open science

Lower central and derived series of semi-direct products, and applications to surface braid groups

John Guaschi, Carolina de Miranda E Pereiro

- To cite this version:

John Guaschi, Carolina de Miranda E Pereiro. Lower central and derived series of semi-direct products, and applications to surface braid groups. Journal of Pure and Applied Algebra, 2020, 224 (7), pp.106309. 10.1016/j.jpaa.2020.106309 . hal-01714012v2

HAL Id: hal-01714012
 https://hal.science/hal-01714012v2

Submitted on 17 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LOWER CENTRAL AND DERIVED SERIES OF SEMI-DIRECT PRODUCTS, AND APPLICATIONS TO SURFACE BRAID GROUPS

JOHN GUASCHI AND CAROLINA DE MIRANDA E PEREIRO

Abstract

For an arbitrary semi-direct product, we give a general description of its lower central series and an estimation of its derived series. In the second part of the paper, we study these series for the full braid group $B_{n}(M)$ and pure braid group $P_{n}(M)$ of a compact surface M, orientable or non-orientable, the aim being to determine the values of n for which $B_{n}(M)$ and $P_{n}(M)$ are residually nilpotent or residually soluble. We first solve this problem in the case where M is the 2 -torus. We then use the results of the first part of the paper to calculate explicitly the lower central series of $P_{n}(\mathbb{K})$, where \mathbb{K} is the Klein bottle. Finally, if M is a non-orientable, compact surface without boundary, we determine the values of n for which $B_{n}(M)$ is residually nilpotent or residually soluble in the cases that were not already known in the literature.

1. Introduction

Let G be a group. If $g, g^{\prime} \in G$ then $\left[g, g^{\prime}\right]=g g^{\prime} g^{-1} g^{\prime-1}$ denotes their commutator, and if H and K are subgroups of G, then the commutator subgroup of H and K, denoted by $[H, K]$, is defined by $[H, K]=\langle[h, k]: h \in H$ and $k \in K\rangle$, the subgroup of G generated by the commutators of H and K. The lower central series $\left\{\Gamma_{i}(G)\right\}_{i \geq 1}$ of G is defined inductively by $\Gamma_{1}(G)=G$, and for $i \geq 1$, $\Gamma_{i+1}(G)=\left[\Gamma_{i}(G), G\right]$, and the derived series $\left\{G^{(i)}\right\}_{i \geq 0}$ of G is defined inductively by $G^{(0)}=G$, and for $i \geq 0, G^{(i+1)}=\left[G^{(i)}, G^{(i)}\right]$. The quotient $G / \Gamma_{2}(G)$ is the Abelianisation of G that we denote by $G^{\text {Ab }}$. Following P. Hall, for any group-theoretic property \mathcal{P}, a group G is said to be residually \mathcal{P} if for any (non-trivial) element $x \in G$, there exists a group H that possesses property \mathcal{P} and a surjective homomorphism $\varphi: G \longrightarrow H$ such that $\varphi(x) \neq 1$ (see also [28]). It is well known that a group G is residually nilpotent (resp. residually soluble) if and only if $\bigcap_{i>1} \Gamma_{i}(G)=\{1\}$ (resp. $\left.\bigcap_{i \geq 0} G^{(i)}=\{1\}\right)$. zz

If p is a prime number, the lower \mathbb{F}_{p}-linear central filtration $\left\{\gamma_{i}^{p}(G)\right\}_{i>1}$ of G is defined inductively by $\gamma_{1}^{p}(G)=G$, and for $i \geq 1, \gamma_{i+1}^{p}(G)=\left\langle\left[\gamma_{i}^{p}(G), G\right], x^{p}: x \in \gamma_{i}^{p}(G)\right\rangle$ [30]. If the group G is finitely generated, then G is residually p-finite if and only if $\bigcap_{i \geq 1} \gamma_{i}^{p}(G)=\{1\}$ [30, Proposition 2.3(2)]. For any group $G, G^{(i)} \subset \Gamma_{i+1}(G) \subset \gamma_{i+1}^{p}(G)$, so if G is residually p-finite then it is residually nilpotent, which in turn implies that it is residually soluble. The combinatorial study of the lower central and derived series of a group is an interesting and important problem, see $[11,13,22,25,26,27]$ for example.

The first part of this paper is devoted to the analysis of the lower central and derived series of arbitrary semi-direct products. Our first main result describes the lower central series of such a group, and gives some information about its derived series.

Theorem 1.1. Let G and H be groups, and let $\varphi: G \longrightarrow A u t(H)$ be an action of G on H. We define recursively the following subgroups of $H: L_{1}=V_{1}=H$, and if $n \geq 2$:

$$
\begin{aligned}
K_{n} & =\left\langle\varphi(g)(h) \cdot h^{-1}: g \in \Gamma_{n-1}(G), h \in H\right\rangle, & & H_{n}=\left\langle\varphi(g)(h) \cdot h^{-1}: g \in G, h \in L_{n-1}\right\rangle, \\
\widetilde{H}_{n} & =\left\langle\varphi(g)(h) \cdot h^{-1}: g \in G, h \in V_{n-1}\right\rangle, & & L_{n}=\left\langle K_{n}, H_{n},\left[H, L_{n-1}\right]\right\rangle, \\
V_{n} & =\left\langle\widetilde{H}_{n},\left[H, V_{n-1}\right]\right\rangle . & &
\end{aligned}
$$

Then φ induces an action, which we also denote by φ, of $\Gamma_{n}(G)$ on L_{n} (resp. of $G^{(n+1)}$ on V_{n+2}), and for all $n \in \mathbb{N}$, we have:
(1) $\Gamma_{n}\left(H \rtimes_{\varphi} G\right)=L_{n} \rtimes_{\varphi} \Gamma_{n}(G)$.
(2) $\left(H \rtimes_{\varphi} G\right)^{(n-1)} \subset V_{n} \rtimes_{\varphi} G^{(n-1)}$.

For the case of the commutator subgroup, namely $n=2$, part (1) was obtained in [15, Proposition 3.3].

In the rest of this paper, we will be interested in computing the lower central and derived series of the full and pure braid groups of compact surfaces without boundary, and we will apply Theorem 1.1 to part of this calculation. We first recall some facts about these braid groups and their lower central and derived series. The braid groups of the disc, also called the Artin braid groups, were introduced by E. Artin [1]. If $n \geq 1$, the n-string Artin braid group, denoted by B_{n}, is generated by elements $\sigma_{1}, \ldots, \sigma_{n-1}$ that are subject to the Artin relations:

$$
\left\{\begin{array}{lr}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & \text { for all } 1 \leq i \leq n-2 \\
\sigma_{j} \sigma_{i}=\sigma_{i} \sigma_{j} & \text { if }|i-j| \geq 2 \text { and } 1 \leq i, j \leq n-1
\end{array}\right.
$$

The notion of braid group was generalised to surfaces by Fox and Neuwirth using configuration spaces as follows [12]. Let M be a compact, connected surface, and let $n \in \mathbb{N}$. The $n^{\text {th }}$ configuration space of M, denoted by $F_{n}(M)$, is defined by:

$$
F_{n}(M)=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in M, \text { and } x_{i} \neq x_{j} \text { if } i \neq j, i, j=1, \ldots, n\right\}
$$

The n-string pure braid group $P_{n}(M)$ of M is defined by $P_{n}(M)=\pi_{1}\left(F_{n}(M)\right)$. The symmetric group S_{n} on n letters acts freely on $F_{n}(M)$ by permuting coordinates, and the n-string braid group $B_{n}(M)$ of M is defined by $B_{n}(M)=\pi_{1}\left(F_{n}(M) / S_{n}\right)$. This gives rise to the following short exact sequence:

$$
\begin{equation*}
1 \longrightarrow P_{n}(M) \longrightarrow B_{n}(M) \longrightarrow S_{n} \longrightarrow 1 \tag{1.1}
\end{equation*}
$$

If $m \geq 1$, the projection $p: F_{n+m}(M) \longrightarrow F_{n}(M)$ defined by $p\left(x_{1}, \ldots, x_{n}, \ldots, x_{n+m}\right)=\left(x_{1}, \ldots, x_{n}\right)$ induces a homomorphism $p_{*}: P_{n+m}(M) \longrightarrow P_{n}(M)$. Geometrically, p_{*} is the homomorphism that 'forgets' the last m strings. If M is without boundary, Fadell and Neuwirth showed that p is a locally-trivial fibration $\left[9\right.$, Theorem 1], with fibre $F_{m}\left(M \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right)$ over the point $\left(x_{1}, \ldots, x_{n}\right)$, which we consider to be a subspace of the total space via the map $i: F_{m}\left(M \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right) \longrightarrow F_{n+m}(M)$ defined by $i\left(\left(y_{1}, \ldots, y_{m}\right)\right)=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$. Applying the associated long exact sequence in homotopy to this fibration, we obtain the Fadell-Neuwirth short exact sequence of pure braid groups:

$$
\begin{equation*}
1 \longrightarrow P_{m}\left(M \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right) \xrightarrow{i_{*}} P_{n+m}(M) \xrightarrow{p_{*}} P_{n}(M) \longrightarrow 1, \tag{1.2}
\end{equation*}
$$

where $n \geq 3$ if M is the sphere $\mathbb{S}^{2}[8,10], n \geq 2$ if M is the projective plane $\mathbb{R} P^{2}$ [10], and $n \geq 1$ otherwise [9], and i_{*} is the homomorphism induced by the map i. This sequence has been widely studied. If M is the torus \mathbb{T} or the Klein bottle \mathbb{K}, the existence of a non-vanishing vector field on M allows one to construct a section for p [9, Theorem 5]. This implies that the short exact sequence (1.2) splits for all $n, m \in \mathbb{N}$, and that $P_{n}(M)$ may be decomposed as an iterated semi-direct product (see Proposition 5.1 for an explicit section for p_{*} in the case $M=\mathbb{K}$).

We then use the above results to study the derived series of the braid groups of the torus and the lower central series and derived series of non-orientable surfaces. Theorem 1.1 will be used in the computation of the lower central series of $P_{n}(\mathbb{K})$, but we believe that it is of independent interest, and that it may be applicable to other groups. We first recall some facts about these series for surface braid groups. The lower central series of the Artin braid groups were analysed by Gorin and Lin who gave a presentation of the commutator subgroup $\Gamma_{2}\left(B_{n}\right)$ of B_{n} for $n \geq 3$, and who showed that $\left(B_{n}\right)^{(1)}=\left(B_{n}\right)^{(2)}$ for all $n \geq 5$, which implies that $\left(B_{n}\right)^{(1)}$ is perfect [21]. As a consequence, $\Gamma_{2}\left(B_{n}\right)=\Gamma_{3}\left(B_{n}\right)$ for all $n \geq 3$, so B_{n} is not residually nilpotent. The lower central series of the pure braid group P_{n} was studied by Falk and Randell [11] and by Kohno [25], who proved independently that P_{n} is residually nilpotent for all $n \geq 1$.

The braid groups of orientable surfaces were studied by Bellingeri, Gervais and Guaschi [5]. If $M_{g, m}$ is a compact, connected, orientable surface of genus $g \geq 1$ with $m \geq 0$ boundary components, then $B_{n}\left(M_{g, m}\right)$ is not residually nilpotent if $n \geq 3$, and $B_{2}(\mathbb{T})$ is residually nilpotent. In the case of the pure braid groups, $P_{n}\left(M_{g, m}\right)$ is residually torsion-free nilpotent for all $n \geq 1$ if $m \geq 1$, or if $g=1$ and $m=0$ (the torus). If $m=0$ and $g \geq 1$, Bardakov and Bellingeri proved that $P_{n}\left(M_{g, m}\right)$ is residually torsion-free nilpotent for all $n \geq 1$, and the braid group $B_{2}\left(M_{g, m}\right)$ is residually 2-finite, in particular, it is residually nilpotent [2]. Gonçalves and Guaschi studied the lower central and derived series of the braid groups of the sphere \mathbb{S}^{2} and the projective plane $\mathbb{R} P^{2}[15,18]$. For the sphere, $B_{n}\left(\mathbb{S}^{2}\right)$ is residually nilpotent if and only if $n \leq 2$, and residually soluble if and only if $n \leq 4$. In the case of the projective plane, $B_{n}\left(\mathbb{R} P^{2}\right)$ is residually nilpotent if and only if $n \leq 2$, and if $n \neq 4, B_{n}\left(\mathbb{R} P^{2}\right)$ is residually soluble if and only if $n<4$. More recently, if M is a non-orientable surface different from $\mathbb{R} P^{2}$, Bellingeri and Gervais showed that $P_{n}(M)$ is residually 2-finite, and so is residually nilpotent [4].

In the second part of this paper, we study the derived series of the torus and the lower central series and derived series of non-orientable surfaces. Our main results in this direction are as follows.

Theorem 1.2. The group $B_{n}(\mathbb{T})$ is residually soluble if and only if $n \leq 4$.
For non-orientable surfaces, we first analyse the case of the Klein bottle. Using Theorem 1.1, we compute explicitly $\Gamma_{n}\left(P_{2}(\mathbb{K})\right)$ and $\gamma_{n}^{2}\left(P_{2}(\mathbb{K})\right)$ in Theorems 5.4 and 5.13 respectively. From this it will follow that $P_{2}(\mathbb{K})$ is residually nilpotent and residually 2 -finite. In Theorem 5.25 , we show that $P_{n}(\mathbb{K})$ is residually nilpotent for all $n \in \mathbb{N}$. This will allow us to determine the values of n for which $B_{n}(\mathbb{K})$ is residually nilpotent or residually soluble as follows.

Theorem 1.3. Let $n \geq 1$. Then:
(1) $P_{n}(\mathbb{K})$ is residually nilpotent for all $n \geq 1$.
(2) $B_{n}(\mathbb{K})$ is residually nilpotent if and only if $n \leq 2$, and residually soluble if and only if $n \leq 4$.

For a non-orientable surface M without boundary of higher genus, we may decide whether $B_{n}(M)$ is residually nilpotent or residually soluble using results of $[4,18]$.

Theorem 1.4. Let $n, g \in \mathbb{N}$, and let M be a compact non-orientable surface of genus g without boundary. Then $B_{n}(M)$ is residually nilpotent if and only if $n \leq 2$, and is residually soluble if and only if $n \leq 4$.

Although Theorem 1.4 contains Theorem $1.3(2)$ as a special case, we state the latter separately because the braid groups of the Klein bottle will be the focus of most of the second part of the paper.

The manuscript is organised as follows. In Section 2, we give presentations of the braid groups used in this paper, as well as the statement of Theorem 2.5 due to Gruenberg that will be required in the proofs of some of our results. Theorem 1.1 is proved in Section 3. In Section 4, we study the case of the torus and we prove Theorem 1.2. In Section 5, our focus is on the braid groups of the Klein bottle, and we use Theorem 1.1 in the proof of Theorem 1.3. Theorem 1.4 is proved in Section 6. If M is a compact surface different from \mathbb{K} and the Möbius band, the centre $Z\left(B_{n}(M)\right)$ of $B_{n}(M)$ is known $[6,7,14,29,31,34]$. We determine $Z\left(B_{n}(\mathbb{K})\right)$ in Proposition 5.2, and for the sake of completeness, in Proposition A1 of the Appendix, we compute the centre of the braid groups of the Möbius band.

Acknowledgements. The authors would like to thank P. Bellingeri, S. Gervais, D. Gonçalves, L. Paris and D. Vendrúscolo for stimulating conversations. C. M. Pereiro was supported by project grant n° 2010/18930-6 and 2012/01740-5 from FAPESP. During the writing of this paper, J. Guaschi was partially supported by the CNRS/FAPESP PRC project n ${ }^{\circ} 275209$.

2. Generalities

In this section, we give the presentations of the braid and pure braid groups that will be used in this paper. If $M=\mathbb{T}$ or \mathbb{K}, we will make use of the following presentations of $P_{n}(M)$ and $B_{n}(M)$.

Theorem 2.1 ([32]). Let $n \geq 1$, and let M be the torus \mathbb{T} or the Klein bottle \mathbb{K}. The following constitutes a presentation of the pure braid group $P_{n}(M)$ of M :
generators: $\left\{a_{i}, b_{i}, i=1, \ldots, n\right\} \cup\left\{C_{i, j}, 1 \leq i<j \leq n\right\}$.
relations:
(1) $a_{i} a_{j}=a_{j} a_{i},(1 \leq i<j \leq n)$
(2) $a_{i}^{-1} b_{j} a_{i}=b_{j} a_{j} C_{i, j}^{-1} C_{i+1, j} a_{j}^{-1},(1 \leq i<j \leq n)$
(3) $a_{i}^{-1} C_{j, k} a_{i}=\left\{\begin{array}{l}C_{j, k},(1 \leq i<j<k \leq n) \text { or }(1 \leq j<k<i \leq n) \\ a_{k} C_{i+1, k}^{-1} C_{i, k} a_{k}^{-1} C_{j, k} C_{i, k}^{-1} C_{i+1, k},(1 \leq j \leq i<k \leq n)\end{array}\right.$
(4) $C_{i, l}^{-1} C_{j, k} C_{i, l}=\left\{\begin{array}{l}C_{j, k},(1 \leq i<l<j<k \leq n) \text { or }(1 \leq j \leq i<l<k \leq n) \\ C_{i, k} C_{l+1, k}^{-1} C_{l, k} C_{i, k}^{-1} C_{j, k} C_{l, k}^{-1} C_{l+1, k},(1 \leq i<j \leq l<k \leq n)\end{array}\right.$
(5) $\begin{cases}\prod_{j=i+1}^{n} C_{i, j}^{-1} C_{i+1, j}=a_{i} b_{i} C_{1, i} a_{i}^{-1} b_{i}^{-1}, & (1 \leq i \leq n), \\ \prod_{j=i+1}^{n} C_{i, j} C_{i+1, j}^{-1}=b_{i} C_{1, i} a_{i}^{-1} b_{i}^{-1} a_{i}^{-1}, & (1 \leq i \leq n), \\ \text { if } M=\mathbb{K}\end{cases}$
(6) $\begin{cases}b_{j} b_{i}=b_{i} b_{j},(1 \leq i<j \leq n), & \text { if } M=\mathbb{T} \\ b_{j} b_{i}=b_{i} b_{j} C_{i, j} C_{i+1, j}^{-1},(1 \leq i<j \leq n), & \text { if } M=\mathbb{K}\end{cases}$
(7) $\begin{cases}b_{i}^{-1} a_{j} b_{i}=a_{j} b_{j} C_{i, j} C_{i+1, j}^{-1} b_{j}^{-1},(1 \leq i<j \leq n), & \text { if } M=\mathbb{T} \\ b_{i}^{-1} a_{j} b_{i}=a_{j} b_{j}\left(C_{i, j} C_{i+1, j}^{-1}\right)^{-1} b_{j}^{-1},(1 \leq i<j \leq n), & \text { if } M=\mathbb{K}\end{cases}$
(8) $\left\{\begin{array}{l}b_{i}^{-1} C_{j, k} b_{i}=\left\{\begin{array}{l}C_{j, k},(1 \leq i<j<k \leq n) \text { or }(1 \leq j<k<i \leq n) \\ C_{i+1, k} C_{i, k}^{-1} C_{j, k} b_{k} C_{i, k} C_{i+1, k}^{-1} b_{k}^{-1},(1 \leq j \leq i<k \leq n)\end{array} \quad \text { if } M=\mathbb{T}\right. \\ b_{i}^{-1} C_{j, k} b_{i}=\left\{\begin{array}{l}C_{j, k},(1 \leq i<j<k \leq n) \text { or }(1 \leq j<k<i \leq n) \\ C_{i+1, k} C_{i, k}^{-1} C_{j, k} b_{k}\left(C_{i, k} C_{i+1, k}^{-1}\right)^{-1} b_{k}^{-1},(1 \leq j \leq i<k \leq n)\end{array} \quad \text { if } M=\mathbb{K} .\right.\end{array}\right.$

Theorem 2.2 ([32]). Let $n \geq 1$, and let M be the torus \mathbb{T} or the Klein bottle \mathbb{K}. The following constitutes a presentation of the braid group $B_{n}(M)$ of M :
generators: $a, b, \sigma_{1}, \ldots, \sigma_{n-1}$.
relations:
(1) $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$;
(2) $\sigma_{j} \sigma_{i}=\sigma_{i} \sigma_{j}$, if $|i-j| \geq 2$;
(3) $a \sigma_{j}=\sigma_{j} a$, if $j \geq 2$;
(4) $b \sigma_{j}=\sigma_{j} b$, if $j \geq 2$;
(5) $b^{-1} \sigma_{1} a=\sigma_{1} a \sigma_{1} b^{-1} \sigma_{1}$;
(6) $a\left(\sigma_{1} a \sigma_{1}\right)=\left(\sigma_{1} a \sigma_{1}\right) a$;
(7) $\begin{cases}b\left(\sigma_{1}^{-1} b \sigma_{1}^{-1}\right)=\left(\sigma_{1}^{-1} b \sigma_{1}^{-1}\right) b, & \text { if } M=\mathbb{T}, \\ b\left(\sigma_{1}^{-1} b \sigma_{1}\right)=\left(\sigma_{1}^{-1} b \sigma_{1}^{-1}\right) b, & \text { if } M=\mathbb{K} ;\end{cases}$
(8) $\sigma_{1} \sigma_{2} \cdots \sigma_{n-2} \sigma_{n-1}^{2} \sigma_{n-2} \cdots \sigma_{2} \sigma_{1}= \begin{cases}b a b^{-1} a^{-1} & \text { if } M=\mathbb{T}, \\ b a^{-1} b^{-1} a^{-1} & \text { if } M=\mathbb{K} \text {. }\end{cases}$

We consider the torus and the Klein bottle to be a square whose edges are identified as indicated in Figure 1. Geometric representatives of the generators of $P_{n}(\mathbb{T})$ and $P_{n}(\mathbb{K})$ given in Theorem 2.1 are illustrated in Figure 2, and may be interpreted as follows. For $1 \leq i \leq n$, the $i^{\text {th }}$ string is the only non-trivial string of the braid a_{i} (resp. of b_{i}), and it passes through the edge α (resp. β). If $1 \leq i<j \leq n$, the $j^{\text {th }}$ string is the only non-trivial string of the braid $C_{i, j}$, and it encircles all of the basepoints between the $i^{\text {th }}$ and $j^{\text {th }}$ points. If $i=j$, it will be convenient to define $C_{i, i}$ to be the trivial braid. The figures represent the projection of the braids onto M, so the constant paths in each figure correspond to vertical strings of the braid. The generators of $B_{n}(\mathbb{T})$ and $B_{n}(\mathbb{K})$ given in Theorem 2.2 may be taken to be the standard Artin generators $\sigma_{1}, \ldots, \sigma_{n-1}$ of B_{n} as shown in Figure 3, and $a=a_{1}$ and $b=b_{1}$. Various presentations of the braid and pure

Figure 1. Squares representing \mathbb{T} and \mathbb{K}

Figure 2. The generators of $P_{n}(\mathbb{T})$ and $P_{n}(\mathbb{K})$

Figure 3. The braid σ_{i}
braid groups of the torus and the Klein bottle may be found in the literature [3, 6, 20, 33], but we choose to work with those of Theorems 2.1 and 2.2 because they highlight the similarities and differences between the braid groups of \mathbb{T} and \mathbb{K}. For example, the word $C_{i, j} C_{i+1, j}^{-1}$ that appears in our presentation of $P_{n}(\mathbb{T})$ is often replaced by its inverse in $P_{n}(\mathbb{K})$. To prove Theorem 2.1 (resp. Theorem 2.2), one may use the Fadell-Neuwirth short exact sequence (1.2) (resp. the short exact sequence (1.1)), induction on n, and the following standard method for obtaining a presentation of a group extension [24, Proposition 1, p. 139]. Given a short exact sequence $1 \longrightarrow A \xrightarrow{i}$ $B \xrightarrow{p} C \longrightarrow 1$ and presentations $C=\langle X \mid R\rangle$ and $A=\langle Y \mid S\rangle$, then $B=\langle\widetilde{X}, \widetilde{Y} \mid \widetilde{S}, \widetilde{R}, \widetilde{T}\rangle$, where $\widetilde{Y}=\{\widetilde{y}=i(y): y \in Y\}, \widetilde{X}=\{\widetilde{x}: x \in X\}$ is a transversal for $\operatorname{Im}(i)$ in B such that $p(\widetilde{x})=x$ for all $x \in X, \widetilde{S}=\{\widetilde{s}: s \in S\}$ is the set of words in \widetilde{Y} obtained from S by replacing each letter y by \widetilde{y}. For each $r \in R$, let \widetilde{r} is the word in \widetilde{X} obtained from r by replacing each letter x by \widetilde{x}. Then $\widetilde{r} \in \operatorname{Ker}(p)$, so it may be written as a word, v_{r} say, in the elements of \widetilde{Y}. Since $\operatorname{Im}(i)$ is normal in B, for all $x \in X$ and $y \in Y, \widetilde{x}^{-1} \widetilde{y} \widetilde{x} \in \operatorname{Ker}(p)$, so may be written as a word, $w_{x, y}$ say, in the
elements of \widetilde{Y}. Then $\widetilde{R}=\left\{\widetilde{r} v_{r}^{-1}: r \in R\right\}$ and $\widetilde{T}=\left\{\widetilde{x}^{-1} \widetilde{y} \widetilde{x} w_{x, y}^{-1}: x \in X, y \in Y\right\}$. The details of the proofs of Theorems 2.1 and 2.2 are left to the reader.
Remark 2.3. Using Theorem 2.2, it is straightforward to check that:

$$
\begin{aligned}
& B_{n}(\mathbb{T})^{\mathrm{Ab}} \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_{2}=\left\langle\bar{a}, \bar{b}, \sigma:[\bar{a}, \bar{b}]=[\bar{a}, \sigma]=[\bar{b}, \sigma]=\sigma^{2}=1\right\rangle \\
& B_{n}(\mathbb{K})^{\mathrm{Ab}} \cong \mathbb{Z} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}=\left\langle\bar{a}, \bar{b}, \sigma:[\bar{a}, \bar{b}]=[\bar{a}, \sigma]=[\bar{b}, \sigma]=\sigma^{2}=\bar{a}^{2}=1\right\rangle
\end{aligned}
$$

for all $n \geq 2$, where \bar{a} (resp. \bar{b}, σ) represents the Γ_{2}-coset of a (resp. of b, σ_{1}).
For compact non-orientable surfaces of genus $g \geq 3$ without boundary, we shall make use of the following presentation of their braid groups due to Bellingeri.
Theorem 2.4 ([3]). Let N_{g} be a compact, connected non-orientable surface of genus $g \geq 3$ without boundary. The braid group $B_{n}\left(N_{g}\right)$ admits the following presentation:
generators: $\sigma_{1}, \ldots, \sigma_{n-1}, a_{1}, \ldots, a_{g}$.
relations:
(1) $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.
(2) $\sigma_{j} \sigma_{i}=\sigma_{i} \sigma_{j}$, if $|i-j| \geq 2$.
(3) $a_{r} \sigma_{i}=\sigma_{i} a_{r}(1 \leq r \leq g ; i \neq 1)$.
(4) $\sigma_{1}^{-1} a_{r} \sigma_{1}^{-1} a_{r}=a_{r} \sigma_{1}^{-1} a_{r} \sigma_{1}(1 \leq r \leq g)$.
(5) $\sigma_{1}^{-1} a_{s} \sigma_{1} a_{r}=a_{r} \sigma_{1}^{-1} a_{s} \sigma_{1}(1 \leq s<r \leq g)$.
(6) $a_{1}^{2} \cdots a_{g}^{2}=\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}^{2} \cdots \sigma_{2} \sigma_{1}$.

To prove some of our results, we will also require the following theorem of Gruenberg.
Theorem 2.5 ([22]). Let \mathcal{P} denote one of the following classes:
(1) the class of soluble groups.
(2) the class of finite groups.
(3) the class of p-finite groups for a given prime number p.

Let K and H be groups, and suppose that K is \mathcal{P} and that H is residually \mathcal{P}. Then, for any group extension $1 \longrightarrow H \longrightarrow G \longrightarrow K \longrightarrow 1$, the group G is residually \mathcal{P}.

3. The lower central and derived series of semi-direct products

The main aim of this section is to establish the general decomposition of the lower central series and an estimate of the derived series of an arbitrary semi-direct product given in the statement of Theorem 1.1, which will be used in later computations of the lower central and derived series of $P_{n}(\mathbb{K})$. We first prove two lemmas that will be used in what follows. If x_{1}, \ldots, x_{n} are elements of a group G, we set:

$$
\left[x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right]=\left[x_{1},\left[x_{2}, \ldots,\left[x_{n-1}, x_{n}\right]\right]\right]
$$

and if X is a subset of G then we denote the normal closure of X in G by $\langle\langle X\rangle\rangle_{G}$.
Lemma 3.1. Let G be a group, and let $x, y \in G$. For all $n \in \mathbb{N}$, we have:

$$
\begin{equation*}
\left[x^{2^{n}}, y\right]=\left[x, x, x^{2}, \ldots, x^{2^{n-1}}, y\right] \cdot\left[x, x^{2}, \ldots, x^{2^{n-1}}, y\right]^{2} \cdot\left[x^{2}, \ldots, x^{2^{n-1}}, y\right]^{2} \cdots\left[x^{2^{n-1}}, y\right]^{2} \tag{3.1}
\end{equation*}
$$

Proof. We prove the lemma by induction on n. Observe that:

$$
\begin{equation*}
\left[x^{2}, y\right]=x \cdot x \cdot y \cdot x^{-1} \cdot x^{-1} \cdot y^{-1}=x[x, y] y x^{-1} y^{-1}=x[x, y] x^{-1}[x, y]=[x, x, y] \cdot[x, y]^{2}, \tag{3.2}
\end{equation*}
$$

which proves (3.1) in the case $n=1$. Now let $n \geq 2$, and suppose that the result holds for all $1 \leq i \leq n$. Applying (3.2) to the elements $x^{2^{n}}$ and $\left[x^{2^{n}}, y\right]$, we have:

$$
\left[x^{2^{n+1}}, y\right]=\left[\left(x^{2^{n}}\right)^{2}, y\right]=\left[x^{2^{n}}, x^{2^{n}}, y\right]\left[x^{2^{n}}, y\right]^{2}
$$

and applying (3.2) to the elements $x^{2^{n}}$ and y, we obtain:

$$
\left[x^{2^{n}},\left[x^{2^{n}}, y\right]\right]=\left[x, x, x^{2}, \ldots, x^{2^{n-1}},\left[x^{2^{n}}, y\right]\right]\left[x, x^{2}, \ldots, x^{2^{n-1}},\left[x^{2^{n}}, y\right]\right]^{2} \cdots\left[x^{2^{n-1}},\left[x^{2^{n}}, y\right]\right]^{2}
$$

Thus:

$$
\left[x^{2^{n+1}}, y\right]=\left[x, x, x^{2}, \ldots, x^{2^{n-1}},\left[x^{2^{n}}, y\right]\right]\left[x, x^{2}, \ldots, x^{2^{n-1}},\left[x^{2^{n}}, y\right]\right]^{2} \cdots\left[x^{2^{n-1}},\left[x^{2^{n}}, y\right]\right]^{2}\left[x^{2^{n}}, y\right]^{2}
$$

which completes the proof by induction.
Remark 3.2. With the notation of Theorem 1.1, In what follows, for the groups K_{n}, H_{n} or \widetilde{H}_{n}, we will use the word generator to mean a word of the form $\varphi(g)(h) \cdot h^{-1}$, where $g \in \Gamma_{n-1}(G)$ and $h \in H, g \in G$ and $h \in V_{n-1}$, or $g \in \Gamma_{n-1}(G)$ and $h \in H$ respectively. Similarly, a generator of the group L_{n} (resp. V_{n}) will mean either a generator of K_{n} or H_{n}, or an element of the form $[h, l]$, where $h \in H$ and $l \in L_{n-1}$ (resp. either a generator of \widetilde{H}_{n}, or an element of the form $[h, v]$, where $h \in H$ and $\left.v \in V_{n-1}\right)$.
Lemma 3.3. Let $n \geq 2$. With the notation of Theorem 1.1, the subgroups K_{n}, L_{n} and V_{n} are normal in H for all $n \geq 2$, and we have the inclusions $K_{n+1} \subset K_{n}, H_{n+1} \subset H_{n}, \widetilde{H}_{n+1} \subset \widetilde{H}_{n}$, $L_{n+1} \subset L_{n}$ and $V_{n+1} \subset V_{n}$.
Proof. The proof is by induction on n. The proof in the case $n=2$ was given in [15, Proposition 3.3]. So suppose that $n \geq 2$, and assume that L_{n} (resp. V_{n}) is a normal subgroup of H, let $x \in L_{n+1}$ (resp. V_{n+1}) and let $h \in H$. Since $L_{n+1}=\left\langle K_{n+1}, H_{n+1},\left[H, L_{n}\right]\right\rangle$ (resp. $V_{n+1}=\left\langle\widetilde{H}_{n+1},\left[H, V_{n}\right]\right\rangle$), it suffices to show that $h x h^{-1} \in L_{n+1}$, where x is a generator of K_{n+1}, H_{n+1} or $\left[H, L_{n}\right]$ (resp. of \widetilde{H}_{n+1} or $\left.\left[H, V_{n}\right]\right)$, in the sense of Remark 3.2.

- Suppose that $x=\varphi(g)(y) y^{-1} \in K_{n+1}$, where $g \in \Gamma_{n}(G)$ and $y \in H$. Then $\varphi(g) \in \operatorname{Aut}(H)$, and there exists $h^{\prime} \in H$ such that $\varphi(g)\left(h^{\prime}\right)=h$, so:

$$
h x h^{-1}=h\left(\varphi(g)(y) \cdot y^{-1}\right) h^{-1}=\left(\varphi(g)\left(h^{\prime} y\right) y^{-1} h^{\prime-1}\right)\left(\varphi(g)\left(h^{\prime}\right) h^{\prime-1}\right)^{-1} \in K_{n+1} \subset L_{n+1} .
$$

This also implies that K_{n} is a normal subgroup of H for all $n \geq 2$.

- Suppose that $x=\varphi(g)(y) y^{-1}$ is an element of H_{n+1} (resp. of \widetilde{H}_{n+1}), where $g \in G$ and $y \in L_{n}$ (resp. $y \in V_{n}$), and let $h^{\prime} \in H$ be such that $\varphi(g)\left(h^{\prime}\right)=h$. Then:

$$
\begin{aligned}
h x h^{-1} & =h\left(\varphi(g)(y) \cdot y^{-1}\right) h^{-1} \\
& =\left(\varphi(g)\left(h^{\prime} y h^{\prime-1}\right) \cdot\left(h^{\prime} y h^{\prime-1}\right)^{-1}\right)\left[h^{\prime}, y\right]\left[y, \varphi(g)\left(h^{\prime}\right)\right] \in L_{n+1}\left(\text { resp. } V_{n+1}\right)
\end{aligned}
$$

because $h^{\prime} y h^{\prime-1} \in L_{n}\left(\right.$ resp. $\left.V_{n}\right)$ by the normality of L_{n} (resp. V_{n}) in H using the induction hypothesis.

- Suppose that $x=[y, l] \in\left[H, L_{n}\right]$ (resp. $\left.\left[H, V_{n}\right]\right)$, where $y \in H$ and $l \in L_{n}\left(\right.$ resp. $\left.l \in V_{n}\right)$. Then:

$$
h x h^{-1}=\left[h y h^{-1}, h l h^{-1}\right] \in\left[H, L_{n}\right] \subset L_{n+1}\left(\text { resp. }\left[H, V_{n}\right] \subset V_{n+1}\right),
$$

because $h l h^{-1} \in L_{n}\left(\right.$ resp. $\left.V_{n}\right)$ by the normality of L_{n} (resp. V_{n}) in H.
This proves that L_{n} (resp. V_{n}) is a normal subgroup of H for all $n \geq 2$.
To prove the second part of the statement, notice that the inclusion $\Gamma_{n}(G) \subset \Gamma_{n-1}(G)$ implies that $K_{n+1} \subset K_{n}$ for all $n \geq 2$. It is straightforward to see that $H_{3} \subset H_{2}$ (resp. $\widetilde{H}_{3} \subset \widetilde{H}_{2}$) because $L_{2} \subset H$ (resp. $V_{2} \subset H$). By induction, suppose that $H_{n} \subset H_{n-1}$ (resp. $\widetilde{H}_{n} \subset \widetilde{H}_{n-1}$) for some $n \geq 3$. Since $L_{n-1}\left(\right.$ resp. $\left.V_{n-1}\right)$ is normal in H, we have $\left[H, L_{n-1}\right] \subset L_{n-1}\left(\right.$ resp. $\left.\left[H, V_{n-1}\right] \subset V_{n-1}\right)$. Further, using the definitions and the induction hypothesis, we have the inclusions $K_{n} \subset K_{n-1} \subset L_{n-1}$ and $H_{n} \subset H_{n-1} \subset L_{n-1}$ (resp. $\left.\widetilde{H}_{n} \subset \widetilde{H}_{n-1} \subset V_{n-1}\right)$. It follows that $L_{n} \subset L_{n-1}$ (resp. $V_{n} \subset V_{n-1}$), and then that $H_{n+1} \subset H_{n}$ (resp. $\widetilde{H}_{n+1} \subset \widetilde{H}_{n}$). Consequently, $L_{n+1} \subset L_{n}$ and $V_{n+1} \subset V_{n}$ for all $n \geq 2$.

Proof of Theorem 1.1. The proof is by induction on n. The case $n=1$ is trivial. If $n=2$, part (1) was proved in [15, Proposition 3.3], and part (2) follows from part (1) and the fact that $L_{2}=V_{2}$. Now suppose that parts (1) and (2) hold for some $n \geq 2$, and let us prove the result for $n+1$. Let $\varphi: \Gamma_{n}(G) \longrightarrow \operatorname{Aut}\left(L_{n}\right)$ be the action (also denoted by φ) induced by φ such that
$L_{n} \rtimes_{\varphi} \Gamma_{n}(G)=\Gamma_{n}\left(H \rtimes_{\varphi} G\right)$. We claim that φ also induces an action $\varphi: \Gamma_{n+1}(G) \longrightarrow \operatorname{Aut}\left(L_{n+1}\right)$. To see this, let $g \in \Gamma_{n+1}(G)$. To prove that $\varphi(g)\left(L_{n+1}\right) \subset L_{n+1}$, it suffices to take $x \in L_{n+1}$ to be of the form $x=\varphi\left(g^{\prime}\right)(h) \cdot h^{-1}$, where either $g^{\prime} \in \Gamma_{n}(G)$ and $h \in H$, or $g^{\prime} \in G$ and $h \in L_{n}$, or of the form $x=[h, l] \in\left[H, L_{n}\right]$, where $h \in H$ and $l \in L_{n}$. The result will then follow for all elements of L_{n+1} because $\varphi(g)$ is a homomorphism.

- If $x=\varphi\left(g^{\prime}\right)(h) . h^{-1} \in K_{n+1}$, where $g^{\prime} \in \Gamma_{n}(G)$ and $h \in H$, or $x=\varphi\left(g^{\prime}\right)(h) \cdot h^{-1} \in H_{n+1}$, where $g^{\prime} \in G$ and $h \in L_{n}$, then:

$$
\varphi(g)(x)=\varphi(g)\left(\varphi\left(g^{\prime}\right)(h) \cdot h^{-1}\right)=\left(\varphi\left(g g^{\prime}\right)(h) \cdot h^{-1}\right)\left(\varphi(g)(h) \cdot h^{-1}\right)^{-1}
$$

If $g^{\prime} \in \Gamma_{n}(G)$ and $h \in H$ then $\varphi(g)(x) \in K_{n+1} \subset L_{n+1}$ since g and $g g^{\prime}$ belong to $\Gamma_{n}(G)$. If $g^{\prime} \in G$ and $h \in L_{n}$, then $\varphi(g)(x) \in H_{n+1} \subset L_{n+1}$ because $h \in L_{n+1}$.

- If $x=[h, l] \in\left[H, L_{n}\right]$, where $h \in H$ and $l \in L_{n}$ then:

$$
\varphi(g)(x)=[\varphi(g)(h), \varphi(g)(l)] \in\left[H, L_{n}\right]
$$

since $g \in \Gamma_{n+1}(G) \subset \Gamma_{n}(G)$, so $\varphi(g)(l) \in L_{n}$.
Since $\varphi(g): L_{n+1} \longrightarrow L_{n+1}$ is the restriction of an automorphism, it is injective, so to show that it is an automorphism, it suffices to prove surjectivity. We first consider the following two cases:
(a) If $x=\varphi\left(g^{\prime}\right)(h) \cdot h^{-1}$, where either $g^{\prime} \in \Gamma_{n}(G)$ and $h \in H$, or $g^{\prime} \in G$ and $h \in L_{n}$, let:

$$
y=\left(\varphi\left(g^{-1} g^{\prime}\right)(h) \cdot h^{-1}\right) h\left(\varphi\left(g^{-1}\right)\left(h^{-1}\right) \cdot h\right) h^{-1} \in L_{n+1}
$$

because K_{n+1} and L_{n+1} are normal in H, and one may check that $\varphi(g)(y)=x$.
(b) If $x=[h, l] \in\left[H, L_{n}\right]$, where $h \in H$ and $l \in L_{n}$, there exist $l^{\prime} \in L_{n}$ and $h^{\prime} \in H$ such that $\varphi(g)\left(l^{\prime}\right)=l$ and $\varphi(g)\left(h^{\prime}\right)=h$ by the induction hypothesis. Taking $y=\left[h^{\prime}, l^{\prime}\right] \in\left[H, L_{n}\right] \subset L_{n+1}$, we see that $\varphi(g)(y)=x$.
This shows that if x is a generator of K_{n+1}, H_{n+1} or $\left[H, L_{n}\right]$, there exists $y \in L_{n+1}$ such that $\varphi(g)(y)=x$. Given an arbitrary element $x \in L_{n+1}$, there exist x_{1}, \ldots, x_{s}, each of which satisfies one of the conditions of cases (a) and (b) above, such that $x=x_{1} \cdots x_{s}$. So for $i=1, \ldots, s$, there exists $y_{i} \in L_{n+1}$ such that $\varphi(g)\left(y_{i}\right)=x_{i}$, and we have $\varphi(g)\left(y_{1} \cdots y_{s}\right)=x$, which proves the surjectivity of $\varphi(g): L_{n+1} \longrightarrow L_{n+1}$. Therefore the semi-direct product $L_{n+1} \rtimes_{\varphi} \Gamma_{n+1}(G)$ is well defined. Similar computations show that the same is true for the semi-direct product $V_{n+1} \rtimes_{\varphi}(G)^{(n)}$.

To complete the proof of part (1) of Theorem 1.1, it remains to show that $L_{n+1} \rtimes_{\varphi} \Gamma_{n+1}(G)=$ $\Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$. We first prove that $L_{n+1} \rtimes_{\varphi} \Gamma_{n+1}(G) \subset \Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$. Let $(x, g) \in L_{n+1} \rtimes_{\varphi} \Gamma_{n+1}(G)$, where $x \in L_{n+1}$ and $g \in \Gamma_{n+1}(G)$. Since $(x, g)=(x, 1)(1, g)$, it suffices to show that $(x, 1)$ and $(1, g)$ belong to $\Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$. Clearly, $(1, g) \in \Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$. Further, $(x, 1)$ is a product of elements each of which is of one of the following forms:

- $\left(\varphi(g)(h) \cdot h^{-1}, 1\right)=[(1, g),(h, 1)]$, where $g \in \Gamma_{n}(G), h \in H$, and $(1, g) \in \Gamma_{n}\left(H \rtimes_{\varphi} G\right)$. Then $\left(\varphi(g)(h) \cdot h^{-1}, 1\right) \in \Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$.
- $\left(\varphi(g)(h) \cdot h^{-1}, 1\right)=[(1, g),(h, 1)]$, where $g \in G$ and $h \in L_{n}$. Then $(h, 1) \in L_{n} \rtimes_{\varphi} \Gamma_{n}(G)=$ $\Gamma_{n}\left(H \rtimes_{\varphi} G\right)$ by the induction hypothesis, and $\left(\varphi(g)(h) . h^{-1}, 1\right) \in \Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$.
- $([h, l], 1) \in\left[H, L_{n}\right]$, where $h \in H$ and $l \in L_{n}$. Then $([h, l], 1)=[(h, 1),(l, 1)]$, and $l \in$ $L_{n} \rtimes_{\varphi} \Gamma_{n}(G)=\Gamma_{n}\left(H \rtimes_{\varphi} G\right)$ by the induction hypothesis, so $([h, l], 1) \in \Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$.
Since all of these elements belong to $\Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$, it follows that $(x, 1) \in \Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$, whence $L_{n+1} \rtimes_{\varphi} \Gamma_{n+1}(G) \subset \Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$.

For the other inclusion, let $[(h, g),(x, y)] \in \Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$, where $(h, g) \in H \rtimes_{\varphi} G$ and $(x, y) \in$ $\Gamma_{n}\left(H \rtimes_{\varphi} G\right)$. By the induction hypothesis, $\Gamma_{n}\left(H \rtimes_{\varphi} G\right)=L_{n} \rtimes_{\varphi} \Gamma_{n}(G)$, so $x \in L_{n}$ and $y \in \Gamma_{n}(G)$, and thus:

$$
\begin{equation*}
[(h, g),(x, y)]=\left(h \cdot \varphi(g)(x) \cdot \varphi\left(g y g^{-1}\right)\left(h^{-1}\right) \cdot \varphi([g, y])\left(x^{-1}\right),[g, y]\right) \tag{3.3}
\end{equation*}
$$

The second factor $[g, y]$ on the right-hand side of (3.3) belongs to $\Gamma_{n+1}\left(H \rtimes_{\varphi} G\right)$, and the first factor, denoted by ρ, may be written in the following form:

$$
\rho=[h, x] \cdot x h x^{-1}\left(\varphi(g)(x) \cdot x^{-1}\right) x h^{-1} x^{-1} \cdot x h\left(\varphi\left(g y g^{-1}\right)\left(h^{-1}\right) \cdot h\right) h^{-1} x^{-1} \cdot x\left(\varphi([g, y])\left(x^{-1}\right) \cdot x\right) x^{-1}
$$

Note that:

- $[h, x] \in\left[H, L_{n}\right] \subseteq L_{n+1}$, since $h \in H$ and $x \in L_{n}$.
- $\varphi(g)(x) \cdot x^{-1} \in H_{n+1} \subseteq L_{n+1}$, since $x \in L_{n}$.
- $\varphi\left(g y g^{-1}\right)\left(h^{-1}\right) . h \in K_{n+1} \subseteq L_{n+1}$, since $y \in \Gamma_{n}(G)$, so $g y g^{-1} \in \Gamma_{n}(G)$ because $\Gamma_{n}(G)$ is a normal subgroup of G.
- $\varphi([g, y])\left(x^{-1}\right) . x \in H_{n+1} \cap K_{n+1} \subseteq L_{n+1}$, since $x \in L_{n}$ and $[g, y] \in \Gamma_{n}(G)$.

By Lemma 3.3, the conjugates by elements of H of the elements $[h, x], \varphi(g)(x) \cdot x^{-1}, \varphi\left(g y g^{-1}\right)\left(h^{-1}\right) \cdot h$ and $\varphi([g, y])\left(x^{-1}\right) \cdot x$ also belong to L_{n+1}, therefore $\rho \in L_{n+1}$ as required. This proves part (1) of the statement.

To prove part (2), suppose by induction that $\left(H \rtimes_{\varphi} G\right)^{(n-1)} \subset V_{n} \rtimes_{\varphi} G^{(n-1)}$. Then:

$$
\left(H \rtimes_{\varphi} G\right)^{(n)}=\left[\left(H \rtimes_{\varphi} G\right)^{(n-1)},\left(H \rtimes_{\varphi} G\right)^{(n-1)}\right] \subset\left[V_{n} \rtimes_{\varphi} G^{(n-1)}, V_{n} \rtimes_{\varphi} G^{(n-1)}\right] .
$$

To show that $\left[V_{n} \rtimes_{\varphi} G^{(n-1)}, V_{n} \rtimes_{\varphi} G^{(n-1)}\right] \subset V_{n+1} \rtimes_{\varphi} G^{(n)}$, let $(h, g),(x, y) \in V_{n} \rtimes_{\varphi} G^{(n-1)}$. Then:

- $[h, x] \in\left[H, V_{n}\right] \subseteq V_{n+1}$ because $h, x \in V_{n} \subset H$.
- the three elements $\varphi(g)(x) \cdot x^{-1}, \varphi\left(g y g^{-1}\right)\left(h^{-1}\right) \cdot h$ and $\varphi([g, y])\left(x^{-1}\right) \cdot x$ belong to \widetilde{H}_{n+1} because $h, x \in V_{n}$, so they belong to V_{n+1}.
Arguing in a manner similar to that for part (1) from (3.3) onwards, it follows that $[(h, g),(x, y)] \in$ $V_{n+1} \rtimes_{\varphi} G^{(n)}$ as required.

The following lemma will help us simplify some of the calculations in the following sections.
Lemma 3.4. With the notation of Theorem 1.1, let \widetilde{G} be a subgroup of G, let \widetilde{H} be a subgroup of H, and let X (resp. Y) be a generating set of \widetilde{G} (resp. \widetilde{H}).
(1) The subgroup

$$
\left\langle\varphi(g)(h) \cdot h^{-1}: g \in \widetilde{G}, h \in \widetilde{H}\right\rangle
$$

is contained in the normal closure $\langle\langle Z\rangle\rangle_{H}$ of

$$
Z=\left\{\varphi(g)(h) \cdot h^{-1}: g \in X, h \in Y\right\}
$$

in H. In particular, if this subgroup is a normal subgroup of G, it is equal to $\langle\langle Z\rangle\rangle_{H}$. Consequently, if X (resp. Y) is a generating set of $\Gamma_{n-1}(G)$ (resp. of H) then to calculate the subgroup K_{n}, it suffices to compute the elements $\varphi(g)(h) . h^{-1}$, where $g \in X$ and $h \in Y$.
(2) Let W be a subset of H such that $L_{n}=\langle\langle W\rangle\rangle_{H}$ (resp. $V_{n}=\langle\langle W\rangle\rangle_{H}$) is the normal closure of W in H. Let X (resp. Y) be a generating set of G (resp. of H). Then H_{n+1} is contained in $\left\langle\left\langle\left\{\varphi(g)(w) \cdot w^{-1}: g \in X, w \in W\right\}\right\rangle\right\rangle_{H} \cup\left[H, L_{n}\right]$ (resp. \widetilde{H}_{n+1} is contained in $\left.\left\langle\left\langle\left\{\varphi(g)(w) \cdot w^{-1}: g \in X, w \in W\right\}\right\rangle\right\rangle_{H} \cup\left[H, V_{n}\right]\right)$. Therefore:

$$
\begin{aligned}
L_{n+1} & =\left\langle\left\langle K_{n+1}, \varphi(g)(w) \cdot w^{-1},[h, w]: g \in X, h \in Y, w \in W\right\rangle\right\rangle_{H} \\
V_{n+1} & =\left\langle\left\langle\varphi(g)(w) \cdot w^{-1},[h, w]: g \in X, h \in Y, w \in W\right\rangle\right\rangle_{H}
\end{aligned}
$$

Remark 3.5. With the notation of Lemma 3.4(1), we will say that the elements of Z are generators of the subgroup $\langle\langle Z\rangle\rangle_{H}$. It follows from part (2) that to determine L_{n+1} and V_{n+1}, we need only compute K_{n+1} in the case of L_{n+1}, and calculate the elements of the set $\left\{\varphi(g)(w) \cdot w^{-1},[h, w]: g \in X, w \in W\right\}$.
Proof of Lemma 3.4.
(1) To prove the first part of the statement, note that it suffices to prove the result for elements of the subgroup of the form $\varphi(g)(h) \cdot h^{-1}$, where $g \in \widetilde{G}$ and $h \in \widetilde{H}$. If $g \in G$, there exist $g_{1}, \ldots, g_{p} \in \widetilde{G}$ and $\epsilon_{1}, \ldots, \epsilon_{p}, \in\{1,-1\}$ such that $g_{i}^{\epsilon_{i}} \in X$ for all $i=1, \ldots, p$ and $g=g_{1}^{\epsilon_{1}} \cdots g_{p}^{\epsilon_{p}}$. Now:

$$
\varphi(g)(h) \cdot h^{-1}=\prod_{i=1}^{p} \varphi\left(g_{i}^{\epsilon_{i}}\right)\left(\varphi\left(g_{i+1}^{\epsilon_{i+1}} \cdots g_{p}^{\epsilon_{p}}\right)(h)\right) \cdot\left(\varphi\left(g_{i+1}^{\epsilon_{i+1}} \cdots g_{p}^{\epsilon_{p}}\right)(h)\right)^{-1}
$$

$$
\begin{equation*}
=\prod_{i=1}^{p} \varphi\left(g_{i}^{\epsilon_{i}}\right)\left(h_{i}^{\prime}\right) \cdot h_{i}^{\prime-1} \tag{3.4}
\end{equation*}
$$

where for all $i=1, \ldots, p, h_{i}^{\prime}=\varphi\left(g_{i+1}^{\epsilon_{i+1}} \cdots g_{p}^{\epsilon_{p}}\right)(h)$. Further, for all $h^{\prime} \in \widetilde{H}$, there exist $h_{1}, \ldots, h_{q} \in \widetilde{H}$ and $\delta_{1}, \ldots, \delta_{q} \in\{1,-1\}$ such that $h_{j}^{\delta_{j}} \in Y$ for all $j=1, \ldots, q$ and $h^{\prime}=$ $h_{1}^{\delta_{1}} \cdots h_{q}^{\delta_{q}}$. Since

$$
\begin{equation*}
\varphi\left(g^{\prime}\right)\left(h^{\prime}\right) \cdot h^{-1}=\prod_{j=1}^{q}\left(h_{1}^{\delta_{1}} \cdots h_{j-1}^{\delta_{j-1}}\left(\varphi\left(g^{\prime}\right)\left(h_{j}^{\delta_{j}}\right) \cdot h_{j}^{-\delta_{j}}\right) h_{j-1}^{-\delta_{j-1}} \cdots h_{1}^{-\delta_{1}}\right) \tag{3.5}
\end{equation*}
$$

for all $g^{\prime} \in G$, the first part of the statement follows by combining (3.4) and (3.5). The second and third parts are consequences of the first part.
(2) Let $\varphi(g)(h) . h^{-1} \in H_{n+1}$ (resp. \widetilde{H}_{n+1}), where $g \in G$ and $h \in L_{n}$ (resp. V_{n}). As in (1) above, (3.4) holds. For all $h^{\prime} \in L_{n}$ (resp. V_{n}), there exist $x_{1}, \ldots, x_{q} \in W, \delta_{1}, \ldots, \delta_{q} \in\{1,-1\}$ and $\alpha_{1}, \ldots, \alpha_{q} \in H$, such that $x_{j}^{\delta_{j}} \in W$ and $h^{\prime}=\alpha_{1} x_{1}^{\delta_{1}} \alpha_{1}^{-1} \cdots \alpha_{q} x_{q}^{\delta_{q}} \alpha_{q}^{-1}$. Then we obtain an equation similar to (3.5), where for all $j=1, \ldots, q, h_{j}^{\delta_{j}}$ is replaced by $\alpha_{j} x_{j}^{\delta_{j}} \alpha_{j}^{-1}$. Further, for all $j=1, \ldots, q, \varphi\left(g^{\prime}\right)\left(\alpha_{j} x_{j}^{\delta_{j}} \alpha_{j}^{-1}\right) .\left(\alpha_{j} x_{j}^{\delta_{j}} \alpha_{j}^{-1}\right)^{-1}$ is equal to:

$$
\begin{equation*}
\varphi\left(g^{\prime}\right)\left(\alpha_{j}\right)\left(\varphi\left(g^{\prime}\right)\left(x_{j}^{\delta_{j}}\right) \cdot x_{j}^{-\delta_{j}}\right) \varphi\left(g^{\prime}\right)\left(\alpha_{j}^{-1}\right) \cdot \alpha_{j} \underbrace{\left[\alpha_{j}^{-1} \varphi\left(g^{\prime}\right)\left(\alpha_{j}\right), x_{j}^{\delta_{j}}\right]}_{\in\left[H, L_{n}\right]} \alpha_{j}^{-1} \tag{3.6}
\end{equation*}
$$

Part (1) then follows from (3.4), (3.5) and (3.6).

4. The case of the torus

In this section, we study the derived series of $B_{n}(\mathbb{T})$, the aim being to prove Theorem 1.2. We shall consider two cases, $n \leq 4$ and $n \geq 5$.
Proposition 4.1. If $n \leq 4$ then $B_{n}(\mathbb{T})$ is residually soluble.
Proof. If $n \leq 4$, the result follows by using the short exact sequence (1.1), Theorem 2.5, the solubility of S_{n} if $n \leq 4$, and the fact that $P_{n}(\mathbb{T})$ is residually soluble for all $n \geq 1[5$, Theorem 4].

To study the case $n \geq 5$, we start by exhibiting a presentation of $\left(B_{n}(\mathbb{T})\right)^{(1)}$.
Proposition 4.2. A presentation of $\left(B_{n}(\mathbb{T})\right)^{(1)}$ is given by: generators: for $k, m \in \mathbb{Z}$ and $i=1, \ldots, n-1$:

- $b_{k, m}=b^{k} a^{m} b a^{-m} b^{-k-1}$
- $d_{k, m}=b^{k} a^{m} \sigma_{1} b \sigma_{1}^{-1} a^{-m} b^{-1-k}$
- $a_{k, m}=b^{k} a^{m}\left(\sigma_{1} a \sigma_{1}^{-1} a^{-1}\right) a^{-m} b^{-k}$
- $\theta_{i, k, m}=b^{k} a^{m} \sigma_{i} \sigma_{1}^{-1} a^{-m} b^{-k}$
- $\rho_{i, k, m}=b^{k} a^{m} \sigma_{1} \sigma_{i} a^{-m} b^{-k}$
relations:
(1) $\left\{\begin{array}{l}\theta_{i, k, m} \rho_{i+1, k, m} \theta_{i, k, m}=\theta_{i+1, k, m} \rho_{i, k, m} \theta_{i+1, k, m} \\ \rho_{i, k, m} \theta_{i+1, k, m} \rho_{i, k, m}=\rho_{i+1, k, m} \theta_{i, k, m} \rho_{i+1, k, m}\end{array}\right.$
(2) $\left\{\begin{array}{l}\theta_{i, k, m} \rho_{j, k, m}=\theta_{j, k, m} \rho_{i, k, m} \\ \rho_{i, k, m} \theta_{j, k, m}=\rho_{j, k, m} \theta_{i, k, m}\end{array} \quad\right.$ if $|i-j| \geq 2$.
(3) $\left\{\begin{array}{l}a_{k, m}=\theta_{j, k, m}^{-1} \theta_{j, k, m+1} \\ a_{k, m}=\rho_{j, k, m} \rho_{j, k, m+1}^{-1}\end{array} \quad\right.$ for $j \geq 2$.
(4) $\left\{\begin{array}{l}b_{k, m} \theta_{j, k+1, m}=\theta_{j, k, m} d_{k, m} \\ d_{k, m} \rho_{j, k+1, m}=\rho_{j, k, m} b_{k, m}\end{array}\right.$ for $j \geq 2$.
(5) $\left\{\begin{array}{l}b_{k-1, m}^{-1} a_{k-1, m} b_{k-1, m+1} \rho_{1, k, m+1}^{-1} a_{k, m}^{-1}=1 \\ d_{k-1, m}^{-1} \rho_{1, k-1, m} \rho_{1, k-1, m+1}^{-1} d_{k-1, m+1} \rho_{1, k, m}^{-1}=1\end{array}\right.$
(6) $\left\{\begin{array}{l}a_{k, m+1} \rho_{1, k, m+2}=a_{k, m} \rho_{1, k, m+1} \\ \rho_{1, k, m} a_{k, m+1}=a_{k, m} \rho_{1, k, m+1}\end{array}\right.$
(7) $\left\{\begin{array}{l}b_{k, m} \rho_{1, k+1, m}^{-1} d_{k+1, m}=\rho_{1, k, m}^{-1} d_{k, m} b_{k+1, m} \\ b_{k, m} \rho_{1, k+1, m}^{-1} d_{k+1, m}=d_{k, m} b_{k+1, m} \rho_{1, k+2, m}^{-1}\end{array}\right.$
(8) if n is odd:

$$
\left\{\begin{array}{l}
\theta_{1, k, m} \rho_{2, k, m} \theta_{3, k, m} \cdots \rho_{n-1, k, m} \theta_{n-1, k, m} \cdots \rho_{3, k, m} \theta_{2, k, m} \rho_{1, k, m}=b_{k, m} b_{k, m+1}^{-1} \\
\rho_{1, k, m} \theta_{2, k, m} \rho_{3, k, m} \cdots \theta_{n-1, k, m} \rho_{n-1, k, m} \cdots \theta_{3, k, m} \rho_{2, k, m} \theta_{1, k, m}=d_{k, m} a_{k+1, m} d_{k, m+1}^{-1} a_{k, m}^{-1}
\end{array}\right.
$$

(9) if n is even:

$$
\left\{\begin{aligned}
\theta_{1, k, m} \rho_{2, k, m} \theta_{3, k, m} \cdots \theta_{n-1, k, m} \rho_{n-1, k, m} \cdots \rho_{3, k, m} \theta_{2, k, m} \rho_{1, k, m} & =b_{k, m} b_{k, m+1}^{-1} \\
\rho_{1, k, m} \theta_{2, k, m} \rho_{3, k, m} \cdots \rho_{n-1, k, m} \theta_{n-1, k, m} \cdots \theta_{3, k, m} \rho_{2, k, m} \theta_{1, k, m} & =d_{k, m} a_{k+1, m} d_{k, m+1}^{-1} a_{k, m}^{-1}
\end{aligned}\right.
$$

Proof. One applies the Reidemeister-Schreier rewriting process [23, Appendix 1] to the short exact sequence:

$$
1 \longrightarrow\left(B_{n}(\mathbb{T})\right)^{(1)} \longrightarrow B_{n}(\mathbb{T}) \longrightarrow \underbrace{B_{n}(\mathbb{T})^{\mathrm{Ab}}}_{\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_{2}} \longrightarrow 1
$$

using the presentation of the group $B_{n}(\mathbb{T})$ given in Theorem 2.2, and taking the Schreier transversal to be $\left\{b^{k} a^{m} ; b^{k} a^{m} \sigma_{1}: k, m \in \mathbb{Z}\right\}$. The details are left to the reader.

Proposition 4.3. If $n \geq 5$, then $B_{n}(\mathbb{T})$ is not residually soluble. Moreover, $\left(B_{n}(\mathbb{T})\right)^{(2)}=\left(B_{n}(\mathbb{T})\right)^{(3)}$.
Theorem 1.2 then follows directly from Propositions 4.1 and 4.3.
Proof of Proposition 4.3. The first step is a standard procedure that may be found in [15, Theorem 1.4, p. 3389], and uses just the Artin relations and some properties of the derived series. For future reference, we note that it may also be applied to the braid groups of non-orientable surfaces. If M is a compact surface, consider the following short exact sequence:

$$
1 \longrightarrow \frac{\left(B_{n}(M)\right)^{(1)}}{\left(B_{n}(M)\right)^{(2)}} \stackrel{i}{\longrightarrow} \frac{B_{n}(M)}{\left(B_{n}(M)\right)^{(2)}} \xrightarrow{p} B_{n}(M)^{\mathrm{Ab}} \longrightarrow 1,
$$

where p is the canonical projection. By using the above-mentioned procedure, for $i=1, \ldots, n-1$, the $\left(B_{n}(M)\right)^{(2)}$-cosets of the σ_{i} coincide in $B_{n}(M) /\left(B_{n}(M)\right)^{(2)}$, and are equal to an element that we denote by σ.

Now suppose that $M=\mathbb{T}$. Using relations (3) and (4) of Theorem 2.2, the $\left(B_{n}(\mathbb{T})\right)^{(2)}$-cosets of a and b commute with σ in $B_{n}(\mathbb{T}) /\left(B_{n}(\mathbb{T})\right)^{(2)}$. Using this fact and relations (5) and (8) of Theorem 2.2, it follows that $\sigma^{-2}=b a b^{-1} a^{-1}$ and $\sigma^{2 n}=1$, and so σ has order at most $2 n$. To show that the order of σ in $B_{n}(\mathbb{T}) /\left(B_{n}(\mathbb{T})\right)^{(2)}$ is exactly $2 n$, using Proposition 4.2, we note that:

$$
\begin{equation*}
\frac{\left(B_{n}(\mathbb{T})\right)^{(1)} /\left(B_{n}(\mathbb{T})\right)^{(2)}}{\Theta}=\left\langle\rho_{1,0,0}\right\rangle \cong \mathbb{Z}_{n} \tag{4.1}
\end{equation*}
$$

where Θ is the normal closure in $\left(B_{n}(\mathbb{T})\right)^{(1)} /\left(B_{n}(\mathbb{T})\right)^{(2)}$ of the $\left(B_{n}(\mathbb{T})\right)^{(2)}$-cosets of the elements of the set $\left\{\theta_{i, k, m}, k, m \in \mathbb{Z}, i=1, \ldots, n-1\right\}$. Let q be the canonical projection of $\left(B_{n}(\mathbb{T})\right)^{(1)} /\left(B_{n}(\mathbb{T})\right)^{(2)}$ onto $\frac{\left(\left(B_{n}(\mathbb{T})\right)^{(1)} /\left(B_{n}(\mathbb{T})\right)^{(2)}\right)}{\Theta}$. The order of σ in $B_{n}(\mathbb{T}) /\left(B_{n}(\mathbb{T})\right)^{(2)}$ is even because $p(\sigma)$ is the generator of \mathbb{Z}_{2}. Suppose that the order of σ is $2 r$, where $r<n$. Then $i\left(\rho_{1,0,0}\right)=\sigma^{2}$, and $i\left(\rho_{1,0,0}^{r}\right)=\sigma^{2 r}=1$. Since i is injective, $\rho_{1,0,0}^{r}=1$, and it follows that $1=q\left(\rho_{1,0,0}^{r}\right)=\rho_{1,0,0}^{r}$ in $\frac{\left(\left(B_{n}(\mathbb{T})\right)^{(1)} /\left(B_{n}(\mathbb{T})\right)^{(2)}\right)}{\Theta}$. Thus $\rho_{1,0,0}$ is of order $r<n$, which contradicts (4.1). Hence:

$$
B_{n}(\mathbb{T}) /\left(B_{n}(\mathbb{T})\right)^{(2)}=\left\langle\sigma, a, b:[a, \sigma]=[b, \sigma]=\sigma^{2 n}=1,[b, a]=\sigma^{-2}\right\rangle
$$

To complete the proof, consider the short exact sequence:

$$
1 \longrightarrow \frac{\left(B_{n}(\mathbb{T})\right)^{(2)}}{\left(B_{n}(\mathbb{T})\right)^{(3)}} \longrightarrow \frac{B_{n}(\mathbb{T})}{\left(B_{n}(\mathbb{T})\right)^{(3)}} \xrightarrow{\widetilde{p}} \frac{B_{n}(\mathbb{T})}{\left(B_{n}(\mathbb{T})\right)^{(2)}} \longrightarrow 1
$$

where \widetilde{p} is the canonical projection. Then $\widetilde{p}\left(\sigma_{i}\right)=\sigma$ for all $i=1, \ldots, n-1$, and as above, we see that for $i=1, \ldots, n-1$, the $\left(B_{n}(\mathbb{T})\right)^{(3)}$-cosets of the σ_{i} coincide in $B_{n}(\mathbb{T}) /\left(B_{n}(\mathbb{T})\right)^{(3)}$, and are equal to an element that we denote by $\widetilde{\sigma}$. Using the same relations of $B_{n}(\mathbb{T})$ as before, it follows that the $\left(B_{n}(\mathbb{T})\right)^{(3)}$-cosets of a and b commute with $\widetilde{\sigma}$ in $B_{n}(\mathbb{T}) /\left(B_{n}(\mathbb{T})\right)^{(3)},[b, a]=\sigma^{-2}$ and $\sigma^{2 n}=1$, so \widetilde{p} is an isomorphism, and hence $\left(B_{n}(\mathbb{T})\right)^{(2)}=\left(B_{n}(\mathbb{T})\right)^{(3)}$. We conclude that $B_{n}(\mathbb{T})$ is not residually soluble if $n \geq 5$, because $\left(B_{n}(\mathbb{T})\right)^{(2)}$ is non trivial.

5. The case of the Klein bottle

In this section, we study the lower central and derived series of the (pure) braid groups of the Klein bottle, and we prove Theorem 1.3. In Section 5.1, we exhibit an algebraic section of the Fadell-Neuwirth short exact sequence (1.2) for the Klein bottle, and we determine the centre of $B_{n}(\mathbb{K})$. These results will be used in the rest of the section, and we believe that they are interesting in their own right. In Section 5.2, we focus on the case $n=2$, and in Theorems 5.4 and 5.13, we describe the lower central and the lower \mathbb{F}_{2}-linear central filtration respectively of $P_{2}(\mathbb{K})$ in an explicit manner. In Section 5.4, we study the lower central series of $P_{n}(\mathbb{K})$, if $n \geq 3$, and in Section 5.5 , we complete the proof of Theorem 1.3 by extending our results to $B_{n}(\mathbb{K})$.
5.1. A section in the case of the Klein bottle. As we mentioned previously, the FadellNeuwirth short exact sequence (1.2) admits a section for geometric reasons. We start by giving an explicit section.

Proposition 5.1. In terms of the presentation of $P_{n}(\mathbb{K})$ given by Theorem 2.1, the map s: $P_{n}(\mathbb{K}) \longrightarrow$ $P_{n+1}(\mathbb{K})$ defined on the generators of $P_{n}(\mathbb{K})$ by:

$$
\left\{\begin{aligned}
a_{i} & \longmapsto a_{i}, i=1, \ldots, n-1 \\
b_{i} & \longmapsto b_{i}, i=1, \ldots, n-1 \\
C_{i, j} & \longmapsto C_{i, j}, 1 \leq i<j \leq n-1 \\
C_{i, n} & \longmapsto C_{i, n} C_{i, n+1} C_{n, n+1}^{-1}, 1 \leq i \leq n-1 \\
a_{n} & \longmapsto a_{n} a_{n+1} \\
b_{n} & \longmapsto b_{n+1} b_{n}
\end{aligned}\right.
$$

extends to an algebraic section for the Fadell-Neuwirth short exact sequence arising from equation (1.2):

$$
\begin{equation*}
1 \longrightarrow \pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right) \longrightarrow P_{n+1}(\mathbb{K}) \xrightarrow{p_{*}} P_{n}(\mathbb{K}) \longrightarrow 1 \tag{5.1}
\end{equation*}
$$

The geometric idea behind this section is to make use of the non-vanishing vector field on \mathbb{K} to duplicate the last string of the elements of $P_{n}(\mathbb{K})$.

Proof of Proposition 5.1. In what follows, the numbers (1)-(8) refer to the relations of $P_{n}(\mathbb{K})$ given by Theorem 2.1. To prove the proposition, it suffices to check that the images under s of these relations remain valid in $P_{n+1}(\mathbb{K})$. We do this for relations (2) and (6). For relation (2), which is $a_{i}^{-1} b_{n} a_{i}=b_{n} a_{n} C_{i, n}^{-1} C_{i+1, n} a_{n}^{-1}$, we consider two cases.

- If $i+1=n$ then:

$$
\begin{aligned}
s\left(a_{i}^{-1} b_{n} a_{i}\right) & =a_{i}^{-1} \underbrace{b_{n+1} b_{n}}_{(6)} a_{i}=a_{i}^{-1}(b_{n} b_{n+1} \underbrace{\left.C_{n, n+1}\right) a_{i}}_{(3)}=\underbrace{a_{i}^{-1} b_{n} a_{i}}_{(2)} \underbrace{a_{i}^{-1} b_{n+1}\left(a_{i}\right.}_{(2)} C_{n, n+1}) \\
& =(b_{n} a_{n} C_{i, n}^{-1} \underbrace{\left.a_{n}^{-1}\right)\left(b_{n+1}\right.}_{(2)} a_{n+1} C_{i, n+1}^{-1} C_{n, n+1} a_{n+1}^{-1}) C_{n, n+1} \\
& =b_{n} a_{n} \underbrace{C_{i, n}^{-1}\left(b_{n+1} a_{n+1}\right.}_{(3) \text { and (8) }} C_{n, n+1}^{-1} \underbrace{\left.a_{n+1}^{-1} a_{n}^{-1}\right) a_{n+1}}_{(1)} C_{i, n+1}^{-1} C_{n, n+1} a_{n+1}^{-1} C_{n, n+1}
\end{aligned}
$$

$$
\begin{aligned}
& =b_{n} \underbrace{a_{n}\left(b_{n+1}\right.}_{(* *)} a_{n+1} C_{i, n}^{-1}) C_{n, n+1}^{-1} \underbrace{\left(a_{n}^{-1}\right) C_{i, n+1}^{-1} C_{n, n+1}}_{(*)} a_{n+1}^{-1} C_{n, n+1} \\
& =b_{n}\left(b_{n+1} C_{n, n+1} a_{n}\right) a_{n+1} C_{i, n}^{-1} \underbrace{C_{n, n+1}^{-1}\left(C_{n, n+1}\right.}_{(3)} C_{i, n+1}^{-1} \underbrace{=b_{n} b_{n+1} C_{n, n+1} \cdot a_{n} a_{n+1} \cdot \underbrace{C_{i, n}^{-1} C_{i, n+1}^{-1}\left(C_{n, n+1}\right.}_{(4)} a_{n}^{-1} a_{n+1}^{-1})}_{\left.n_{n}^{-1}\right) a_{n+1}^{-1} C_{n, n+1}} \\
& =b_{n} b_{n+1} C_{n, n+1} \cdot a_{n} a_{n+1} \cdot\left(C_{n, n+1}^{\left.C_{i, n}^{-1} C_{i, n+1}^{-1}\right) \cdot a_{n}^{-1} a_{n+1}^{-1}=s\left(b_{n} a_{n} C_{i, n}^{-1} a_{n}^{-1}\right),}\right.
\end{aligned}
$$

where $(*)($ resp. $(* *))$ is a consequence of relation (3) (resp. relations (2) and (3)).

- If $i+1<n$ then:

$$
\begin{aligned}
s\left(a_{i}^{-1} b_{n} a_{i}\right) & =a_{i}^{-1} \underbrace{b_{n+1} b_{n}}_{(6)} a_{i}=a_{i}^{-1}(b_{n} b_{n+1} \underbrace{\left.C_{n, n+1}\right) a_{i}}_{(3)}=\underbrace{a_{i}^{-1} b_{n} a_{i}}_{(2)} \underbrace{a_{i}^{-1} b_{n+1}\left(a_{i} C_{n, n+1}\right)}_{(2)} \\
& =(b_{n} a_{n} C_{i, n}^{-1} C_{i+1, n}^{-1} \underbrace{\left.a_{n}^{-1}\right)\left(b_{n+1}\right.}_{(2)} a_{n+1}^{\left.C_{i, n+1}^{-1} C_{i+1, n+1} a_{n+1}^{-1}\right) C_{n, n+1}} \\
& =b_{n} a_{n} \underbrace{C_{i, n}^{-1} C_{i+1, n}\left(b_{n+1} a_{n+1}\right.}_{(3) \text { and (8)}} C_{n, n+1}^{-1} \underbrace{\left.a_{n+1}^{-1} a_{n}^{-1}\right) a_{n+1}}_{(1)} C_{i, n+1}^{-1} C_{i+1, n+1} a_{n+1}^{-1} C_{n, n+1} \\
& =b_{n} \underbrace{a_{n}\left(b_{n+1}\right.}_{(* *)} a_{n+1} C_{i, n}^{-1} C_{i+1, n}) C_{n, n+1}^{-1} \underbrace{\left(a_{n}^{-1}\right) C_{i, n+1}^{-1} C_{i+1, n+1}}_{(*)} a_{n+1}^{-1} C_{n, n+1} \\
& =b_{n}\left(b_{n+1} C_{n, n+1} a_{n}\right) a_{n+1} C_{i, n}^{-1} C_{i+1, n} \underbrace{C_{n, n+1}^{-1}\left(C_{n, n+1}\right.} C_{i, n+1}^{-1} C_{i+1, n+1} C_{n, n+1}^{-1} \underbrace{\left.a_{n}^{-1}\right) a_{n+1}^{-1} C_{n, n+1}}_{(3)} \\
& =b_{n} b_{n+1} C_{n, n+1} a_{n} a_{n+1} C_{i, n}^{-1} \underbrace{C_{i+1, n} C_{i, n+1}^{-1}}_{(4)} C_{i+1, n+1} \underbrace{\left.C_{n}^{-1} a_{n+1}^{-1}\right)}_{C_{n, n+1}^{-1}\left(C_{n, n+1}\right.} \\
& =b_{n} b_{n+1} C_{n, n+1} \cdot a_{n} a_{n+1} \cdot C_{i, n}^{-1}\left(C_{i, n+1}^{-1} C_{i+1, n}\right) C_{i+1, n+1} \cdot a_{n}^{-1} a_{n+1}^{-1}=s\left(b_{n} a_{n} C_{i, n}^{-1} C_{i+1, n} a_{n}^{-1}\right),
\end{aligned}
$$

where $(*)$ is a consequence of relation (3), similar to that in the case $i+1=n$, and $(* *)$ is the same relation as in the case $i+1=n$.
Thus s respects relation (2). For relation (6), which is $b_{n} b_{i}=b_{i} b_{n} C_{i, n} C_{i+1, n}^{-1}$, we also consider two cases.

- if $i+1=n$ then:

$$
\begin{aligned}
s\left(b_{n} b_{i}\right) & =\underbrace{b_{n+1} b_{n}}_{(6)} b_{i}=(b_{n} b_{n+1} \underbrace{\left.C_{n, n+1}\right) b_{i}}_{(8)}=b_{n} \underbrace{b_{n+1}\left(b_{i}\right.}_{(6)} C_{n, n+1})=\underbrace{b_{n}\left(b_{i}\right.}_{(6)} b_{n+1} C_{i, n+1} C_{n, n+1}^{-1}) C_{n, n+1} \\
& =(b_{i} b_{n} \underbrace{\left.C_{i, n}\right) b_{n+1}}_{(8)} C_{i, n+1}=b_{i} b_{n}\left(b_{n+1} C_{i, n}\right) C_{i, n+1}=b_{i} b_{n} b_{n+1}(C_{n, n+1} \underbrace{\left.C_{n, n+1}^{-1}\right) C_{i, n} C_{i, n+1}}_{(4)} \\
& =b_{i} b_{n} b_{n+1} C_{n, n+1}\left(C_{i, n} C_{i, n+1} C_{n, n+1}^{-1}\right)=s\left(b_{i} b_{n} C_{i, n}\right) .
\end{aligned}
$$

- if $i+1<n$:

$$
\begin{aligned}
s\left(b_{n} b_{i}\right) & =\underbrace{b_{n+1} b_{n}}_{(6)} b_{i}=(b_{n} b_{n+1} \underbrace{\left.C_{n, n+1}\right) b_{i}}_{(8)}=b_{n} \underbrace{b_{n+1}\left(b_{i}\right.}_{(6)} C_{n, n+1})=\underbrace{b_{n}\left(b_{i}\right.}_{(6)} b_{n+1} C_{i, n+1} C_{i+1, n+1}^{-1}) C_{n, n+1} \\
& =(b_{i} b_{n} \underbrace{\left.C_{i, n} C_{i+1, n}^{-1}\right) b_{n+1}}_{(8)} C_{i, n+1} C_{i+1, n+1}^{-1} C_{n, n+1}=b_{i} b_{n}(b_{n+1} C_{i, n} \underbrace{\left.C_{i+1, n}^{-1}\right) C_{i, n+1}}_{(4)} C_{i+1, n+1}^{-1} C_{n, n+1}
\end{aligned}
$$

$$
\begin{aligned}
& =b_{i} b_{n} b_{n+1}(C_{n, n+1} \underbrace{\left.C_{n, n+1}^{-1}\right) C_{i, n}\left(C_{i, n+1}\right.}_{(4)} \underbrace{\left.C_{i+1, n}^{-1}\right) C_{i+1, n+1}^{-1} C_{n, n+1}}_{(4)} \\
& =b_{i} b_{n} b_{n+1} C_{n, n+1}\left(C_{i, n} C_{i, n+1} C_{n, n+1}^{-1}\right)\left(C_{n, n+1} C_{i+1, n+1}^{-1} C_{i+1, n}^{-1}\right)=s\left(b_{i} b_{n} C_{i, n} C_{i+1, n}^{-1}\right) .
\end{aligned}
$$

Thus s respects relation (6). The computations for the other relations are similar, and are left to the reader.

As we mentioned at the end of the introduction, for any compact surface M and for all $n \in \mathbb{N}$, the centre $Z\left(B_{n}(M)\right)$ of $B_{n}(M)$ is known, with the exception of the Klein bottle and the Möbius band. The section given by Proposition 5.1 allows us to determine $Z\left(B_{n}(M)\right)$ if $M=\mathbb{K}$. For the sake of completeness, in Proposition A1 of the Appendix of this paper, we also compute the centre of the braid groups of the Möbius band.

Proposition 5.2. For all $n \in \mathbb{N}$, the centre of $B_{n}(\mathbb{K})$ is equal to $\left\langle\left(b_{n} \cdots b_{1}\right)^{2}\right\rangle$, and is isomorphic to \mathbb{Z}.

Proof. The idea of the proof is similar to that of [31, Proposition 4.2]. Let $\beta_{n}=b_{n} \cdots b_{1}$, and let $Z_{n}=\left\langle\beta_{n}^{2}\right\rangle$. We will show by induction on n that $Z_{n}=Z\left(B_{n}(\mathbb{K})\right)$. Arguing as in [31, Proposition 4.2, step 4], we see that $Z\left(B_{n}(\mathbb{K})\right) \subset P_{n}(\mathbb{K})$, so $Z\left(B_{n}(\mathbb{K})\right) \subset Z\left(P_{n}(\mathbb{K})\right)$. Thus it suffices to show that $Z\left(P_{n}(\mathbb{K})\right)=Z_{n}$ and $Z_{n} \subset Z\left(B_{n}(\mathbb{K})\right)$. We prove that $Z\left(P_{n}(\mathbb{K})\right)=Z_{n}$ by induction on n. If $n=1$, by Theorem 2.1, we have:

$$
\begin{equation*}
\pi_{1}(\mathbb{K})=\left\langle a_{1}, b_{1}: a_{1} b_{1}=b_{1} a_{1}^{-1}\right\rangle \tag{5.2}
\end{equation*}
$$

and it is well known that $Z\left(\pi_{1}(\mathbb{K})\right)=Z_{1}$. Now suppose by induction that $Z\left(P_{n-1}(\mathbb{K})\right)=Z_{n-1}$ for some $n \geq 2$.

We first prove that $Z\left(P_{n}(\mathbb{K})\right) \subset Z_{n}$ in a manner similar to that of [31, Proposition 4.2, step 3]. Let $g \in Z\left(P_{n}(\mathbb{K})\right)$, and consider the Fadell-Neuwirth short exact sequence arising from (1.2):

$$
1 \longrightarrow \pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}\right) \longrightarrow P_{n}(\mathbb{K}) \xrightarrow{p_{*}} P_{n-1}(\mathbb{K}) \longrightarrow 1
$$

Since p_{*} is surjective, $p_{*}(g) \in Z\left(P_{n-1}(\mathbb{K})\right)=Z_{n-1}$, and since $p_{*}\left(Z_{n}\right)=Z_{n-1}$, there exists $h \in$ Z_{n} such that $p_{*}(h)=p_{*}(g)$. If $g^{\prime}=g h^{-1}$ then g^{\prime} belongs to $Z\left(P_{n}(\mathbb{K})\right)$ and to the free group $\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}\right)$ by exactness. Hence $g^{\prime} \in Z\left(\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}\right)\right)=\{1\}$, so $g^{\prime}=1$, and thus $g=h \in Z_{n}$, which shows that $Z\left(P_{n}(\mathbb{K})\right) \subset Z_{n}$.

Still under the above induction hypothesis, we now prove that $Z_{n} \subset Z\left(P_{n}(\mathbb{K})\right)$. Using the section $s: P_{n-1}(\mathbb{K}) \longrightarrow P_{n}(\mathbb{K})$ given by Proposition 5.1, we have $s\left(\beta_{n-1}^{2}\right)=\beta_{n}^{2}$. By the induction hypothesis, $\beta_{n-1}^{2} a_{i}=a_{i} \beta_{n-1}^{2}$ and $\beta_{n-1}^{2} b_{i}=b_{i} \beta_{n-1}^{2}$ for all $1 \leq i \leq n-1$, and $\beta_{n-1}^{2} C_{i, j}=C_{i, j} \beta_{n-1}^{2}$ for all $1 \leq i<j \leq n-1$ in $P_{n-1}(\mathbb{K})$. Taking the image of both sides of these equations by s, we obtain the following relations:

$$
\begin{cases}\beta_{n}^{2} a_{i}=a_{i} \beta_{n}^{2} \text { and } \beta_{n}^{2} b_{i}=b_{i} \beta_{n}^{2} & \text { if } 1 \leq i<n-1 \tag{5.3}\\ \beta_{n}^{2} \cdot a_{n-1} a_{n}=a_{n-1} a_{n} \cdot \beta_{n}^{2} \text { and } \beta_{n}^{2} \cdot b_{n} b_{n-1}=b_{n} b_{n-1} \cdot \beta_{n}^{2} & \text { if } i=n-1,\end{cases}
$$

and

$$
\begin{cases}\beta_{n}^{2} C_{i, j}=C_{i, j} \beta_{n}^{2} & \text { if } 1 \leq i<j<n-1 \tag{5.4}\\ \beta_{n}^{2} . C_{i, n-1} C_{i, n} C_{n-1, n}^{-1}=C_{i, n-1} C_{i, n} C_{n-1, n}^{-1} . \beta_{n}^{2} & \text { if } 1 \leq i<j=n-1\end{cases}
$$

Let us prove that a_{n} and b_{n} commute with β_{n}^{2}, from which it will follow from (5.3) that β_{n}^{2} commutes with a_{i} and b_{i} for all $1 \leq i \leq n$. Using relations (6)-(8) of Theorem 2.1, we have:

$$
\begin{align*}
C_{1, n} a_{n}^{-1} b_{i} & =C_{i+1, n} b_{i} C_{i, n}^{-1} C_{1, n} a_{n}^{-1} \tag{5.5}\\
b_{n} C_{i+1} b_{i} & =b_{i} b_{n} C_{i, n} \tag{5.6}
\end{align*}
$$

for all $i=1, \ldots, n-1$. To prove relation (5.5), notice that by relations (7) and (8) we have:

$$
b_{i}^{-1} a_{n} b_{i}=a_{n} \underbrace{b_{n}\left(C_{i, n} C_{i+1, n}^{-1}\right)^{-1} b_{n}^{-1}}_{(8)}=a_{n}\left(C_{i+1, n}^{-1} b_{i}^{-1} C_{i, n} b_{i}\right),
$$

and taking the inverse of both sides, it follows that $a_{n}^{-1} b_{i}=C_{i, n}^{-1} b_{i} C_{i+1, n} a_{n}^{-1}$. We thus obtain:

$$
\begin{aligned}
C_{1, n} \underbrace{a_{n}^{-1} b_{i}} & =C_{1, n}\left(C_{i, n}^{-1} b_{i} C_{i+1, n} a_{n}^{-1}\right)=(b_{i} \underbrace{\left.b_{i}^{-1}\right) C_{1, n}\left(b_{i}\right.}_{(8)} \underbrace{\left.b_{i}^{-1}\right) C_{i, n}^{-1} b_{i}}_{(8)} C_{i+1, n} a_{n}^{-1} \\
& =\underbrace{b_{i}\left(C_{i+1}\right.}_{(8)} C_{i, n}^{-1} C_{1, n} b_{n} C_{i+1, n} C_{i, n}^{-1} b_{n}^{-1})\left(b_{n} C_{i, n} C_{i+1, n}^{-1} b_{n}^{-1} C_{i+1, n}^{-1}\right) C_{i+1, n} a_{n}^{-1} \\
& =\left(C_{i+1, n} b_{i}\right) C_{i, n}^{-1} C_{1, n} a_{n}^{-1} .
\end{aligned}
$$

To prove relation (5.6), one may use relation (6) and the fact that b_{i} commutes with $C_{i+1, n}$ by relation (8). We now claim that:

$$
a_{n} \beta_{n}=b_{n} \cdots b_{i+1} C_{i+1, n}^{-1} C_{1, n} a_{n}^{-1} b_{i} b_{i-1} \cdots b_{1} \text { and } b_{n} \beta_{n}=b_{n} \cdots b_{i+1} b_{n} C_{i+1, n} b_{i} \cdots b_{1}
$$

for all $i=0, \ldots, n-1$. We shall prove the claim by reverse induction on i. First, we have $a_{n} \beta_{n}=a_{n}\left(b_{n} b_{n-1} \cdots b_{1}\right) \stackrel{(5)}{=}\left(b_{n} C_{1, n} a_{n}^{-1}\right) b_{n-1} \cdots b_{1}$ and $b_{n} \beta_{n}=b_{n} b_{n} \cdots b_{1}$, so the claim is valid if $i=n-1$. Suppose that it holds for some $1 \leq i \leq n-1$. Then:

$$
\begin{aligned}
a_{n} \beta_{n} & =b_{n} \cdots b_{i+1} C_{i+1, n}^{-1} C_{1, n} a_{n}^{-1} b_{i} b_{i-1} \cdots b_{1} \stackrel{(5.5)}{=} b_{n} \cdots b_{i+1} C_{i+1, n}^{-1} C_{i+1, n} b_{i} C_{i, n}^{-1} C_{1, n} a_{n}^{-1} b_{i-1} \cdots b_{1} \\
& =b_{n} \cdots b_{i+1} b_{i} C_{i, n}^{-1} C_{1, n} a_{n}^{-1} b_{i-1} \cdots b_{1}, \text { and } \\
b_{n} \beta_{n} & =b_{n} \cdots b_{i+1} b_{n} C_{i+1, n} b_{i} \cdots b_{1} \stackrel{(5.6)}{=} b_{n} \cdots b_{i+1} b_{i} b_{n} C_{i, n} b_{i-1} \cdots b_{1}
\end{aligned}
$$

so the claim holds. Taking $i=0$, we obtain $a_{n} \beta_{n}=\beta_{n} a_{n}^{-1}$ and $b_{n} \beta_{n}=\beta_{n} b_{n} C_{1, n}$. Hence $a_{n} \beta_{n}^{2}=$ $\beta_{n} a_{n}^{-1} \beta_{n}=\beta_{n}^{2} a_{n}$, and applying (5) with $i=n$ twice, we obtain:

$$
b_{n} \beta_{n}^{2}=\beta_{n} b_{n} C_{1, n} \beta_{n}=\beta_{n} a_{n} b_{n} a_{n} \beta_{n}=\beta_{n}^{2} a_{n}^{-1} b_{n} C_{1, n} a_{n}^{-1}=\beta_{n}^{2} b_{n} .
$$

Thus β_{n}^{2} commutes with a_{n} and b_{n}, and so with a_{i} and b_{i} for all $i \in\{1, \ldots, n\}$. Finally, by relation (5), $C_{1, n}=b_{n}^{-1} a_{n} b_{n} a_{n}$ and $C_{i+1, n}=C_{i, n} a_{n}^{-1} b_{n}^{-1} a_{i}^{-1} b_{n} a_{i} a_{n}$ by relation (2). Since β_{n}^{2} commutes with a_{i} and b_{i} for all $1 \leq i \leq n$, it follows that β_{n}^{2} commutes with $C_{1, n}$ by relation (5), and by induction that β_{n}^{2} commutes with $C_{i, n}$ for all $1 \leq i<n$. So by (5.4), β_{n}^{2} commutes with $C_{i, j}$ for all $1 \leq i<j \leq n$, and therefore commutes with all of the elements of a generating set of $P_{n}(\mathbb{K})$, hence $Z_{n}=Z\left(P_{n}(\mathbb{K})\right)$.

To complete the proof of the proposition, it remains to show that $Z_{n} \subset Z\left(B_{n}(\mathbb{K})\right)$. To do so, from above, it suffices to prove that σ_{i} commutes with β_{n}^{2} for all $i=1, \ldots, n-1$. One may see by Figure 2 that $\sigma_{i}^{2}=C_{i, i+1}$. Further:

$$
\sigma_{i}^{-1} b_{j} \sigma_{i}= \begin{cases}b_{i+1} \sigma_{i}^{2} & \text { if } j=i \tag{5.7}\\ \sigma_{i}^{-2} b_{i} & \text { if } j=i+1 \\ b_{j} & \text { otherwise }\end{cases}
$$

The case $j=i$ is illustrated in Figure 4. If $j=i+1$ then $\sigma_{i}^{-1} b_{i+1} \sigma_{i}=\sigma_{i}^{-1} \cdot \sigma_{i}^{-1} b_{i} \sigma_{i} . \sigma_{i}^{-2} \cdot \sigma_{i}=\sigma_{i}^{-2} b_{i}$ using the case $j=i$. For $i=1, \ldots, n-1$, using (5.7) and relation (6) of Theorem 2.1, we have:

Figure 4. The relation $\sigma_{i}^{-1} b_{i} \sigma_{i}=b_{i+1} \sigma_{i}^{2}$.

$$
\sigma_{i}^{-1}\left(b_{n} \cdots b_{1}\right) \sigma_{i}=b_{n} \cdots b_{i+2} \cdot C_{i, i+1}^{-1} \underbrace{b_{i} \cdot b_{i+1} C_{i, i+1}} \cdot b_{i-1} \cdots b_{1}=C_{i, i+1}^{-1} b_{n} \cdots b_{1}=\sigma_{i}^{-2} b_{n} \cdots b_{1},
$$

from which it follows that $\left(b_{n} \cdots b_{1}\right)^{2} \sigma_{i}=\sigma_{i}\left(b_{n} \cdots b_{1}\right)^{2}$ as required.
Remark 5.3. For $n=2$, we modify slightly the presentation of $P_{2}(\mathbb{K})$ given by Theorem 2.1 by removing the generator $C_{1,2}$ using relation (5), so $C_{1,2}=b_{2}^{-1} a_{2} b_{2} a_{2}$. Hence $P_{2}(\mathbb{K})$ is generated by a_{1}, a_{2}, b_{1} and b_{2}, subject to the relations:
(1) $a_{1}^{-1} a_{2} a_{1}=a_{2}$.
(2) $a_{1}^{-1} b_{2} a_{1}=a_{2}^{-1} b_{2} a_{2}^{-1}$.
(3) $b_{1}^{-1} a_{2} b_{1}=a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} a_{2}^{-1}$.
(4) $b_{1}^{-1} b_{2} b_{1}=a_{2} b_{2} a_{2}$.
(5) $b_{2}^{-1} a_{2} b_{2} a_{2}=b_{1} a_{1}^{-1} b_{1}^{-1} a_{1}^{-1}$.

Using Proposition 5.1 and the Fadell-Neuwirth short exact sequence (5.1), $P_{n+1}(\mathbb{K})$ may be written as a semi-direct product of the free group $\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right)$ by $s\left(P_{n}(\mathbb{K})\right)$ for all $n \in \mathbb{N}$. In particular, if $n=1$ then:

$$
\begin{equation*}
P_{2}(\mathbb{K}) \cong \pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}\right\}\right) \rtimes_{\varphi} s\left(P_{1}(\mathbb{K})\right) \tag{5.8}
\end{equation*}
$$

where $\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}\right\}\right)=\left\langle a_{2}, b_{2}\right\rangle$ is a free group of rank 2 ,

$$
s\left(P_{1}(\mathbb{K})\right)=\left\langle a_{1} a_{2}, b_{2} b_{1}:\left(b_{2} b_{1}\right)\left(a_{1} a_{2}\right)=\left(a_{1} a_{2}\right)^{-1}\left(b_{2} b_{1}\right)\right\rangle
$$

by (5.2), and where the action $\varphi: s\left(P_{1}(\mathbb{K})\right) \longrightarrow \operatorname{Aut}\left(\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}\right\}\right)\right)$ is given by:

$$
\left\{\begin{align*}
\varphi\left(a_{1} a_{2}\right): & : \begin{array}{l}
a_{2} \longmapsto a_{2} \\
b_{2} \longmapsto a_{2}^{-2} b_{2}
\end{array} \tag{5.9}\\
\varphi\left(b_{2} b_{1}\right): & : \begin{array}{l}
a_{2} \longmapsto a_{2}^{-1} \\
b_{2} \longmapsto a_{2} b_{2} a_{2},
\end{array}
\end{align*}\right.
$$

using Remark 5.3.
5.2. The lower central series of $P_{2}(\mathbb{K})$. In this section, we use Theorem 1.1 to calculate explicitly the lower central series of $P_{2}(\mathbb{K})$. This will enable us to prove that $P_{2}(\mathbb{K})$ is residually nilpotent.

Theorem 5.4. Let $n \geq 2$. With the notation of Theorem 2.1, we have:

$$
\Gamma_{n}\left(P_{2}(\mathbb{K})\right)=\left\langle\left\langle a_{2}^{2^{n-1}}, x^{2^{n-i}}: x \in \Gamma_{i}\left(\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}\right\}\right)\right), 2 \leq i \leq n\right\rangle\right\rangle_{\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}\right\}\right)} \rtimes_{\varphi}\left\langle\left(a_{1} a_{2}\right)^{2^{n-1}}\right\rangle
$$

where φ is as defined in equation (5.9). Consequently, $P_{2}(\mathbb{K})$ is residually nilpotent.
The idea of the proof is to apply Theorem $1.1(1)$ to the semi-direct product structure of $P_{2}(\mathbb{K})$ given by (5.8). From now on, we shall make use of the notation of that theorem, taking $H=$ $\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}\right\}\right), G=s\left(P_{1}(\mathbb{K})\right)$ and $P_{2}(\mathbb{K})=H \rtimes_{\varphi} G$. In the lemmas that follow, we first compute the subgroups K_{n}, H_{n} and L_{n} for these choices of G and H, and in Proposition 5.12, we calculate the subgroup L_{n}, which will enable us to prove Theorem 5.4. We first need to know the lower central series of $P_{1}(\mathbb{K})$. Applying Theorem 1.1 to the semi-direct product structure $\left\langle a_{1}\right\rangle \rtimes\left\langle b_{1}\right\rangle$ of $\pi_{1}(\mathbb{K})$ given by (5.2), it is straightforward to see that $K_{2}=H_{2}=L_{2}=\left\langle a_{1}^{2}\right\rangle$, and if $n \geq 3, K_{n}=\{1\}$ and $H_{n}=L_{n}=\left\langle a_{1}^{2^{n-1}}\right\rangle$, therefore the lower central series of $s\left(P_{1}(\mathbb{K})\right)$ is given by:

$$
\begin{equation*}
\Gamma_{n}\left(s\left(P_{1}(\mathbb{K})\right)\right)=\left\langle\left(a_{1} a_{2}\right)^{2^{n-1}}\right\rangle \tag{5.10}
\end{equation*}
$$

for all $n>1$. We now turn to the case of $P_{2}(\mathbb{K})$. We first determine K_{n}.
Lemma 5.5. With the notation of Theorem 1.1, and taking $H=\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}\right\}\right), G=s\left(P_{1}(\mathbb{K})\right)$ and $P_{2}(\mathbb{K})=H \rtimes_{\varphi} G$, the subgroup K_{n} is equal to $\left\langle\left\langle a_{2}^{2}, \Gamma_{2}(H)\right\rangle\right\rangle_{H}$ if $n=2$, and to $\left\langle\left\langle a_{2}^{2^{n-1}}\right\rangle\right\rangle_{H}$ if $n \geq 3$.

Proof. First suppose that $n=2$. By (5.9), we have:

$$
\left\{\begin{array}{l}
\varphi\left(a_{1} a_{2}\right)\left(a_{2}\right) \cdot a_{2}^{-1}=1 \tag{5.11}\\
\varphi\left(a_{1} a_{2}\right)\left(b_{2}\right) \cdot b_{2}^{-1}=\varphi\left(b_{2} b_{1}\right)\left(a_{2}\right) \cdot a_{2}^{-1}=a_{2}^{-2} \\
\varphi\left(b_{2} b_{1}\right)\left(b_{2}\right) \cdot b_{2}^{-1}=a_{2} b_{2} a_{2} b_{2}^{-1}=a_{2}^{2}\left[a_{2}^{-1}, b_{2}\right]
\end{array}\right.
$$

and so $\left\{a_{2}^{2},\left[a_{2}^{-1}, b_{2}\right]\right\} \subset K_{2}$. Since K_{2} is normal in H by Lemma 3.3, $\left\langle\left\langle a_{2}^{2},\left[a_{2}^{-1}, b_{2}\right]\right\rangle\right\rangle_{H}$ is a subgroup of K_{2}, and therefore $\left\langle\left\langle a_{2}^{2}, \Gamma_{2}(H)\right\rangle\right\rangle_{H} \subset K_{2}$ because $\Gamma_{2}(H)=\left\langle\left\langle\left[a_{2}^{-1}, b_{2}\right]\right\rangle\right\rangle_{H}$. For the other inclusion, (5.11) implies that $\varphi(g)(h) \cdot h^{-1} \in\left\langle\left\langle a_{2}^{2}, \Gamma_{2}(H)\right\rangle\right\rangle_{H}$ for all h (resp. all g) belonging to the generating set $\left\{a_{2}, b_{2}\right\}$ (resp. $\left\{a_{1} a_{2}, b_{2} b_{1}\right\}$) of H (resp. of G). The inclusion $K_{2} \subset\left\langle\left\langle a_{2}^{2}, \Gamma_{2}(H)\right\rangle_{H}\right.$ then follows from Lemma 3.4(1). This proves the result for $n=2$.

Now assume that $n \geq 3$. Then $\Gamma_{n-1}(G)=\left\langle\left(a_{1} a_{2}\right)^{2^{n-2}}\right\rangle$ by (5.10). Using (5.9), we have $\varphi\left(\left(a_{1} a_{2}\right)^{2^{n-2}}\right)\left(a_{2}\right) \cdot a_{2}^{-1}=1$ and:

$$
\varphi\left(\left(a_{1} a_{2}\right)^{2}\right)\left(b_{2}\right)=\varphi\left(a_{1} a_{2}\right)\left(a_{2}^{-2} b_{2}\right)=a_{2}^{-2}\left(a_{2}^{-2} b_{2}\right)=a_{2}^{-4} b_{2}
$$

Suppose by induction that $\varphi\left(\left(a_{1} a_{2}\right)^{j}\right)\left(b_{2}\right)=a_{2}^{-2 j} b_{2}$ for some $j \geq 2$. Then:

$$
\varphi\left(\left(a_{1} a_{2}\right)^{j+1}\right)\left(b_{2}\right)=\varphi\left(a_{1} a_{2}\right) \varphi\left(\left(a_{1} a_{2}\right)^{j}\right)\left(b_{2}\right)=\varphi\left(a_{1} a_{2}\right)\left(a_{2}^{-2 j} b_{2}\right)=a_{2}^{-2 j}\left(a_{2}^{-2} b_{2}\right)=a_{2}^{-2(j+1)} b_{2}
$$

In particular, if $j=2^{n-2}$, we have $\varphi\left(\left(a_{1} a_{2}\right)^{2^{n-2}}\right)\left(b_{2}\right) \cdot b_{2}^{-1}=\left(a_{2}^{-2\left(2^{n-2}\right)} b_{2}\right) \cdot b_{2}^{-1}=a_{2}^{-2^{(n-1)}}$, and hence $\left\langle\left\langle a_{2}^{2^{n-1}}\right\rangle\right\rangle_{H} \subset K_{n}$. Conversely, taking $\widetilde{G}=\left\{\left(a_{1} a_{2}\right)^{2^{n-2}}\right\}$ and $\widetilde{H}=\left\{a_{2}, b_{2}\right\}$ in Lemma 3.4(1) and using (5.10), we obtain $K_{n} \subset\langle\langle Z\rangle\rangle_{H}$, where:

$$
Z=\left\{\varphi(g)(h) \cdot h^{-1}: g \in\left\{\left(a_{1} a_{2}\right)^{2^{n-2}}\right\}, h \in\left\{a_{2}, b_{2}\right\}\right\}=\left\{a_{2}^{-2^{(n-1)}}\right\}
$$

whence the inclusion $K_{n} \subset\left\langle\left\langle a_{2}^{2^{n-1}}\right\rangle\right\rangle_{H}$, and this proves the lemma.
If $\beta \in H$ then $\beta a_{2}^{2} \beta^{-1}=\left[\beta, a_{2}^{2}\right] a_{2}^{2} \in\left\langle a_{2}^{2}, \Gamma_{2}(H)\right\rangle$, and since $\Gamma_{2}(H)$ is normal in H, it follows that the subgroup $\left\langle a_{2}^{2}, \Gamma_{2}(H)\right\rangle$ is also normal in H, so $\left\langle a_{2}^{2}, \Gamma_{2}(H)\right\rangle=\left\langle\left\langle a_{2}^{2}, \Gamma_{2}(H)\right\rangle\right\rangle_{H}$. Using the relations $K_{2}=H_{2}$ and $\left[H, L_{1}\right]=\Gamma_{2}(H)$, it follows from Lemma 5.5 that:

$$
\begin{equation*}
L_{2}=\left\langle a_{2}^{2}, \Gamma_{2}(H)\right\rangle=\left\langle\left\langle a_{2}^{2},\left[a_{2}, b_{2}\right]\right\rangle\right\rangle_{H} \tag{5.12}
\end{equation*}
$$

Let $W_{2}=\widetilde{W}_{2}=L_{2}$, and for $n \geq 3$, define:

$$
\begin{align*}
& W_{n}=\left\langle\Gamma_{n}(H), x^{2}: x \in W_{n-1}\right\rangle \tag{5.13}\\
& \widetilde{W}_{n}=\left\langle\left\langle a_{2}^{2^{n-1}}, x^{2^{n-i}}: x \in \Gamma_{i}(H), 2 \leq i \leq n\right\rangle\right\rangle_{H} \tag{5.14}
\end{align*}
$$

Note that W_{n} is normal in H for all $n \geq 2$. This follows from the fact that $\Gamma_{n}(H)$ is normal in H for all $n \geq 2$ and arguing by induction on n as follows. If $n=2$ then $W_{2}=L_{2}$ by Lemma 3.3, so suppose that $n \geq 3$, and that W_{n-1} is normal in H. Then $h x h^{-1} \in W_{n-1}$ for all $x \in W_{n-1}$ and $h \in H$, thus $h \bar{x}^{2} h^{-1}=\left(h x h^{-1}\right)^{2} \in W_{n}$, and W_{n} is normal in H as claimed. If $x \in \Gamma_{i}(H)$ and $2 \leq i \leq n$, we will refer to the elements $a_{2}^{2^{n-1}}$ and $x^{2^{n-i}}$ as generators of \widetilde{W}_{n}. In order to prove Theorem 5.4, we will show in Proposition 5.12 that $L_{n}=W_{n}=\widetilde{W}_{n}$ for all $n \geq 2$. Supposing this to be the case, the following lemma implies that to determine the lower central series of $P_{2}(\mathbb{K})$ using Theorem 1.1, it is not necessary to calculate the subgroups H_{n}.
Lemma 5.6. Suppose that $L_{i}=W_{i}=\widetilde{W}_{i}$ for all $2 \leq i \leq n$. Then $H_{n+1} \subset\left\langle K_{n+1},\left[H, L_{n}\right]\right\rangle$. In particular, $L_{n+1}=\left\langle K_{n+1},\left[H, L_{n}\right]\right\rangle$.
Proof. We prove the given inclusion by induction on n. If $n=2$, using (5.9) notice that:

- $\varphi\left(a_{1} a_{2}\right)\left(a_{2}^{2}\right) a_{2}^{-2}=1$.
- $\varphi\left(b_{2} b_{1}\right)\left(a_{2}^{2}\right) a_{2}^{-2}=a_{2}^{-4} \in K_{3}$ by Lemma 5.5.
- $\varphi\left(a_{1} a_{2}\right)\left(\left[a_{2}, b_{2}\right]\right)\left[b_{2}, a_{2}\right]=\left[a_{2}^{-2}, a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} a_{2}^{-1}\right] \in\left[L_{2}, H\right]$ by (5.12).
- $\varphi\left(b_{2} b_{1}\right)\left(\left[a_{2}, b_{2}\right]\right)\left[b_{2}, a_{2}\right]=\underbrace{\left[b_{2}, a_{2}^{2}\right]}_{\in\left[H, L_{2}\right]} \underbrace{\left[a_{2},\left[a_{2}, b_{2}\right]\right]}_{\in \Gamma_{3}(H)} \in\left[L_{2}, H\right]$ by (5.12).

Using these calculations and the description of L_{2} given in (5.12), it follows from the first part of Lemma 3.4(2) and Lemma 5.5 that:

$$
H_{3}=\left\langle\left\langle\left[H, L_{2}\right], \varphi(g)(w) \cdot w^{-1}: g \in\left\{a_{1} a_{2}, b_{2} b_{1}\right\}, w \in\left\{a_{2}^{2},\left[a_{2}, b_{2}\right]\right\}\right\rangle\right\rangle_{H} \subset\left\langle K_{3},\left[H, L_{2}\right]\right\rangle
$$

which proves the result if $n=2$.
Now suppose that the given inclusion holds for $n-1$ for some $n \geq 3$, and assume that $L_{i}=$ $W_{i}=\widetilde{W}_{i}$ for all $2 \leq i \leq n$. Let $\varphi(g)(x) \cdot x^{-1}$ be an element of H_{n+1}, where $g \in G$ and $x \in L_{n}=$ $\left\langle K_{n},\left[H, L_{n-1}\right]\right\rangle$ by the induction hypothesis. We wish to show that $\varphi(g)(x) \cdot x^{-1} \in\left\langle K_{n+1},\left[H, L_{n}\right]\right\rangle$. By Lemma 3.4(1), we only need to check the following two possibilities:

- $x=a_{2}^{2^{n-1}}$. Then $x \in K_{n}$ by Lemma 5.5, $\varphi\left(a_{1} a_{2}\right)(x) \cdot x^{-1}=1$ and $\varphi\left(b_{2} b_{1}\right)(x) x^{-1}=a_{2}^{-2^{n}} \in$ K_{n+1} by Lemma 5.5 and (5.11).
- $x=[h, l] \in\left[H, L_{n-1}\right]$, where $h \in H$ and $l \in L_{n-1}$. Then $\varphi(g)([h, l])[h, l]^{-1}$ may be written in the following form:

$$
\begin{equation*}
(\varphi(g)(h) \cdot l \underbrace{\left[\left(\varphi(g)\left(l^{-1}\right) \cdot l\right)^{-1}, \varphi(g)\left(h^{-1}\right)\right]}_{\in\left[L_{n}, H\right]} l^{-1} \varphi(g)\left(h^{-1}\right)) h \underbrace{\left[\left(\varphi(g)\left(h^{-1}\right) \cdot h\right)^{-1}, l\right]}_{\in\left[L_{2}, L_{n-1}\right]} h^{-1} \tag{5.15}
\end{equation*}
$$

To complete the proof, it suffices to show that the subgroup $\left[L_{2}, L_{n-1}\right]$ is contained in $\left[H, L_{n}\right]$. To do so, first note that $\left[L_{2}, L_{n-1}\right]$ is normal in H because L_{j} is normal in H for all $j \geq 2$ by Lemma 3.3. Using the fact that $L_{2}=\left\langle a_{2}^{2}, \Gamma_{2}(H)\right\rangle$ by (5.12), it suffices to show that the following elements belong to $\left[H, L_{n}\right]$:

- $[[y, z], l] \in\left[\Gamma_{2}(H), L_{n-1}\right]$, where $y, z \in H$ and $l \in L_{n-1}$. Then:

$$
[[y, z], l]=y \underbrace{\left[z,\left[y^{-1}, l\right]\right]}_{\in\left[H, L_{n}\right]} y^{-1} . l y z \underbrace{\left[\left[z^{-1}, l^{-1}\right], y^{-1}\right]}_{\in\left[H, L_{n}\right]} z^{-1} y^{-1} l^{-1}
$$

because $\left[H, L_{n-1}\right] \subset L_{n}$. Thus $[[y, z], l] \in\left[H, L_{n}\right]$ because $\left[H, L_{n}\right]$ is a normal subgroup of H, and therefore $\left[\Gamma_{2}(H), L_{n-1}\right] \subset\left[H, L_{n}\right]$.

- $\left[a_{2}^{2}, l\right] \in\left[\left\langle a_{2}^{2}\right\rangle, L_{n-1}\right]$, where $l \in L_{n-1}$. Then using (3.2), we have:

$$
\begin{equation*}
\left[a_{2}^{2}, l\right]=\underbrace{\left[a_{2},\left[a_{2}, l\right]\right]}_{\in\left[H, L_{n}\right]}\left[a_{2}, l\right]^{2} \tag{5.16}
\end{equation*}
$$

since $\left[H, L_{n-1}\right] \subset L_{n}$. Further $\left[a_{2}, l\right]^{2} \in\left[H, L_{n}\right]$ because $l \in L_{n-1}=W_{n-1}$ by hypothesis, so $l^{2} \in W_{n}=L_{n}$, and

$$
\underbrace{\left[l^{2}, a_{2}\right]}_{\in\left[L_{n}, H\right]}=\underbrace{\left[l,\left[l, a_{2}\right]\right]}_{\in\left[H, L_{n}\right]}\left[l, a_{2}\right]^{2}
$$

by (3.2). So $\left[l, a_{2}\right]^{2} \in\left[H, L_{n}\right]$, and thus $\left[a_{2}^{2}, l\right] \in\left[H, L_{n}\right]$ by (5.16).
This shows that $\left[L_{2}, L_{n-1}\right] \subset\left[H, L_{n}\right]$, hence $H_{n+1} \subset\left\langle K_{n+1},\left[H, L_{n}\right]\right\rangle$ as desired, which concludes the proof of the first part of the statement. The second part follows from the first part and the definition of L_{n+1}.

In order to prove Proposition 5.12, we shall require a couple of intermediate results. Let A be either the empty set or a normal subgroup of H, and for $m \geq 1$, let:

$$
B_{m}=\left\langle\left[x_{1}, \ldots, x_{i}\right]^{2^{m-i-k}} \in \Gamma_{i}(H): \begin{array}{r}
\exists 1 \leq j_{1}<\cdots<j_{k} \leq i: x_{j_{1}}, \ldots, x_{j_{k}} \in A \\
0 \leq k \leq m-i \text { and } i=1, \ldots, m
\end{array}\right\rangle .
$$

For $1 \leq l \leq m$, let:

$$
\mathcal{E}_{l, m}=\left\langle\left[x_{1}, \ldots, x_{i}\right]^{2^{m-i-k}} \in \Gamma_{i}(H): \begin{array}{r}
\exists 1 \leq j_{1}<\cdots<j_{k} \leq i: x_{j_{1}}, \ldots, x_{j_{k}} \in A, \tag{5.17}\\
0 \leq k \leq m-i \text { and } l \leq i \leq m
\end{array}\right\rangle .
$$

In the case that $A=\varnothing$, we will denote the $\operatorname{subgroup} \mathcal{E}_{l, m}$ by $\widetilde{\mathcal{E}}_{l, m}$. This corresponds to taking $k=0$ in (5.17), so:

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{l, m}=\left\langle\left[x_{1}, \ldots, x_{i}\right]^{2^{m-i}} \in \Gamma_{i}(H): l \leq i \leq m\right\rangle . \tag{5.18}
\end{equation*}
$$

If $x=\left[x_{1}, \ldots, x_{i}\right] \in \Gamma_{i}(H)$, the elements $x^{2^{m-i-k}}\left(\right.$ resp. $\left.x^{2^{m-i}}\right)$ of $\mathcal{E}_{l, m}$ (resp. of $\left.\widetilde{\mathcal{E}}_{l, m}\right)$ given in (5.17) (resp. in (5.18)) will be termed generators of $\mathcal{E}_{l, m}$ (resp. of $\widetilde{\mathcal{E}}_{l, m}$). Note that $\Gamma_{m}(H)=\mathcal{E}_{m, m} \subset$ $\mathcal{E}_{l+1, m} \subset \mathcal{E}_{l, m} \subset \mathcal{E}_{1, m}=B_{m}$ by [27, Problem 3, Section 5.3, p. 297] for all $l=1, \ldots, m-1$, and that for all $1 \leq l \leq m, \mathcal{E}_{l, m}$ is normal in H, since if $h \in H$ and $x^{2^{m-i-k}}$ is a generator of $\mathcal{E}_{l, m}$, where $x=\left[x_{1}, \ldots, x_{i}\right] \in \Gamma_{i}(H)$, then $h\left[x_{1}, \ldots, x_{i}\right]^{2^{m-i-k}} h^{-1}=\left[h x_{1} h^{-1}, \ldots, h x_{i} h^{-1}\right]^{2^{m-i-k}} \in \mathcal{E}_{l, m}$ because A is normal in H or is empty. In particular, taking $A=\varnothing$, we have:

$$
\begin{equation*}
\Gamma_{m}(H)=\widetilde{\mathcal{E}}_{m, m} \subset \widetilde{\mathcal{E}}_{l+1, m} \subset \widetilde{\mathcal{E}}_{l, m} \subset \widetilde{\mathcal{E}}_{1, m}=B_{m} \tag{5.19}
\end{equation*}
$$

and that $\widetilde{\mathcal{E}}_{l, m}$ is normal in H for all $1 \leq l \leq m$.
Lemma 5.7. Let $y \in H$, let $m \geq 1$, and let $1 \leq i \leq m$. If $x=\left[x_{1}, \ldots, x_{i}\right]$ is an element of $\Gamma_{i}(H)$ for which $x^{2^{m-i-k}}$ is a generator of $\mathcal{E}_{i, m}$, where $0 \leq k \leq m-i$ (resp. $x^{2^{m-i}}$ is a generator of $\widetilde{\mathcal{E}}_{i, m}$), then:

$$
\begin{align*}
{\left[x^{2^{m-i-k}}, y\right] } & \equiv[x, y]^{2^{m-i-k}} \bmod \mathcal{E}_{i+1, m+1} \text { and } \tag{5.20}\\
{\left[x^{2^{m-i}}, y\right] } & \equiv[x, y]^{2 m-i} \bmod \widetilde{\mathcal{E}}_{i+1, m+1} \tag{5.21}
\end{align*}
$$

respectively.
Remark 5.8. Let $m \geq 1$, and let $1 \leq i \leq m$. Since $\mathcal{E}_{i+1, m+1} \subset B_{m+1}$ (resp. $\widetilde{\mathcal{E}}_{i+1, m+1} \subset \widetilde{\mathcal{E}}_{2, m+1} \subset$ \widetilde{W}_{m+1} by (5.14)), the congruence (5.20) (resp. (5.21)) is also valid modulo B_{m+1} (resp. modulo \widetilde{W}_{m+1}).

Proof. It suffices to prove (5.20), since then the congruence (5.21) follows by taking $A=\varnothing$. We will do so by induction on m. If $m=1$ then $i=1$ and $k=0$, and the congruence is in fact an equality. If $m=2$, we consider two cases:

- if $i=2$, or if $i=k=1$, then $x \in \Gamma_{2}(H)$, and the two sides of (5.20) are equal.
- if $i=1$ and $k=0$ then $x \in \Gamma_{1}(H)=H$. Thus $\left[x^{2}, y\right]=[x, x, y][x, y]^{2}$ by (3.2), and $[x, x, y] \in \Gamma_{3}(H)$, so $[x, x, y] \in \mathcal{E}_{2,3}$, and we obtain (5.20).
This proves the result if $m=2$. We now consider the general case.
Induction hypothesis 1: suppose that the congruence (5.20) holds for some $m \geq 1$. Let us show by induction that the result holds for $m+1$ i.e. if $1 \leq i \leq m+1, x \in \Gamma_{i}(H), x^{2^{m+1-i-k}}$ is a generator of $\mathcal{E}_{i, m+1}, 0 \leq k \leq m+1-i$ and $y \in H$, then:

$$
\begin{equation*}
\left[x^{2^{m+1-i-k}}, y\right] \equiv[x, y]^{2^{m+1-i-k}} \bmod \mathcal{E}_{i+1, m+2} \tag{5.22}
\end{equation*}
$$

This will be achieved by making a second induction hypothesis as follows.
Induction hypothesis 2: let $1 \leq i \leq m+1$ be such that:

$$
\begin{equation*}
\left[x^{2^{m+1-j-k}}, y\right] \equiv[x, y]^{2^{m+1-j-k}} \bmod \mathcal{E}_{j+1, m+2} \tag{5.23}
\end{equation*}
$$

for all $i \leq j \leq m+1$, where $x \in \Gamma_{j}(H), x^{2^{m+1-j-k}}$ is a generator of $\mathcal{E}_{j, m+1}, 0 \leq k \leq m+1-j$ and $y \in H$. If $i=m+1$ then (5.23) holds trivially. So suppose that (5.23) is valid for some $2 \leq i \leq m+1$, and let us prove by reverse induction on i that it also holds for $i-1$. By induction hypothesis 2 , it suffices to prove (5.23) for $j=i-1$. Let $y \in H$, and let $x=\left[x_{1}, \ldots, x_{i-1}\right] \in \Gamma_{i-1}(H)$, where $x^{2^{m+1-(i-1)-k}}$ is a generator of $\mathcal{E}_{i-1, m+1}$ and $0 \leq k \leq m+1-(i-1)$. Then $\left[x^{2^{(m+1)-(i-1)-k}}, y\right]=$
$\left[x^{2^{m+2-i-k}}, y\right]$. If $k=m+2-i$ then (5.23) is an equality. So assume that $0 \leq k \leq m+1-i$. By Proposition 3.1, $\left[x^{2^{(m+1)-(i-1)-k}}, y\right]$ is equal to:

$$
\begin{equation*}
\underbrace{\left[x, x, x^{2}, \ldots, x^{2^{m+1-i-k}}, y\right]\left[x, x^{2}, \ldots, x^{2^{m+1-i-k}}, y\right]^{2} \cdots\left[x^{2^{m-i-k}}, x^{2^{m+1-i-k}}, y\right]^{2}}_{(*)} \underbrace{\left.x^{2^{m+1-i-k}}, y\right]^{2}}_{(* *)} \tag{5.24}
\end{equation*}
$$

Using induction hypotheses 1 and 2 , we will first show that the expression $(* *)$ is congruent to $[x, y]^{2^{m+2-i-k}}$ modulo $\mathcal{E}_{i, m+2}$, and then that the expression $(*)$ belongs to $\mathcal{E}_{i, m+2}$, from which we will conclude by induction that $\left[x^{2^{n+2-i-k}}, y\right] \equiv[x, y]^{2^{n+2-i-k}}$ modulo $\mathcal{E}_{i, m+2}$ for all $i=1, \ldots, m+1$.

To show that $\left[x^{2^{m+1-i-k}}, y\right]^{2} \equiv[x, y]^{2^{m+2-i-k}}$ modulo $\mathcal{E}_{i, m+2}$, since $x=\left[x_{1}, \ldots, x_{i-1}\right] \in \Gamma_{i-1}(H)$ and $x^{2^{m+1-(i-1)-k}}$ is a generator of $\mathcal{E}_{i-1, m+1}$, there exist $1 \leq j_{1}<\cdots<j_{k} \leq i-1$ such that $x_{j_{1}}, \ldots, x_{j_{k}} \in A$, and therefore $\left[x_{1}, \ldots, x_{i-1}\right]^{2^{m-(i-1)-k}}$ is a generator of $\mathcal{E}_{i-1, m}$. Applying induction hypothesis 1, we have:

$$
\left[x^{2^{m+1-i-k}}, y\right] \equiv[x, y]^{2^{m+1-i-k}} \bmod \mathcal{E}_{i, m+1}
$$

It follows that there exist generators $\alpha_{1}, \ldots, \alpha_{t}$ of $\mathcal{E}_{i, m+1}$ and $\delta_{1}, \ldots, \delta_{t} \in\{1,-1\}$ for which $\left[x^{2^{m+1-i-k}}, y\right]=$ $[x, y]^{2^{m+1-i-k}} \alpha_{1}^{\delta_{1}} \cdots \alpha_{t}^{\delta_{t}}$, and so:

$$
\begin{align*}
{\left[x^{2^{m+1-i-k}}, y\right]^{2}=} & \left([x, y]^{2^{m+1-i-k}} \alpha_{1}^{\delta_{1}} \cdots \alpha_{t}^{\delta_{t}}\right)^{2}=[x, y]^{2^{m+2-i-k}}\left[[x, y]^{-2^{n+1-i-k}}, \alpha_{1}^{\delta_{1}} \cdots \alpha_{t}^{\delta_{t}}\right] \\
& \alpha_{1}^{2 \delta_{1}}\left[\alpha_{1}^{-\delta_{1}}, \alpha_{2}^{\delta_{2}} \cdots \alpha_{t}^{\delta_{t}}\right] \alpha_{2}^{2 \delta_{2}} \cdots\left[\alpha_{t-1}^{-\delta_{t-1}}, \alpha_{t}^{\delta_{t}}\right] \alpha_{t}^{2 \delta_{t}} \tag{5.25}
\end{align*}
$$

We claim that:
(1) $\alpha_{1}^{2 \delta_{1}}, \ldots, \alpha_{t}^{2 \delta_{t}} \in \mathcal{E}_{i, m+2}$.
(2) $\left[\alpha_{s}, \theta\right],\left[\alpha_{s}^{-1}, \theta\right] \in \mathcal{E}_{i, m+2}$ for all $s=1, \ldots, t$ and all $\theta \in H$.
(3) $\left[[x, y]^{-2^{m+1-i-k}}, \theta\right] \in \mathcal{E}_{i, m+2}$ for all $\theta \in H$.

Claim (1) follows from (5.17). To prove (2), let $s \in\{1, \ldots, t\}$. Since α_{s} is a generator of $\mathcal{E}_{i, m+1}$, $\alpha_{s}=\beta^{2^{m+1-l-\widetilde{k}}}$, where $\beta=\left[\beta_{1}, \ldots, \beta_{l}\right] \in \Gamma_{l}(H), \beta_{j_{1}}, \ldots, \beta_{j_{\tilde{k}}} \in A, i \leq l \leq m+1$ and $0 \leq \widetilde{k} \leq m+1-l$. By induction hypothesis 2,

$$
\begin{equation*}
\left[\alpha_{s}, \theta\right]=\left[\beta^{2^{m+1-l-\tilde{k}}}, \theta\right] \equiv[\beta, \theta]^{2^{m+1-l-\tilde{k}}} \bmod \mathcal{E}_{l+1, m+2} \tag{5.26}
\end{equation*}
$$

Moreover, $[\theta, \beta]=\left[\theta, \beta_{1}, \ldots, \beta_{l}\right] \in \Gamma_{l+1}(H)$, where $\beta_{j_{1}}, \ldots, \beta_{j_{\tilde{k}}} \in A$, so $[\theta, \beta]^{2^{(m+2)-(l+1)-\tilde{k}}} \in \mathcal{E}_{l+1, m+2}$ since $i \leq l+1 \leq m+2$ and $0 \leq \widetilde{k} \leq(m+2)-(l+1)$. Hence:

$$
[\beta, \theta]^{2^{m+1-l-\tilde{k}}}=\left([\theta, \beta]^{2 m+1-l-\tilde{k}}\right)^{-1} \in \mathcal{E}_{l+1, m+2}
$$

The fact that $\mathcal{E}_{l+1, m+2} \subset \mathcal{E}_{i, m+2}$ implies that the congruence (5.26) is also valid modulo $\mathcal{E}_{i, m+2}$, from which it follows using (5.26) that $\left[\alpha_{s}, \theta\right] \in \mathcal{E}_{l+1, m+2} \subset \mathcal{E}_{i, m+2}$. Further, $\left[\alpha_{s}^{-1}, \theta\right]=\alpha_{s}^{-2}\left[\alpha_{s}, \theta\right]\left(\theta \alpha_{s}^{2} \theta^{-1}\right) \in$ $\mathcal{E}_{i, m+2}$, using also (1) and the fact that $\mathcal{E}_{i, m+2}$ is normal in H, which proves (2). To prove (3), since $x^{2^{m+1-(i-1)-k}} \in \mathcal{E}_{i-1, m+1}$, where $x=\left[x_{1}, \ldots, x_{i-1}\right] \in \Gamma_{i-1}(H)$ and $0 \leq k \leq m+1-i$, and there exist $1 \leq j_{1}<\cdots<j_{k} \leq i-1$ such that $x_{j_{1}}, \ldots, x_{j_{k}} \in A$, it follows that $[y, x]=\left[y, x_{1}, \ldots, x_{i-1}\right] \in \Gamma_{i}(H)$ and $[y, x]^{2^{(m+1)-i-k}} \in \mathcal{E}_{i, m+1}$. So applying induction hypothesis 2 , we have:

$$
\begin{equation*}
\left[[x, y]^{-2^{m+1-i-k}}, \theta\right]=\left[[y, x]^{2^{m+1-i-k}}, \theta\right] \equiv[[y, x], \theta]^{2^{m+1-i-k}} \bmod \mathcal{E}_{i+1, m+2} \tag{5.27}
\end{equation*}
$$

Now

$$
[[y, x], \theta]=[\theta, y, x]^{-1}=[[y, x], \theta]=\left[\theta, y, x_{1}, \ldots, x_{i-1}\right]^{-1}
$$

and since $\left[\theta, y, x_{1}, \ldots, x_{i-1}\right]^{2^{(m+2)-(i+1)-k}} \in \mathcal{E}_{i+1, m+2}$, we conclude that $\left[[x, y]^{-2^{m+1-i-k}}, \theta\right] \in \mathcal{E}_{i+1, m+2} \subset$ $\mathcal{E}_{i, m+2}$, and this proves claim (3). Thus it follows from (5.25) and claims (1), (2) and (3) that:

$$
\left[x^{2^{m+1-i-k}}, y\right]^{2} \equiv[x, y]^{2^{m+2-i-k}} \bmod \mathcal{E}_{i, m+2}
$$

which proves that the expression $(* *)$ is congruent to $[x, y]^{2^{m+2-i-k}}$ modulo $\mathcal{E}_{i, m+2}$.

To see that the expression $(*)$ belongs to $\mathcal{E}_{i, m+2}$, notice that each of its terms is a commutator, so can be written as a product of conjugates of the element $\left[x^{2^{m-i-k}},\left[x^{2^{m+1-i-k}}, y\right]\right]$ or its inverse. Since $\mathcal{E}_{i, m+2}$ is normal in H, it thus suffices to show that $\left[\theta,\left[x^{2^{m+1-i-k}}, y\right]\right]^{-1}=\left[\left[x^{2^{m+1-i-k}}, y\right], \theta\right] \in \mathcal{E}_{i, m+2}$ for all $y, \theta \in H$ and for all $x=\left[x_{1}, \ldots, x_{i-1}\right] \in \Gamma_{i-1}(H)$ for which $x^{2^{m+1-(i-1)-k}} \in \mathcal{E}_{i-1, m+1}$, where $i \geq 3,0 \leq k \leq m+1-i, x_{j_{1}}, \ldots, x_{j_{k}} \in A$ and $1 \leq j_{i}<\cdots<j_{k} \leq i-1$. To do so, note that $x^{2^{m+1-i-k}}=x^{2^{m-(i-1)-k}} \in \mathcal{E}_{i-1, m}$, so $\left[x^{2^{m+1-i-k}}, y\right] \equiv[x, y]^{2^{m+1-i-k}} \bmod \mathcal{E}_{i, m+1}$ by induction hypothesis 1 . Thus there exist generators $\alpha_{1}, \ldots, \alpha_{t}$ of $\mathcal{E}_{i, m+1}$, and $\delta_{1}, \ldots, \delta_{t} \in\{1,-1\}$ such that $\left[x^{2^{m+1-i-k}}, y\right]=[x, y]^{2^{m+1-i-k}} \alpha_{1}^{\delta_{1}} \cdots \alpha_{t}^{\delta_{t}}$, and hence:

$$
\begin{align*}
{\left[\left[x^{2^{m+1-i-k}}, y\right], \theta\right] } & =\left[[x, y]^{2^{m+1-i-k}} \alpha_{1}^{\delta_{1}} \cdots \alpha_{t}^{\delta_{t}}, \theta\right] \\
& =\left([x, y]^{2^{m+1-i-k}}\left[\alpha_{1}^{\delta_{1}} \cdots \alpha_{t}^{\delta_{t}}, \theta\right][x, y]^{-2^{m+1-i-k}}\right)\left[[x, y]^{2^{m+1-i-k}}, \theta\right] \tag{5.28}
\end{align*}
$$

Further, $\left[\alpha_{1}^{\delta_{1}} \cdots \alpha_{t}^{\delta_{t}}, \theta\right]$ belongs to the normal closure of $\left\{\left[\alpha_{1}^{\delta_{1}}, \theta\right], \ldots,\left[\alpha_{t}^{\delta_{t}}, \theta\right]\right\}$ in H. This may be seen by applying reverse induction on $1 \leq s \leq t$, and by noting that for $s \geq 2$,

$$
\begin{equation*}
\left[\alpha_{s-1}^{\delta_{s-1}} \alpha_{s}^{\delta_{s}} \cdots \alpha_{t}^{\delta_{t}}, \theta\right]=\left(\alpha_{s-1}^{\delta_{s-1}}\left[\alpha_{s}^{\delta_{s}} \cdots \alpha_{t}^{\delta_{t}}, \theta\right] \alpha_{s-1}^{-\delta_{s-1}}\right)\left[\alpha_{s-1}^{\delta_{s-1}}, \theta\right] . \tag{5.29}
\end{equation*}
$$

Then $\left[\left[x^{2^{n+1-i-k}}, y\right], \theta\right] \in\left\langle\left\langle\left[[x, y]^{2^{n+1-i-k}}, \theta\right],\left[\alpha_{1}^{\delta_{1}}, \theta\right], \ldots,\left[\alpha_{t}^{\delta_{t}}, \theta\right]\right\rangle\right\rangle_{H}$ by (5.28) and (5.29). Now by claims (2) and (3), the elements $\left[\alpha_{1}^{\delta_{1}}, \theta\right], \ldots,\left[\alpha_{t}^{\delta_{t}}, \theta\right]$ and $\left[[x, y]^{2^{m+1-i-k}}, \theta\right]$ belong to $\mathcal{E}_{i, m+2}$, and since $\mathcal{E}_{i, m+2}$ is normal in H, we conclude that the expression $(*)$ belongs to $\mathcal{E}_{i, m+2}$. This completes the proof of (5.23) for $i-1$, and so by induction, (5.23) holds for all $1 \leq i \leq m+1$, which is exactly (5.22). By induction, we conclude that (5.20) holds, and this completes the proof of the lemma.

Lemma 5.7 has the following consequences.
Corollary 5.9. For all $1 \leq l \leq m,\left[\mathcal{E}_{l, m}, H\right] \subset \mathcal{E}_{l+1, m+1}$ and $\left[\widetilde{\mathcal{E}}_{l, m}, H\right] \subset \widetilde{\mathcal{E}}_{l+1, m+1}$.
Proof. Let $l \leq i \leq m$. First assume that $x=\left[x_{1}, \ldots, x_{i}\right] \in \Gamma_{i}(H)$ is such that $x^{2^{m-i-k}}$ is a generator of $\mathcal{E}_{l, m}$, and let $y \in H$. Then by (5.20), $\left[x^{2^{m-i-k}}, y\right] \equiv[x, y]^{2^{m-i-k}} \bmod \mathcal{E}_{l+1, m+1}$. Since $[y, x]=$ $\left[y, x_{1}, \ldots, x_{i}\right] \in \Gamma_{i+1}(H)$, it follows that $[y, x]^{2^{(m+1)-(i+1)-k}} \in \mathcal{E}_{l+1, m+1}$, so $\left[x^{2^{m-i-k}}, y\right] \in \mathcal{E}_{l+1, m+1}$.

Now suppose that $x=\alpha_{1}^{\delta_{1}} \cdots \alpha_{t}^{\delta_{t}}$, where for all $i=1, \ldots, t, \alpha_{i}$ is a generator of $\mathcal{E}_{l, m}$, and $\delta_{i} \in\{1,-1\}$. Then $[x, y]$ belongs to the normal closure of $\left\{\left[\alpha^{\delta_{i}}, y\right], i=1, \ldots, t\right\}$ in H by (5.29), and so $[x, y] \in \mathcal{E}_{l+1, m+1}$ for all $x \in \mathcal{E}_{l, m}, y \in H$ by the first paragraph of the proof and the fact that $\mathcal{E}_{l+1, m+1}$ is normal in H. Once more, the result for $\widetilde{\mathcal{E}}_{l, m}$ is obtained from that for $\mathcal{E}_{l, m}$ by taking $A=\varnothing$.
Corollary 5.10. If $m \geq 2$, then $\widetilde{W}_{m}=\left\langle\left\langle a_{2}^{2^{m-1}}, \widetilde{\mathcal{E}}_{2, m}\right\rangle\right\rangle_{H}$.
Proof. It suffices to prove that

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{2, m}=\left\langle x^{2^{m-i}}: x \in \Gamma_{i}(H), 2 \leq i \leq m\right\rangle \tag{5.30}
\end{equation*}
$$

for all $m \geq 2$. If $m=2$, (5.30) follows from (5.12) and (5.18). Suppose by induction on m that (5.30) holds for some $m \geq 2$. It is clear from (5.18) that $\widetilde{\mathcal{E}}_{2, m+1} \subset\left\langle x^{2^{m-i}}: x \in \Gamma_{i}(H), 2 \leq i \leq m\right\rangle$. To prove the converse, let $y=x^{2^{m+1-i}}$, where $x \in \Gamma_{i}(H)$ and $2 \leq i \leq m+1$. If $i=m+1$ then $y \in \Gamma_{m+1}(H) \subset \widetilde{\mathcal{E}}_{2, m+1}$ by (5.19). So suppose that $2 \leq i \leq m$. Then $x^{2^{m-i}} \in \widetilde{\mathcal{E}}_{2, m}$ by the induction hypothesis, so $x^{2^{m-i}}=\alpha_{1}^{\delta_{1}} \cdots \alpha_{t}^{\delta_{t}}$, where for all $i=1, \ldots, t, \alpha_{i}$ is a generator of $\widetilde{\mathcal{E}}_{2, m}$ and $\delta_{i} \in\{1,-1\}$. Hence:

$$
y=\left(x^{2 m-i}\right)^{2}=\left(\alpha_{1}^{\delta_{1}} \cdots \alpha_{t}^{\delta_{t}}\right)^{2}=\alpha_{1}^{2 \delta_{1}}\left[\alpha_{1}^{-\delta_{1}}, \alpha_{2}^{\delta_{2}} \cdots \alpha_{t}^{\delta_{t}}\right] \alpha_{2}^{2 \delta_{2}}\left[\alpha_{2}^{-\delta_{2}}, \alpha_{3}^{\delta_{3}} \cdots \alpha_{t}^{\delta_{t}}\right] \cdots\left[\alpha_{t-1}^{-\delta_{t-1}}, \alpha_{t}^{\delta_{t}}\right] \alpha_{t}^{2 \delta_{t}} .
$$

So $y \in \widetilde{\mathcal{E}}_{2, m+1}$ because for all $i=1, \ldots, t, \alpha_{i}^{2 \delta_{i}} \in \widetilde{\mathcal{E}}_{2, m+1}$ by (5.18), and $\left[\alpha_{i}^{-\delta_{i}}, \theta\right] \in\left[\widetilde{\mathcal{E}}_{2, m}, H\right] \subset$ $\widetilde{\mathcal{E}}_{3, m+1} \subset \widetilde{\mathcal{E}}_{2, m+1}$ by Corollary 5.9 and (5.19). The inclusion $\left\langle x^{2^{m-i}}: x \in \Gamma_{i}(H), 2 \leq i \leq m\right\rangle \subset$ $\widetilde{\mathcal{E}}_{2, m+1}$ then follows.

Corollary 5.11. For all $m \geq 2,\left[H, \widetilde{W}_{m}\right] \subset \widetilde{W}_{m+1}$.
Proof. Since $\left[\widetilde{\mathcal{E}}_{2, m}, H\right] \subset \widetilde{\mathcal{E}}_{2, m+1}$ using Corollary 5.9, by Corollary 5.10, it suffices to prove that $\left[h, a_{2}^{2^{m-1}}\right] \in \widetilde{W}_{m+1}$ for all $h \in H$. To see this, observe that $\left[h, a_{2}^{2^{m-1}}\right] \equiv\left[h, a_{2}\right]^{2^{m-1}} \bmod \widetilde{W}_{m+1}$ by taking $i=1$ and $x=a_{2}$ in (5.21) and using Remark 5.8. So there exists $\widetilde{w} \in \widetilde{W}_{m+1}$ such that $\left[h, a_{2}^{2^{m-1}}\right]=\left[h, a_{2}\right]^{2^{m-1}} \cdot \widetilde{w}$. Now $\left[h, a_{2}\right] \in \Gamma_{2}(H)$, hence $\left[h, a_{2}\right]^{2^{m-1}} \in \widetilde{W}_{m+1}$ by (5.14), and we conclude that $\left[h, a_{2}^{2^{m-1}}\right] \in \widetilde{W}_{m+1}$ as required.

The following result will enable us to obtain the explicit characterisation of $\Gamma_{n}\left(P_{2}(\mathbb{K})\right)$ given in Theorem 5.4.
Proposition 5.12. For all $n \geq 2, L_{n}=W_{n}=\widetilde{W}_{n}$.
Proof. If $n=2$, the statement is true by definition. So suppose by induction that $L_{n}=W_{n}=\widetilde{W}_{n}$ for some $n \geq 2$. Then we have the following inclusions:

- $\widetilde{W}_{n+1} \subset W_{n+1}$. To see this, let $y \in \widetilde{W}_{n+1}$. If y is a generator of \widetilde{W}_{n+1}, then by (5.14), y either belongs to $\Gamma_{n+1}(H)$, and so belongs to W_{n+1} by (5.13), or is of the form $x^{2^{n+1-i}}$, where $1 \leq i \leq n, x \in \Gamma_{i}(H)$, and $x=a_{2}$ if $i=1$. Hence $x^{2^{n-i}} \in \widetilde{W}_{n}=W_{n}$ by induction, and thus $y=x^{2^{n+1-i}}=\left(x^{2^{n-i}}\right)^{2} \in W_{n+1}$ by (5.13). If y is an arbitrary element of \widetilde{W}_{n+1}, it may be written as a product of conjugates of generators and their inverses, so it belongs to W_{n+1} because W_{n+1} is normal in H.
- $L_{n+1} \subset \widetilde{W}_{n+1}$, since $K_{n+1} \subset \widetilde{W}_{n+1}$ by Lemma 5.5 and (5.14), and $\left[H, L_{n}\right]=\left[H, \widetilde{W}_{n}\right] \subset \widetilde{W}_{n+1}$ by induction and Corollary 5.11, so $L_{n+1}=\left\langle K_{n+1},\left[H, L_{n}\right]\right\rangle \subset \widetilde{W}_{n+1}$ using Lemma 5.6.
- $W_{n+1} \subset L_{n+1}$. First, $\Gamma_{n+1}(H)=\left[H, \Gamma_{n}(H)\right] \subset\left[H, W_{n}\right]=\left[H, L_{n}\right] \subset L_{n+1}$ by (5.13) and induction. Secondly, let $x^{2} \in W_{n+1}$, where $x \in W_{n}=L_{n}$ is a generator. If $n=2$, by (5.12), $x=a_{2}^{2}$ or $x=\left[b_{2}, a_{2}\right]$, then $x^{2}=a_{2}^{4} \in K_{3} \subset L_{3}$ by Lemma 5.5, or $x^{2}=[b_{2}, \underbrace{a_{2}^{2}}_{\in L_{2}}][a_{2}, \underbrace{\left[a_{2}, b_{2}\right]}_{\in L_{2}}] \in \in$
$\left[H, L_{2}\right] \subset L_{3}$. So assume that $n \geq 3$. By Lemma 5.6, there are two possibilities for x :
- if $x \in K_{n}$, then $x=a_{2}^{2^{n-1}}$ by Lemma 5.5, and $x^{2}=a_{2}^{2^{n}} \in K_{n+1} \subset L_{n+1}$.
- if $x=[h, l] \in\left[H, L_{n-1}\right]$, where $h \in H$ and $l \in L_{n-1}=W_{n-1}$, then $x^{2}=[h, l]^{2}=$ $\left[h, l^{2}\right][l,[l, h]]$. Now $l^{2} \in W_{n}=L_{n}$ by induction and $[l, h] \in L_{n}$, so $\left[h, l^{2}\right]$ and $[l,[l, h]]$ belong to $\left[H, L_{n}\right]$, which is contained in L_{n+1}.
Finally, let $x^{2} \in W_{n+1}$, where x is an arbitrary element of W_{n}. Then there exists $q \in \mathbb{N}$ such that $x=x_{1} \cdots x_{q}$, where for all $i=1, \ldots, q, x_{i}$ is a generator of $W_{n}=L_{n}$. Then as in (5.25), we have:

$$
\begin{equation*}
x^{2}=x_{1}^{2}\left[x_{1}^{-1}, x_{2} \cdots x_{q}\right] x_{2}^{2}\left[x_{2}^{-1}, x_{3} \cdots x_{q}\right] \cdots\left[x_{q-1}^{-1}, x_{q}\right] x_{q}^{2} . \tag{5.31}
\end{equation*}
$$

From the second case above, for all $i=1, \ldots, q, x_{i}^{2} \in L_{n+1}$. Further, for all $i=1, \ldots, q-1$, $\left[x_{i}^{-1}, x_{i+1} \cdots x_{q}\right] \in\left[L_{n}, H\right] \subset L_{n+1}$. It then follows from (5.31) that $x^{2} \in L_{n+1}$.
It follows from these three inclusions that $L_{n+1}=W_{n+1}=\widetilde{W}_{n+1}$.
Proof of Theorem 5.4. The result is a consequence of Theorem 1.1(1), Proposition 5.12, and equations (5.8), (5.10) and (5.14). To see that $P_{2}(\mathbb{K})$ is residually nilpotent, note first that $W_{n} \subset \gamma_{n}^{2}(H)$ for all $n \geq 2$ by (5.13). Since H is a free group of finite rank, it is residually 2-finite, and it follows using Proposition 5.12 that $\bigcap_{n \geq 1} L_{n}=\bigcap_{n \geq 2} W_{n}=\{1\}$. The residual nilpotence of $P_{2}(\mathbb{K})$ is then a consequence of the first part of the statement, equation (5.14) and Proposition 5.12.
5.3. The lower \mathbb{F}_{2}-linear central filtration of $P_{2}(\mathbb{K})$. Now that we have a good description of $\Gamma_{n}\left(P_{2}(\mathbb{K})\right)$, we may obtain the following decomposition of $\gamma_{n}^{2}\left(P_{2}(\mathbb{K})\right)$.
Theorem 5.13. Let $n \geq 2$. With the notation of Theorem 2.1, $\gamma_{n}^{2}\left(P_{2}(\mathbb{K})\right)$ is equal to:

$$
\left\langle\left\langle a_{2}^{2^{n-1}}, b_{2}^{2^{n-1}}, x^{2^{n-i}}: x \in \Gamma_{i}\left(\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}\right\}\right)\right), 2 \leq i \leq n\right\rangle\right\rangle_{\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}\right\}\right)} \rtimes\left\langle\left(a_{1} a_{2}\right)^{2^{n-1}},\left(b_{2} b_{1}\right)^{2^{n-1}}\right\rangle .
$$

Consequently, $P_{2}(\mathbb{K})$ is residually 2-finite.
Remark 5.14. Using the action given by (5.9) and the description of $\Gamma_{n}\left(P_{2}(\mathbb{K})\right)$ given by Theorem 5.4, it is straightforward to see that:

$$
\left\langle\left\langle a_{2}^{2^{n-1}}, b_{2}^{2^{n-1}}, x^{2^{n-i}}: x \in \Gamma_{i}\left(\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}\right\}\right)\right), 2 \leq i \leq n\right\rangle\right\rangle_{\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}\right\}\right)} \rtimes\left\langle\left(a_{1} a_{2}\right)^{2^{n-1}},\left(b_{2} b_{1}\right)^{2^{n-1}}\right\rangle
$$

is equal to U_{n}, where:

$$
\begin{equation*}
U_{n}=\left\langle\left\langle\Gamma_{n}\left(P_{2}(\mathbb{K})\right), b_{2}^{2^{n-1}},\left(b_{2} b_{1}\right)^{2^{n-1}}\right\rangle\right\rangle_{P_{2}(\mathbb{K})} . \tag{5.32}
\end{equation*}
$$

Proof of Theorem 5.13. Let $n \geq 2$. By Remark 5.14, it suffices to prove by induction on n that $U_{n}=\gamma_{n}^{2}\left(P_{2}(\mathbb{K})\right)$, where U_{n} is defined by (5.32). If $n=2, U_{2} \subset \gamma_{2}^{2}\left(P_{2}(\mathbb{K})\right)$ because b_{2}^{2} and $\left(b_{2} b_{1}\right)^{2}$ belong to $\left\{x^{2}: x \in P_{2}(\mathbb{K})\right\}$, which is contained in $\gamma_{2}^{2}\left(P_{2}(\mathbb{K})\right), \Gamma_{2}\left(P_{2}(\mathbb{K})\right)$ is contained in $\gamma_{2}^{2}\left(P_{2}(\mathbb{K})\right)$, and $\gamma_{2}^{2}\left(P_{2}(\mathbb{K})\right)$ is normal in $P_{2}(\mathbb{K})$. For the converse inclusion, we know that $\Gamma_{2}\left(P_{2}(\mathbb{K})\right) \subset U_{2}$, that $P_{2}(\mathbb{K})$ is generated by $\left\{a_{2}, a_{2} a_{1}, b_{2}, b_{2} b_{1}\right\}$ by Remark 5.3, and that the square of each element of this set belongs to U_{2}, since by Theorem 5.4, $a_{2}^{2} \in \Gamma_{2}\left(P_{2}(\mathbb{K})\right)$ and $\left(a_{2} a_{1}\right)^{2} \in \Gamma_{2}\left(s\left(\pi_{1}(\mathbb{K})\right)\right) \subset \Gamma_{2}\left(P_{2}(\mathbb{K})\right)$. Further, if $x=x_{1} \cdots x_{q}$, where for $i=1, \ldots, q, x_{i} \in\left\{a_{2}^{ \pm 1},\left(a_{2} a_{1}\right)^{ \pm 1}, b_{2}^{ \pm 1},\left(b_{2} b_{1}\right)^{ \pm 1}\right\}$, then using the decomposition given in (5.31), we have $x^{2} \in U_{2}$ because $x_{i}^{2} \in U_{2}$ for all $1 \leq i \leq q$ and $\left[x_{i}^{-1}, x_{i+1} \cdots x_{q}\right] \in \Gamma_{2}\left(P_{2}(\mathbb{K})\right) \subset U_{2}$ for all $1 \leq i \leq q-1$. Thus $\gamma_{2}^{2}\left(P_{2}(\mathbb{K})\right) \subset U_{2}$, and therefore $\gamma_{2}^{2}\left(P_{2}(\mathbb{K})\right)=U_{2}$.

Now assume that $n \geq 2$, and suppose by induction that $U_{i}=\gamma_{i}^{2}\left(P_{2}(\mathbb{K})\right)$ for all $2 \leq i \leq n$. Then $U_{n+1} \subset \gamma_{n+1}^{2}\left(P_{2}(\mathbb{K})\right)$ since $\Gamma_{n+1}\left(P_{2}(\mathbb{K})\right) \subset \gamma_{n+1}^{2}\left(P_{2}(\mathbb{K})\right), \Gamma_{n+1}\left(P_{2}(\mathbb{K})\right)$ and $\gamma_{n+1}^{2}\left(P_{2}(\mathbb{K})\right)$ are normal in $P_{2}(\mathbb{K})$, and if $x \in\left\{b_{2}, b_{2} b_{1}\right\}$ then $x^{2^{n}}=\left(x^{2^{n-1}}\right)^{2}$, where $x^{2^{n-1}} \in U_{n}=\gamma_{n}^{2}\left(P_{2}(\mathbb{K})\right)$ by the induction hypothesis, so $x^{2^{n}} \in \gamma_{n+1}^{2}\left(P_{2}(\mathbb{K})\right)$.

To prove that $\gamma_{n+1}^{2}\left(P_{2}(\mathbb{K})\right) \subset U_{n+1}$, using the induction hypothesis and the fact that $\gamma_{n+1}^{2}\left(P_{2}(\mathbb{K})\right)$ is generated by $\left[P_{2}(\mathbb{K}), \gamma_{n}^{2}\left(P_{2}(\mathbb{K})\right)\right] \cup\left\{x^{2}: x \in \gamma_{n}^{2}\left(P_{2}(\mathbb{K})\right)\right\}$, it suffices to show that $\left[P_{2}(\mathbb{K}), U_{n}\right] \subset$ U_{n+1}, and that $x^{2} \in U_{n+1}$ for all $x \in U_{n}$. We first show that $\left[P_{2}(\mathbb{K}), U_{n}\right] \subset U_{n+1}$. Let $x \in P_{2}(\mathbb{K})$, and let $u \in U_{n}$.
(1) If $u \in \Gamma_{n}\left(P_{2}(\mathbb{K})\right)$ then $[x, u] \in U_{n+1}$.
(2) If $u=\left(b_{2} b_{1}\right)^{2^{n-1}}$ then $[x, u]=1$ because $\left(b_{2} b_{1}\right)^{2^{n-1}} \in Z\left(P_{2}(\mathbb{K})\right)$ by Proposition 5.2.
(3) If $u=b_{2}^{2 n-1}$, we claim that $\left[b_{2}^{2 n-1}, x\right] \in L_{n+1}$ for all $x \in\left\{a_{2},\left(a_{2} a_{1}\right)^{-1}, b_{2},\left(b_{2} b_{1}\right)^{-1}\right\}$. The result is clear if $x=b_{2}$, so we consider the three other cases. We proceed by induction on n. Suppose first that $n=2$. If $x=a_{2}$ then by (3.2), (5.13) and Proposition 5.12, we have:

$$
[u, x]=\left[b_{2}^{2}, a_{2}\right]=\underbrace{\left[b_{2}, b_{2}, a_{2}\right]}_{\in W_{3}=L_{3}} \underbrace{\left[b_{2}, a_{2}\right]^{2}}_{\in W_{3}=L_{3}} \in L_{3} \text {. }
$$

In the remaining two cases, by (5.9), (5.12), (5.14) and Proposition 5.12, we have:

$$
\begin{aligned}
{\left[\left(a_{2} a_{1}\right)^{-1}, u\right] } & =\left[\left(a_{2} a_{1}\right)^{-1}, b_{2}^{2}\right]=\left(a_{2}^{-2} b_{2}\right)\left(a_{2}^{-2} b_{2}\right) b_{2}^{-2}=\underbrace{a_{2}^{-4}}_{\in \widetilde{W}_{3}=L_{3} \in\left[L_{2}, H\right] \subset L_{3}} \underbrace{\left[a_{2}^{2}, b_{2}\right]} \in L_{3} \\
{\left[\left(b_{2} b_{1}\right)^{-1}, u\right] } & =\left[\left(b_{2} b_{1}\right)^{-1}, b_{2}^{2}\right]=\left(a_{2} b_{2} a_{2}\right)\left(a_{2} b_{2} a_{2}\right) b_{2}^{-2} \\
& =\underbrace{\left[a_{2} b_{2}, a_{2}^{2}\right]}_{\in\left[H, L_{2}\right] \subset L_{3} \in \widetilde{W}_{3}=L_{3}} \underbrace{a_{2}^{4}}_{\in \widetilde{W}_{3}=L_{3}} \underbrace{\left[a_{2}^{-1}, b_{2}\right]^{2}}_{\in \Gamma_{3}(H) \subset L_{3}}\left[\left[b_{2}, a_{2}^{-1}\right], b_{2}\right]
\end{aligned} L_{3}, ~ \$
$$

which proves the claim in the case $n=2$. Now suppose that $\left[b_{2}^{2^{j-1}}, x\right] \in L_{j+1}$ for all $2 \leq j \leq n$ and $x \in\left\{a_{2},\left(a_{2} a_{1}\right)^{-1}, b_{2},\left(b_{2} b_{1}\right)^{-1}\right\}$. Then by Proposition 5.12 and (5.13), $\left[b_{2}^{2^{n-1}}, x\right] \in L_{n+1}=W_{n+1}$, and hence $\left[b_{2}^{2^{n-1}}, x\right]^{2} \in W_{n+2}=L_{n+2}$. So by (3.2), we have:

$$
\left[b_{2}^{2^{n}}, x\right]=\underbrace{[b_{2}^{2 n-1}, \underbrace{\left[b_{2}^{2^{n-1}}, x\right]}_{\in L_{n+1}}]}_{\in\left[H, L_{n+1}\right] \subset L_{n+2}} \underbrace{\left[b_{2}^{2^{n-1}}, x\right]^{2}}_{\in L_{n+2}} \in L_{n+2}
$$

which proves the claim for all $n \geq 2$. Now let x be an arbitrary element of $P_{2}(\mathbb{K})$. Since the set $\left\{a_{2},\left(a_{2} a_{1}\right)^{-1}, b_{2},\left(b_{2} b_{1}\right)^{-1}\right\}$ generates $P_{2}(\mathbb{K})$, for some $t \geq 0$, there exist $x_{1}, \ldots, x_{t} \in$ $\left\{a_{2},\left(a_{2} a_{1}\right)^{-1}, b_{2},\left(b_{2} b_{1}\right)^{-1}\right\}$ and $\varepsilon_{1}, \ldots, \varepsilon_{t} \in\{1,-1\}$ for which $x=x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \cdots x_{t}^{\varepsilon_{t}}$. As in (5.29), we have the following relation:

$$
\begin{equation*}
[u, x]=\left[u, x_{1}^{\varepsilon_{1}}\right]\left(x_{1}^{\varepsilon_{1}}\left[u, x_{2}^{\varepsilon_{2}}\right] x_{1}^{-\varepsilon_{1}}\right) \cdots\left(x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \cdots x_{t-1}^{\varepsilon_{t-1}}\left[u, x_{t}^{\varepsilon_{t}}\right] x_{t-1}^{-\varepsilon_{t-1}} \cdots x_{2}^{-\varepsilon_{2}} x_{1}^{-\varepsilon_{1}}\right) . \tag{5.33}
\end{equation*}
$$

Using the fact that L_{n+1} is normal in H by Lemma 3.3, it follows from (5.33) that $\left[b_{2}^{2^{n-1}}, x\right] \in$ L_{n+1}, and since $L_{n+1} \subset \Gamma_{n+1}\left(P_{2}(\mathbb{K})\right)$ by Theorem 1.1, we deduce that $\left[b_{2}^{2^{n-1}}, x\right] \in U_{n+1}$.

This concludes the proof of the inclusion $\left[P_{2}(\mathbb{K}), U_{n}\right] \subset U_{n+1}$. It remains to prove that $\left\{x^{2}: x \in U_{n}\right\} \subset$ U_{n+1}. If $x=b_{2}^{2^{n-1}}$ or $x=\left(b_{2} b_{1}\right)^{2^{n-1}}$ then clearly $x^{2} \in U_{n+1}$. Using Theorems 1.1(1) and 5.4, if $x \in \Gamma_{n}\left(P_{2}(\mathbb{K})\right)=L_{n} \rtimes\left\langle\left(a_{1} a_{2}\right)^{2^{n-1}}\right\rangle$, then in terms of this semi-direct product, $x=\left(x_{1}, x_{2}\right)$, where $x_{1} \in L_{n}$ and $x_{2} \in\left\langle\left(a_{1} a_{2}\right)^{2^{n-1}}\right\rangle$, and $x^{2}=\left(x_{1}, x_{2}\right)\left(x_{1}, x_{2}\right)=\left(x_{1} \cdot \varphi\left(x_{2}\right)\left(x_{1}\right), x_{2}^{2}\right)$. Now $x_{2}^{2} \in\left\langle\left(a_{1} a_{2}\right)^{2^{n}}\right\rangle$, and since $x_{1} \in L_{n}=W_{n}$, we have $x_{1}^{2} \in W_{n+1}=L_{n+1}$ by Proposition 5.12, and therefore $x_{1} \cdot \varphi\left(x_{2}\right)\left(x_{1}\right)=x_{1}^{2}\left(\varphi\left(x_{2}\right)\left(x_{1}^{-1}\right) \cdot x_{1}\right)^{-1} \in L_{n+1}$ and $x^{2} \in L_{n+1} \rtimes\left\langle\left(a_{1} a_{2}\right)^{2^{n}}\right\rangle=\Gamma_{n+1}\left(P_{2}(\mathbb{K})\right) \subset U_{n+1}$. If x is a product of conjugates of generators of U_{n} then $x^{2} \in U_{n+1}$ using (5.31). This shows that $\left\{x^{2}: x \in U_{n}\right\} \subset U_{n+1}$. It follows that $\gamma_{n+1}^{2}\left(P_{2}(\mathbb{K})\right) \subset U_{n+1}$, so $\gamma_{n+1}^{2}\left(P_{2}(\mathbb{K})\right)=U_{n+1}$. Using the explicit characterisation of $\Gamma_{n}\left(P_{2}(\mathbb{K})\right)$ given by Theorem 5.4 and Remark 5.14 , the first part of the statement follows. The second part is a consequence of the fact that $\bigcap_{n \geq 2} U_{n}=\{1\}$ using the first part.
5.4. The lower central series of $P_{n}(\mathbb{K})$. For $n \geq 3$, the situation is more complicated due to the complexity of the lower central series of $P_{2}(\mathbb{K})$. The idea is to use the Fadell-Neuwirth short exact sequence (5.1) and to calculate recursively $\Gamma_{m}\left(P_{n}(\mathbb{K})\right)$ for $m \geq 1$ and $n \geq 3$. Thus will allows us to prove that $P_{n}(\mathbb{K})$ is residually nilpotent for all $n \geq 1$ in Theorem 5.25.

With the notation of Theorem 1.1 and equation (5.1), we may write $P_{n+1}(\mathbb{K})=H \rtimes_{\varphi} G$, where $H=\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right), G=s\left(P_{n}(\mathbb{K})\right)$, and s is the section for p_{*} given by Proposition 5.1.

Remark 5.15. Notice that $H_{m}=\left[G, L_{m-1}\right]$ and $K_{m}=\left[\Gamma_{m-1}(G), H\right]$, for all $m \geq 2$, since the action φ of G on H is defined by conjugation.

In what follows, we will take G to be equipped with the generating set:

$$
\begin{align*}
X & =\left\{s(z): z \in\left\{a_{i}, b_{i}, C_{j, k}: 1 \leq i \leq n \text { and } 1 \leq j<k \leq n\right\}\right\} \\
& =\left\{a_{i}, b_{i}, C_{i, k}, a_{n} a_{n+1}, b_{n} b_{n+1} C_{n, n+1}, C_{i, n} C_{i, n+1} C_{n, n+1}^{-1}: 1 \leq i \leq k \leq n-1\right\} . \tag{5.34}
\end{align*}
$$

In $P_{n+1}(\mathbb{K})$, for $1 \leq j \leq n$, let $D_{j}=C_{j, n+1}^{-1} C_{j+1, n+1}$. Since $C_{j, n+1}=D_{n}^{-1} \cdots D_{j+1}^{-1} D_{j}^{-1}$ for all $j=1, \ldots, n$, the set:

$$
\begin{equation*}
Y=\left\{a_{n+1}, b_{n+1}, D_{j}: j=1, \ldots, n\right\} \tag{5.35}
\end{equation*}
$$

generates H, and using Theorem 2.1, the action $\varphi: s\left(P_{n}(\mathbb{K})\right) \longrightarrow \operatorname{Aut}\left(\pi_{1}\left(\mathbb{K} \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right)\right)$ is given by:

$$
\begin{align*}
& \varphi\left(a_{i}\right)(z)= \begin{cases}a_{n+1} & \text { if } z=a_{n+1} \\
b_{n+1} a_{n+1} D_{i} a_{n+1}^{-1} & \text { if } z=b_{n+1} \\
\alpha_{i, j} D_{j} \alpha_{i, j}^{-1} & \text { if } z=D_{j}\end{cases} \\
& \varphi\left(b_{i}\right)(z)= \begin{cases}a_{n+1} b_{n+1} C_{i, n+1} D_{i} C_{i, n+1}^{-1} b_{n+1}^{-1} & \text { if } z=a_{n+1} \\
b_{n+1} C_{i, n+1} D_{i}^{-1} C_{i, n+1}^{-1} & \text { if } z=b_{n+1} \\
\beta_{i, i} D_{i}^{-1} \beta_{i, i}^{-1} & \text { if } z=D_{i} \\
\beta_{i, j} D_{j} \beta_{i, j}^{-1} & \text { if } z=D_{j}, j \neq i\end{cases} \tag{5.36}\\
& \varphi\left(C_{i, k}\right)(z)= \begin{cases}a_{n+1} & \text { if } z=a_{n+1} \\
b_{n+1} & \text { if } z=b_{n+1} \\
\delta_{i, j, k} D_{j} \delta_{i, j, k}^{-1} & \text { if } z=D_{j}\end{cases} \\
& \varphi\left(a_{n} a_{n+1}\right)(z)= \begin{cases}a_{n+1} & \text { if } z=a_{n+1} \\
a_{n+1}^{-1} b_{n+1} a_{n+1} D_{n} & \text { if } z=b_{n+1} \\
\widetilde{\alpha}_{j} D_{j} \widetilde{\alpha}_{j}^{-1} & \text { if } z=D_{j}\end{cases} \\
& \varphi\left(b_{n} b_{n+1} C_{n, n+1}\right)(z)= \begin{cases}D_{n} b_{n+1}^{-1} a_{n+1} b_{n+1} & \text { if } z=a_{n+1} \\
b_{n+1} D_{n}^{-1} & \text { if } z=b_{n+1} \\
D_{n}^{-1} & \text { if } z=D_{n} \\
b_{n+1}^{-1} D_{j} b_{n+1} & \text { if } z=D_{j}, j \neq n\end{cases} \\
& \varphi\left(C_{i, n} C_{i, n+1} C_{n, n+1}^{-1}\right)(z)= \begin{cases}C_{n, n+1} C_{i, n+1}^{-1} a_{n+1} C_{i, n+1} C_{n, n+1}^{-1} & \text { if } z=a_{n+1} \\
C_{n, n+1} C_{i, n+1}^{-1} b_{n+1} C_{i, n+1} C_{n, n+1}^{-1} & \text { if } z=b_{n+1} \\
\widetilde{\delta}_{i, j} D_{j} \widetilde{\delta}_{i, j}^{-1} & \text { if } z=D_{j},\end{cases}
\end{align*}
$$

where:

$$
\begin{aligned}
& \alpha_{i, j}=\left\{\begin{array}{ll}
1 & \text { if } i<j \\
C_{j+1, n+1}^{-1} a_{n+1} & \text { if } i=j \\
C_{i+1, n+1}^{-1} C_{i, n+1} & \text { if } i>j
\end{array} \quad \beta_{i, j}= \begin{cases}1 & \text { if } i<j \\
b_{n+1} C_{i, n+1} & \text { if } i=j \\
b_{n+1} C_{i, n+1} C_{i+1, n+1}^{-1} b_{n+1}^{-1} & \text { if } i>j\end{cases} \right. \\
& \delta_{i, j, k}= \begin{cases}1 & \text { if } k<j \text { or } i>j \\
C_{j+1, n+1}^{-1} C_{i, n+1} & \text { if } k=j \\
C_{k+1, n+1}^{-1} C_{k, n+1} & \text { if } k>j \geq i\end{cases}
\end{aligned}
$$

for all $1 \leq i \leq k \leq n-1$ and $1 \leq j \leq n$, and where $\widetilde{\alpha}_{j}=a_{n+1}^{-1} \alpha_{n, j}$ and $\widetilde{\delta}_{i, j}=C_{n, n+1} C_{i, n+1}^{-1} \delta_{i, j, n}$.
Our aim is to determine the subgroups L_{m} that were defined in the statement of Theorem 1.1 for all $m \geq 2$. For $i \geq 0$, let:

$$
\begin{equation*}
A_{n}^{2^{i}}=\left\langle\left\langle D_{j}^{2^{i}}: j=1, \ldots, n\right\rangle\right\rangle_{H} \tag{5.37}
\end{equation*}
$$

If $i=0$, we write $A_{n}=A_{n}^{1}$. To compute K_{2}, recall that $K_{2}=H_{2}$, and that this subgroup is normal in H by Lemma 3.3. Using (5.36), observe that $\varphi\left(a_{i}\right)\left(b_{n+1}\right) b_{n+1}^{-1}=b_{n+1} a_{n+1} D_{i} a_{n+1}^{-1} b_{n+1}^{-1}$ for all $1 \leq i \leq n-1$, and $\varphi\left(b_{n} b_{n+1} C_{n, n+1}\right)\left(b_{n+1}\right) b_{n+1}^{-1}=b_{n+1} D_{n}^{-1} b_{n+1}^{-1}$. So by normality of K_{2}, D_{j} belongs to K_{2} for all $1 \leq j \leq n$, and therefore $A_{n} \subset K_{2}$ by (5.37). Moreover, $\varphi\left(b_{n} b_{n+1} C_{n, n+1}\right)\left(a_{n+1}\right) a_{n+1}^{-1}=$ $D_{n} b_{n+1}^{-1} a_{n+1} b_{n+1} a_{n+1}^{-1}$, so $\left[b_{n+1}^{-1}, a_{n+1}\right]$ belongs to K_{2} also. Applying Lemma 3.4(1) with X and Y as defined in (5.34) and (5.35), and using (5.36), we see that $K_{2}=\left\langle\left\langle A_{n},\left[a_{n+1}, b_{n+1}\right]\right\rangle\right\rangle_{H}$, and therefore:

$$
\begin{equation*}
L_{2}=\left\langle\Gamma_{2}(H), A_{n}\right\rangle \tag{5.38}
\end{equation*}
$$

Let $Y_{1}=L_{1}=H$, and for $m \geq 2$, let:

$$
\begin{equation*}
Y_{m}=\left\langle A_{n}^{2^{m-2}},\left[Y_{i}, Y_{k}\right]: 1 \leq i \leq k<m, i+k=m\right\rangle . \tag{5.39}
\end{equation*}
$$

In what follows, we will refer to the elements of the set

$$
\left\{D_{j}^{2^{m-2}},\left[y_{i}, y_{k}\right]: j=1, \ldots, n, y_{i} \in Y_{i}, y_{k} \in Y_{k} \text { and } i+k=m\right\}
$$

as generators of Y_{m}. Since $\Gamma_{m}\left(P_{n+1}(\mathbb{K})\right)=L_{m} \rtimes \Gamma_{m}\left(P_{n}(\mathbb{K})\right)$ by Theorem 1.1(1), to prove that $P_{n+1}(\mathbb{K})$ is residually nilpotent by induction on n, it will suffice to show that $L_{m} \subset Y_{m}$ for all $m \geq 2$ (we will show in fact that $L_{m}=Y_{m}$), and then that $\bigcap_{m \geq 1} Y_{m}=\{1\}$.
Remark 5.16. For all $m \geq 1, Y_{m}$ is a normal subgroup of H, and $Y_{m+1} \subset Y_{m}$ by induction on m. Further, we claim that $\varphi(g)\left(Y_{i}\right) \subset Y_{i}$ for all $i \geq 1$ and $g \in G$. To see this, observe that $\varphi(g)\left(D_{j}\right)$ is a conjugate of D_{j} or D_{j}^{-1} for all $j=1, \ldots, n$ by (5.36), so $\varphi(g)\left(A_{n}^{2^{i}}\right) \subset A_{n}^{2^{i}}$ for all $i \geq 1$. Also, if $y_{k} \in Y_{k}$ and $y_{l} \in Y_{l}$ then $\varphi(g)\left(\left[y_{k}, y_{l}\right]\right)=\left[\varphi(g)\left(y_{k}\right), \varphi(g)\left(y_{l}\right)\right]$, and the claim follows by induction on i.

Lemma 5.17. $\left[G, Y_{m}\right] \subset Y_{m+1}$ for all $m \geq 1$.
Proof. If $m=1$, then $\left[G, Y_{1}\right]=[G, H]=H_{2} \subset L_{2}=Y_{2}$. Now, by induction on m, suppose that $\left[G, Y_{i}\right] \subset Y_{i+1}$, for all $1 \leq i \leq m$. Let us prove that $\left[G, Y_{m+1}\right] \subset Y_{m+2}$. To do so, let $[g, h]=\varphi(g)(h) . h^{-1} \in\left[G, Y_{m+1}\right]$, where $g \in G$ and $h \in Y_{m+1}$. By Lemma 3.4(2), we need only analyse the following cases where $g \in X$ and h is a generator of Y_{m+1} :
(1) $h=D_{j}^{2^{m-1}}$, where $j \in\{1, \ldots, n\}$. By (5.36), if $j \in\{1, \ldots, n-1\}$ then:

$$
\varphi\left(b_{j}\right)\left(D_{j}^{2^{m-1}}\right) \cdot D_{j}^{-2^{m-1}}=\left[\beta_{j, j}, D_{j}^{-2^{m-1}}\right] D_{j}^{-2^{m}} \in Y_{m+2}
$$

because $D_{j}^{2^{m-1}} \in Y_{m+1}$, and if $j=n$ then:

$$
\varphi\left(b_{n} b_{n+1} C_{n, n+1}\right)\left(D_{n}^{2^{m-1}}\right) \cdot D_{n}^{-2^{m-1}}=D_{n}^{-2^{m}} \in Y_{m+2}
$$

Similarly, by (5.36), one may check that if g is any other element of X then $\varphi(g)\left(D_{j}^{2^{m-1}}\right) \cdot D_{j}^{-2^{m-1}}$ is a commutator of $D_{j}^{2^{m-1}}$ with an element of H, and so belongs to $\left[H, Y_{m+1}\right]$, which is contained in Y_{m+2} by (5.39).
(2) $h=\left[y_{i}, y_{j}\right]$, where $1 \leq i, j \leq m, i+j=m+1, y_{i} \in Y_{i}$ and $y_{j} \in Y_{j}$. By Remark 5.16, we have that $\varphi(g)\left(Y_{l}\right) \subset Y_{l}$ for all $l \geq 1$. By the induction hypothesis $\left(\varphi(g)\left(y_{j}^{-1}\right) \cdot y_{j}\right)^{-1} \in\left[G, Y_{j}\right] \subset$ Y_{j+1} and $\left(\varphi(g)\left(y_{i}^{-1}\right) \cdot y_{i}\right)^{-1} \in\left[G, Y_{i}\right] \subset Y_{i+1}$. Therefore $\left[\left(\varphi(g)\left(y_{j}^{-1}\right) \cdot y_{j}\right)^{-1}, \varphi(g)\left(y_{i}^{-1}\right)\right] \in$ $\left[Y_{j+1}, Y_{i}\right] \subset Y_{m+2}$ and $\left[\left(\varphi(g)\left(y_{i}^{-1}\right) \cdot y_{i}\right)^{-1}, y_{j}\right] \in\left[Y_{i+1}, Y_{j}\right] \subset Y_{m+2}$ by (5.39), and writing $\left[g,\left[y_{i}, y_{j}\right]\right]=\varphi(g)\left(\left[y_{i}, y_{j}\right]\right) .\left[y_{j}, y_{i}\right]$ in the form of (5.15) and Remark 5.16, where we replace l by y_{j} and h by y_{i}, and using the fact that Y_{m+2} is normal in H, it follows that $\varphi(g)\left(\left[y_{i}, y_{j}\right]\right) \cdot\left[y_{j}, y_{i}\right] \in Y_{m+2}$.

Remark 5.18. For all $m \geq 1, Y_{m}$ is a normal subgroup of $H \rtimes_{\varphi} G$. To see this, recall that Y_{m} is normal in H by Remark 5.16, and if $y \in Y_{m}$ and $g \in G,[g, y] \in Y_{m+1} \subset Y_{m}$ by Lemma 5.17, and therefore $g y g^{-1}=[g, y] y \in Y_{m}$.

To prove the results that follow, we will make use of two commutator identities [27, Theorem 5.1]:

$$
\begin{gather*}
{[a, b c]=[a, b][b,[a, c]][a, c]} \tag{5.40}\\
{\left[[a, b], c^{b}\right]\left[[b, c], a^{c}\right]\left[[c, a], b^{a}\right]=1} \tag{5.41}
\end{gather*}
$$

where $c^{b}=b c b^{-1}$. The following two lemmas are inspired by those of [11, Section 3].
Lemma 5.19. Let $x \in Y_{p}$, and $y, w \in H \rtimes_{\varphi} G$. Suppose that $[w, y] \in Y_{q}$. Then $[x, y] \in Y_{p+q}$ if and only if $\left[x, y^{w}\right] \in Y_{p+q}$.

Proof. Set $z=[w, y]$. Then $y^{w}=z y$, so by (5.40), $\left[x, y^{w}\right]=[x, z y]=[x, z][z,[x, y]][x, y]$. Since $z \in Y_{q}$ by hypothesis, we have that $[x, z] \in\left[Y_{p}, Y_{q}\right] \subset Y_{p+q}$ by Remark 5.16. Also, $[x, y] \in Y_{p}$ because Y_{p} is normal in $H \rtimes_{\varphi} G$ by Remark 5.18, and so $[z,[x, y]] \in\left[Y_{q}, Y_{p}\right] \subset Y_{p+q}$ by Remark 5.16. The result then follows.

Lemma 5.20. For all $k, m \geq 1,\left[\Gamma_{k}(G), Y_{m}\right] \subset Y_{k+m}$.
Proof. If $k=1$, the result is a consequence of Lemma 5.17. Now suppose by induction that $\left[\Gamma_{k}(G), Y_{m}\right] \subset Y_{m+k}$ for some $k \geq 1$ and all $m \geq 1$, and let us prove that $\left[\Gamma_{k+1}(G), Y_{m}\right] \subset Y_{k+m+1}$ for all $m \geq 1$. Applying (5.41) to elements $g \in G, g_{k} \in \Gamma_{k}(G) \subset G$ and $h \in Y_{m}$ of the commutator $\left[\Gamma_{k+1}(G), Y_{m}\right]=\left[\left[\Gamma_{k}(G), G\right], Y_{m}\right]$, we obtain:

$$
\begin{equation*}
\left[\left[g_{k}, g\right], h^{g}\right]\left[[g, h], g_{k}^{h}\right]\left[\left[h, g_{k}\right], g^{g_{k}}\right]=1 \tag{5.42}
\end{equation*}
$$

By Lemma 5.17, $[g, h] \in Y_{m+1}$, and $\left[[g, h], g_{k}\right] \in\left[Y_{m+1}, \Gamma_{k}(G)\right] \subset Y_{m+k+1}$ using also the induction hypothesis. Further, $\left[h, g_{k}\right] \in\left[Y_{m}, \Gamma_{k}(G)\right] \subset Y_{m+k} \subset Y_{k}$ by the induction hypothesis and Remark 5.16, and consequently $\left[[g, h], g_{k}^{h}\right] \in Y_{m+k+1}$ by Lemma 5.19. Also, $\left[\left[h, g_{k}\right], g^{g_{k}}\right] \in$ $\left[\left[Y_{m}, \Gamma_{k}(G)\right], G\right] \subset\left[Y_{m+k}, G\right] \subset Y_{m+k+1}$ by the induction hypothesis and Lemma 5.17. Thus $\left[\left[g_{k}, g\right], h^{g}\right] \in Y_{m+k+1}$ by (5.42). By (5.40), we see that:

$$
\begin{equation*}
\left[\left[g_{k}, g\right], h^{g}\right]=\left[\left[g_{k}, g\right],[g, h] h\right]=\left[\left[g_{k}, g\right],[g, h]\right]\left[[g, h],\left[\left[g_{k}, g\right], h\right]\right]\left[\left[g_{k}, g\right], h\right] . \tag{5.43}
\end{equation*}
$$

Now $\left[\left[g_{k}, g\right],[g, h]\right] \in\left[\Gamma_{k}(G), Y_{m+1}\right] \subset Y_{m+k+1}$ by the induction hypothesis, and by Remark 5.16 , we see that

$$
\left[[g, h],\left[\left[g_{k}, g\right], h\right]\right] \in\left[Y_{m+1},\left[\Gamma_{k}(G), Y_{m}\right]\right] \subset\left[Y_{m+1}, Y_{k+m}\right] \subset Y_{2 m+k+1} \subset Y_{m+k+1}
$$

We conclude from (5.43) that $\left[\left[g_{k}, g\right], h\right] \in Y_{m+k+1}$, and the result follows.
Lemma 5.21. For all $m \geq 1, L_{m}=Y_{m}$.
Proof. We prove the lemma by induction on $m \geq 1$. For $m=1,2$, the result follows from (5.38) and (5.39). Suppose that $m \geq 2$ is such that $L_{i}=Y_{i}$ for all $1 \leq i \leq m$.

We first show that $Y_{m+1} \subset L_{m+1}$. For all $i, j \geq 0$, it follows from [27, Theorem 5.3] and Theorem 1.1(1) that:

$$
\begin{align*}
{\left[L_{i} \rtimes_{\varphi} \Gamma_{i}(G), L_{j} \rtimes_{\varphi} \Gamma_{j}(G)\right] } & =\left[\Gamma_{i}\left(H \rtimes_{\varphi} G\right), \Gamma_{j}\left(H \rtimes_{\varphi} G\right)\right] \\
& \subset \Gamma_{i+j}\left(H \rtimes_{\varphi} G\right)=L_{i+j} \rtimes_{\varphi} \Gamma_{i+j}(G) . \tag{5.44}
\end{align*}
$$

Let $x_{i} \in L_{i}$ and $x_{j} \in L_{j}$. Then $\left(x_{i}, 1\right) \in L_{i} \rtimes_{\varphi} \Gamma_{i}(G)$ and $\left(x_{j}, 1\right) \in L_{j} \rtimes_{\varphi} \Gamma_{j}(G)$, and using (3.3) and (5.44), we obtain:

$$
\left(\left[x_{i}, x_{j}\right], 1\right)=\left[\left(x_{i}, 1\right),\left(x_{j}, 1\right)\right] \in L_{i+j} \rtimes_{\varphi} \Gamma_{i+j}(G) .
$$

Hence $\left[x_{i}, x_{j}\right] \in L_{i+j}$, then $\left[L_{i}, L_{j}\right] \subset L_{i+j}$. So if $1 \leq i, j \leq m$, where $i+j=m+1$, we see that $\left[Y_{i}, Y_{j}\right]=\left[L_{i}, L_{j}\right] \subset L_{m+1}$ using the induction hypothesis. To prove that $A_{n}^{2^{m-1}} \subset L_{m+1}$, by induction, we have $D_{j}^{2^{m-2}} \in Y_{m}=L_{m}$ for all $j=1, \ldots, n$. Therefore $\varphi\left(b_{j}\right)\left(D_{j}^{2^{m-2}}\right) \cdot D_{j}^{-2^{m-2}}$ and $\varphi\left(b_{n} b_{n+1} C_{n, n+1}\right)\left(D_{n}^{2^{m-2}}\right) \cdot D_{n}^{-2^{m-2}}$ belong to $H_{m+1} \subset L_{m+1}$ for all $j=1, \ldots, n-1$. Consequently $\left[\beta_{j, j}, D_{j}^{-2^{m-2}}\right] D_{j}^{-2^{m-1}}$ and $D_{n}^{-2^{m-1}}$ belong to L_{m+1} for all $j=1, \ldots, n-1$. Now $\left[\beta_{j, j}, D_{j}^{-2^{m-2}}\right] \in$ $\left[H, L_{m}\right] \subset L_{m+1}$ for all $j=1, \ldots, n-1$, and thus $D_{j}^{2^{m-1}} \in L_{m+1}$. Using the fact that L_{m+1} is normal in H by Remark 5.16, Lemma 3.3 and (5.39), we conclude that $Y_{m+1} \subset L_{m+1}$.

To prove that $L_{m+1} \subset Y_{m+1}$, the induction hypothesis implies that $\left[H, L_{m}\right]=\left[H, Y_{m}\right] \subset$ Y_{m+1}. By Remark 5.15 and the induction hypothesis, we have $H_{m+1}=\left[G, L_{m}\right]=\left[G, Y_{m}\right]$ and $K_{m+1}=\left[\Gamma_{m}(G), H\right]$. So by Lemma $5.20 H_{m+1}$ and K_{m+1} are contained in Y_{m+1}. Since $L_{m+1}=$ $\left\langle\left[H, L_{m}\right], H_{m+1}, K_{m+1}\right\rangle$, it follows that $L_{m+1} \subset Y_{m+1}$, and hence $L_{m+1}=Y_{m+1}$.

To prove that $P_{n+1}(\mathbb{K})$ is residually nilpotent, it remains to show that $\bigcap_{m \geq 1} Y_{m}=\{1\}$. To do so, we define two families $\left(Z_{m}\right)_{m \geq 1}$ and $\left(\widetilde{Z}_{m}\right)_{m \geq 1}$ of subgroups of H as follows. Let $Z_{1}=\widetilde{Z}_{1}=H$, $Z_{2}=V_{2}=Y_{2}$, and if $m \geq 3$, let:

$$
\begin{gather*}
\left.Z_{m}=\left\langle\left\langle\left\{x^{2}: x \in Z_{m-1}\right\} \cup X_{m}\right\rangle\right\rangle_{H} \text { and } \widetilde{Z}_{m-1}=\left\langle\left\langle A_{n}^{2^{m-3}} \cup \widetilde{X}_{m-1}\right\rangle\right\rangle\right\rangle_{H}, \text { where: } \tag{5.45}\\
X_{m}=\left\{\begin{array}{r}
{\left[x_{1}, \ldots, x_{i}\right] \in \Gamma_{i}(H): \exists 1 \leq j_{1}<\ldots<j_{m-i} \leq i, x_{j_{1}}, \ldots, x_{j_{m-i}} \in A_{n}} \\
\text { for all } i=2, \ldots, m
\end{array}\right\} \text { for all } m \geq 3 \\
\widetilde{X}_{m}=\left\{\begin{array}{r}
\left.\left[x_{1}, \ldots, x_{i}\right]^{2^{m-i-k} \in \Gamma_{i}(H): \exists 1 \leq j_{1}<\ldots<j_{k} \leq i, x_{j_{1}}, \ldots, x_{j_{k}} \in A_{n}} \begin{array}{r}
\text { for all } 0 \leq k \leq m-i, \text { and } i=2, \ldots, m
\end{array}\right\} \text { for all } m \geq 2 .
\end{array}\right.
\end{gather*}
$$

Note that if $i=m$ (resp. $k=0$), the elements x_{1}, \ldots, x_{i} of H that appear in the definition of X_{m} (resp. of \widetilde{X}_{m}) are arbitrary. If $m \geq 3$ (resp. $m \geq 2$), we will refer to the elements of $X_{m} \cup\left\{x^{2}: x \in Z_{m-1}\right\}$ (resp. of $\widetilde{X}_{m} \cup\left\{D_{j}^{2^{m-2}}: j=1, \ldots, n\right\}$) as generators of Z_{m} (resp. of \widetilde{Z}_{m}).
Proposition 5.22. Let $m \geq 1$. Then $\widetilde{Z}_{m} \subset \gamma_{\lceil m / 2\rceil}^{2}(H)$, where $\lceil x\rceil$ denotes the least integer greater than or equal to x. In particular, $\bigcap_{m \geq 1} \widetilde{Z}_{m}=\{1\}$.
Proof. If $m \in\{1,2\}$ then $\lceil m / 2\rceil=1, \gamma_{1}^{2}(H)=H$ and thus $\widetilde{Z}_{m} \subset \gamma_{1}^{2}(H)$. So suppose by induction on m that $\widetilde{Z}_{i} \subset \gamma_{\lceil i / 2\rceil}^{2}(H)$ for some $m \geq 2$ and all $1 \leq i \leq m$. Since $\gamma_{\lceil(m+1) / 2\rceil}^{2}(H)$ is normal in H, by (5.37) and (5.45), it suffices to show that $\left\{D_{j}^{2^{m-1}}: j=1, \ldots, n\right\} \cup \widetilde{X}_{m+1} \subset \gamma_{\lceil(m+1) / 2\rceil}^{2}(H)$. If $j=1, \ldots, n$ then $D_{j}^{2^{m-1}}=\left(D_{j}^{2^{m-2}}\right)^{2}$, and since $D_{j}^{2^{m-2}} \in A_{n}^{2^{m-2}}$ and $A_{n}^{2^{m-2}} \subset \widetilde{Z}_{m}$, it follows by the induction hypothesis that $D_{j}^{2^{m-2}} \in \gamma_{\lceil m / 2\rceil}^{2}(H)$, and hence $D_{j}^{2^{m-1}} \in \gamma_{\lceil m / 2\rceil+1}^{2}(H)$. The fact that $\lceil m / 2\rceil+1 \geq\lceil(m+1) / 2\rceil$ implies that $\gamma_{\lceil m / 2\rceil+1}^{2}(H) \subset \gamma_{\lceil(m+1) / 2\rceil}^{2}(H)$, whence $D_{j}^{2^{m-1}} \in \gamma_{\lceil(m+1) / 2\rceil}^{2}(H)$. Now let $x \in \widetilde{X}_{m+1}$, and let $x=\left[x_{1}, \ldots, x_{i}\right]^{2^{m+1-i-k}} \in \Gamma_{i}(H)$, where $2 \leq i \leq m+1$ and there exist $1 \leq j_{1}<\cdots<j_{k} \leq i$, such that $x_{j_{1}}, \ldots, x_{j_{k}} \in A_{n}$, for all $0 \leq k \leq m+1-i$. If $i=m+1$ then $x \in \gamma_{m+1}^{2}(H) \subset \gamma_{\lceil(m+1) / 2\rceil}^{2}(H)$ because $m+1 \geq\lceil(m+1) / 2\rceil$. So suppose that $2 \leq i \leq m$. If $0 \leq k \leq m-i$ then $x=\left(\left[x_{1}, \ldots, x_{i}\right]^{2^{m-i-k}}\right)^{2}$, where $\left[x_{1}, \ldots, x_{i}\right]^{2^{m-i-k}} \in \widetilde{X}_{m} \subset \gamma_{\lceil m / 2\rceil}^{2}(H)$ using the induction hypothesis, and thus $x \in \gamma_{\lceil m / 2\rceil+1}^{2}(H) \subset \gamma_{\lceil(m+1) / 2\rceil}^{2}(H)$. Finally, if $k=m+1-i$ then $x=\left[x_{1}, \ldots, x_{i}\right] \in \Gamma_{i}(H)$. Since $k \leq i$, we have $i \geq(m+1) / 2 \geq\lceil(m+1) / 2\rceil$, and hence $x \in \Gamma_{i}(H) \subset \Gamma_{\lceil(m+1) / 2\rceil}(H) \subset \gamma_{\lceil(m+1) / 2\rceil}^{2}(H)$ as required, and this completes the proof of the inclusion $\left\{D_{j}^{2^{m-1}}: j=1, \ldots, n\right\} \cup \widetilde{X}_{m+1} \subset \gamma_{\lceil(m+1) / 2\rceil}^{2}(H)$. Finally, since H is a free group of finite rank, it is residually 2-finite and $\bigcap_{m \geq 1} \gamma_{m}^{2}(H)=\{1\}$, so $\bigcap_{m \geq 1} \widetilde{Z}_{m}=\{1\}$.

The aim now is to prove that $Y_{m}=Z_{m}=\widetilde{Z}_{m}$ for all $m \geq 2$, from which we will conclude that $\bigcap_{m \geq 1} Y_{m}=\{1\}$ and that $P_{n+1}(\mathbb{K})$ is residually nilpotent.
Remark 5.23. Let $m \geq 2$. Taking $A=A_{n}$ in (5.17), we have $\left\langle\widetilde{X}_{m}\right\rangle=\mathcal{E}_{2, m}$. Further, since $D_{j} \in A_{n}$ for all $j=1, \ldots, n$, we see that $D_{j}^{2^{m-2}} \in \mathcal{E}_{1, m}$, where we take $i=k=1$, so $A_{n}^{2^{m-2}} \subset \mathcal{E}_{1, m}$. Therefore $\widetilde{Z}_{m} \subset \mathcal{E}_{1, m}$, and Corollary 5.9 then implies that

$$
\left[H, \widetilde{Z}_{m}\right] \subset\left[H, \mathcal{E}_{1, m}\right] \subset \mathcal{E}_{2, m+1}=\left\langle\widetilde{X}_{m+1}\right\rangle \subset \widetilde{Z}_{m+1}
$$

Note also that if $m=1$ then $\left[H, \widetilde{Z}_{1}\right]=\Gamma_{2}(H)=\left\langle\widetilde{X}_{2}\right\rangle \subset \widetilde{Z}_{2}$.
Lemma 5.24. For all $m \geq 1, Y_{m}=Z_{m}=\widetilde{Z}_{m}$.
Proof. If $m=1$, the given equality holds by definition. If $m=2$ then $\left\langle\widetilde{X}_{2}\right\rangle=\Gamma_{2}(H)$, and $\widetilde{Z}_{2}=\left\langle\left\langle A_{n} \cup \Gamma_{2}(H)\right\rangle\right\rangle_{H}=V_{2}$ using (5.38) and the fact that V_{2} is normal in H by Lemma 3.3. So suppose by induction that:

$$
\begin{equation*}
Y_{i}=Z_{i}=\widetilde{Z}_{i} \text { for some } m \geq 2 \text { and all } 1 \leq i \leq m \tag{5.46}
\end{equation*}
$$

To prove that $\widetilde{Z}_{m+1} \subset Z_{m+1}$, let us show that $A_{n}^{2^{m-1}}$ and \widetilde{X}_{m+1} are contained in Z_{m+1}. For all $j=1, \ldots, n$, we have $D_{j}^{2^{m+1-2}}=\left(D_{j}^{2^{m-2}}\right)^{2}$ and $D_{j}^{2^{m-2}} \in \widetilde{Z}_{m}=Z_{m}$ by induction, so $A_{n}^{2^{2 m-1}} \subset Z_{m+1}$ by (5.45). Now suppose that $\left[x_{1}, \ldots, x_{i}\right]^{2^{m+1-i-k}} \in \widetilde{X}_{m+1}$, so k elements of $\left\{x_{1}, \ldots, x_{i}\right\}$ belong to A_{n}, where $0 \leq k \leq m+1-i$. If $m+1-i>k$ then $\left[x_{1}, \ldots, x_{i}\right]^{]^{m-i-k}}$ belongs to $\widetilde{Z}_{m}=Z_{m}$ by induction, so $\left[x_{1}, \ldots, x_{i}\right]^{2^{m+1-i-k}}=\left(\left[x_{1}, \ldots, x_{i}\right]^{2^{m-i-k}}\right)^{2}$ belongs to Z_{m+1}. If $m+1-i=k$ then $\left[x_{1}, \ldots, x_{i}\right]^{2 m+1-i-k}=\left[x_{1}, \ldots, x_{i}\right] \in \Gamma_{i}(H)$, where $k=(m+1)-i$ elements of this commutator belong to A_{n}, so $\left[x_{1}, \ldots, x_{i}\right] \in Z_{m+1}$. Hence $\widetilde{X}_{m+1} \subset Z_{m+1}$, and thus $\widetilde{Z}_{m+1} \subset Z_{m+1}$.

We now show that $Z_{m+1} \subset \widetilde{Z}_{m+1}$. First note that $X_{m+1} \subset \widetilde{X}_{m+1}$, for if the commutator $\left[x_{1}, \ldots, x_{i}\right]$ belongs to X_{m+1} then $m+1-i$ of its elements belong to A_{n}, and so $\left[x_{1}, \ldots, x_{i}\right]=$ $\left[x_{1}, \ldots, x_{i}\right]^{2^{m+1-i-k}} \in \widetilde{X}_{m+1}$, where $k=m+1-i$. Now let $y \in Z_{m+1}$ be of the form $y=x^{2}$, where $x \in Z_{m}=\widetilde{Z}_{m}$ by induction. If x is a generator of \widetilde{Z}_{m} then $x^{2} \in \widetilde{Z}_{m+1}$ from the definition of \widetilde{Z}_{m+1}. If $x=x_{1} \cdots x_{l}$, where x_{i} is a generator of \widetilde{Z}_{m} for all $1 \leq i \leq l$, then making use of a decomposition of x analogous to that of (5.31), the previous sentence and the fact that $\left[H, \widetilde{Z}_{m}\right] \subset \widetilde{Z}_{m+1}$ by Remark 5.23, it follows that $y \in \widetilde{Z}_{m+1}$. We conclude that $Z_{m+1} \subset \widetilde{Z}_{m+1}$, and hence $Z_{m+1}=\widetilde{Z}_{m+1}$.

To show that $Z_{m+1} \subset Y_{m+1}$, let $y \in Z_{m+1}$. We first consider the following two possibilities:
(i) $y=x^{2}$, where $x \in Z_{m}=Y_{m}$ by induction. If $x=D_{j}^{2^{m-2}}$ for some $j=1, \ldots, n$, it follows from the definition of Y_{m+1} that $y=x^{2}=D_{j}^{2^{m-1}} \in Y_{m+1}$. If $x=\left[x_{i}, x_{j}\right]$, where $1 \leq i \leq j<m$, $i+j=m, x_{i} \in Y_{i}$ and $x_{j} \in Y_{j}$, then:

$$
y=\left[x_{i}, x_{j}\right]^{2}=\underbrace{[x_{i}, \underbrace{\left[x_{j}, x_{i}^{-1}\right]}_{\in\left[Y_{i}, Y_{j}\right] \subset Y_{m}}]}_{\in\left[H, Y_{m}\right] \subset Y_{m+1}} x_{j} x_{i}^{-1} \underbrace{[x_{j}^{-1}, \underbrace{x_{i}^{2}}_{\in Z_{i+1}=Y_{i+1}}]}_{\in\left[Y_{j}, Y_{i+1}\right] \subset Y_{m+1}} x_{i} x_{j}^{-1} .
$$

Note that to obtain $x_{i}^{2} \in Y_{i+1}$, we have $i<m$, so $Y_{i}=Z_{i}$ and $Y_{i+1}=Z_{i+1}$ by the induction hypothesis. Therefore $y \in Y_{m+1}$ since Y_{m+1} is normal in H by Remark 5.16.
(ii) $y=\left[x_{1}, \ldots, x_{i}\right] \in \Gamma_{i}(H)$, where $2 \leq i \leq m+1, x_{1}, \ldots, x_{i} \in H$, and there exist $1 \leq j_{1}<$ $\ldots<j_{m+1-i} \leq i$ such that $x_{j_{1}}, \ldots, x_{j_{m+1-i}} \in A_{n}$. If $j_{1}=1$, i.e. $x_{1} \in A_{n}$, then $x_{1} \in Y_{2}$, $\left[x_{2}, \ldots, x_{i}\right] \in \Gamma_{i-1}(H)$, and $m-i=(m-1)-(i-1)$ elements of $\left\{x_{2}, \ldots, x_{i}\right\}$ belong to A_{n}, so $\left[x_{2}, \ldots, x_{i}\right] \in Z_{m-1}=Y_{m-1}$ by induction. Hence:

$$
y=\left[x_{1},\left[x_{2}, \ldots, x_{i}\right]\right] \in\left[Y_{2}, Y_{m-1}\right] \subset Y_{m+1}
$$

If $j_{1}>1$ then $\left[x_{2}, \ldots, x_{i}\right] \in \Gamma_{i-1}(H)$ and $m+1-i=m-(i-1)$ elements of $\left\{x_{2}, \ldots, x_{i}\right\}$ belong to A_{n}. Therefore $\left[x_{2}, \ldots, x_{i}\right] \in Z_{m}=Y_{m}$ by induction, and thus:

$$
y=\left[x_{1},\left[x_{2}, \ldots, x_{i}\right]\right] \in\left[H, Y_{m}\right] \subset Y_{m+1}
$$

For the general case, if y is a product of conjugates of the two types of elements described in (i) and (ii) above, then $y \in Y_{m+1}$ because Y_{m+1} is normal in H by Remark 5.16, and we conclude that $Z_{m+1} \subset Y_{m+1}$.

To complete the proof, it remains to see that $Y_{m+1} \subset \widetilde{Z}_{m+1}$. From the definition of \widetilde{Z}_{m+1} given in (5.45), it is clear that $A_{n}^{2^{m-1}} \subset \widetilde{Z}_{m+1}$. Applying the induction hypothesis, we have $\left[Y_{i}, Y_{j}\right]=$ $\left[\widetilde{Z}_{i}, \widetilde{Z}_{j}\right]$ for all $1 \leq i, j \leq m$ for which $i+j=m+1$, so it suffices to show that $\left[\widetilde{Z}_{i}, \widetilde{Z}_{j}\right] \subset \widetilde{Z}_{i+j}$. We shall prove by induction on i that $\left[\widetilde{Z}_{i}, \widetilde{Z}_{j}\right] \subset \widetilde{Z}_{i+j}$ for all $1 \leq i \leq m$ and $j \geq 1$. The inclusion that we require then follows as a special case. So let $j \geq 1$. If $i=1$ then $\left[\widetilde{Z}_{1}, \widetilde{Z}_{j}\right]=\left[H, \widetilde{Z}_{j}\right] \subset \widetilde{Z}_{j+1}$ by Remark 5.23. So assume that $1<i \leq m$, and suppose by induction that:

$$
\begin{equation*}
\left[\widetilde{Z}_{k}, \widetilde{Z}_{j}\right] \subset \widetilde{Z}_{k+j} \text { for all } j \geq 1 \text { and } 1 \leq k<i \leq m \tag{5.47}
\end{equation*}
$$

The aim is to prove that $\left[\widetilde{Z}_{i}, \widetilde{Z}_{j}\right] \subset \widetilde{Z}_{i+j}$. Let $x \in \widetilde{Z}_{i}$ and $y \in \widetilde{Z}_{j}$. Then $x \in Y_{i}$ by the induction hypothesis (5.46) and the fact that $1<i \leq m$. Assume first that x is a generator of Y_{i}, so that one of the following conditions holds:
(1) $x \in\left[Y_{l}, Y_{k}\right]$, where $1 \leq l \leq k<i \leq m$ and $l+k=i$. Then $x \in\left[\widetilde{Z}_{l}, \widetilde{Z}_{k}\right]$ by the induction hypothesis (5.46).
(2) $x \in A_{n}^{2^{i-2}}$,
and let us prove that $[x, y] \in \widetilde{Z}_{i+j}$. In case (1), [27, Theorem 5.2] implies that:

$$
\begin{equation*}
\left[\left[\widetilde{Z}_{l}, \widetilde{Z}_{k}\right], \widetilde{Z}_{j}\right]=\left[\widetilde{Z}_{j},\left[\widetilde{Z}_{l}, \widetilde{Z}_{k}\right]\right] \subset\left[\widetilde{Z}_{l},\left[\widetilde{Z}_{k}, \widetilde{Z}_{j}\right]\right] .\left[\widetilde{Z}_{k},\left[\widetilde{Z}_{j}, \widetilde{Z}_{l}\right]\right] . \tag{5.48}
\end{equation*}
$$

By the induction hypothesis (5.47) and the fact that $k, l<m$, we have:

$$
\left\{\begin{array}{l}
{\left[\widetilde{Z}_{l},\left[\widetilde{Z}_{k}, \widetilde{Z}_{j}\right]\right] \subset\left[\widetilde{Z}_{l}, \widetilde{Z}_{k+j}\right] \subset \widetilde{Z}_{l+k+j}=\widetilde{Z}_{i+j}} \tag{5.49}\\
{\left[\widetilde{Z}_{k},\left[\widetilde{Z}_{j}, \widetilde{Z}_{l}\right]\right]=\left[\widetilde{Z}_{k},\left[\widetilde{Z}_{l}, \widetilde{Z}_{j}\right]\right] \subset\left[\widetilde{Z}_{k}, \widetilde{Z}_{l+j}\right] \subset \widetilde{Z}_{k+l+j}=\widetilde{Z}_{i+j}}
\end{array}\right.
$$

and thus $[x, y] \in \widetilde{Z}_{i+j}$ for all $y \in \widetilde{Z}_{j}$ using (5.48) and (5.49). In case (2), let $x=D_{k}^{2^{i-2}}$, where $k \in\{1, \ldots, n\}$. We consider the following cases:

- $i=2$. Then $x \in A_{n}$. Let us show by induction on j that $\left[A_{n}, Z_{j}\right] \subset Z_{j+2}$ for all $j \geq 1$. Suppose first that $j=1$, let $x \in A_{n}$, and let $y \in Z_{1}=H$. Then $[x, y] \in \Gamma_{2}(H)$, and the set $\{x, y\}$ has one element, x, in A_{n}, therefore $[x, y] \in X_{3} \subset Z_{3}$, and thus $\left[A_{n}, Z_{1}\right] \subset Z_{3}$. Now suppose that $j>1$ and that $\left[A_{n}, Z_{j-1}\right] \subset Z_{j+1}$ by induction. Let $x \in A_{n}$, and let $y \in Z_{j}$. First assume that y is a generator of Z_{j}. If $y=\left[y_{1}, \ldots, y_{l}\right] \in \Gamma_{l}(H)$ belongs to X_{j} then $j-l$ elements of $\left\{y_{1}, \ldots, y_{l}\right\}$ belong to A_{n}, therefore $[x, y] \in \Gamma_{l+1}(H)$, where $j-l+1=(j+2)-(l+1)$ elements of $\left\{x, y_{1}, \ldots, y_{l}\right\}$ belong to A_{n}. So $[x, y] \in X_{j+2} \subset Z_{j+2}$. If $y=z^{2}$, where $z \in Z_{j-1}$, then:

$$
[x, y]=\left[x, z^{2}\right]=[x, z]^{2}[[z, x], z]
$$

by (3.2). Since $[x, z] \in\left[A_{n}, Z_{j-1}\right] \subset Z_{j+1}$ by induction, it follows that $[x, z]^{2} \in Z_{j+2}$ from the definition of Z_{j+2} in (5.45), and $[[z, x], z] \in\left[Z_{j+1}, H\right] \subset Z_{j+2}$ by Remark 5.23 and the fact that $\widetilde{Z}_{l}=Z_{l}$ for all $l \geq 1$. Therefore $[x, y] \in Z_{j+2}$. Now if $y=\left(\alpha_{1} y_{1}^{\delta_{1}} \alpha_{1}^{-1}\right) \cdots\left(\alpha_{s} y_{s}^{\delta_{s}} \alpha_{s}^{-1}\right)$, where for all $k=1, \ldots, s, y_{k}$ is a generator of $Z_{j}, \alpha_{k} \in H$ and $\delta_{k} \in\{1,-1\}$, then applying (5.29) and induction on s, we see that $[x, y]$ may be written as a product of conjugates of commutators of the form $\left[x, y_{k}^{\delta_{k}}\right]$. Then $[x, y] \in \widetilde{Z}_{j+2}$ using the above computations, the normality of Z_{j+2} in H, and the fact $\widetilde{Z}_{l}=Z_{l}$ for all $l \geq 1$ from the first part of the proof.

- $i \geq 3$. Then:

$$
[x, y]=\left[D_{k}^{2^{i-2}}, y\right]=\left[D_{k}^{2^{i-3}},\left[D_{k}^{2^{i-3}}, y\right]\right]\left[D_{k}^{2^{i-3}}, y\right]^{2}
$$

by (3.2). Now $\left[D_{k}^{2^{i-3}}, y\right] \in\left[\widetilde{Z}_{i-1}, \widetilde{Z}_{j}\right] \subset \widetilde{Z}_{i-1+j}$ using (5.47), and we deduce from Remark 5.23 that $\left[D_{k}^{2^{i-3}},\left[D_{k}^{2^{i-3}}, y\right]\right] \in\left[H, \widetilde{Z}_{i-1+j}\right] \subset \widetilde{Z}_{i+j}$. Since $\left[D_{k}^{2^{i-3}}, y\right] \in \widetilde{Z}_{i-1+j}=Z_{i-1+j}$, we have $\left[D_{k}^{2^{i-3}}, y\right]^{2} \in Z_{i+j}=\widetilde{Z}_{i+j}$, so $[x, y] \in \widetilde{Z}_{i+j}$.
If now $x \in Y_{i}$ is a product of conjugates of generators of Y_{i}, then $[x, y] \in \widetilde{Z}_{i+j}$ using the above computations, (5.29), and the normality of \widetilde{Z}_{i+j}. This shows that $\left[\widetilde{Z}_{i}, \widetilde{Z}_{j}\right]=\left[Y_{i}, \widetilde{Z}_{j}\right] \subset \widetilde{Z}_{i+j}$ as claimed, and so $Y_{m+1} \subset \widetilde{Z}_{m+1}$ as required.

Theorem 5.25. For all $n, m \geq 1$, we have $\Gamma_{m}\left(P_{n+1}(\mathbb{K})\right)=Z_{m} \rtimes \Gamma_{m}\left(P_{n}(\mathbb{K})\right)$.
Proof. If $n=1,2$ then $P_{n}(\mathbb{K})$ is residually nilpotent by Theorem 5.4 and (5.10). Suppose by induction that $P_{n}(\mathbb{K})$ is residually nilpotent for some $n \geq 2$. Using the Fadell-Neuwirth split short exact sequence (5.1), the result follows by induction, and by applying Theorem 1.1, Lemmas 5.21 and 5.24.

Proof of Theorem 1.3(1). If $n=1$ (resp. $n=2$), the result is a consequence of (5.10) (resp. Theorem 5.4). If $n \geq 3$, the result follows by induction on n, Proposition 5.22 and Theorem 5.25.
5.5. The case of the braid group $B_{n}(\mathbb{K})$. In this section, we prove Theorem 1.3(2). We start by giving two propositions in the cases where $B_{n}(\mathbb{K})$ is not residually nilpotent or is not residually soluble.

Proposition 5.26. If $n \geq 3$ then $B_{n}(\mathbb{K})$ is not residually nilpotent. Further, for all $i \geq 3$, $\Gamma_{2}\left(B_{n}(\mathbb{K})\right)=\Gamma_{i}\left(B_{n}(\mathbb{K})\right)=\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})}$.
Proof. In this proof, the relation numbers are those of Theorem 2.2. Let $n \geq 3$, and consider the following short exact sequence:

$$
\begin{equation*}
1 \longrightarrow \frac{\Gamma_{2}\left(B_{n}(\mathbb{K})\right)}{\Gamma_{3}\left(B_{n}(\mathbb{K})\right)} \longrightarrow \frac{B_{n}(\mathbb{K})}{\Gamma_{3}\left(B_{n}(\mathbb{K})\right)} \stackrel{p_{*}}{\longrightarrow} \frac{B_{n}(\mathbb{K})}{\Gamma_{2}\left(B_{n}(\mathbb{K})\right)} \longrightarrow 1 \tag{5.50}
\end{equation*}
$$

where p_{*} is the canonical projection. Using relations (1) and (2), and arguing as in [16, p. 680] or [5, Proposition 3], it follows that the $\Gamma_{3}\left(B_{n}(\mathbb{K})\right)$-cosets of $\sigma_{1}, \ldots, \sigma_{n-1}$ in $B_{n}(\mathbb{K}) / \Gamma_{3}\left(B_{n}(\mathbb{K})\right)$ are all identified to a single element, which we denote by σ. Since $n \geq 3$, it follows from relations (3) and (4) that the $\Gamma_{3}\left(B_{n}(\mathbb{K})\right)$-cosets of a and b commute with σ. By relation (7) and (5.50), σ is of order 2, by relation (5), the $\Gamma_{3}\left(B_{n}(\mathbb{K})\right.$)-cosets of a and b commute, and from relation (8), the $\Gamma_{3}\left(B_{n}(\mathbb{K})\right)$-coset of a is of order 2 in $B_{n}(\mathbb{K}) / \Gamma_{3}\left(B_{n}(\mathbb{K})\right)$. By Remark 2.3, $\bar{\sigma}$ and the $\Gamma_{2}\left(B_{n}(\mathbb{K})\right)$-cosets of a and b are non trivial in $B_{n}(\mathbb{K}) / \Gamma_{2}\left(B_{n}(\mathbb{K})\right)$, therefore σ and the $\Gamma_{3}\left(B_{n}(\mathbb{K})\right)$-cosets of a and b are also non trivial in $B_{n}(\mathbb{K}) / \Gamma_{2}\left(B_{n}(\mathbb{K})\right)$ and satisfy the same relations in $B_{n}(\mathbb{K}) / \Gamma_{3}\left(B_{n}(\mathbb{K})\right)$ as their images in $B_{n}(\mathbb{K}) / \Gamma_{2}\left(B_{n}(\mathbb{K})\right)$ under p_{*}. Hence p_{*} is a isomorphism, and $\Gamma_{2}\left(B_{n}(\mathbb{K})\right)=\Gamma_{3}\left(B_{n}(\mathbb{K})\right)$, so $\Gamma_{2}\left(B_{n}(\mathbb{K})\right)=\Gamma_{i}\left(B_{n}(\mathbb{K})\right)$ for all $i \geq 3$. Since $\Gamma_{2}\left(B_{n}(\mathbb{K})\right)$ is non trivial, we see that $B_{n}(\mathbb{K})$ is not residually nilpotent.

It remains to show that $\Gamma_{2}\left(B_{n}(\mathbb{K})\right)=\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})}$. From relations (1) and (2), for all $i=$ $1, \ldots, n-2$, we have $\left[\sigma_{i}, \sigma_{i+1}\right]=\sigma_{i} \sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}=\sigma_{i+1}^{-1} \sigma_{i}$, in particular, $\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})} \subset \Gamma_{2}\left(B_{n}(\mathbb{K})\right)$. To prove the other inclusion, for all $i=2, \ldots, n-2$, note that:

$$
\begin{aligned}
{\left[\sigma_{i}, \sigma_{i+1}\right] } & =\sigma_{i+1}^{-1} \sigma_{i}=\sigma_{i+1}^{-1} \underbrace{\sigma_{i}\left(\sigma_{i-1} \sigma_{i}\right.}_{(1)} \sigma_{i}^{-1} \sigma_{i-1}^{-1})=\underbrace{\sigma_{i+1}^{-1}\left(\sigma_{i-1}\right.}_{(2)} \sigma_{i} \sigma_{i-1}) \sigma_{i}^{-1} \sigma_{i-1}^{-1} \\
& =(\sigma_{i-1} \underbrace{\left.\sigma_{i+1}^{-1}\right) \sigma_{i}}_{(1)} \sigma_{i-1} \sigma_{i}^{-1} \sigma_{i-1}^{-1}=\sigma_{i-1}(\sigma_{i} \sigma_{i+1} \sigma_{i}^{-1} \underbrace{\left.\sigma_{i+1}^{-1}\right) \sigma_{i-1}}_{(2)} \sigma_{i}^{-1} \sigma_{i-1}^{-1} \\
& =\sigma_{i-1} \sigma_{i} \sigma_{i+1}\left(\sigma_{i}^{-1} \sigma_{i-1}\right) \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i-1}^{-1}
\end{aligned}
$$

It follows by induction on i that $\left[\sigma_{i}, \sigma_{i+1}\right] \in\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})}$ for all $i=1, \ldots, n-2$. Further,

$$
\begin{equation*}
\left[a, \sigma_{1}\right]=a \sigma_{1}(\sigma_{2}^{-1} \underbrace{\left.\sigma_{2}\right) a^{-1}}_{(3)} \sigma_{1}^{-1}=a\left(\sigma_{2} \sigma_{1}^{-1}\right)^{-1} a^{-1} \cdot\left(\sigma_{2} \sigma_{1}^{-1}\right) \in\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})} \tag{5.51}
\end{equation*}
$$

and similarly, $\left[b, \sigma_{1}\right] \in\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})}$ using relation (4). To see that $[b, a] \in\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})}$, first note that:

$$
\begin{equation*}
\sigma_{1}^{2}=\sigma_{1} b^{-1} \sigma_{1} b^{-1} \sigma_{1}^{-1} b \sigma_{1}^{-1} b=\left(\sigma_{1} b^{-1}\left[\sigma_{1}, b^{-1}\right] b \sigma_{1}^{-1}\right)\left[\sigma_{1}, b^{-1}\right] \in\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})} \tag{5.52}
\end{equation*}
$$

using relation (7), and:

$$
\begin{aligned}
b a b^{-1} a^{-1} & =b a(\sigma_{1}^{-1} \underbrace{\left.\sigma_{1}\right) b^{-1}\left(\sigma_{1}\right.}_{(5)} \sigma_{1}^{-1}) a^{-1}=b a \sigma_{1}^{-1}\left(a^{-1} \sigma_{1}^{-1} b^{-1} \sigma_{1} a\right) \sigma_{1}^{-1} a^{-1} \\
& =b\left[a, \sigma_{1}^{-1}\right] \sigma_{1}^{-2} b^{-1}\left[\sigma_{1}, a\right] \in\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})}
\end{aligned}
$$

by (5.51) and (5.52). Since the result is valid for the generators of $B_{n}(\mathbb{K})$, the result follows for an arbitrary element of $\Gamma_{2}\left(B_{n}(\mathbb{K})\right)$ using the formula given by (5.29) and by the normality of $\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})}$. We conclude that $\Gamma_{2}\left(B_{n}(\mathbb{K})\right) \subset\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})}$, and hence that $\Gamma_{2}\left(B_{n}(\mathbb{K})\right)=$ $\left\langle\left\langle\sigma_{2}^{-1} \sigma_{1}\right\rangle\right\rangle_{B_{n}(\mathbb{K})}$.

Proposition 5.27. If $n \geq 5$ then $B_{n}(\mathbb{K})$ is not residually soluble. Further, $\left(B_{n}(\mathbb{K})\right)^{(1)}=\left(B_{n}(\mathbb{K})\right)^{(i)}$ for all $i \geq 2$.
Proof. Let $n \geq 5$. Once more, the relation numbers will refer to those of Theorem 2.2. As in the case of the torus (Proposition 4.3), first consider the following short exact sequence:

$$
1 \longrightarrow \frac{\left(B_{n}(\mathbb{K})\right)^{(1)}}{\left(B_{n}(\mathbb{K})\right)^{(2)}} \stackrel{i}{\longrightarrow} \frac{B_{n}(\mathbb{K})}{\left(B_{n}(\mathbb{K})\right)^{(2)}} \xrightarrow{p_{*}} B_{n}(\mathbb{K})^{\mathrm{Ab}} \longrightarrow 1,
$$

where p_{*} is the canonical projection. Using relations (1) and (2), for all $i=1, \ldots, n-1$, the σ_{i} belong to the same $\left(B_{n}(\mathbb{K})\right)^{(2)}$-coset, denoted by σ, in $B_{n}(\mathbb{K}) /\left(B_{n}(\mathbb{K})\right)^{(2)}$ (the hypothesis that $n \geq 5$ is used here, see [15, Theorem 1.4, p. 3389]). By Remark 2.3, σ and the $\left(B_{n}(\mathbb{K})^{(2)}\right.$-cosets of a and b are non trivial. From relations (3) and (4), the $\left(B_{n}(\mathbb{K})\right)^{(2)}$-cosets of a and b commute with σ. Relation (7) implies that σ is of order 2 , and so from relation (5), the $\left(B_{n}(\mathbb{K})\right)^{(2)}$-coset of a commutes with that of b. By relation (8), the $\left(B_{n}(\mathbb{K})\right)^{(2)}$-coset of a is of order 2. So p_{*} is a isomorphism, and $\left(B_{n}(\mathbb{K})\right)^{(1)}=\left(B_{n}(\mathbb{K})\right)^{(2)}$. The second part then follows.
Proof of Theorem 1.3(2). By Proposition 5.26 (resp. Proposition 5.27), if $n \geq 3$ (resp. $n \geq 5$), $B_{n}(\mathbb{K})$ is not residually nilpotent (resp. not residually soluble). Conversely, using Theorem 2.5, the short exact sequence (1.1), and the fact that $P_{2}(\mathbb{K})$ is residually 2 -finite by Theorem 5.13, $B_{2}(\mathbb{K})$ is residually 2-finite. In particular, $B_{2}(\mathbb{K})$ is residually nilpotent. By (5.10), $B_{1}(\mathbb{K})=\pi_{1}(\mathbb{K})$ is residually nilpotent. The fact that $P_{n}(\mathbb{K})$ is residually soluble for all $n \geq 1$ by Theorem 5.25 implies that $B_{n}(\mathbb{K})$ is residually soluble for all $n \leq 4$ using Theorem 2.5.

6. The case of non-orientable surfaces of higher genus

In this short section, we prove Theorem 1.4, by generalising Propositions 5.26 and 5.27 to nonorientable surfaces of higher genus.

Theorem 6.1. Let M be a compact, connected non-orientable surface without boundary and of genus $g \geq 3$. Then $B_{n}(M)$ is not residually nilpotent if $n \geq 3$, and is not residually soluble if $n \geq 5$.
Proof. The relation numbers will refer to those of Theorem 2.4. Using Theorem 2.4 it is easy to see that

$$
B_{n}(M)^{\mathrm{Ab}}=\left\langle\sigma, a_{i}, i=1, \ldots, g: a_{1}^{2} \cdots a_{g}^{2}=\sigma^{2(n-1)},\left[\sigma, a_{i}\right]=\left[a_{i}, a_{j}\right]=1, i, j=1, \ldots, n\right\rangle
$$

where σ denotes the $\Gamma_{2}\left(B_{n}(M)\right.$-coset of σ_{i} for all $i=1, \ldots, n-1$. As in the proof of Proposition 5.26 (resp. Proposition 5.27), using relations (1) and (2), one may show that for all $i=1, \ldots, n-1$, the σ_{i} belong to the same $\Gamma_{3}\left(B_{n}(M)\right)$-coset (resp. $\left(B_{n}(M)\right)^{(2)}$-coset), which we also denote by σ, in $B_{n}(M) / \Gamma_{3}\left(B_{n}(M)\right.$) (resp. in $\left.B_{n}(M) /\left(B_{n}(M)\right)^{(2)}\right)$. If $n \geq 3$ (resp. $n \geq 5$), by relation (3), the $\Gamma_{3}\left(B_{n}(M)\right)$-coset (resp. $\left(B_{n}(M)\right)^{(2)}$-coset) of a_{r} commutes with σ for all $1 \leq r \leq g$. By relation (5), the $\Gamma_{3}\left(B_{n}(M)\right)$-coset (resp. $\left(B_{n}(M)\right)^{(2)}$-coset) of a_{r} commutes with that of a_{s} for all $1 \leq r, s \leq g$. By (6), $a_{1}^{2} \cdots a_{g}^{2}=\sigma^{2(n-1)}$, and relation (4) does not give any new information. Thus $B_{n}(M) / \Gamma_{3}\left(B_{n}(M)\right)\left(\right.$ resp. $\left.B_{n}(M) /\left(B_{n}(M)\right)^{(2)}\right)$ is isomorphic to $B_{n}(M)^{\mathrm{Ab}}$. Hence $B_{n}(M)$ is not residually nilpotent if $n \geq 3$ (resp. is not residually soluble if $n \geq 5$).

Proof of Theorem 1.4. If $M=\mathbb{K}$, the result follows from Theorem 1.3(2), and if M is a compact surface without boundary of genus $g \geq 3$, the conclusion follows from [4] and from Theorem 6.1. If $M=\mathbb{R} P^{2}$, by [18], $B_{n}\left(\mathbb{R} P^{2}\right)$ is residually nilpotent if $n \leq 2$, and if $n \neq 4, B_{n}\left(\mathbb{R} P^{2}\right)$ is residually soluble if $n<4$. The result in the case $n=4$ may be obtained by using Theorem 2.5 and the following Fadell-Neuwirth short exact sequence:

$$
1 \longrightarrow P_{m}\left(\mathbb{R} P^{2} \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right) \longrightarrow P_{m+n}\left(\mathbb{R} P^{2}\right) \longrightarrow P_{n}\left(\mathbb{R} P^{2}\right) \longrightarrow 1
$$

where $n \geq 2$. Note that if $n=2, P_{2}\left(\mathbb{R} P^{2}\right)$ is the quaternion group of order 8 [34], which is 2-finite, and $P_{m}\left(\mathbb{R} P^{2} \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right)$ is residually 2-finite by [4]. Therefore $P_{m+2}\left(\mathbb{R} P^{2}\right)$ is residually 2-finite
for all $m \geq 1$, in particular $P_{4}\left(\mathbb{R} P^{2}\right)$ is residually soluble. Applying Theorem 2.5 to the short exact sequence (1.1), we see that $B_{4}\left(\mathbb{R} P^{2}\right)$ is residually soluble.

Appendix

Let M be the Möbius band, and let $n \geq 1$. The braid groups of M are those of $\mathbb{R} P^{2}$ with a single point removed [17, proof of Theorem 2(a)], and so $P_{n}(M)$ is the group $\Gamma_{n, 1}\left(\mathbb{R} P^{2}\right)$ of [19, Proposition 11]. We use the notation and results of that proposition in what follows. In particular, $P_{n}(M)$ is generated by the set $\left\{A_{i, j}, \rho_{j} \mid 1 \leq i<j\right.$ and $\left.2 \leq j \leq n+1\right\}$.

Proposition A1. Let $n \geq 1$. Then $Z\left(P_{n}(M)\right)=Z\left(B_{n}(M)\right)$ is infinite cyclic, generated by ρ_{2} if $n=1$, and by the full twist Δ_{n+1}^{2} if $n \geq 2$.

Proof. If $n=1$ then $P_{1}(M)=B_{1}(M)$ is infinite cyclic, generated by ρ_{2}, and the result follows in this case. So suppose that $n \geq 2$. Using the short exact sequence (1.1), we see that $B_{n}(M)$ is generated by $\left\{\sigma_{2}, \ldots, \sigma_{n}, \rho_{2}, \ldots, \rho_{n+1}\right\}$. The braid Δ_{n+1}^{2} generates the centre of B_{n+1}, thus σ_{i} commutes with Δ_{n+1}^{2} for all $i=2, \ldots, n$. Further, using [19, Proposition 11, relation (V)], Δ_{n+1}^{2} may be written in the following form:

$$
\begin{align*}
\Delta_{n+1}^{2} & =\left(A_{1,2}\right)\left(A_{1,3} A_{2,3}\right) \cdots\left(A_{1, n} A_{2, n} \cdots A_{n-1, n}\right)\left(A_{1, n+1} A_{2, n+1} \cdots A_{n, n+1}\right) \\
& =\left(A_{1,2}\right)\left(A_{1,3} A_{2,3}\right) \cdots\left(A_{1, n} A_{2, n} \cdots A_{n-1, n}\right) \rho_{n+1}^{-2} . \tag{A1}
\end{align*}
$$

Since ρ_{n+1} commutes with $A_{i, j}$ for all $1 \leq i<j<n+1$ [19, Proposition 11, relation (II)], it follows that ρ_{n+1} commutes with Δ_{n+1}^{2}. Now the relation $\rho_{i+1}=\sigma_{i}^{-1} \rho_{i} \sigma_{i}^{-1}$ of $\left[34\right.$, p. 83] for $B_{n+1}\left(\mathbb{R} P^{2}\right)$ also holds in $B_{n}(M)$ for all $i=2, \ldots, n$, so $\rho_{i}=\sigma_{i} \cdots \sigma_{n} \rho_{n+1} \sigma_{n} \cdots \sigma_{i}$, from which we conclude that ρ_{i} commutes with Δ_{n+1}^{2}. Thus Δ_{n+1}^{2} commutes with all of the elements of a generating set of $B_{n}(M)$, hence $\left\langle\Delta_{n+1}^{2}\right\rangle \subset Z\left(B_{n}(M)\right)$, and $\left\langle\Delta_{n+1}^{2}\right\rangle \subset Z\left(P_{n}(M)\right)$ since $\Delta_{n+1}^{2} \in P_{n}(M)$. To prove the converse, we consider the following two cases:
(a) $n=2$. Let $p: P_{2}(M) \longrightarrow P_{1}(M)$ denote the surjective homomorphism given geometrically by forgetting the second string. The kernel of p is a free group of rank 2 for which $\left(A_{2,3}, \rho_{3}\right)$ is a basis, and $P_{1}(M)=\left\langle\rho_{2}\right\rangle$ is infinite cyclic. Let $Q=\left\langle\rho_{2}^{2}\right\rangle$ be the index 2 subgroup of $P_{1}(M)$, and let $G=p^{-1}(Q)$ be the index 2 subgroup of $P_{2}(M)$. Then we have the following commutative diagram of short exact sequences:

where $q: P_{1}(M) \longrightarrow \mathbb{Z}_{2}$ is defined by $q\left(\rho_{2}\right)=\overline{1}$, and $q^{\prime}: P_{2}(M) \longrightarrow \mathbb{Z}_{2}$ is given by $q^{\prime}=$ $q \circ p$. From (A1), we have $\Delta_{3}^{2}=A_{1,2} \rho_{3}^{-2}$, and since $A_{1,2}=\rho_{2}^{-1} A_{2,3} \rho_{2}^{-1}$ by [19, Proposition 11, relation (V)], we see that:

$$
\begin{equation*}
\Delta_{3}^{2}=\rho_{2}^{-1} A_{2,3} \rho_{2}^{-1} \rho_{3}^{-2}=\rho_{2}^{-2} \cdot \underbrace{\rho_{2} A_{2,3} \rho_{2}^{-1} \rho_{3}^{-2}}_{\in \operatorname{Ker}(p)} \tag{A3}
\end{equation*}
$$

using exactness of (A2). So the restriction $\left.p\right|_{G}: G \longrightarrow Q$ admits a section given by sending ρ_{2}^{2} to Δ_{3}^{-2}, and from this and the fact that $\Delta_{3}^{2} \in Z\left(P_{2}(M)\right)$, the upper row of (A2) splits as a direct product. In particular, G is the internal direct product of $\operatorname{Ker}(p)$ and $\left\langle\Delta_{3}^{2}\right\rangle$, and $Z(G)=\left\langle\Delta_{3}^{2}\right\rangle$. Now $P_{2}(M)$ (resp. G) is an index 2 subgroup of $B_{2}(M)$ (resp. of $P_{2}(M)$), and a transversal is given by $\left\{1, \sigma_{2}\right\}$ (resp. by $\left\{1, \rho_{2}\right\}$). So every element z of $B_{2}(M)$ may be written as $z=a \rho_{2}^{i} \sigma_{2}^{j}$, where $a \in G$ and $i, j \in\{0,1\}$ are unique. We shall refer to this expression as the normal form of z. Let $z \in Z\left(B_{2}(M)\right)$, and assume first that $z \notin P_{2}(M)$, so $j=1$. Consider the basis (u, v) of $\operatorname{Ker}(p)$, where $u=A_{2,3} \rho_{3}$ and $v=\rho_{3}$. By [19, Proposition 11, relations (III) and (IV)], we have:

$$
\begin{equation*}
\rho_{2} u \rho_{2}^{-1}=\rho_{3}^{-1} A_{2,3}^{-1} \rho_{3} \cdot A_{2,3} \rho_{3}=u^{-1} v u \text { and } \rho_{2} v \rho_{2}^{-1}=u . \tag{A4}
\end{equation*}
$$

Hence the action by conjugation of ρ_{2} on $\operatorname{Ker}(p)$ is given by composing the involution that exchanges u and v with conjugation by u^{-1}. The relation $\rho_{3}=\sigma_{2}^{-1} \rho_{2} \sigma_{2}^{-1}$ implies that:

$$
\sigma_{2} v \sigma_{2}^{-1}=\sigma_{2} \rho_{3} \sigma_{2}^{-1}=\rho_{2} \sigma_{2}^{-2}=\rho_{2} A_{2,3}^{-1}=\rho_{2} v u^{-1}=\rho_{2} v u^{-1} \rho_{2}^{-1} \cdot \rho_{2}=v^{-1} u \rho_{2}
$$

by (A4). Since $z \in Z\left(B_{2}(M)\right), z$ and v commute, so:

$$
\begin{equation*}
a \rho_{2}^{i} \sigma_{2}=z=v z v^{-1}=v a \rho_{2}^{i} \sigma_{2} v^{-1} \sigma_{2}^{-1} \cdot \sigma_{2}=v a \rho_{2}^{i} \rho_{2}^{-1} u^{-1} v \sigma_{2} . \tag{A5}
\end{equation*}
$$

If $i=1$ then the left- and right-hand sides of (A5) are in normal form, and they clearly differ. If $i=0$ then using the fact that $\rho_{2}^{2}=u^{-1} v^{-1} \Delta_{3}^{-2} \in G$ by (A3) and (A4), equation (A5) may be written as:

$$
a \sigma_{2}=v a \rho_{2}^{-1} u^{-1} v \sigma_{2}=v a \rho_{2}^{-2} \cdot \rho_{2} u^{-1} v \rho_{2}^{-1} \cdot \rho_{2} \sigma_{2}=v a \Delta_{3}^{2} u^{2} \rho_{2} \sigma_{2} .
$$

Again the left- and right-hand sides are in normal form, and they differ also. In both cases, this contradicts the fact that $z \in Z\left(B_{2}(M)\right)$, and so we conclude that $j=0$. Hence $z \in P_{2}(M)$, and $\left\langle\Delta_{3}^{2}\right\rangle \subset Z\left(B_{2}(M)\right) \subset Z\left(P_{2}(M)\right)$. It remains to show that $z \in\left\langle\Delta_{3}^{2}\right\rangle$. Suppose that $i=1$. Since $z \in Z\left(P_{2}(M)\right)$, z commutes with u, so:

$$
a \rho_{2}=z=u z u^{-1}=u a \rho_{2} u^{-1}=u a \rho_{2} u^{-1} \rho_{2}^{-1} \cdot \rho_{2}=u a u^{-1} v^{-1} u \rho_{2}
$$

by (A4). Both sides are in normal form, and thus $a=u a u^{-1} v^{-1} u$ in $\operatorname{Ker}(p)$, which gives rise to a contradiction under Abelianisation in this free group. Hence $i=0$, and thus $z \in G$. So $z \in Z(G)$, and therefore $z \in\left\langle\Delta_{3}^{2}\right\rangle$. We conclude that $\left\langle\Delta_{3}^{2}\right\rangle=Z\left(B_{2}(M)\right)=Z\left(P_{2}(M)\right)$ as required.
(b) $n \geq 3$. Then $Z\left(S_{n}\right)=\{\operatorname{Id}\}$, and since the homomorphism $B_{n}(M) \longrightarrow S_{n}$ of (1.1) is surjective, it follows that $\left\langle\Delta_{n+1}^{2}\right\rangle \subset Z\left(B_{n}(M)\right) \subset Z\left(P_{n}(M)\right)$. The proof of the fact that $Z\left(P_{n}(M)\right) \subset$ $\left\langle\Delta_{n+1}^{2}\right\rangle$ is analogous to that of the inclusion $Z\left(P_{n}(\mathbb{K})\right) \subset Z_{n}$ given in the second paragraph of Proposition 5.2, where the kernel of the Fadell-Neuwirth short exact sequence involving the pure braid groups of M is a free group with trivial centre.

References

[1] E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburg Univ. 4 (1926), 47-72.
[2] V. G. Bardakov and P. Bellingeri, On residual properties of pure braid groups of closed surfaces, Comm. Alg. 37 (2009), 1481-1490.
[3] P. Bellingeri, On presentations of surface braid groups, J. Algebra 274 (2004), 543-563.
[4] P. Bellingeri and S. Gervais, On p-almost direct products and residual properties of pure braid groups of nonorientable surfaces, Alg. Geom. Top. 16 (2016), 547-568.
[5] P. Bellingeri, S. Gervais and J. Guaschi, Lower central series of Artin-Tits and surface braid groups, J. Algebra 319 (2008), 1409-1427.
[6] J. S. Birman, On braid groups, Comm. Pure Appl. Math. 22 (1969), 41-72.
[7] W.-L. Chow, On the algebraical braid group, Ann. Math. 49 (1948), 654-658.
[8] E. Fadell, Homotopy groups of configuration spaces and the string problem of Dirac, Duke Math. J. 29 (1962), 231-242.
[9] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118.
[10] E. Fadell and J. Van Buskirk, The braid groups of \mathbb{E}^{2} and \mathbb{S}^{2}, Duke Math. J. 29 (1962), 243-257.
[11] M. Falk and R. Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985), 77-88.
[12] R. H. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126.
[13] A. M. Gaglione, Factor groups of the lower central series for special free products, J. Algebra 37 (1975), 172-185.
[14] R. Gillette and J. Van Buskirk, The word problem and its consequences for the braid groups and mapping class groups of the 2-sphere, Trans. Amer. Math. Soc. 131 (1968), 277-296.
[15] D. L. Gonçalves and J. Guaschi, The lower central and derived series of the braid groups of the sphere, Trans. Amer. Math. Soc. 361 (2009), 3375-3399.
[16] D. L. Gonçalves and J. Guaschi, The lower central and derived series of the braid groups of the finitely-punctured sphere, J. Knot Th. Ramif. 18 (2009), 651-704.
[17] D. L. Gonçalves and J. Guaschi, Braid groups of non-orientable surfaces and the Fadell-Neuwirth short exact sequence, J. Pure Appl. Alg. 214 (2010), 667-677.
[18] D. L. Gonçalves and J. Guaschi, The lower central and derived series of the braid groups of the projective plane, J. Algebra 331 (2011), 96-129.
[19] D. L. Gonçalves and J. Guaschi, Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of \mathbb{S}^{2} and $\mathbb{R} P^{2}$, Pac. J. Math. 287 (2017), 71-99.
[20] J. González-Meneses, New presentations of surface braid groups, J. Knot Th. Ramif. 10 (2001), 431-451.
[21] E. A. Gorin and V Ja. Lin, Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids, Math. USSR Sbornik 7 (1969), 569-596.
[22] K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. 7 (1957), 29-62.
[23] V. L. Hansen, Braids and Coverings: selected topics, London Mathematical Society Student Texts 18, Cambridge University Press, 1989.
[24] D. L. Johnson, Presentations of groups, London Mathematical Society Student Texts 15, $2^{\text {nd }}$ edition, Cambridge University Press, Cambridge, 1997.
[25] T. Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), 57-75.
[26] J. Labute, On the descending central series of groups with a single defining relation, J. Algebra 14 (1970), 16-23.
[27] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, reprint of the 1976 second edition, Dover Publications, Inc., Mineola, NY, 2004.
[28] A. I. Mal'cev, On homomorphisms onto finite groups, Amer. Math. Soc. Transl. (2) 119 (1983), 67-79.
[29] K. Murasugi, Seifert fibre spaces and braid groups, Proc. London Math. Soc. 44 (1982), 71-84.
[30] L. Paris, Residual p properties of mapping class groups and surface groups, Trans. Amer. Math. Soc. 361 (2009), 2487-2507.
[31] L. Paris and D. Rolfsen, Geometric subgroups of surface braid groups, Ann. Inst. Fourier 49 (1999), 417-472.
[32] C. M. Pereiro, Os grupos de tranças do toro e da garrafa de Klein, Ph.D thesis, Universidade Federal de São Carlos and Université de Caen Basse-Normandie, 2015.
[33] G. P. Scott, Braid groups and the group of the homeomorphisms of a surface, Proc. Cambridge Philos. Soc. 68 (1970), 605-617.
[34] J. Van Buskirk, Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer. Math. Soc. 122 (1966), 81-97.

Normandie Univ., Unicaen, CNRS, Laboratoire de Mathématiques Nicolas Oresme UMR CNRS 6139, 14000 Caen, France.

Email address: john.guaschi@unicaen.fr
Universidade Federal do Espírito Santo, UFES, Departamento de Matemática, 29075-910, Vitória, Espírito Santo, Brazil

Email address: carolinapereiro@gmail.com

