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We theoretically study the Casimir-Polder force on an atom in an arbitrary initial state in a rather general
electromagnetic environment wherein the materials may have a nonreciprocal bianisotropic dispersive response.
It is shown that under the Markov approximation the force has resonant and nonresonant contributions. We obtain
explicit expressions for the optical force both in terms of the system Green function and of the electromagnetic
modes. We apply the theory to the particular case wherein a two-level system interacts with a topological gyrotropic
material, showing that the nonreciprocity enables exotic light-matter interactions and the opportunity to sculpt and
tune the Casimir-Polder forces on the nanoscale. With a quasistatic approximation, we obtain a simple analytical
expression for the optical force and unveil the crucial role of surface plasmons in fluctuation-induced forces.
Finally, we derive the Green function for a gyrotropic material half-space in terms of a Sommerfeld integral.

DOI: 10.1103/PhysRevA.97.022509

I. INTRODUCTION

The Casimir-Polder force acting on atoms located close
to the surface of a material body is of longstanding and
current interest [1–17], and is of considerable practical im-
portance in a variety of physical, biological, and chemical
processes. For planar surfaces, the normal component of the
force has been extensively investigated both theoretically and
experimentally [18]. There is a vast literature on theoretical
methods to calculate the force when the material structures
are conventional isotropic dispersive dielectrics [3,5–12,15].
Furthermore, the Casimir-Lifshitz interactions between two
macroscopic bodies with exotic electromagnetic responses
have also been discussed in a variety of scenarios [17,19–28],
but the majority of the works consider planar geometries and
that the system is in the ground state. Indeed, it seems that
the Casimir-Polder interaction between a neutral atom and
a generic environment with a complex (e.g., gyrotropic or
bianisotropic) electromagnetic response has not been fully
addressed so far in the literature.

In this article, motivated by the recent interest in non-
reciprocal photonic platforms with topological properties
[29–38], we develop a theoretical formalism to characterize
the Casimir-Polder force acting on an atom prepared in an
arbitrary initial state in the vicinity of an arbitrary possibly
bianisotropic, inhomogeneous, and nonreciprocal dispersive
system. In the general case, the optical force is written in terms
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of the system Green function. Interestingly, we show that in
the limit of vanishing material loss the quantum force may be
written as well in terms of the electromagnetic modes of the
system.

We apply the developed formalism to a two-level atom
placed in the vicinity of a topological gyrotropic material,
e.g., a magnetically biased plasma [34–36]. Based on a simple
quasistatic approximation, we obtain explicit formulas for
the fluctuation-induced force and highlight how by tuning
the strength of the nonreciprocal response it is possible to
tailor the amplitude of the lateral and normal components
of the optical force. Furthermore, our analysis reveals that
the fluctuation-induced force is largely determined by the
surface plasmon polaritons (SPPs). The “exact” quantum force
is numerically computed using the Green function for an
gyrotropic half-space, which is also derived here. It is shown
that the quasistatic approximation agrees rather well with the
result obtained with the exact Green function. Moreover, in
[39], the developed theory is used to show that excited atoms
may experience nonzero spontaneous lateral forces when near a
photonic topological insulator. Unlike previous studies [16,40–
43], in a topological system the sign of the lateral optical
force may be polarization and orientation independent and is
tunable [39].

The article is organized as follows. In Sec. II, we derive
the vacuum fluctuation-induced Casimir-Polder force acting
on an atom in a generic electromagnetic environment. The
effect of thermal fluctuations is neglected and the Markov
approximation is used to solve the Heisenberg equations. For
simplicity, the analysis is focused on two-level systems, but
we provide also the expression of the force for the case of
multilevel atoms. In Sec. III, we consider the scenario wherein
the electromagnetic environment is a topological material half-
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space. Assuming that the material has a gyrotropic response
(magnetized plasma), we characterize the edge (SPP) modes
supported by the system and obtain closed-form expressions
for the Casimir-Polder force under a quasistatic approximation.
In Sec. V we present a numerical study that illustrates how
by controlling the strength of the biasing magnetic field it is
possible to tailor the amplitude and in some cases also the sign
of the Casimir-Polder force. Finally, a short summary of the
main findings is given in Sec. VI.

II. OPTICAL FORCE

In this section, we prove that in a rather general context the
expectation of the optical force acting on a two-level atom can
be decomposed into a resonant term (FR,i) and a nonresonant
term (FC,i) as

Fi(t) = 〈F̂i〉 = ρee(t)FR,i + (1 − 2ρee(t))FC,i, (1)

with ρee(t) the probability of the atom being in the excited
state. The resonant component of the force is determined by
the system Green function G (a 6 × 6 tensor; see Appendix A)
evaluated at the two-level atom transition frequency (ω0),

FR,i = 2 Re
{
γ̃ ∗ · (−iω∂iG(r,r0; ω))|ω=ω0+i0+

r=r0

· γ̃
}
. (2)

Here, ∂i = ûi · ∇r represents the spatial derivative along the
ith space direction, γ̃ = [γ 0]T is a six-vector and γ is the
dipole transition matrix element. The atom coordinates are
determined by the vector r0. It is assumed that the atom is
surrounded by a vacuum (free-space) in its immediate vicinity.

The nonresonant component of the force gives the Casimir-
Polder force due to the zero-point fluctuations FC = −∇r0EC ,
and depends on the interaction Casimir energy,

EC = −1

4π

∫ ∞

−∞
dξ tr(α̃(iξ ) · (−iωG)ω=iξ ). (3)

In the above, “tr” stands for the trace of a matrix and α̃(ω) =
( 1
ω0−ω

γ̃ γ̃ ∗ + 1
ω0+ω

γ̃ ∗γ̃ ), so that αij = α̃ij /(h̄ε0) represents
the semiclassical ground-state electric polarizability of the
two-level system (i,j = 1,2,3) [44]. The Green function is
evaluated at imaginary frequencies (ω = iξ ) with identical
observation and source points, r = r′ = r0. The result (1) holds
in the low-temperature limit: kBT � h̄ω0 and d � λT , with d

the minimum distance between the atom and the macroscopic
bodies and λT = hc/kBT the thermal wavelength. The Green
function can be generally decomposed as G = G0 + Gs , with
G0 the free-space Green function corresponding to the situation
wherein the atom resides in a vacuum. Due to symmetry
reasons, G0 cannot contribute to the force in the electric dipole
approximation. Hence, in Eqs. (2) and (3) the Green function
can be replaced by its “scattering part” Gs , which is free of
singularities when r = r′ = r0.

For a two-level system the excited state probability is
ρee(t) = ρee(0)e−�egt with

�eg = 2

h̄
Im{γ̃ ∗ · (−iωG)|ω=ω0

· γ̃ } (4)

the standard spontaneous emission decay rate [45].
Note that in the electric dipole approximation the force

only depends on the “electric part” of the Green function GEE,

defined as in Eq. (A1) of Appendix A (a 3 × 3 tensor). For
standard dielectric media (with a trivial magnetic response and
vanishing magnetoelectric tensors) GEE is related to the more
conventional Green function definition G of Refs. [12,15] as
GEE = iωμ0G.

A. Modal expansion

To begin with, we obtain a formula for the optical force in
terms of the natural modes of oscillation of the electromagnetic
field. Hence, in this section we consider the limit of vanishing
material loss. For convenience, we adopt six-vector notations
so that the quantized electromagnetic fields are denoted by the
six-vector operator F̂ = (Ê Ĥ)T. The hat indicates that a given
symbol represents an operator.

From the correspondence principle, the optical force oper-
ator is (electric dipole approximation) [46]

F̂j = p̂g · ∂

∂j
F̂, j = x,y,z, (5)

where p̂g = (p̂ 0̂)T is a generalized dipole moment operator
and p̂ is the standard electric dipole operator for the two-level
atom. The quantized electromagnetic field in a generic inho-
mogeneous and dispersive material platform can be written
in terms of positive and negative frequency components F̂ =
F̂− + F̂+ with F̂+ = F̂†

−, and [45,47–49]

F̂−(r,t) =
∑

ωnk>0

√
h̄ωnk

2
Fnk(r)ânk(t). (6)

In the above, Fnk(r) represents a generic cavity mode with
oscillation frequency ωnk, and ânk(t) is the corresponding
bosonic operator satisfying [ânk,â

†
nk] = 1. The electromag-

netic modes Fnk are normalized as [45,47–49]

1

2

∫
d3r F∗

nk · ∂(ωM)

∂ω
· Fnk = 1, (7)

where M = M(r,ω) is the 6 × 6 material matrix that describes
the electromagnetic properties of the environment. It relates the
classical D and B fields with the classical E and H fields. For a
generic bianisotropic (eventually nonreciprocal) material it is
of the form,

M(r,ω) =
(

ε 1
c
ξ

1
c
ζ μ

)
. (8)

The 3 × 3 tensors ε and μ represent the permittivity and perme-
ability, and the tensors ξ and ζ determine the magnetoelectric
response.

Using normal ordering of the field operators, the expectation
of the force can be written as

Fj = 〈F̂j 〉 = 2 Re〈p̂g · ∂j F̂−〉. (9)

In the above, the field is evaluated at r = r0, the position of the
atom, and the Heisenberg picture is implicit.

The total Hamiltonian of the system is

Ĥ = h̄ω0σ̂+σ̂− +
∑

ωnk>0

h̄ωnk

2
(ânkâ

†
nk + â

†
nkânk)

− p̂ · Ê(r0), (10)
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where the last term is the interaction Hamiltonian Ĥint. With
p̂ = γ ∗σ̂+ + γ σ̂−, it can be written as

Ĥint = −(γ ∗σ̂+ + γ σ̂−) · Ê(r0) (11)

= −(γ̃ ∗σ̂+ + γ̃ σ̂−) · F̂(r0),

where σ̂± are the atom raising and lowering operators.
Using the Heisenberg equation of motion, ∂t ânk =

ih̄−1[Ĥ ,ânk], it follows that

∂ânk

∂t
= −iωnkânk + i

h̄
p̂ ·
√

h̄ωnk

2
E∗

nk(r0). (12)

By integrating the differential equation one obtains [45]

ânk(t) = ânke
−iωnk t +

∫
i

h̄
p̂(t ′) ·

√
h̄ωnk

2
E∗

nk(r0)u(t − t ′)

× e−iωnk(t−t ′)dt ′. (13)

Using the Markov approximation and∫ t

t0

u(t − t ′)e−i(ωnk−ω0)(t−t ′)dt ′

≈ πδ(ωnk − ω0) + P
1

i(ωnk − ω0)
(14)

for an interaction that starts at t0 → −∞, it is found that

ânk(t) ≈ ânke
−iωnk t

+
√

ωnk

2h̄
γ̃ · F∗

nkσ̂−(t)
1

ωnk − ω0 − i0+

+
√

ωnk

2h̄
γ̃ ∗ · F∗

nkσ̂+(t)
1

ωnk + ω0 − i0+ (15)

in the sense of the Sokhotski–Plemelj relation (x ± i0+)−1 =
P(1/x) ∓ iπδ(x) (P stands for the principal value). Assuming
that the photon field is initially in the ground state and using
(6) and (9) one obtains the desired modal expansion for the
optical force,

Fj = ρee(t)�1 + (1 − ρee(t))�2, (16)

where

�1 = Re

(∑
ωnk>0

ωnkγ̃
∗ · ∂j Fnk ⊗ F∗

nk · γ̃
1

ωnk − ω0 − i0+

)
,

�2 = Re

(∑
ωnk>0

ωnkγ̃ · ∂j Fnk ⊗ F∗
nk · γ̃ ∗ 1

ωnk + ω0 − i0+

)
.

(17)

We introduced ρee(t) = 〈σ̂+σ̂−〉, which gives the probability
of the atom to be found in its excited state in a spontaneous
emission process.

B. Green function representation

In what follows, it is shown that the optical force can also
be expressed in terms of the Green function G of the system.
The Green function G = G(r,r′,ω) is a 6 × 6 tensor defined
by Eq. (A2) of Appendix A. With the help of Eq. (A7) one may
rewrite the optical force (16) as

Fj = 2ρee(t)Re{γ̃ ∗ · (−iω∂j )G+(r0,r0,ω0 + i0+) · γ̃ } + 2(1 − ρee(t))Re{γ̃ ∗ · (−iω∂j )G−(r0,r0,ω0 + i0+) · γ̃ }, (18)

where G± are the positive and negative frequency parts of the
Green function, and the spatial derivatives act only on the first
argument (r) of the Green function. All the poles of G± are in
the positive and negative real frequency axes, respectively.

From Appendix A, we have G = G+ + G− +
1
iω

M−1
∞ δ(r − r0). The δ-function term does not contribute to

the force because it is associated with the self-field, and hence
it is possible to do the replacement G+ → G − G− in (18).
This leads to Eq. (1), with the Casimir-Polder force in the
ground state given by

FC,j = 2 Re{γ̃ ∗ · (−iω∂j )G−|ω=ω0
· γ̃ }. (19)

Noting that G− is analytic for Re{ω} > 0, the Cauchy
theorem allows us to write the force as an integral over the
imaginary frequency axis,

FC,j = 2 Re

{
1

2π

∫ ∞

−∞
dξ γ̃ ∗ · (−iω∂j G−)

ω=iξ

ω0 − iξ
· γ̃

}
. (20)

From the identity [(−iω∂j )G−(r,r0)]† r=r0
ω

=
[(−iω∂j )G−(r0,r)] r=r0

ω∗ , it follows that FC = −∇r0EC ,

with the zero-point interaction energy given by

EC = −1

2π

∫ ∞

−∞
dξ

1

ω0 − iξ
γ̃ ∗ · (−iωG−)ω=iξ · γ̃ . (21)

Using again the analytic properties of G−, we see that 0 =
1

2π

∫∞
−∞ dξ 1

ω0+iξ
(−iωG−)ω=iξ . Thus, introducing the tensor

α̃ = ( 1
ω0−ω

γ̃ γ̃ ∗ + 1
ω0+ω

γ̃ ∗γ̃ ), which corresponds to a normal-
ized polarizability of the two-level atom, it is possible to write

EC = −1

2π

∫ ∞

−∞
dξ tr

(
α̃(iξ ) · (−iωG−)ω=iξ

)
. (22)

Noting finally that
(−iωG

−
(r0,r0,ω)

)
ω=iξ

=[(−iωG
+

(r0,r0,ω)
)
ω=iξ

]∗
and that α̃(iξ ) = α̃∗(iξ ), and

taking into account that the integral is necessarily real-valued,
we see that the interaction Casimir energy may be calculated
using (22) with G+ in the place of G−. This result also implies
that we can replace G− by one-half of the full Green function
G/2 in (22), and this final observation yields the desired

022509-3
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Eq. (3), which may be written as

EC = − 1

4π

∫ ∞

−∞
dξ

(
1

ω0 − iξ
γ̃ ∗ · (−iωG)ω=iξ · γ̃

+ 1

ω0 + iξ
γ̃ · (−iωG)ω=iξ · γ̃ ∗

)
. (23)

This completes the proof of Eqs. (1)–(3). Even though the
derivation assumes negligible material loss, the final result
is given in terms of the Green function, and thus it can be
readily extended to lossy material systems simply by using the
Green function for lossy systems in the same expression. As
previously mentioned, only the scattering part of the Green
function needs to be considered in the force calculation,
because by symmetry the self-field (i.e., the part of the Green
function associated with the radiation of an electric dipole in
a vacuum) does not contribute to the force.

Equation (1) generalizes (in the low-temperature limit)
the theory of Refs. [12,15] (which applies only to isotropic
dielectrics) to arbitrary bianisotropic (reciprocal or nonrecipro-
cal) material platforms. Note that different from Refs. [12,15]
our theory neglects atomic level shifts and broadenings. It is
worth pointing out that for reciprocal systems the integral in
Eq. (3) can be reduced to the positive imaginary axis, but for
general nonreciprocal systems the integration must be over the
entire imaginary axis.

C. Lateral force for stratified systems

So far the analysis is completely general (under the electric
dipole approximation), and applies to a generic system with no
particular symmetries. Next, we focus on structures invariant to
translations along the coordinates α = x,y, and discuss some
properties of the optical lateral force in such systems.

Clearly, for a structure invariant to translations along α =
x,y the force component FC,α vanishes. Furthermore, in the
limit of no material loss we find from (17) with the Sokhotski-
Plemelj relation, and using the fact that the modes are Bloch
waves, that

Fα = ρee(t)

× Re

(
iπ
∑

ωnk>0

ωnkγ̃
∗ · ∂αFnk ⊗ F∗

nk · γ̃ δ(ωnk − ω0)

)
.

(24)

In general, for lossy materials, the modal expansion does not
apply and one needs to use Eq. (2). As mentioned, the force only
depends on the “electric part” of the Green function GEE. The
vector E = −iωGEE · γ corresponds to the frequency domain
electric field radiated by a classical dipole with electric dipole
moment γ . The exact lateral force can be written in terms of
this electric field as follows (only the scattering part of the field
needs to be considered),

Fα = 2ρee(t)Re{γ ∗ · ∂αE(r0)}. (25)

The application of these formulas is illustrated in [39].

D. Multilevel atom

The formalism developed in the previous sections can be
readily generalized to a multilevel atom described by the

Hamiltonian Ĥat =∑n En|n〉〈n|, with En the energy level of
the nth state. It is supposed that the dipole moment matrix
γ mn = 〈m|p̂|n〉 has no diagonal elements. Thus, it is possible
to write the dipole moment operator as (for simplicity it is
assumed there are no degenerate levels)

p̂ =
∑

Em<En

(
γ ∗

mn|n〉〈m| + γ mn|m〉〈n|), (26)

which may be understood as a combination of multiple two-
level systems. Because Maxwell’s equations are linear, Eq. (15)
can be readily generalized to a multilevel system by including
the contribution of each “two-level” term. Then, substituting
this result into (9) one sees that since the Heisenberg equations
preserve the orthogonality relations, 〈m(t)|n(t)〉 = δm,n, each
“two-level” component of the atom Hamiltonian contributes
independently to the force. Note that we assume that in the
initial state the electromagnetic field has no quanta. This result
proves that the optical force is a superposition of the individual
“two-level” contributions:

Fi(t) =
∑

Em<En

ρnn(t)Fmn
R,i + (ρmm(t) − ρnn(t))Fmn

C,i . (27)

Here, ρnn(t) is the probability of finding the atom in the nth
state at time t , and Fmn

R,i and Fmn
C,i are calculated using Eqs. (2)

and (3) with γ mn in the place of γ and ω0,mn = (En − Em)/h̄
in the place of ω0.

III. TOPOLOGICAL MATERIAL HALF-SPACE

In the rest of the article, we focus on a z-stratified structure
formed by a topological material half-space (z < 0) and a
free-space half-space (z > 0) (Fig. 1). The atom is located a
distance d above the topological material. It is assumed that
the material only has a nontrivial electric response, so that

M =
(

ε(r,ω) 0
0 μ0I

)
. Furthermore, we suppose that the material

response is gyrotropic with dielectric function,

ε = ε0(εtIt + εa ŷŷ + iεg ŷ × I), (28)

where It = I − ŷŷ and εg determines the strength of the
nonreciprocal response.

In Appendix B, we derive an explicit formula for the
“electric part” of the Green function GEE in the region z >

0 and z′ > 0. The Green function has the decomposition
GEE = GEE,0 + GEE,s, with GEE,0 the free-space Green func-
tion (associated with the self-field) given by (−iωε0)GEE,0 =

d

z

y

x

zd

z

y

x

z

e

g

FIG. 1. A two-level system is at a distance d above a gyrotropic
material.
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(∇∇ + k2
0I)�0 where �0 = eik0r/4πr . The scattering part of

the Green function GEE,s is given by a Sommerfeld-type
integral,

(−iωε0)GEE,s(r,r′)

= 1

(2π )2

∫ ∫
dkxdky

e−γ0(z+z′)

2γ0
eik‖·(r−r′) C(ω,k‖), (29)

where k‖ = kx x̂ + ky ŷ, γ0 =
√

k2
‖ − k2

0 , k0 = ω/c, and

C(ω,k‖) is the tensor defined by Eq. (B3), which is written
in terms of the reflection matrix for the gyrotropic material
half-space. To the best of our knowledge, this is the first time
that the Green function of a gyrotropic half-space is determined
explicitly as a Sommerfeld integral.

By substituting (29) into (1)–(3) one obtains the exact
solution for the optical force within the Markov approximation
for a transition between an excited state and the ground. For
example, the resonant component of the force can be written as

FR,i = 2 Re{γ ∗ · (−iω∂iGEE(r,r0; ω))|ω=ω0+i0+
r=r0

· γ }, (30)

with r0 = (0,0,d).
For a lossy magnetized plasma with bias magnetic field

along the +y axis the permittivity elements are [50]

εt = 1 − ω2
p(1 + i�/ω)

(ω + i�)2 − ω2
c

,

εa = 1 − ω2
p

ω(ω + i�)
, εg = 1

ω

ωcω
2
p

ω2
c − (ω + i�)2 . (31)

Here, ωp is the plasma frequency, � is the collision rate associ-
ated with damping, ωc = −qB0/m is the cyclotron frequency,
q = −e is the electron charge, m is the effective electron mass,
and B0 is the static bias. The cyclotron frequency is either
positive or negative depending if B0 is oriented along the +y

or −y direction, respectively. Narrow gap semiconductors such
as InSb have a response analogous to (31) [51,52].

It has been recently shown that electromagnetic continua
with no intrinsic periodicity but with broken time-reversal
symmetry, e.g., the biased plasma described by (31), can be
understood as topological materials. In particular, such ma-
terials enable the propagation of unidirectional, topologically
protected, and scattering-immune edge states [34–36,47].

FIG. 2. Real part of the scattered electric field (in arbitrary units)
near the source for the unbiased plasma (a) and the biased plasma
(b). The oscillation frequency is ω/ωp = 0.7 and λ0 = 2πc/ω. The
source (black dot) is located at d = 0.05c/ωp above the magnetized
plasma.

From (2) and (25) it is seen that the lateral force is
determined by the slope of the Green function and electric
field at the atom position [39]. To illustrate that the slope is
nonzero in the nonreciprocal case, we consider that the dipole is
polarized along the vertical (z) direction (E = −iωGEE · γ ẑ).
As shown in Fig. 2(a), for an unbiased plasma (when ωc = 0
and the dielectric function reduces to the Drude dispersion
scalar model), ∂xEz = 0 at the source point, and therefore
Fx = 0. However, in the presence of a magnetic bias the field
at the atom position has nonzero slope [Fig. 2(b)], and hence
Fx �= 0. Note that Fig. 2 shows only the scattered part of the
field at the source point.

IV. QUASISTATIC SOLUTION

To have some physical insight into the mechanisms that de-
termine the optical force, next we obtain an explicit expression
for the force under the assumption that d � 2πc/ωp and d �
2πc/ω0 (quasistatic limit) and that the material absorption is
negligible.

A. Surface plasmon polaritons

When the atom is in close vicinity of the topological
material, the light-matter interactions are expected to be mainly
determined by the surface plasmon polaritons (SPPs). In the
following, we derive the dispersion of the SPP resonances (i.e.,
SPPs with short wavelengths and wave vector k‖ → ∞) based
on the quasistatic approximation. The propagation of SPPs
has been widely discussed in the literature mainly when the
direction of propagation is perpendicular to the bias field (e.g.,
[34,53,54]), but it seems that for oblique directions the problem
was not systematically studied so far.

It is well known that SPPs with short wavelengths have
an electrostatic nature. Thus, we look for guided modes of
the form Fnk ≈ [Enk 0]T ≈ [−∇φk 0]T. The magnetic field is
assumed negligible and the electric field is written in terms of
an electric potential (φk) that satisfies ∇ · (ε · ∇φk) = 0. The
solutions of this quasistatic equation are of the form,

φk = Ak‖√
S

eik‖·r
{
e−k‖z, z > 0
e+k̃‖z, z < 0

, (32)

where k‖ = kx x̂ + ky ŷ is the wave vector of the SPPs, Ak‖ is a

normalization parameter, k̃‖ =
√

k2
x + (εa/εt )k2

y , and S is the
area of the slab.

Imposing that the normal component of the electric dis-
placement is continuous at the interface, i.e., that ẑ · ε · ∇φk
is continuous at z = 0, we obtain the condition for the SPP
resonance,

−k‖ = kxεg(ω) + k̃‖εt (ω). (33)

For the dispersive model (31), the solution of (33) yields a
single branch of modes ωk, which depends only on the angle
θ of the wave vector with respect to the x axis, not on its
magnitude,

ωk = ωθ = ωc

2
cos(θ ) +

√
ω2

p

2
+ ω2

c

4
(1 + sin2(θ )). (34)
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For ωc > 0, one has ω− < ωk < ω+, with

ω+ ≡ ωkx>0,ky=0 = 1
2

(
ωc +

√
2ω2

p + ω2
c

)
,

ω− ≡ ωkx<0,ky=0 = 1
2

(−ωc +
√

2ω2
p + ω2

c

)
. (35)

To have some insight into the physical meaning of the
SPP resonance, we numerically calculated the exact dispersion
of the surface plasmons using the formalism presented in
Appendix C. Figure 3 depicts ωSPP

k‖ (the exact SPP dispersion)
versus k‖ along different directions θ of the wave vector.
In each panel, the dashed horizontal line marks the SPP
resonance for which ωSPP

k‖ → ωθ with ωθ given by (34). Thus,
the quasistatic analytic solution determines the SPPs with very
short wavelengths (k‖ → ∞).

In the limit of a vanishing bias field, B0 → 0, the permit-
tivity has a standard Drude dispersion. In such a case, the SPP
resonance becomes angle independent,

lim
ωc→0

ωk = ωp√
2
, (36)

where ωp/
√

2 is the frequency for which ε = −1. The bias
magnetic field shifts the SPP resonance frequency and makes
it direction dependent. This creates the opportunity to have
light-matter interactions that depend strongly on the direction
of the emitted photons [39].

B. Optical force

Next, we obtain an explicit expression for the optical force
relying on the modal expansion (16) and on the quasistatic SPP
dispersion (34). It is shown that the light-matter interactions
are sculpted by the SPP resonances ω = ω±.

To begin with, we calculate the parameter Ak‖ in (32) with
the normalization condition (7). This leads to

|Ak‖ |2 = 2

ε0

[
k‖ + �(ωθ,ωc,ωp)

2k̃‖

]−1

, (37)

where �(ω,ωc,ωp) = ∂ω(εtω)(k̃2
‖ + k2

x) + ∂ω(εaω)k2
y +

∂ω(εgω)2kxk̃‖.
Using Fnk ≈ [−∇φk 0]T and (32) in (16), it is seen that

the total force (including both resonant and nonresonant
components) may be written as

FFF = ρee(t)Re

(∑
ωk>0

ωk

∣∣Ak‖

∣∣2
S

e−2k‖d (ik‖ − k‖ẑ)γ ∗ · (ik‖ − k‖ẑ)(−ik‖ − k‖ẑ) · γ
1

ωk − ω0 − i0+

)

+ (1 − ρee(t))Re

(∑
ωk>0

ωk
|Ak‖ |2

S
e−2k‖d (ik‖ − k‖ẑ)γ · (ik‖ − k‖ẑ)(−ik‖ − k‖ẑ) · γ ∗ 1

ωk + ω0 − i0+

)
. (38)

To proceed, we use 1
S

∑
ωk>0 → 1

(2π)2

∫ ∫
dkxdky to transform the summation over the discrete modes into an integral. Moreover,

using polar coordinates k‖ = k‖(cos θ, sin θ,0), and noting that ωk = ωθ , it is possible to write

FFF = ρee(t)
|γ |2
ε0

Re

{
1

(2π )2

∫ 2π

0
dθ

∫ ∞

0
dk‖ k2

‖ωθaθe
−2k‖d�+,θ

1

ωθ − ω0 − i0+ (ik‖ − k‖ẑ)

}

+ (1 − ρee(t))
|γ |2
ε0

Re

{
1

(2π )2

∫ 2π

0
dθ

∫ ∞

0
dk‖ k2

‖ωθaθe
−2k‖d�−,θ

1

ωθ + ω0 − i0+ (ik‖ − k‖ẑ)

}
, (39)

where we introduced

�+,θ = 1

|γ |2k2
‖
|(−ik‖ − k‖ẑ) · γ |2,

(40)
�−,θ = 1

|γ |2k2
‖
|(−ik‖ − k‖ẑ) · γ ∗|2,

and aθ ≡ |Ak‖ |2ε0k‖, which are functions only of θ , not of
k‖. The integrals over k‖ can be explicitly evaluated using∫∞

0 e−2k‖dk3
‖dk‖ = 3

8
1
d4 .

For the lateral force, only the two poles θ = ±θ0 for which
the plasmon frequency matches the transition frequency of the
two-level atom (ω±θ0 = ω0) contribute to the integral. In this
case, we find that

Fx

F0
= −ρee(t)

ωθaθ cos θ

|∂θωθ |
∣∣∣∣
θ=θ0

1

2
(�+,θ0 + �+,−θ0 ),

Fy

F0
= −ρee(t)

ωθaθ sin θ

|∂θωθ |
∣∣∣∣
θ=θ0

1

2
(�+,θ0 − �+,−θ0 ). (41)

with

F0 = 3|γ |2
16πd4ε0

, (42)

a normalizing parameter with unities of force (N). Thus, in
the quasistatic approximation, the recoil force decays as 1/d4

with respect to the distance to the interface [39]. Note that for
a z-directed dipole γ = γ ẑ, we have �+,±θ = 1. As discussed
in detail in [39], since aθ > 0 and �+,±θ � 0 the sign of the
force component Fx (lateral force perpendicular to the bias
magnetic field) is independent of the dipole polarization and
orientation. Furthermore, the sign of Fx can be tuned with the
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FIG. 3. Exact dispersion of the surface plasmons for different angles θ of the wave vector. The dashed horizontal lines mark the value of
the quasistatic SPP resonance (ωθ ) determined by (34). The cyclotron frequency is ωc = 0.4ωp .

applied bias field. In contrast, the sign of Fy depends on the
polarization state. It is highlighted that the equation ω±θ0 = ω0

has a solution only if ω− � ω0 � ω+. When ω0 lies outside
the frequency range of the SPP resonances there are no poles,
and the quasistatic approximation predicts a vanishing lateral
force. Indeed, plasmons with long wavelengths interact weakly
with the atom. Consistent with this, it is shown in [39] that the
exact lateral force quickly approaches zero when ω0 < ω− or
ω0 > ω+.

Equation (41) reveals that the lateral force is mainly de-
termined by the plasmons that propagate with wave vector
directed along either θ = θ0 or θ = −θ0. As further discussed
in [39], this implies that the momentum transfer is determined
by the canonical (Minkowski) momentum of light, parallel
to the wave vector, rather than by the kinetic (Abraham)
momentum, parallel to the Poynting vector (or equivalently,
to the group velocity).

The vertical component of the force is

Fz

F0
= −ρee(t)Re

{
1

2π

∫ 2π

0
dθaθωθ�+,θ

1

ωθ − ω0 − i0+

}

− (1 − ρee(t))Re

{
1

2π

∫ 2π

0
dθaθωθ�−,θ

1

ωθ + ω0

}
.

(43)

In the steady-state limit, the only contribution to the normal
force is from the second integral, giving the Casimir-Polder
force (FC = Fz,t→∞) due to the vacuum fluctuations at zero
temperature,

FC

F0
= − 1

2π

∫ 2π

0
dθaθωθ�−,θ

1

ω0 + ωθ

. (44)

The Casimir-Polder force is clearly attractive (FC < 0). The
sign of the dynamic normal force [Eq. (43)] may be either
positive or negative.

C. Limit of weak bias field

It is interesting to further analyze the quasistatic solution
in the limit of a weak bias field ωc → 0. Without loss of
generality, we suppose that the atom dipole moment is directed
along z, so that �+,±θ0 = 1. It can be shown that for a weak
bias magnetic field ωθ ≈ ωspp + ωc

2 cos θ and aθ ≈ 1/2, so
that |∂θωθ |θ=θ0 ≈ |ωcsinθ0|/2 with ωspp = ωp/

√
2. Thus, the

solution of ω±θ0 = ω0 is such that cos θ0 = 2(ω0 − ωspp)/ωc.
Therefore, for a weak bias and |ω0 − ωspp| < |ωc|/2 the
nonzero component of the lateral force (41) reduces to

Fx

F0
= −ρee(t)

ωspp

ωc

ω0 − ωspp√
(ωc/2)2 − (ω0 − ωspp)2

. (45)

Remarkably, as further discussed in [39], the quasistatic theory
predicts that the lateral force diverges in the ωc → 0 limit and
for |ω0 − ωspp| = |ωc|/2, i.e., when ω0 = ω+ or ω0 = ω−. The
lateral force vanishes when |ω0 − ωspp| > |ωc|/2.

Furthermore, for a weak bias and |ω0 − ωspp| < |ωc|/2 the
normal force (43) is simply Fz = (1 − ρee(t))FC , with

FC

F0
= −1

2

ωspp

ωspp + ω0
(46)

the Casimir-Polder force when the atom is in the ground state.
In contrast, for |ω0 − ωspp| > |ωc|/2 the normal force gains an
additional resonant component:

Fz

F0
= −ρee(t)

ωspp

2

sgn(ωspp − ω0)√
(ω0 − ωspp)2 − (ωc/2)2

− (1 − ρee(t))
1

2

ωspp

ωspp + ω0
. (47)

Hence, the quasistatic theory also predicts that the normal force
diverges when ω0 = ω+ or ω0 = ω−. In contrast, the force
component FC has no resonances. It will be shown in Sec. V
that the force calculated with the “exact” Green function is
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FIG. 4. Comparison of the quasistatic (dashed black lines) and exact (solid green lines) solutions for the lateral force for an excited
atom (ρee = 1). In the “exact” calculation the plasma collision frequency is taken equal to � = 0.015ωp . (a) Lateral force as a function of
the atom-interface distance d for a biased plasma with ωc/ωp = 0.4 and an atom with ω0/ωp = 0.65. (b) Lateral force as a function of ω0

for the distance d = 0.01c/ωp . The plot only shows the frequency range ω− < ω0 < ω+, which for each case is delimited by the vertical
grid lines.

finite when material loss and time retardation are taken into
account.

If the atom is prepared in an excited state, ρee(t = 0) = 1,
it can be seen from (45) that the sign of the lateral force Fx,t=0

can be controlled either by changing ωc or ω0. In contrast, from
(47), the sign of the normal force Fz,t=0 only depends on ω0,
and hence cannot be dynamically tuned by flipping the bias
field.

D. Influence of the atom polarization

The atom polarization influences the strength of the
Casimir-Polder force through the non-negative coefficients
�±,θ . In particular, the lateral force Fx depends on the sum
�+,θ0 + �+,−θ0 .

From (40) it is simple to check that �+,θ0 =
1

|γ |2 |(i cos θ0x̂ + i sin θ0ŷ + ẑ) · γ |2, and thereby it is evident
that 0 � �+,θ0 � 2. The maximum (�+,θ0 = 2) is achieved for
a polarization state such that γ ∼ −i cos θ0x̂ − i sin θ0ŷ + ẑ.

The minimum �+,θ0 = 0 is attained when γ belongs to
a two-dimensional complex vector space generated by the
complex vectors v1,θ0 = i cos θ0x̂ + i sin θ0ŷ + ẑ and v2,θ0 =
− sin θ0x̂ + cos θ0ŷ. Similarly, the function �+,−θ0 vanishes
when that atom polarization lies in the two-dimensional
complex vector space generated by the vectors v1,−θ0 and
v2,−θ0 . Thus, it follows that �+,θ0 + �+,−θ0 can be zero only
when the atom polarization vector is in the intersection of
the two relevant vector spaces, which can be shown to be
the one-dimensional complex vector space generated by −x̂ +
i cos θ0ẑ. In other words, in the very special case in which the
atomic polarization state satisfies

γ ∼ −x̂ + i cos θ0ẑ, (48)

the lateral force may vanish. This effect can be attributed to the
spin-momentum locking of the SPP [55]. Note that by tuning
the bias magnetic field it is possible to adjust the value of θ0

and thereby guarantee that the lateral force does not vanish for
any orientation of a given atom.

As an example, consider the case of a linearly polar-
ized atom. Let us introduce the polarization factor gγ =
1
2 (�+,θ0 + �+,−θ0 ) which depends uniquely on the orienta-

tion of the atom. If the atom has a random orientation
the force is determined by the orientational averaging of
the polarization factor 〈gγ 〉. With the rough approximation
〈gγ 〉 ≈ 1

3 (gx̂ + gŷ + gẑ), we find that 〈gγ 〉 ≈ 2
3 . A detailed

analysis shows that this result is actually exact, i.e., the
orientational averaging of the polarization factor for a linearly
polarized atom is precisely 〈gγ 〉 = 2

3 , independent of the value
of θ0.

V. NUMERICAL EXAMPLES

To illustrate the application of the developed theory, first
we discuss the validity of the quasistatic solution. In general,
one may expect that it should hold when the atom-interface
distance is much smaller than the wavelength (d � 2πc/ωp

and d � 2πc/ω0), so that the effects of time retardation are
negligible. In addition, the quasistatic calculation assumes
that the material absorption is negligible. In all the numerical
examples presented below it is supposed that the dipole
moment is along the z direction, so that Fy = 0.

Figure 4(a) compares the exact solution for the lateral force
with the quasistatic approximation (41), showing how the
normalized force varies with the distance to the interface. For
small distances dωp/c < 0.3 the normalized force is constant,
confirming the 1/d4 power law. For larger separations the
quasistatic solution loses accuracy, and the force follows a
different power law. However, it should be noted that for large
d the force is also much weaker (the coupling to the SPPs is
weaker) and hence it is not so relevant.

Figure 4(b) shows a comparison between the two cal-
culation methods when the distance is kept fixed and the
atomic transition frequency ω0 is varied. There is an excellent
agreement between the two solutions, further validating the
quasistatic approximation. The small discrepancy between the
two methods for ω ≈ ω− and ω ≈ ω+ is attributed in part
to the fact that the exact calculation includes the effect of
material absorption (� = 0.015ωp). As discussed in detail in
[39], the lateral force sign depends on ω0. Furthermore, if the
bias magnetic field is flipped (ωc < 0) the sign of the lateral
force is also flipped.
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FIG. 5. Normal component of the (a) resonant force FR and (b) nonresonant force FC as a function of the atom transition frequency ω0 for
ωc = 0.4ωp and d = 0.01c/ωp . (Green solid lines) Exact result for a plasma collision frequency � = 0.015ωp; (black dashed lines) quasistatic
result. The vertical grid lines mark the points ω = ω±.

Next, we focus on the normal component of the force.
Figure 5 shows a comparison of the resonant part [Fig. 5(a)]
and nonresonant part [Fig. 5(b)] of the normal force calculated
by the exact and quasistatic solutions as a function of atom
transition frequency. Again, the quasistatic method agrees well
with the exact solution, excepting that the quasistatic solution
diverges at ω± for the resonant part of the force, whereas the ex-
act calculation provides a finite result. Consistent with the dis-
cussion in Sec. IV C, the resonant force amplitude in the
range ω− < ω0 < ω+ is negligible as compared to the value
of the force outside this interval. Furthermore, the amplitude
of the nonresonant component of the force is typically at least
one order of magnitude smaller than the resonant component.
As it also happens for standard reciprocal materials, depending
on the value of ω0 the sign of resonant component FR,z can
be either positive or negative, but the nonresonant term is
always negative (attractive force). We would like to note that
the debate about the correct form of the metal response for low
temperatures and its implications on the thermal corrections
of the Casimir force [56] does not affect our calculations of
the nonresonant force component, since the theory does not
include any thermal effects and gives the zero-temperature
limit solution.

Figure 6 illustrates how the normal force varies with the
plasma biasing strength. The nonresonant component of the
force FC is weakly sensitive to the magnetic bias. Different
from the lateral force (which has odd symmetry), the vertical
force components are even with respect to ωc when the atom is
polarized along the vertical direction. Hence, it is not possible
to tune the sign of the normal force by changing the bias
magnetic field.

Figure 7(a) shows a density plot of the total normal force
(both resonant and nonresonant parts) for an excited atom
(ρee = 1) as a function of the magnetic bias and of the atomic
transition frequency calculated by the exact solution. In this
panel, for a given cyclotron frequency ωc the bright areas
correspond to ω0 = ω±, where the peak of the normal force
occurs. It should be noted that for ω0 = ω+ and ω0 = ω− the
sign of the force changes. Furthermore, consistent with (47) it
can be seen that a large force is achievable at low bias.

Next, we use (31) as a simplified model of InSb with
ωp/2π ≈ 4.9 THz, cyclotron frequency in the range of
0.25ωp − ωp for a bias field of 1 − 4 Tesla, and collision
frequency �/2π = 0.5 THz [51]. For simplicity, we disregard
the contribution of bound electrons to the permittivity response
of InSb, and in particular its static permittivity is taken identical
to unity. Figure 7(b) shows the effect of loss on the total normal
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FIG. 6. Normal component of the (a) resonant force FR and (b) nonresonant force FC as a function of the cyclotron frequency ωc for
ω0 = 0.6ωp and d = 0.01c/ωp . (Green solid lines) Exact result for a plasma collision frequency � = 0.015ωp; (black dashed lines) quasistatic
result.
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FIG. 7. (a) Density plot of the total normalized normal force (F̃z = Fz/F0) as a function of atom transition frequency and bias strength
for d = 0.01c/ωp . (b) Normal force as a function of the bias strength for an atom located at d = 0.01c/ωp above a biased plasma (InSb-type
material) with ωp/2π = 4.9 THz and ω0/ωp = 0.5 for different values of collision frequency. (c) Normal force when the atom-interface distance
is varied for ω0/ωp = 0.93 and ωc/ωp = 0.4.

component of the force, when the collision frequency varies
from zero (lossless) to 0.5 THz. Even in the lossy case, there
still exists considerable force applied to the atom. In general,
the effect of loss is relatively mild, but near the resonant points
ω0 = ω± the system is more sensitive to material absorption.
Figure 7(c) shows the normal force as a function of atom-InSb
distance for lossless and lossy InSb for a Rydberg atom [57]
having γ = 7900 D calculated by the exact solution. As seen,
a significant force persists even in the lossy case.

VI. CONCLUSION

We have investigated the Casimir-Polder force on an ex-
cited atom in a general (nonreciprocal, bianisotropic, and
dispersive) electromagnetic environment under the Markov
approximation. The force is shown to have resonant and
nonresonant contributions, and we obtain explicit expressions
for the quantum optical force in terms of the system Green
function. We have shown that a two-level atom interacting
with a topological gyrotropic material enables exotic light-
matter interactions, such as a lateral recoil force in a laterally
invariant, homogeneous system with a sign independent of the
orientation and polarization of the atom [39]. Furthermore,
the strength of both the lateral and normal components of the
force is highly sensitive to the bias, and the sign of the lateral
force can also be externally controlled. In contrast, the nonres-
onant Casimir-Polder force in the ground state is little affected
by the static magnetic field. To enable physical insight into the
phenomena, we have presented simple analytical expressions
for the quasistatic force, showing that surface plasmons play a
dominant role in these fluctuation-induced forces. Remarkably,
we find that when the atomic transition frequency matches
either the SPP resonances ω− or ω+ the resonant components
of the force (both lateral and normal) are greatly enhanced,
and in the quasistatic case (with no time retardation) and in the
absence of material loss the force diverges. Furthermore, this
phenomenon persists even for a weak magnetic bias [39]. The
material absorption damps somewhat the strength of the force
but the effect appears to remain sufficiently strong to allow for
an experimental verification. We also present a Sommerfeld
integral representation for the Green function for a gyrotropic
material half-space.
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APPENDIX A: MODAL EXPANSION OF THE GREEN
FUNCTION

We introduce a frequency domain Green function G(r,r0)
defined as a six-tensor of the classical electric and magnetic
dyadic Green function,

G =
(

GEE GEH

GHE GHH

)
, (A1)

such that

N · G = ωM · G + iIδ(r − r0), (A2)

where r is the observation point, r0 is the source point, and

N =
(

0 i∇ × I3×3

−i∇ × I3×3 0

)
. (A3)

The material matrix M = M(r,ω) determines the electromag-
netic properties of the environment, which in general may be
a bianisotropic nonreciprocal structure. In the limit of no loss,
it is possible to expand the Green function into the natural
eigenmodes Fnk of the problem [34,45,49],

G(r,r0,ω) =
∑
nk

i

2(ωnk − ω)
Fnk(r) ⊗ F∗

nk(r0), (A4)

with Fnk(r0) normalized as in Eq. (7). The sum is over all
the cavity modes, i.e., modes with positive, negative, and zero
frequencies ωnk.
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Taking into account that [45,49]

∑
nk

1

2
Fnk(r) ⊗ F∗

nk(r′) = M−1
∞ δ(r − r′), (A5)

with M∞ = limω→∞M(r,ω), it follows that

G =
∑
nk

1

2

iωnk

(ωnk − ω)ω
Fnk(r) ⊗ F∗

nk(r0) − i

ω
M−1

∞ δ(r − r0)

=
∑

ωnk>0

iωnk

2ω

(
1

ωnk − ω
Fnk(r) ⊗ F∗

nk(r0)

+ 1

ωnk + ω
F∗

nk(r) ⊗ Fnk(r0)

)
− i

ω
M−1

∞ δ(r − r0).

(A6)

In the second identity we used the fact that because of
the reality of the electromagnetic field the eigenmodes with
negative frequencies can be linked to the eigenmodes with
positive frequencies by a complex conjugation, G∗(r,r0,ω) =
G(r,r0,−ω∗), and we assume ω ∈ R. For future reference,
we decompose the Green function as G = G+ + G− +
1
iω

M−1
∞ δ(r − r0), where

(−iω)G+ =
∑

ωnk>0

ωnk

2

1

ωnk − ω
Fnk(r) ⊗ F∗

nk(r0),

(−iω)G− =
∑

ωnk>0

ωnk

2

1

ωnk + ω
F∗

nk(r) ⊗ Fnk(r0) (A7)

are the positive and negative frequency parts of the Green
function, respectively.

APPENDIX B: GREEN FUNCTION FOR A GYROTROPIC
MATERIAL HALF-SPACE

Here, we derive the electric Green dyadic GEE for the case of
a gyrotropic material half-space. As discussed in Sec. II C, the
vector E = −iωGEE · γ gives the field emitted by a classical
dipole with electric dipole moment γ . Hence, GEE can be found
from the field radiated by a generic dipole.

To calculate E, we note that the electromagnetic field in the
region z > 0 (vacuum) is the superposition of the primary field
(Ep) and the scattered field (Es). The primary field is given by

Ep = (∇∇ + k2
0I)(γ /ε0)�0 where

�0 = eik0|r−r0|

4π |r − r0| =
∫ ∫

dkxdky

e−γ0|z−d|

2γ0(2π )2
ei(kxx+kyy) (B1)

is the Hertz potential, k0 = ω0/c, and γ0 =
√

kx
2 + ky

2 − k2
0 .

Without loss of generality, it is assumed that the source point
is r0 = (0,0,d).

Following [58], the scattered electric field above the inter-
face can be written as

Es = 1

(2π )2

∫ ∫
dkxdkye

ik‖·r e−γ0(d+z)

2γ0
C(ω,k‖) · γ

ε0
, (B2)

where

C(ω,k‖) =
(

I‖ + ẑ
ik‖
γ0

)
· R(ω,k‖)

·(iγ0k‖ẑ + k2
0I‖ − k‖k‖

)
(B3)

with I‖ = x̂x̂ + ŷŷ and k‖ = kx x̂ + ky ŷ. Here, R(ω,kx,ky) is
a 2 × 2 reflection matrix that relates the tangential (to the
interface) components x and y of the reflected electric field
to the corresponding x and y components of the incident

field,
(

Es
x

Es
y

)
= R

(
ω,kx,ky

) ·
(

Einc
x

Einc
y

)
for the case of plane wave

incidence. Since (B2) holds for a generic electric dipole, it
is straightforward to verify that GEE has the decomposition
discussed in the main text, with the scattering part of the Green
function given by (29).

To determine an explicit formula for R, it is assumed that the
region z < 0 is filled with a gyrotropic material with dielectric
function given by (28). The incident plane wave travels in the
isotropic material region.

Evidently, the fields depend on x and y as eikxxeikyy . In the
region z < 0 they can be written as a superposition of two plane
waves of the bulk gyrotropic medium with wave vector ki =
kt,i + ky ŷ, with kt,i = kx x̂ + kz,i ẑ (i = 1,2). The subscript “t”
indicates that a certain vector component is perpendicular to
the y direction, which corresponds the direction of the bias
magnetic field. Setting kz,i = −iγz,i such that Re(γz,i) > 0,
the bulk mode dispersion is [47]

γ 2
z,i = k2

x − 1

2εt

[(
εt (εt + εa) − ε2

g

)
k2

0 − (εa + εt )k
2
y

]
± 1

2εt

√[(
εt (εt + εa) − ε2

g

)
k2

0 − (εa + εt )k2
y

]2 − 4εt

[(
ε2
t − ε2

g

)
εak

4
0 − 2εtεak2

yk
2
0 + εak4

y

]
. (B4)

Each of these possible solutions is associated with a plane
wave. For a plane wave superposition, the electric field is of
the form [47],

E = (�1k1 × ŷ + kt,1 + θ1ky ŷ)A1e
γz,1z

+ (�2k2 × ŷ + kt,2 + θ2ky ŷ)A2e
γz,2z, (B5)

where the variation along x and y is omitted, Ai(i = 1,2) are
expansion coefficients, and

�i = iεgk
2
0

k2
0εt − (k2

y + k2
t,i

) , θi = −k2
t,i

k2
0εa − k2

t,i

. (B6)

The magnetic field can be found from (B5), taking into account
that for each plane wave H = k × E/ωμ0. Using (B5) and the
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magnetic field expression, the expansion coefficients can be
eliminated, leading to(

η0Hy

−η0Hx

)
= −Yg ·

(
Ey

Ex

)
, (B7)

with η0 the vacuum impedance and

Yg =
(

�1k
2
t,1

k0

�2k
2
t,2

k0
�1kxky+iγz,1(θ1−1)ky

k0

�2kxky+iγz,2(θ2−1)ky

k0

)

·
(

kx + iγz,1�1 kx + iγz,2�2

θ1ky θ2ky

)−1

. (B8)

Note that the considered field distribution corresponds to a
wave that propagates towards the −z direction in the gyrotropic
material. Likewise, it is possible to show that for a wave that
propagates in the isotropic dielectric (air region) in the ±z

direction the fields satisfy

(
η0Hy

−η0Hx

)
= ±Y0 ·

(
Ex

Ey

)
with

Y0 = 1

ik0γ0

(−γ 2
0 + k2

x kxky

kxky −γ 2
0 + k2

y

)
, (B9)

where γ 2
0 = k2

x + k2
y − k2

0 .
It is now straightforward to obtain the reflection matrix R.

Noting that the field in the region z > 0 is a superposition of
the incident and reflected waves and that the field in the region
z < 0 is of the form (B5), it follows, imposing the continuity
of the tangential fields at the interface, that Y0 · (−1 + R) =
−Yg(1 + R). From here we obtain the desired result,

R = (Y0 + Yg)−1 · (Y0 − Yg). (B10)

APPENDIX C: EXACT DISPERSION EQUATION
FOR THE SURFACE PLASMONS

Here, we derive the exact dispersion equation for the surface
plasmons assuming that the region z > 0 is free-space and

that the region z < 0 is a magnetized gyrotropic plasma. It
is supposed that the interface between the two regions is
perfectly smooth, and hence possible contributions to the SPPs
dispersion due to surface roughness are disregarded.

The fields in the two regions can be expanded into evanes-
cent plane waves. In particular, in the bulk gyrotropic medium
the modes can be written as a superposition of two plane waves
with the z propagation factor defined as in (B4) and the electric
field given by (B5). The associated magnetic field in the region
z < 0 can be found using H = k × E/ωμ0 for each plane wave
term.

The fields in the vacuum region (z > 0) can be expanded as

E = −[B1k0 × ẑ + B2k0 × (k0 × ẑ)]e−γ0z,

ωμ0H = −
[
B1k0 × (k0 × ẑ) − B2

ω2

c2
(k0 × ẑ)

]
e−γ0z, (C1)

with k0 = kx x̂ + ky ŷ + iγ0ẑ and γ0 =
√
k2
x + k2

y − ω2/c2. By
matching the tangential electromagnetic fields at the interface
(z = 0) we arrive at the following system of equations,

⎛
⎜⎝

kx + iγz,1�1 kx + iγz,2� ky kxiγ0c/ω

θ1ky θ2ky −kx kyiγ0c/ω

�1 �2 kxiγ0 −kyω/c

−�1k
2
t,1 −�2k

2
t,2 kyiγ0 kxω/c

⎞
⎟⎠

·

⎛
⎜⎝

A1

A2

B1

B2
ω
c

⎞
⎟⎠ = 04×1, (C2)

where θi , �i , and γz,i are defined in Appendix B and �i =
�ikxky + iγz,i(θi − 1)ky , (i = 1,2). Setting the determinant
of the matrix equal to zero leads to the exact SPP dispersion
equation.
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