As observed
above\ the pressure di}usion problem is exactly of the same kind as the heat transfer
problem[ Therefore the properties established for G are also valid for P[

At {{low|| frequencies\ the transient di}usion e}ects are negligible[ Therefore\ the
micropore pressure is uniformly equal to the pore pressure\ so that P"9# �9 and the total
gas volume contributes to the compressibility[ Note that the dynamic Darcy|s law a}ects
the pore volume only[ As a result\ this description does not reduce to a single porosity[

At {{high|| frequencies the di}usion a}ects air only in the vicinity of the pore walls[
The pressure does not vary in the micropores\ which gives P"�# �0[ We recognise the
single porosity behaviour[

At {{medium|| frequencies\ i[e[ for pulsations of the order of vd\ there is a phase shift
between pressure and velocity in the micropores\ leading to a complex value for P[ As for
vt\ an improved expression of vd can be obtained by introducing the length Ld de_ned as
the ratio of the grain volume to the surface ]

vd �
KmPe

L1
dmf?

Ld �
=Vs =
=G=

Obviously\ Lt and Ld are related by ]

Ld � "0−f#Lt:f

The physical meaning of this characteristic pulsation is that\ when v�vd\ the thickness of
the di}usion layer "zKmPe:vmf?# equals the grain size[ Let us notice that we have ]



X
vd

vc

�
zKKm

Ld X
Pere

m1ff?
�O 0l?

zPere

m 1

In air\ m:zPere ¼ 09−6 m\ and consequently\ for usual values of the micropore sizes ]

vd ×vc

Therefore\ at the macroscopic scale\ a new dissipation e}ect appears at higher frequencies[
For the same reasons as for thermal dissipation\ the in~uence of di}usion is limited in the
frequency range and its e}ects are maximum for pulsations close to vd[

Finally\ like G\ P may be expressed analytically for spherical or cylindrical grains[ For
other micropore geometries\ the expression below gives the correct asymptotic behaviour
at low and large frequencies ]

P"vd�# � ð0¦zFd
1¦vd�:ivd�Ł−0 "57#

where Fd is the shape ratio of the grain structure "Fý�1 for cylindrical grains and Fd �4:2
for spherical grains#[

In isotropic cases\ the expression of the complex valued acoustic velocity is ]

C1 �C1
a 0

iK�v�
a� 1 $0¦

"0−f#f?
f

g"0−P#%
−0

The comparison with eqn "12#*which is valid for single porosity media under adiabatic
conditions*shows that this complex valued celerity presents the same behaviour at high
frequencies "v Ł vd#\ but is augmented by a factor z0¦ð"0−f#f?:fŁg at low frequencies
"v ð vd#[ For the same reasons as for the thermal dissipation\ the in~uence of the micro!
porosity on the attenuation is maximum for pulsations close to vd[

2[1[ Addin` thermal effects
The preceding description may be improved by considering thermal exchanges[ As in

the case of single porosity\ thermal e}ects do not act on the description of the ~ow\ but
only modify mass balances[ Therefore\ the results obtained in the treatment of NavierÐ
Stokes equations in Section 2[0 are still valid here[

2[1[0[ Macroscopic behaviour[ In the pores and in the micropores\ the governing
equations for heat transfer are the same as "13#Ð"14#\ but variables are now indexed by p
or m[

In comparison with the single porosity case\ the description of thermal exchanges in
the pores is unchanged\ i[e[\ the thermal skin is of the order of the pore size[ Therefore\ as
in Section 1[1[\ we have ]

NpL �O"o−1#

Due to the separation of scale\ the micropore size is smaller than the thermal skin ]

l?�O"odv#



The continuity of heat ~ux at the grain boundary implies that ]

k
Tp

l
�k

Tm

l?

which shows that ]

Tm �O"oTp#

Now\ in the solid the level of temperature is also given by the heat ~ux continuity ]

ks

Ts

l?
�k

Tm

l?

Because of the contrast in conductivities\ it can be assumed\ for simplicity\ that the solid
remains in isothermal conditions "note that this hypothesis could be modi_ed without
di.culties#[ This analysis leads to quasi!static exchanges at the microscopic scale[ However\
in order to treat the largest frequency domain as possible\ we keep in the transient terms at
the micropore scale[ So we have ]

NmL �O"NpL#×o−0 �O"o−2#

These estimations yield the following scaled equations\ where L and Tp are used as references
quantities ]

o29 ="k9Tm# �iv"recpTm−oPm# "58#

o19 ="k9Tp# �iv"recpTp−Pp# "69#

Pm �Pe 0
rm

re
¦o−0 Tm

Te1 "60#

Pp �Pe 0
rp

re
¦

Tp

Te1 "61#

Tm:G? � 9 "62#

Tp �Tm onG "63#

The temperature _elds are looked for in the form of asymptotic expansions ]

Tp"x\ y# � o9T9
p "x\ y#¦o0T0

p "x\ y#¦o1T1
p "x\ y#¦= = =

Tm"x\ y\ z# � o0T0
m"x\ y\ z#¦o1T1

m"x\ y\ z#¦= = =

Firstly\ the in~uence of thermal e}ects is derived by establishing the mass balance at both
scales\ and then by determining the inter!scale coupling term[



                     

The following problems must be solved ]

In the micropores ]

9z = 0
k

ivrecp

T0
m

Te1−
T0

m

Te
�−00−

0
g1

P9
m

Pe

T0
m:G? � 9

In the pores ]

9y = 0
k

ivrecp

T9
p

Te1−
T9

p

Te
�−00−

0
g1

P9
p

Pe

T9
p :G � 9

Both problems are similar to that de_ned by eqns "13# and "14# for the single porosity
problem[

The solutions are ]

T0
m �

Te

Pe
"0−g#`mP9

m

T9
p �

Te

Pe
"0−g#`pP

9
p

Now\ considering eqns "60# and "61# at the _rst order yields ]

r9
m

re
�

P9
m

Pe
−

T0
m

Te
� $0−00−

0
g1 `m%

P9
m

Pe

r9
p

re
�

P9
p

Pe
−

T9
p

Te
� $0−00−

0
g1 `p%

P9
p

Pe

which give for the average density variations ]

ðr9
mŁV? �re $0−00−

0
g1Gm%

P9
m

Pe
"64#

ðr9
pŁV �re $0−00−

0
g1Gp%

P9
p

Pe

Gm �
0

=V?m = gV?m

`m dV Gp �
0

=V= gVp

`p dV "65#

These complex valued functions Gm and Gp play exactly the same role as the function G in
the single porosity case[ Each of them is associated with a characteristic pulsation given
by ]

vtp �
k

L1
tpr

ecp

Ltp �
=Vp =
=G=

vtm �
k

L1
tmrecp

Ltm �
=Vm =
=G?=

The descriptions of the ~ow in the pores "48# and in the micropores "53# remain valid[ But\



considering equations "64#Ð"65#\ the mass balances "59#Ð"54# for the micropores and pores\
respectively\ become ]

f?iv $0−00−
0
g1Gm%

P9
m

Pe
¦9y =ðv0

mŁV? � 9 "66#

ivðr9
pŁV¦reð9y = v0

pŁV¦reðv9
pŁV � 9 "67#

Let us now determine the inter!scale coupling term[ Equation "66# with the boundary
condition ]

P9
m �P9

p onG

constitutes a boundary value problem in Vs[ This problem looks like the pressure di}usion
problem encountered in the preceding section ðeqns "44# and "50#Ł[ However\ due to the
thermal non!equilibrium in the micropores\ the di}usion coe.cient is now complex and
frequency dependent[ The solution is ]

P9
m �"0−c#P9

p "68#

where c is complex and depends on y and also on the pulsation v and on both characteristic
pulsations vm and vd[

As for ð9y = v0
pŁV\ it is derived using boundary condition "47#\ and integrating "66#

over Vs while considering expression "48# ]

ð9y = v0
pŁV �iv $0−00−

0
g1Gm%"0−C#

P9
p

Pe

where

C�
0

=Vs = gVs

cdV

Finally\ the macroscopic behaviour is ]

6f $0−00−
0
g1Gp%¦f?"0−f# $0−00−

0
g1Gm%"0−C#7

iv

Pe
P9

p−9x = 0
K	p

m
9xP

9
p1� 9

"79#

2[1[1[ Comments[ Adding thermal e}ects alters description "56# by modifying the inter!
scale coupling term[ Both thermal and pressure di}usion e}ects are now involved at the
micropore scale\ which is particularly highlighted through the function C in which both
phenomena are mixed[

Thermal exchanges in the micropores introduce a new characteristic frequency v�tm
and a function Gm whose physical meaning corresponds to those of v�t and function G for
the pores\ respectively[ The expression given by equation "23# is valid when G is replaced
by Gm and v�t by v�tm[

Although P and C are di}erent\ they have the same limit values\ C"9# �9 and
C"�# �0\ and the same characteristics pulsation\ vd �KmPe:L1

dmf?[ However\ for pul!
sations higher than vtm\ the behaviours of P and C are di}erent because of the complex
valued di}usion coe.cient[ An expression which gives the correct asymptotic behaviour at
low and high frequencies is given below ]



Fig[ 2[ Real and imaginary parts of the complex!valued functions P "di}usion# and C "thermo!
di}usion#\ with respect to the dimensionless di}usion pulsation v�d[ Solid line ] function P[ Dashed

line ] function C[

C"vd�# � ð0¦zFd
1¦iVd�:iVd�Ł−0

where

V�d �v�d > $0−00−
0
g1Gm"v�tm#%

Figure 2 shows the functions P and C with respect to the pulsation vd for spherical grains[
From eqn "79# we deduce that for isotropic cases\ the acoustic velocity is expressed by ]

C1 �C1
a

iK�v�
a�

ð"g−"g−0##Gp¦
"0−f#f?

f
"g−"g−0##Gm"0−c#Ł−0

In comparison with the acoustic velocity for the single porosity case "24#\ these results show
an increased dissipation at frequencies close to vd and vtm[

3[ CONCLUSIONS

In this study\ various macroscopic descriptions of sound propagation through a rigid
porous medium saturated by air are derived using homogenization theory[ The results
presented are valid as long as the wavelength is large in comparison with the pore size[

The _rst part of the paper deals with single porosity materials[ The case of large pores\
for which thermal exchanges are negligible ðequations "19#Ð"12#Ł and then the case of small
pores where thermal e}ects must be considered ðeqns "22#Ð"24#Ł have been successively
investigated[ The derived descriptions are the same as those already obtained via phenom!
enological approaches "Allard\ 0882 ^ Attenborough\ 0872#[ Air ~ow is governed by a
dynamic Darcy|s law where both viscous and inertial e}ects act\ and the e}ective com!
pressibility is in~uenced by thermal exchanges[

In the second part\ we focus on dual porosity media\ i[e[ media in which the grains of
the skeleton are microporous[ Let us notice that the results could also be applied to granular
media that consist of grains of very di}erent sizes[



Firstly\ a simpli_ed macroscopic description is obtained by neglecting heat transfer
e}ects "56#[ We demonstrate that\ in the micropores\ the physics of the ~ow is very di}erent
to that in the pores[ Due to the weak micropore permeability and to air compressibility\
the pressure is inhomogeneously di}used in the micropores[ This phenomenon is associated
with a characteristic pulsation vd\ which is greater than the classical thermal and critical
pulsations "vt\vc#\ that are de_ned for single porosity media[ It is shown that the e}ect of
pressure di}usion implies increased acoustic attenuation for pulsations of the order of
magnitude of vd[

When thermal transfers are included "79#\ a second thermal characteristic pulsation
associated with the micropore appears in the model\ vtm\ which is greater than vt[ This
increases acoustic attenuation for pulsations close to vtm[

As a _rst example\ let us determine the di}erent characteristic pulsations for several
dual porosity media[

We consider a medium similar to porous road surfacing having a porosity\ f�9[14\
a mean pore radius R of about 4×09−2 m\ an intrinsic permeability K�09−8 m1\ and a
tortuosity of a� �0[4[

The limit frequency for which waves are di}racted on the pores is reached when the
wavelength equals 1pR[ In this speci_c case\ one obtains a range of validity between 9 and
7 kHz for the description[

The numerical values lead to the following characteristic frequencies for the pores ]

fc �
vc

1p
�

mf

1pa�K"9#r
¼ 329Hz

ft �
vt

1p
�

k

1pL1
t r

ecp

¼ 0[1Hz

Therefore\ in the context of acoustics\ the adiabatic approximation is valid for this material\
and the dissipation is mainly due to the viscosity[

Consider now the case where the grains of this material have also an open micro!
porosity\ f?�9[14\ and the micropores are twenty times smaller than pores so that the
mean micropore radius is about 1[4×09−3 m[ The intrinsic permeability can be estimated
as Km �1[4×09−01 m1[ These values lead to the following microporous characteristics
frequencies ]

fd �
vd

1p
�

KmPe

1pL1
dmf?

¼ 4[0 kHz

ftm �
vtm

1p
�

k

1pL1
tmrecp

¼ 379Hz

These frequencies belong to the acoustic domain[ Therefore\ one can expect two peaks of
attenuation "at these two frequencies#[

Figure 3 shows the celerity with respect to the pulsation in such a medium[ The in~uence
of the microporosity appears through the presence of a second peak[ For comparison\ the
celerities of two distinct single porosity media are presented ] "i# the porosity is the pore
porosity only ^ "ii# the porosity is the global porosity[ Note that these two single porosity
media and the dual porosity medium have the same static permeability and the same
tortuosity coe.cient[ These curves show signi_cant di}erences between the models[ As a
consequence\ the three impedances are also di}erent[

As a second example\ consider the situation where we would like to increase the
absorption for frequencies of about 0 kHz[ With the same open microporosity f?�9[14\
a micropore radius of about 09−3 m can be chosen[ The intrinsic permeability can be
estimated as K�3×09−02 m1[ The values of microporous characteristic frequencies
become ]



Fig[ 3[ Comparison between single porosity and dual porosity media[ Real and imaginary parts of
complex!valued celerities\ with respect to the dimensionless pulsation v�[ Thick line ] celerity of a
dual porosity medium "model given in 2[1\ with numerical values considered in example 0 in the
conclusion#[ Thin line ] celerity of a single porosity medium "pore porosity only#[ Dashed line ]

celerity of a single porosity medium "pore plus micropore porosity#[

Fig[ 4[ Comparison between two distinct dual porosity media with the same pore structure but with
di}erent permeabilities in the micropores[ Real and imaginary parts of complex!valued celerities\
with respect to the dimensionless pulsation v�[ Solid line ] example 0 in the conclusion "km � k:399#[

Dashed line ] example 1 in the conclusion "km � k:1499#[

fd ¼ 704Hz

ftm ¼ 2 kHz

Figure 4 shows the acoustic properties of both dual porosity media de_ned above[



In conclusion\ these results prove that the introduction of a microporosity could be
used to develop new porous materials\ with improved of absorption in a given range of
frequencies[

REFERENCES

Allard\ J[ F[ "0882# Propa`ation of Sound in Porous Media[ Modellin` Sound Absorbin` Materials[ Chapman and
Hall\ London[

Allard\ J[ F[\ Herzog\ P[\ Lafarge\ D[ and Tamura\ M[ "0882# Recent topics concerning the acoustics of _brous
and porous materials[ Applied Acoustics 28\ 2Ð10[

Attenborough\ K[ "0872# Acoustical characteristics of rigid _brous adsorbents and granular media[ Journal of the
Acoustic Society of America[ 62"2#\ 674Ð688[

Auriault\ J[ L[ "0879# Dynamic behaviour of a porous media saturated by a Newtonian ~uid[ International Journal
of En`ineerin` Science 07\ 664Ð674[

Auriault\ J[ L[ "0872# E}ective macroscopic description for heat conduction in periodic composites[ International
Journal of Heat and Mass Transfer 15"5#\ 750Ð758[

Auriault\ J[ L[ and Boutin\ C[ "0882Ð0883# Deformable porous media with double porosity[ I ] Quasi!statics ^ II ]
Memory e}ects ^ III ] Acoustics[ T[I[P[M[ 6\ 52Ð71 ^ 09\ 042Ð058 ^ 03\ 032Ð051[

Auriault\ J[ L[ and Royer\ P[ "0882# Ecoulement d|un gaz dans un milieu a� double porosite�[ Compte Rendu a�
l|Acade�mie des Sciences\ Paris 206"II#\ 320Ð325[

Auriault\ J[ L[\ Borne\ L[ and Chambon\ R[ "0874# Dynamic of porous saturated media[ Checking of the
generalized law of Darcy[ Journal of the Acoustic Society of America 66\ 0530Ð0549[

Bar\ P[ and Delanne\ Y[ "0882# Re�duire le bruit Pneumatique!Chausse�es[ LCPC\ Presses des Ponts et Chausse�es[
Barenblatt\ G[ I[\ Entov\ V[ M[ and Ryzhik\ V[ M[ "0859# On fundamental equations of ~ow of homogeneous

liquids in naturally fractured rocks[ Dokl[ Akad[ Nauk[\ USSR 021"2#\ 434Ð437 "in Russian#[
Biot\ M[ A[ "0845# The theory of propagation of elastic waves in a ~uid saturated porous solid\ I[ Low frequency

range\ II[ Higher frequency range[ Journal of the Acoustic Society of America 17\ 057Ð080[
Boutin\ C[ "0883# Comportement macroscopique de mate�riaux he�te�rogen�es[ The�se d|Habilitation\ Universite�

Joseph Fourier\ Grenoble[
Boutin\ C[ and Auriault\ J[ L[ "0889# Dynamic behaviour of porous media saturated by a viscoelastic ~uid[

Application to bituminous concrete[ International Journal of En`ineerin` Science 17"00#\ 0046Ð0070[
Boutin\ C[ and Auriault\ J[ L[ "0882# Acoustic of Newtonian ~uid at large bubble concentration[ Eur[ J[ Mech[

B:Fluid 01"2#\ 256Ð288[
Boutin\ C[\ Royer\ P[ and Auriault\ J[ L[ "0885# Sound absorption of dry porous media with single and double

porosity[ 00th Conf[ Eng[ Mech[ Div[:ASCE[\ May 0885\ Fort Lauderdale\ FL[\ pp[ 685Ð688[
Champoux\ Y[ and Allard\ J[ F[ "0880# Dynamic tortuosity and bulk modulus in air saturated porous media[

Journal of Applied Physics 69\ 0864Ð0868[
Levy\ T[ "0868# Propagation of waves in a ~uid saturated porous elastic solid[ International Journal of En`ineerin`

Science 06\ 094Ð003[
Sheng\ P[ and Zhou\ M[!Y[ "0877# Dynamic permeability in porous media[ Physical Review Letters 50"30#\ 0480Ð

0483[
Royer\ P[ "0883# Contribution de l|homoge�ne�isation a� l|e�tude de la _ltration d|un gaz dans un milieu de�formable

a� double porosite*application a� l|e�tude du syste�me gaz!charbon[ The�se de Doctorat\ Universite� Joseph Fourier\
Grenoble[

Royer\ P[ and Auriault\ J[ L[ "0883# Transient quasi!static ~ow through a porous rigid medium with double
porosity[ T[I[P[M[ 06"22#\ 22Ð46[

Royer\ P[\ Auriault\ J[ L[ and Boutin\ C[ "0885# Macroscopic modeling of double!porosity reservoirs[ J[ Pet[ Sci[
En[ 05\ 076Ð191[

Sanchez!Palencia\ E[ "0879# Non!homo`eneous Media and Vibration Theory[ Lecture Note in Physics\ 016[ Springer!
Verlag\ Berlin[


