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LOWER CENTRAL AND DERIVED SERIES OF SEMI-DIRECT PRODUCTS,
AND APPLICATIONS TO SURFACE BRAID GROUPS

JOHN GUASCHI AND CAROLINA DE MIRANDA E PEREIRO

Abstract. For an arbitrary semi-direct product, we give a general description of its lower central
series and an estimation of its derived series. In the second part of the paper, we study these series
for the full braid group Bn(M) and pure braid group Pn(M) of a compact surface M , orientable
or non-orientable, the aim being to determine the values of n for which Bn(M) and Pn(M) are
residually nilpotent or residually soluble. We first solve this problem in the case where M is the
2-torus. We then use the results of the first part of the paper to calculate explicitly the lower
central series of Pn(K), where K is the Klein bottle. Finally, if M is a non-orientable, compact
surface without boundary, we determine the values of n for which Bn(M) is residually nilpotent or
residually soluble in the cases that were not already known in the literature.

1. Introduction

Let G be a group. If g, g′ ∈ G then [g, g′] = gg′g−1g′−1 denotes their commutator, and if H and
K are subgroups of G, then the commutator subgroup of H and K, denoted by [H,K], is defined by
[H,K] = 〈[h, k] : h ∈ H and k ∈ K〉, the subgroup of G generated by the commutators of H and
K. The lower central series {Γi(G)}i≥1 of G is defined inductively by Γ1(G) = G, and for i ≥ 1,

Γi+1(G) = [Γi(G), G], and the derived series
{
G(i)

}
i≥0

of G is defined inductively by G(0) = G, and

for i ≥ 0, G(i+1) =
[
G(i), G(i)

]
. The quotient G/Γ2(G) is the Abelianisation of G that we denote

by GAb. Following P. Hall, for any group-theoretic property P , a group G is said to be residually
P if for any (non-trivial) element x ∈ G, there exists a group H that possesses property P and a
surjective homomorphism ϕ : G −→ H such that ϕ(x) 6= 1 (see also [28]). It is well known that
a group G is residually nilpotent (resp. residually soluble) if and only if

⋂
i≥1 Γi(G) = {1} (resp.⋂

i≥0G
(i) = {1}). zz

If p is a prime number, the lower Fp-linear central filtration {γpi (G)}i≥1 of G is defined inductively

by γp1(G) = G, and for i ≥ 1, γpi+1(G) = 〈[γpi (G), G] , xp : x ∈ γpi (G)〉 [30]. If the group G is finitely
generated, then G is residually p-finite if and only if

⋂
i≥1 γ

p
i (G) = {1} [30, Proposition 2.3(2)]. For

any group G, G(i) ⊂ Γi+1(G) ⊂ γpi+1(G), so if G is residually p-finite then it is residually nilpotent,
which in turn implies that it is residually soluble. The combinatorial study of the lower central
and derived series of a group is an interesting and important problem, see [11, 13, 22, 25, 26, 27]
for example.

The first part of this paper is devoted to the analysis of the lower central and derived series of
arbitrary semi-direct products. Our first main result describes the lower central series of such a
group, and gives some information about its derived series.

Theorem 1.1. Let G and H be groups, and let ϕ : G −→ Aut(H) be an action of G on H. We
define recursively the following subgroups of H: L1 = V1 = H, and if n ≥ 2:

Kn =
〈
ϕ(g)(h).h−1 : g ∈ Γn−1(G), h ∈ H

〉
, Hn =

〈
ϕ(g)(h).h−1 : g ∈ G, h ∈ Ln−1

〉
,

H̃n =
〈
ϕ(g)(h).h−1 : g ∈ G, h ∈ Vn−1

〉
, Ln = 〈Kn, Hn, [H,Ln−1]〉 ,

Vn =
〈
H̃n, [H,Vn−1]

〉
.
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Then ϕ induces an action, which we also denote by ϕ, of Γn(G) on Ln (resp. of G(n+1) on Vn+2),
and for all n ∈ N, we have:

(1) Γn(H oϕ G) = Ln oϕ Γn(G).
(2) (H oϕ G)(n−1) ⊂ Vn oϕ G

(n−1).

For the case of the commutator subgroup, namely n = 2, part (1) was obtained in [15, Proposi-
tion 3.3].

In the rest of this paper, we will be interested in computing the lower central and derived
series of the full and pure braid groups of compact surfaces without boundary, and we will apply
Theorem 1.1 to part of this calculation. We first recall some facts about these braid groups and
their lower central and derived series. The braid groups of the disc, also called the Artin braid
groups, were introduced by E. Artin [1]. If n ≥ 1, the n-string Artin braid group, denoted by Bn,
is generated by elements σ1, . . . , σn−1 that are subject to the Artin relations:{

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ n− 2

σjσi = σiσj if |i− j| ≥ 2 and 1 ≤ i, j ≤ n− 1.

The notion of braid group was generalised to surfaces by Fox and Neuwirth using configuration
spaces as follows [12]. Let M be a compact, connected surface, and let n ∈ N. The nth configuration
space of M , denoted by Fn(M), is defined by:

Fn(M) = {(x1, . . . , xn) : xi ∈M , and xi 6= xj if i 6= j, i, j = 1, . . . , n} .
The n-string pure braid group Pn(M) of M is defined by Pn(M) = π1(Fn(M)). The symmetric
group Sn on n letters acts freely on Fn(M) by permuting coordinates, and the n-string braid group
Bn(M) of M is defined by Bn(M) = π1(Fn(M)/Sn). This gives rise to the following short exact
sequence:

1 −→ Pn(M) −→ Bn(M) −→ Sn −→ 1. (1.1)

Ifm ≥ 1, the projection p : Fn+m(M) −→ Fn(M) defined by p(x1, . . . , xn, . . . , xn+m) = (x1, . . . , xn)
induces a homomorphism p∗ : Pn+m(M) −→ Pn(M). Geometrically, p∗ is the homomorphism that
‘forgets’ the last m strings. If M is without boundary, Fadell and Neuwirth showed that p is a
locally-trivial fibration [9, Theorem 1], with fibre Fm(M \ {x1, . . . , xn}) over the point (x1, . . . , xn),
which we consider to be a subspace of the total space via the map i : Fm(M \ {x1, . . . , xn}) −→ Fn+m(M)
defined by i((y1, . . . , ym)) = (x1, . . . , xn, y1, . . . , ym). Applying the associated long exact sequence
in homotopy to this fibration, we obtain the Fadell-Neuwirth short exact sequence of pure braid
groups:

1 −→ Pm(M \ {x1, . . . , xn})
i∗−→ Pn+m(M)

p∗−→ Pn(M) −→ 1, (1.2)

where n ≥ 3 if M is the sphere S2 [8, 10], n ≥ 2 if M is the projective plane RP 2 [10], and
n ≥ 1 otherwise [9], and i∗ is the homomorphism induced by the map i. This sequence has been
widely studied. If M is the torus T or the Klein bottle K, the existence of a non-vanishing vector
field on M allows one to construct a section for p [9, Theorem 5]. This implies that the short
exact sequence (1.2) splits for all n,m ∈ N, and that Pn(M) may be decomposed as an iterated
semi-direct product (see Proposition 5.1 for an explicit section for p∗ in the case M = K).

We then use the above results to study the derived series of the braid groups of the torus and
the lower central series and derived series of non-orientable surfaces. Theorem 1.1 will be used
in the computation of the lower central series of Pn(K), but we believe that it is of independent
interest, and that it may be applicable to other groups. We first recall some facts about these
series for surface braid groups. The lower central series of the Artin braid groups were analysed by
Gorin and Lin who gave a presentation of the commutator subgroup Γ2(Bn) of Bn for n ≥ 3, and
who showed that (Bn)(1) = (Bn)(2) for all n ≥ 5, which implies that (Bn)(1) is perfect [21]. As a
consequence, Γ2(Bn) = Γ3(Bn) for all n ≥ 3, so Bn is not residually nilpotent. The lower central
series of the pure braid group Pn was studied by Falk and Randell [11] and by Kohno [25], who
proved independently that Pn is residually nilpotent for all n ≥ 1.
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The braid groups of orientable surfaces were studied by Bellingeri, Gervais and Guaschi [5]. If
Mg,m is a compact, connected, orientable surface of genus g ≥ 1 with m ≥ 0 boundary components,
then Bn(Mg,m) is not residually nilpotent if n ≥ 3, and B2(T) is residually nilpotent. In the case
of the pure braid groups, Pn(Mg,m) is residually torsion-free nilpotent for all n ≥ 1 if m ≥ 1, or if
g = 1 and m = 0 (the torus). If m = 0 and g ≥ 1, Bardakov and Bellingeri proved that Pn(Mg,m)
is residually torsion-free nilpotent for all n ≥ 1, and the braid group B2(Mg,m) is residually 2-finite,
in particular, it is residually nilpotent [2]. Gonçalves and Guaschi studied the lower central and
derived series of the braid groups of the sphere S2 and the projective plane RP 2 [15, 18]. For the
sphere, Bn(S2) is residually nilpotent if and only if n ≤ 2, and residually soluble if and only if
n ≤ 4. In the case of the projective plane, Bn(RP 2) is residually nilpotent if and only if n ≤ 2, and
if n 6= 4, Bn(RP 2) is residually soluble if and only if n < 4. More recently, if M is a non-orientable
surface different from RP 2, Bellingeri and Gervais showed that Pn(M) is residually 2-finite, and so
is residually nilpotent [4].

In the second part of this paper, we study the derived series of the torus and the lower central
series and derived series of non-orientable surfaces. Our main results in this direction are as follows.

Theorem 1.2. The group Bn(T) is residually soluble if and only if n ≤ 4.

For non-orientable surfaces, we first analyse the case of the Klein bottle. Using Theorem 1.1,
we compute explicitly Γn(P2(K)) and γ2

n(P2(K)) in Theorems 5.4 and 5.13 respectively. From this
it will follow that P2(K) is residually nilpotent and residually 2-finite. In Theorem 5.25, we show
that Pn(K) is residually nilpotent for all n ∈ N. This will allow us to determine the values of n for
which Bn(K) is residually nilpotent or residually soluble as follows.

Theorem 1.3. Let n ≥ 1. Then:

(1) Pn(K) is residually nilpotent for all n ≥ 1.
(2) Bn(K) is residually nilpotent if and only if n ≤ 2, and residually soluble if and only if n ≤ 4.

For a non-orientable surface M without boundary of higher genus, we may decide whether Bn(M)
is residually nilpotent or residually soluble using results of [4, 18].

Theorem 1.4. Let n, g ∈ N, and let M be a compact non-orientable surface of genus g without
boundary. Then Bn(M) is residually nilpotent if and only if n ≤ 2, and is residually soluble if and
only if n ≤ 4.

Although Theorem 1.4 contains Theorem 1.3(2) as a special case, we state the latter separately
because the braid groups of the Klein bottle will be the focus of most of the second part of the
paper.

The manuscript is organised as follows. In Section 2, we give presentations of the braid groups
used in this paper, as well as the statement of Theorem 2.5 due to Gruenberg that will be required
in the proofs of some of our results. Theorem 1.1 is proved in Section 3. In Section 4, we study
the case of the torus and we prove Theorem 1.2. In Section 5, our focus is on the braid groups of
the Klein bottle, and we use Theorem 1.1 in the proof of Theorem 1.3. Theorem 1.4 is proved in
Section 6. If M is a compact surface different from K and the Möbius band, the centre Z(Bn(M))
of Bn(M) is known [6, 7, 14, 29, 31, 34]. We determine Z(Bn(K)) in Proposition 5.2, and for
the sake of completeness, in Proposition A1 of the Appendix, we compute the centre of the braid
groups of the Möbius band.

Acknowledgements. The authors would like to thank P. Bellingeri, S. Gervais, D. Gonçalves, L. Paris
and D. Vendrúscolo for stimulating conversations. C. M. Pereiro was supported by project grant
no 2010/18930-6 and 2012/01740-5 from FAPESP. During the writing of this paper, J. Guaschi was
partially supported by the CNRS/FAPESP PRC project no 275209.
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2. Generalities

In this section, we give the presentations of the braid and pure braid groups that will be used in
this paper. If M = T or K, we will make use of the following presentations of Pn(M) and Bn(M).

Theorem 2.1 ([32]). Let n ≥ 1, and let M be the torus T or the Klein bottle K. The following
constitutes a presentation of the pure braid group Pn(M) of M :
generators: {ai, bi, i = 1, . . . , n} ∪ {Ci,j, 1 ≤ i < j ≤ n}.
relations:

(1) aiaj = ajai, (1 ≤ i < j ≤ n)
(2) a−1

i bjai = bjajC
−1
i,j Ci+1,ja

−1
j , (1 ≤ i < j ≤ n)

(3) a−1
i Cj,kai =

{
Cj,k, (1 ≤ i < j < k ≤ n) or (1 ≤ j < k < i ≤ n)
akC

−1
i+1,kCi,ka

−1
k Cj,kC

−1
i,k Ci+1,k, (1 ≤ j ≤ i < k ≤ n)

(4) C−1
i,l Cj,kCi,l =

{
Cj,k, (1 ≤ i < l < j < k ≤ n) or (1 ≤ j ≤ i < l < k ≤ n)
Ci,kC

−1
l+1,kCl,kC

−1
i,k Cj,kC

−1
l,k Cl+1,k, (1 ≤ i < j ≤ l < k ≤ n)

(5)

{ ∏n
j=i+1C

−1
i,j Ci+1,j = aibiC1,ia

−1
i b−1

i , (1 ≤ i ≤ n), if M = T∏n
j=i+1Ci,jC

−1
i+1,j = biC1,ia

−1
i b−1

i a−1
i , (1 ≤ i ≤ n), if M = K

(6)

{
bjbi = bibj, (1 ≤ i < j ≤ n), if M = T
bjbi = bibjCi,jC

−1
i+1,j, (1 ≤ i < j ≤ n), if M = K

(7)

{
b−1
i ajbi = ajbjCi,jC

−1
i+1,jb

−1
j , (1 ≤ i < j ≤ n), if M = T

b−1
i ajbi = ajbj(Ci,jC

−1
i+1,j)

−1b−1
j , (1 ≤ i < j ≤ n), if M = K

(8)


b−1
i Cj,kbi =

{
Cj,k, (1 ≤ i < j < k ≤ n) or (1 ≤ j < k < i ≤ n)
Ci+1,kC

−1
i,k Cj,kbkCi,kC

−1
i+1,kb

−1
k , (1 ≤ j ≤ i < k ≤ n)

if M = T

b−1
i Cj,kbi =

{
Cj,k, (1 ≤ i < j < k ≤ n) or (1 ≤ j < k < i ≤ n)
Ci+1,kC

−1
i,k Cj,kbk(Ci,kC

−1
i+1,k)

−1b−1
k , (1 ≤ j ≤ i < k ≤ n)

if M = K.

Theorem 2.2 ([32]). Let n ≥ 1, and let M be the torus T or the Klein bottle K. The following
constitutes a presentation of the braid group Bn(M) of M :

generators: a, b, σ1, . . . , σn−1.
relations:

(1) σiσi+1σi = σi+1σiσi+1;
(2) σjσi = σiσj, if |i− j| ≥ 2;
(3) aσj = σja, if j ≥ 2;
(4) bσj = σjb, if j ≥ 2;
(5) b−1σ1a = σ1aσ1b

−1σ1;
(6) a(σ1aσ1) = (σ1aσ1)a;

(7)

{
b(σ−1

1 bσ−1
1 ) = (σ−1

1 bσ−1
1 )b, if M = T,

b(σ−1
1 bσ1) = (σ−1

1 bσ−1
1 )b, if M = K;

(8) σ1σ2 · · ·σn−2σ
2
n−1σn−2 · · ·σ2σ1 =

{
bab−1a−1 if M = T,
ba−1b−1a−1 if M = K.

We consider the torus and the Klein bottle to be a square whose edges are identified as indicated
in Figure 1. Geometric representatives of the generators of Pn(T) and Pn(K) given in Theorem 2.1
are illustrated in Figure 2, and may be interpreted as follows. For 1 ≤ i ≤ n, the ith string is the
only non-trivial string of the braid ai (resp. of bi), and it passes through the edge α (resp. β). If
1 ≤ i < j ≤ n, the jth string is the only non-trivial string of the braid Ci,j, and it encircles all
of the basepoints between the ith and jth points. If i = j, it will be convenient to define Ci,i to
be the trivial braid. The figures represent the projection of the braids onto M , so the constant
paths in each figure correspond to vertical strings of the braid. The generators of Bn(T) and
Bn(K) given in Theorem 2.2 may be taken to be the standard Artin generators σ1, . . . , σn−1 of
Bn as shown in Figure 3, and a = a1 and b = b1. Various presentations of the braid and pure
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M = T M = K
α α

α αβ β

β β

Figure 1. Squares representing T and K

i

ai

i

bi

i j

Ci,j

i

ai

i

bi

i j

Ci,j

M = T

M = K

α α α

α α αβ β β

β β β

α α α

α α αβ β β

β β β

Figure 2. The generators of Pn(T) and Pn(K)

· · · · · ·

1 i− 1 i i+ 1 i+ 2 n

σi

Figure 3. The braid σi

braid groups of the torus and the Klein bottle may be found in the literature [3, 6, 20, 33], but
we choose to work with those of Theorems 2.1 and 2.2 because they highlight the similarities and
differences between the braid groups of T and K. For example, the word Ci,jC

−1
i+1,j that appears in

our presentation of Pn(T) is often replaced by its inverse in Pn(K). To prove Theorem 2.1 (resp.
Theorem 2.2), one may use the Fadell-Neuwirth short exact sequence (1.2) (resp. the short exact
sequence (1.1)), induction on n, and the following standard method for obtaining a presentation

of a group extension [24, Proposition 1, p. 139]. Given a short exact sequence 1 −→ A
i−→

B
p−→ C −→ 1 and presentations C = 〈X |R〉 and A = 〈Y |S〉, then B =

〈
X̃, Ỹ | S̃, R̃, T̃

〉
, where

Ỹ = {ỹ = i(y) : y ∈ Y }, X̃ = {x̃ : x ∈ X} is a transversal for Im(i) in B such that p(x̃) = x for

all x ∈ X, S̃ = {s̃ : s ∈ S} is the set of words in Ỹ obtained from S by replacing each letter y by

ỹ. For each r ∈ R, let r̃ is the word in X̃ obtained from r by replacing each letter x by x̃. Then

r̃ ∈ Ker(p), so it may be written as a word, vr say, in the elements of Ỹ . Since Im(i) is normal
in B, for all x ∈ X and y ∈ Y , x̃−1ỹ x̃ ∈ Ker(p), so may be written as a word, wx,y say, in the
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elements of Ỹ . Then R̃ = {r̃v−1
r : r ∈ R} and T̃ = {x̃−1ỹ x̃w−1

x,y : x ∈ X, y ∈ Y }. The details of
the proofs of Theorems 2.1 and 2.2 are left to the reader.

Remark 2.3. Using Theorem 2.2, it is straightforward to check that:

Bn(T)Ab ∼= Z⊕ Z⊕ Z2 =
〈
a, b, σ : [a, b] = [a, σ] = [b, σ] = σ2 = 1

〉
Bn(K)Ab ∼= Z⊕ Z2 ⊕ Z2 =

〈
a, b, σ : [a, b] = [a, σ] = [b, σ] = σ2 = a2 = 1

〉
,

for all n ≥ 2, where a (resp. b, σ) represents the Γ2-coset of a (resp. of b, σ1).

For compact non-orientable surfaces of genus g ≥ 3 without boundary, we shall make use of the
following presentation of their braid groups due to Bellingeri.

Theorem 2.4 ([3]). Let Ng be a compact, connected non-orientable surface of genus g ≥ 3 without
boundary. The braid group Bn(Ng) admits the following presentation:

generators: σ1, . . . , σn−1, a1, . . . , ag.
relations:

(1) σiσi+1σi = σi+1σiσi+1.
(2) σjσi = σiσj, if |i− j| ≥ 2.
(3) arσi = σiar (1 ≤ r ≤ g; i 6= 1).
(4) σ−1

1 arσ
−1
1 ar = arσ

−1
1 arσ1 (1 ≤ r ≤ g).

(5) σ−1
1 asσ1ar = arσ

−1
1 asσ1 (1 ≤ s < r ≤ g).

(6) a2
1 · · · a2

g = σ1σ2 · · ·σ2
n−1 · · ·σ2σ1.

To prove some of our results, we will also require the following theorem of Gruenberg.

Theorem 2.5 ([22]). Let P denote one of the following classes:

(1) the class of soluble groups.
(2) the class of finite groups.
(3) the class of p-finite groups for a given prime number p.

Let K and H be groups, and suppose that K is P and that H is residually P. Then, for any group
extension 1 −→ H −→ G −→ K −→ 1, the group G is residually P.

3. The lower central and derived series of semi-direct products

The main aim of this section is to establish the general decomposition of the lower central series
and an estimate of the derived series of an arbitrary semi-direct product given in the statement of
Theorem 1.1, which will be used in later computations of the lower central and derived series of
Pn(K). We first prove two lemmas that will be used in what follows. If x1, . . . , xn are elements of
a group G, we set:

[x1, x2, . . . , xn−1, xn] =
[
x1,
[
x2, . . . , [xn−1, xn]

]]
,

and if X is a subset of G then we denote the normal closure of X in G by 〈〈X〉〉G.

Lemma 3.1. Let G be a group, and let x, y ∈ G. For all n ∈ N, we have:

[x2n , y] = [x, x, x2, . . . , x2n−1

, y].[x, x2, . . . , x2n−1

, y]2.[x2, . . . , x2n−1

, y]2 · · · [x2n−1

, y]2. (3.1)

Proof. We prove the lemma by induction on n. Observe that:

[x2, y] = x.x.y.x−1.x−1.y−1 = x[x, y]yx−1y−1 = x[x, y]x−1[x, y] = [x, x, y].[x, y]2, (3.2)

which proves (3.1) in the case n = 1. Now let n ≥ 2, and suppose that the result holds for all
1 ≤ i ≤ n. Applying (3.2) to the elements x2n and [x2n , y], we have:

[x2n+1

, y] = [(x2n)2, y] = [x2n , x2n , y][x2n , y]2,

and applying (3.2) to the elements x2n and y, we obtain:[
x2n , [x2n , y]

]
=
[
x, x, x2, . . . , x2n−1

, [x2n , y]
][
x, x2, . . . , x2n−1

, [x2n , y]
]2 · · · [x2n−1

, [x2n , y]
]2
.
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Thus:[
x2n+1

, y
]

=
[
x, x, x2, . . . , x2n−1

, [x2n, y]
][
x, x2, . . . , x2n−1

, [x2n, y]
]2 · · · [x2n−1

, [x2n, y]
]2[
x2n, y

]2
,

which completes the proof by induction. �

Remark 3.2. With the notation of Theorem 1.1, In what follows, for the groups Kn, Hn or H̃n,
we will use the word generator to mean a word of the form ϕ(g)(h).h−1, where g ∈ Γn−1(G) and
h ∈ H, g ∈ G and h ∈ Vn−1, or g ∈ Γn−1(G) and h ∈ H respectively. Similarly, a generator of
the group Ln (resp. Vn) will mean either a generator of Kn or Hn, or an element of the form [h, l],

where h ∈ H and l ∈ Ln−1 (resp. either a generator of H̃n, or an element of the form [h, v], where
h ∈ H and v ∈ Vn−1).

Lemma 3.3. Let n ≥ 2. With the notation of Theorem 1.1, the subgroups Kn, Ln and Vn are

normal in H for all n ≥ 2, and we have the inclusions Kn+1 ⊂ Kn, Hn+1 ⊂ Hn, H̃n+1 ⊂ H̃n,
Ln+1 ⊂ Ln and Vn+1 ⊂ Vn.

Proof. The proof is by induction on n. The proof in the case n = 2 was given in [15, Proposition 3.3].
So suppose that n ≥ 2, and assume that Ln (resp. Vn) is a normal subgroup of H, let x ∈ Ln+1

(resp. Vn+1) and let h ∈ H. Since Ln+1 =
〈
Kn+1, Hn+1, [H,Ln]

〉
(resp. Vn+1 =

〈
H̃n+1, [H,Vn]

〉
), it

suffices to show that hxh−1 ∈ Ln+1, where x is a generator of Kn+1, Hn+1 or [H,Ln] (resp. of H̃n+1

or [H,Vn]), in the sense of Remark 3.2.

• Suppose that x = ϕ(g)(y)y−1 ∈ Kn+1, where g ∈ Γn(G) and y ∈ H. Then ϕ(g) ∈ Aut(H),
and there exists h′ ∈ H such that ϕ(g)(h′) = h, so:

hxh−1 = h(ϕ(g)(y).y−1)h−1 = (ϕ(g)(h′y)y−1h′−1)(ϕ(g)(h′)h′−1)−1 ∈ Kn+1 ⊂ Ln+1.

This also implies that Kn is a normal subgroup of H for all n ≥ 2.

• Suppose that x = ϕ(g)(y)y−1 is an element of Hn+1 (resp. of H̃n+1), where g ∈ G and
y ∈ Ln (resp. y ∈ Vn), and let h′ ∈ H be such that ϕ(g)(h′) = h. Then:

hxh−1 = h(ϕ(g)(y).y−1)h−1

= (ϕ(g)(h′yh′−1).(h′yh′−1)−1)[h′, y][y, ϕ(g)(h′)] ∈ Ln+1 (resp. Vn+1),

because h′yh′−1 ∈ Ln (resp. Vn) by the normality of Ln (resp. Vn) in H using the induction
hypothesis.
• Suppose that x = [y, l] ∈ [H,Ln] (resp. [H, Vn]), where y ∈ H and l ∈ Ln (resp. l ∈ Vn).

Then:

hxh−1 = [hyh−1, hlh−1] ∈ [H,Ln] ⊂ Ln+1(resp. [H, Vn] ⊂ Vn+1),

because hlh−1 ∈ Ln (resp. Vn) by the normality of Ln (resp. Vn) in H.

This proves that Ln (resp. Vn) is a normal subgroup of H for all n ≥ 2.
To prove the second part of the statement, notice that the inclusion Γn(G) ⊂ Γn−1(G) implies

that Kn+1 ⊂ Kn for all n ≥ 2. It is straightforward to see that H3 ⊂ H2 (resp. H̃3 ⊂ H̃2) because

L2 ⊂ H (resp. V2 ⊂ H). By induction, suppose that Hn ⊂ Hn−1 (resp. H̃n ⊂ H̃n−1) for some n ≥ 3.
Since Ln−1 (resp. Vn−1) is normal in H, we have [H,Ln−1] ⊂ Ln−1 (resp. [H, Vn−1] ⊂ Vn−1). Further,
using the definitions and the induction hypothesis, we have the inclusions Kn ⊂ Kn−1 ⊂ Ln−1 and

Hn ⊂ Hn−1 ⊂ Ln−1 (resp. H̃n ⊂ H̃n−1 ⊂ Vn−1). It follows that Ln ⊂ Ln−1 (resp. Vn ⊂ Vn−1),

and then that Hn+1 ⊂ Hn (resp. H̃n+1 ⊂ H̃n). Consequently, Ln+1 ⊂ Ln and Vn+1 ⊂ Vn for all
n ≥ 2. �

Proof of Theorem 1.1. The proof is by induction on n. The case n = 1 is trivial. If n = 2,
part (1) was proved in [15, Proposition 3.3], and part (2) follows from part (1) and the fact that
L2 = V2. Now suppose that parts (1) and (2) hold for some n ≥ 2, and let us prove the result
for n + 1. Let ϕ : Γn(G) −→ Aut(Ln) be the action (also denoted by ϕ) induced by ϕ such that
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Ln oϕ Γn(G) = Γn(H oϕ G). We claim that ϕ also induces an action ϕ : Γn+1(G) −→ Aut(Ln+1).
To see this, let g ∈ Γn+1(G). To prove that ϕ(g)(Ln+1) ⊂ Ln+1, it suffices to take x ∈ Ln+1 to be
of the form x = ϕ(g′)(h).h−1, where either g′ ∈ Γn(G) and h ∈ H, or g′ ∈ G and h ∈ Ln, or of the
form x = [h, l] ∈ [H,Ln], where h ∈ H and l ∈ Ln. The result will then follow for all elements of
Ln+1 because ϕ(g) is a homomorphism.

• If x = ϕ(g′)(h).h−1 ∈ Kn+1, where g′ ∈ Γn(G) and h ∈ H, or x = ϕ(g′)(h).h−1 ∈ Hn+1,
where g′ ∈ G and h ∈ Ln, then:

ϕ(g)(x) = ϕ(g)
(
ϕ(g′)(h).h−1

)
=
(
ϕ(gg′)(h).h−1

) (
ϕ(g)(h).h−1

)−1
.

If g′ ∈ Γn(G) and h ∈ H then ϕ(g)(x) ∈ Kn+1 ⊂ Ln+1 since g and gg′ belong to Γn(G). If
g′ ∈ G and h ∈ Ln, then ϕ(g)(x) ∈ Hn+1 ⊂ Ln+1 because h ∈ Ln+1.
• If x = [h, l] ∈ [H,Ln], where h ∈ H and l ∈ Ln then:

ϕ(g)(x) = [ϕ(g)(h), ϕ(g)(l)] ∈ [H,Ln],

since g ∈ Γn+1(G) ⊂ Γn(G), so ϕ(g)(l) ∈ Ln.

Since ϕ(g) : Ln+1 −→ Ln+1 is the restriction of an automorphism, it is injective, so to show that
it is an automorphism, it suffices to prove surjectivity. We first consider the following two cases:

(a) If x = ϕ(g′)(h).h−1, where either g′ ∈ Γn(G) and h ∈ H, or g′ ∈ G and h ∈ Ln, let:

y =
(
ϕ(g−1g′)(h).h−1

)
h
(
ϕ(g−1)(h−1).h

)
h−1 ∈ Ln+1,

because Kn+1 and Ln+1 are normal in H, and one may check that ϕ(g)(y) = x.
(b) If x = [h, l] ∈ [H,Ln], where h ∈ H and l ∈ Ln, there exist l′ ∈ Ln and h′ ∈ H such that

ϕ(g)(l′) = l and ϕ(g)(h′) = h by the induction hypothesis. Taking y = [h′, l′] ∈ [H,Ln] ⊂ Ln+1,
we see that ϕ(g)(y) = x.

This shows that if x is a generator of Kn+1, Hn+1 or [H,Ln], there exists y ∈ Ln+1 such that
ϕ(g)(y) = x. Given an arbitrary element x ∈ Ln+1, there exist x1, . . . , xs, each of which satisfies one
of the conditions of cases (a) and (b) above, such that x = x1 · · ·xs. So for i = 1, . . . , s, there exists
yi ∈ Ln+1 such that ϕ(g)(yi) = xi, and we have ϕ(g)(y1 · · · ys) = x, which proves the surjectivity of
ϕ(g) : Ln+1 −→ Ln+1. Therefore the semi-direct product Ln+1 oϕ Γn+1(G) is well defined. Similar
computations show that the same is true for the semi-direct product Vn+1 oϕ (G)(n).

To complete the proof of part (1) of Theorem 1.1, it remains to show that Ln+1 oϕ Γn+1(G) =
Γn+1(HoϕG). We first prove that Ln+1oϕΓn+1(G) ⊂ Γn+1(HoϕG). Let (x, g) ∈ Ln+1oϕΓn+1(G),
where x ∈ Ln+1 and g ∈ Γn+1(G). Since (x, g) = (x, 1)(1, g), it suffices to show that (x, 1) and
(1, g) belong to Γn+1(H oϕ G). Clearly, (1, g) ∈ Γn+1(H oϕ G). Further, (x, 1) is a product of
elements each of which is of one of the following forms:

• (ϕ(g)(h).h−1, 1) = [(1, g), (h, 1)], where g ∈ Γn(G), h ∈ H, and (1, g) ∈ Γn(H oϕ G). Then
(ϕ(g)(h).h−1, 1) ∈ Γn+1(H oϕ G).
• (ϕ(g)(h).h−1, 1) = [(1, g), (h, 1)], where g ∈ G and h ∈ Ln. Then (h, 1) ∈ Ln oϕ Γn(G) =

Γn(H oϕ G) by the induction hypothesis, and (ϕ(g)(h).h−1, 1) ∈ Γn+1(H oϕ G).
• ([h, l], 1) ∈ [H,Ln], where h ∈ H and l ∈ Ln. Then ([h, l], 1) = [(h, 1), (l, 1)], and l ∈
Ln oϕ Γn(G) = Γn(H oϕ G) by the induction hypothesis, so ([h, l], 1) ∈ Γn+1(H oϕ G).

Since all of these elements belong to Γn+1(H oϕ G), it follows that (x, 1) ∈ Γn+1(H oϕ G), whence
Ln+1 oϕ Γn+1(G) ⊂ Γn+1(H oϕ G).

For the other inclusion, let [(h, g), (x, y)] ∈ Γn+1(H oϕ G), where (h, g) ∈ H oϕ G and (x, y) ∈
Γn(H oϕ G). By the induction hypothesis, Γn(H oϕ G) = Ln oϕ Γn(G), so x ∈ Ln and y ∈ Γn(G),
and thus:

[(h, g), (x, y)] = (h.ϕ(g)(x).ϕ(gyg−1)(h−1).ϕ([g, y])(x−1), [g, y]). (3.3)

The second factor [g, y] on the right-hand side of (3.3) belongs to Γn+1(H oϕ G), and the first
factor, denoted by ρ, may be written in the following form:

ρ = [h, x].xhx−1
(
ϕ(g)(x).x−1

)
xh−1x−1.xh

(
ϕ(gyg−1)(h−1).h

)
h−1x−1.x

(
ϕ([g, y])(x−1).x

)
x−1.
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Note that:

• [h, x] ∈ [H,Ln] ⊆ Ln+1, since h ∈ H and x ∈ Ln.
• ϕ(g)(x).x−1 ∈ Hn+1 ⊆ Ln+1, since x ∈ Ln.
• ϕ(gyg−1)(h−1).h ∈ Kn+1 ⊆ Ln+1, since y ∈ Γn(G), so gyg−1 ∈ Γn(G) because Γn(G) is a

normal subgroup of G.
• ϕ([g, y])(x−1).x ∈ Hn+1 ∩Kn+1 ⊆ Ln+1, since x ∈ Ln and [g, y] ∈ Γn(G).

By Lemma 3.3, the conjugates by elements of H of the elements [h, x], ϕ(g)(x).x−1, ϕ(gyg−1)(h−1).h
and ϕ([g, y])(x−1).x also belong to Ln+1, therefore ρ ∈ Ln+1 as required. This proves part (1) of
the statement.

To prove part (2), suppose by induction that (H oϕ G)(n−1) ⊂ Vn oϕ G
(n−1). Then:

(H oϕ G)(n) = [(H oϕ G)(n−1), (H oϕ G)(n−1)] ⊂
[
Vn oϕ G

(n−1), Vn oϕ G
(n−1)

]
.

To show that
[
Vn oϕ G

(n−1), Vn oϕ G
(n−1)

]
⊂ Vn+1 oϕ G

(n), let (h, g), (x, y) ∈ Vn oϕ G
(n−1). Then:

• [h, x] ∈ [H,Vn] ⊆ Vn+1 because h, x ∈ Vn ⊂ H.

• the three elements ϕ(g)(x).x−1, ϕ(gyg−1)(h−1).h and ϕ([g, y])(x−1).x belong to H̃n+1 be-
cause h, x ∈ Vn, so they belong to Vn+1.

Arguing in a manner similar to that for part (1) from (3.3) onwards, it follows that [(h, g), (x, y)] ∈
Vn+1 oϕ G

(n) as required. �

The following lemma will help us simplify some of the calculations in the following sections.

Lemma 3.4. With the notation of Theorem 1.1, let G̃ be a subgroup of G, let H̃ be a subgroup of

H, and let X (resp. Y ) be a generating set of G̃ (resp. H̃).

(1) The subgroup 〈
ϕ(g)(h).h−1 : g ∈ G̃, h ∈ H̃

〉
is contained in the normal closure

〈〈
Z
〉〉
H

of

Z =
{
ϕ(g)(h).h−1 : g ∈ X, h ∈ Y

}
in H. In particular, if this subgroup is a normal subgroup of G, it is equal to

〈〈
Z
〉〉
H

.
Consequently, if X (resp. Y ) is a generating set of Γn−1(G) (resp. of H) then to calculate
the subgroup Kn, it suffices to compute the elements ϕ(g)(h).h−1, where g ∈ X and h ∈ Y .

(2) Let W be a subset of H such that Ln =
〈〈
W
〉〉
H

(resp. Vn =
〈〈
W
〉〉
H

) is the normal
closure of W in H. Let X (resp. Y ) be a generating set of G (resp. of H). Then Hn+1

is contained in 〈〈{ϕ(g)(w).w−1 : g ∈ X, w ∈ W}〉〉H ∪ [H,Ln] (resp. H̃n+1 is contained in
〈〈{ϕ(g)(w).w−1 : g ∈ X, w ∈ W}〉〉H ∪ [H,Vn]). Therefore:

Ln+1 =
〈〈
Kn+1, ϕ(g)(w).w−1, [h,w] : g ∈ X, h ∈ Y, w ∈ W

〉〉
H

Vn+1 =
〈〈
ϕ(g)(w).w−1, [h,w] : g ∈ X, h ∈ Y, w ∈ W

〉〉
H
.

Remark 3.5. With the notation of Lemma 3.4(1), we will say that the elements of Z are generators
of the subgroup

〈〈
Z
〉〉
H

. It follows from part (2) that to determine Ln+1 and Vn+1, we need only com-

puteKn+1 in the case of Ln+1, and calculate the elements of the set {ϕ(g)(w).w−1, [h,w] : g ∈ X, w ∈ W}.

Proof of Lemma 3.4.

(1) To prove the first part of the statement, note that it suffices to prove the result for elements

of the subgroup of the form ϕ(g)(h).h−1, where g ∈ G̃ and h ∈ H̃. If g ∈ G, there

exist g1, . . . , gp ∈ G̃ and ε1, . . . , εp,∈ {1,−1} such that gεii ∈ X for all i = 1, . . . , p and
g = gε11 · · · g

εp
p . Now:

ϕ(g)(h).h−1 =

p∏
i=1

ϕ(gεii )
(
ϕ
(
g
εi+1

i+1 · · · gεpp
)
(h)
)
.
(
ϕ
(
g
εi+1

i+1 · · · gεpp
)
(h)
)−1
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=

p∏
i=1

ϕ(gεii )(h′i).h
′−1
i , (3.4)

where for all i = 1, . . . , p, h′i = ϕ
(
g
εi+1

i+1 · · · g
εp
p

)
(h). Further, for all h′ ∈ H̃, there exist

h1, . . . , hq ∈ H̃ and δ1, . . . , δq ∈ {1,−1} such that h
δj
j ∈ Y for all j = 1, . . . , q and h′ =

hδ11 · · ·h
δq
q . Since

ϕ(g′)(h′).h−1 =

q∏
j=1

(
hδ11 · · ·h

δj−1

j−1

(
ϕ(g′)(h

δj
j ).h

−δj
j

)
h
−δj−1

j−1 · · ·h−δ11

)
(3.5)

for all g′ ∈ G, the first part of the statement follows by combining (3.4) and (3.5). The
second and third parts are consequences of the first part.

(2) Let ϕ(g)(h).h−1 ∈ Hn+1 (resp. H̃n+1), where g ∈ G and h ∈ Ln (resp. Vn). As in (1)
above, (3.4) holds. For all h′ ∈ Ln (resp. Vn), there exist x1, . . . , xq ∈ W , δ1, . . . , δq ∈ {1,−1}
and α1, . . . , αq ∈ H, such that x

δj
j ∈ W and h′ = α1x

δ1
1 α
−1
1 · · ·αqx

δq
q α−1

q . Then we obtain an

equation similar to (3.5), where for all j = 1, . . . , q, h
δj
j is replaced by αjx

δj
j α
−1
j . Further,

for all j = 1, . . . , q, ϕ(g′)(αjx
δj
j α
−1
j ).(αjx

δj
j α
−1
j )−1 is equal to:

ϕ(g′)(αj)
(
ϕ(g′)(x

δj
j ).x

−δj
j

)
ϕ(g′)(α−1

j ) · αj
[
α−1
j ϕ(g′)(αj), x

δj
j

]︸ ︷︷ ︸
∈[H,Ln]

α−1
j . (3.6)

Part (1) then follows from (3.4), (3.5) and (3.6). �

4. The case of the torus

In this section, we study the derived series of Bn(T), the aim being to prove Theorem 1.2. We
shall consider two cases, n ≤ 4 and n ≥ 5.

Proposition 4.1. If n ≤ 4 then Bn(T) is residually soluble.

Proof. If n ≤ 4, the result follows by using the short exact sequence (1.1), Theorem 2.5, the
solubility of Sn if n ≤ 4, and the fact that Pn(T) is residually soluble for all n ≥ 1 [5, Theorem 4]. �

To study the case n ≥ 5, we start by exhibiting a presentation of (Bn(T))(1).

Proposition 4.2. A presentation of (Bn(T))(1) is given by:
generators: for k,m ∈ Z and i = 1, . . . , n− 1:

• bk,m = bkamba−mb−k−1

• dk,m = bkamσ1bσ
−1
1 a−mb−1−k

• ak,m = bkam(σ1aσ
−1
1 a−1)a−mb−k

• θi,k,m = bkamσiσ
−1
1 a−mb−k

• ρi,k,m = bkamσ1σia
−mb−k

relations:

(1)

{
θi,k,mρi+1,k,mθi,k,m = θi+1,k,mρi,k,mθi+1,k,m

ρi,k,mθi+1,k,mρi,k,m = ρi+1,k,mθi,k,mρi+1,k,m

(2)

{
θi,k,mρj,k,m = θj,k,mρi,k,m
ρi,k,mθj,k,m = ρj,k,mθi,k,m

if |i− j| ≥ 2.

(3)

{
ak,m = θ−1

j,k,mθj,k,m+1

ak,m = ρj,k,mρ
−1
j,k,m+1

for j ≥ 2.

(4)

{
bk,mθj,k+1,m = θj,k,mdk,m
dk,mρj,k+1,m = ρj,k,mbk,m

for j ≥ 2.

(5)

{
b−1
k−1,mak−1,mbk−1,m+1ρ

−1
1,k,m+1a

−1
k,m = 1

d−1
k−1,mρ1,k−1,mρ

−1
1,k−1,m+1dk−1,m+1ρ

−1
1,k,m = 1
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(6)

{
ak,m+1ρ1,k,m+2 = ak,mρ1,k,m+1

ρ1,k,mak,m+1 = ak,mρ1,k,m+1

(7)

{
bk,mρ

−1
1,k+1,mdk+1,m = ρ−1

1,k,mdk,mbk+1,m

bk,mρ
−1
1,k+1,mdk+1,m = dk,mbk+1,mρ

−1
1,k+2,m

(8) if n is odd:{
θ1,k,mρ2,k,mθ3,k,m · · · ρn−1,k,mθn−1,k,m · · · ρ3,k,mθ2,k,mρ1,k,m = bk,mb

−1
k,m+1

ρ1,k,mθ2,k,mρ3,k,m · · · θn−1,k,mρn−1,k,m · · · θ3,k,mρ2,k,mθ1,k,m = dk,mak+1,md
−1
k,m+1a

−1
k,m

(9) if n is even:{
θ1,k,mρ2,k,mθ3,k,m · · · θn−1,k,mρn−1,k,m · · · ρ3,k,mθ2,k,mρ1,k,m = bk,mb

−1
k,m+1

ρ1,k,mθ2,k,mρ3,k,m · · · ρn−1,k,mθn−1,k,m · · · θ3,k,mρ2,k,mθ1,k,m = dk,mak+1,md
−1
k,m+1a

−1
k,m.

Proof. One applies the Reidemeister-Schreier rewriting process [23, Appendix 1] to the short exact
sequence:

1 −→ (Bn(T))(1) −→ Bn(T) −→ Bn(T)Ab︸ ︷︷ ︸
Z⊕Z⊕Z2

−→ 1,

using the presentation of the group Bn(T) given in Theorem 2.2, and taking the Schreier transversal
to be

{
bkam; bkamσ1 : k,m ∈ Z

}
. The details are left to the reader. �

Proposition 4.3. If n ≥ 5, then Bn(T) is not residually soluble. Moreover, (Bn(T))(2) = (Bn(T))(3).

Theorem 1.2 then follows directly from Propositions 4.1 and 4.3.

Proof of Proposition 4.3. The first step is a standard procedure that may be found in [15, The-
orem 1.4, p. 3389], and uses just the Artin relations and some properties of the derived series. For
future reference, we note that it may also be applied to the braid groups of non-orientable surfaces.
If M is a compact surface, consider the following short exact sequence:

1 −→ (Bn(M))(1)

(Bn(M))(2)

i−→ Bn(M)

(Bn(M))(2)

p−→ Bn(M)Ab −→ 1,

where p is the canonical projection. By using the above-mentioned procedure, for i = 1, . . . , n− 1,
the (Bn(M))(2)-cosets of the σi coincide in Bn(M)/(Bn(M))(2), and are equal to an element that
we denote by σ.

Now suppose that M = T. Using relations (3) and (4) of Theorem 2.2, the (Bn(T))(2)-cosets
of a and b commute with σ in Bn(T)/(Bn(T))(2). Using this fact and relations (5) and (8) of
Theorem 2.2, it follows that σ−2 = bab−1a−1 and σ2n = 1, and so σ has order at most 2n. To show
that the order of σ in Bn(T)/(Bn(T))(2) is exactly 2n, using Proposition 4.2, we note that:

(Bn(T))(1)/(Bn(T))(2)

Θ
= 〈ρ1,0,0〉 ∼= Zn, (4.1)

where Θ is the normal closure in (Bn(T))(1)/(Bn(T))(2) of the (Bn(T))(2)-cosets of the elements of the
set {θi,k,m, k,m ∈ Z, i = 1, . . . , n− 1}. Let q be the canonical projection of (Bn(T))(1)/(Bn(T))(2)

onto
((Bn(T))(1)/(Bn(T))(2))

Θ
. The order of σ in Bn(T)/(Bn(T))(2) is even because p(σ) is the

generator of Z2. Suppose that the order of σ is 2r, where r < n. Then i(ρ1,0,0) = σ2, and
i(ρr1,0,0) = σ2r = 1. Since i is injective, ρr1,0,0 = 1, and it follows that 1 = q(ρr1,0,0) = ρr1,0,0 in

((Bn(T))(1)/(Bn(T))(2))

Θ
. Thus ρ1,0,0 is of order r < n, which contradicts (4.1). Hence:

Bn(T)/(Bn(T))(2) =
〈
σ, a, b : [a, σ] = [b, σ] = σ2n = 1, [b, a] = σ−2

〉
.

To complete the proof, consider the short exact sequence:

1 −→ (Bn(T))(2)

(Bn(T))(3)
−→ Bn(T)

(Bn(T))(3)

p̃−→ Bn(T)

(Bn(T))(2)
−→ 1,
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where p̃ is the canonical projection. Then p̃(σi) = σ for all i = 1, . . . , n − 1, and as above, we see
that for i = 1, . . . , n−1, the (Bn(T))(3)-cosets of the σi coincide in Bn(T)/(Bn(T))(3), and are equal
to an element that we denote by σ̃. Using the same relations of Bn(T) as before, it follows that
the (Bn(T))(3)-cosets of a and b commute with σ̃ in Bn(T)/(Bn(T))(3), [b, a] = σ−2 and σ2n = 1, so
p̃ is an isomorphism, and hence (Bn(T))(2) = (Bn(T))(3). We conclude that Bn(T) is not residually
soluble if n ≥ 5, because (Bn(T))(2) is non trivial. �

5. The case of the Klein bottle

In this section, we study the lower central and derived series of the (pure) braid groups of the
Klein bottle, and we prove Theorem 1.3. In Section 5.1, we exhibit an algebraic section of the
Fadell-Neuwirth short exact sequence (1.2) for the Klein bottle, and we determine the centre of
Bn(K). These results will be used in the rest of the section, and we believe that they are interesting
in their own right. In Section 5.2, we focus on the case n = 2, and in Theorems 5.4 and 5.13, we
describe the lower central and the lower F2-linear central filtration respectively of P2(K) in an
explicit manner. In Section 5.4, we study the lower central series of Pn(K), if n ≥ 3, and in
Section 5.5, we complete the proof of Theorem 1.3 by extending our results to Bn(K).

5.1. A section in the case of the Klein bottle. As we mentioned previously, the Fadell-
Neuwirth short exact sequence (1.2) admits a section for geometric reasons. We start by giving an
explicit section.

Proposition 5.1. In terms of the presentation of Pn(K) given by Theorem 2.1, the map s : Pn(K) −→
Pn+1(K) defined on the generators of Pn(K) by:

ai 7−→ ai, i = 1, . . . , n− 1

bi 7−→ bi, i = 1, . . . , n− 1

Ci,j 7−→ Ci,j, 1 ≤ i < j ≤ n− 1

Ci,n 7−→ Ci,nCi,n+1C
−1
n,n+1, 1 ≤ i ≤ n− 1

an 7−→ anan+1

bn 7−→ bn+1bn

extends to an algebraic section for the Fadell-Neuwirth short exact sequence arising from equa-
tion (1.2):

1 −→ π1(K \ {x1, . . . , xn}) −→ Pn+1(K)
p∗−→ Pn(K) −→ 1. (5.1)

The geometric idea behind this section is to make use of the non-vanishing vector field on K to
duplicate the last string of the elements of Pn(K).

Proof of Proposition 5.1. In what follows, the numbers (1)–(8) refer to the relations of Pn(K) given
by Theorem 2.1. To prove the proposition, it suffices to check that the images under s of these
relations remain valid in Pn+1(K). We do this for relations (2) and (6). For relation (2), which is
a−1
i bnai = bnanC

−1
i,nCi+1,na

−1
n , we consider two cases.

• If i+ 1 = n then:

s(a−1
i bnai) = a−1

i bn+1bn︸ ︷︷ ︸
(6)

ai = a−1
i (bnbn+1Cn,n+1)ai︸ ︷︷ ︸

(3)

= a−1
i bnai︸ ︷︷ ︸

(2)

a−1
i bn+1(ai︸ ︷︷ ︸

(2)

Cn,n+1)

= (bnanC
−1
i,n a

−1
n )(bn+1︸ ︷︷ ︸

(2)

an+1C
−1
i,n+1Cn,n+1a

−1
n+1)Cn,n+1

= bnanC
−1
i,n (bn+1an+1︸ ︷︷ ︸

(3) and (8)

C−1
n,n+1 a

−1
n+1a

−1
n )an+1︸ ︷︷ ︸
(1)

C−1
i,n+1Cn,n+1a

−1
n+1Cn,n+1



LOWER CENTRAL AND DERIVED SERIES OF SEMI-DIRECT PRODUCTS 13

= bn an(bn+1︸ ︷︷ ︸
(∗∗)

an+1C
−1
i,n )C−1

n,n+1 (a−1
n )C−1

i,n+1Cn,n+1︸ ︷︷ ︸
(∗)

a−1
n+1Cn,n+1

= bn(bn+1Cn,n+1an)an+1C
−1
i,n C

−1
n,n+1(Cn,n+1︸ ︷︷ ︸C−1

i,n+1 a
−1
n )a−1

n+1Cn,n+1︸ ︷︷ ︸
(3)

= bnbn+1Cn,n+1.anan+1. C
−1
i,nC

−1
i,n+1(Cn,n+1︸ ︷︷ ︸

(4)

a−1
n a−1

n+1)

= bnbn+1Cn,n+1.anan+1.(Cn,n+1C
−1
i,nC

−1
i,n+1).a−1

n a−1
n+1 = s(bnanC

−1
i,na

−1
n ),

where (∗) (resp. (∗∗)) is a consequence of relation (3) (resp. relations (2) and (3)).
• If i+ 1 < n then:

s(a−1
i bnai) = a−1

i bn+1bn︸ ︷︷ ︸
(6)

ai = a−1
i (bnbn+1Cn,n+1)ai︸ ︷︷ ︸

(3)

= a−1
i bnai︸ ︷︷ ︸

(2)

a−1
i bn+1(ai︸ ︷︷ ︸

(2)

Cn,n+1)

= (bnanC
−1
i,nC

−1
i+1,n a

−1
n )(bn+1︸ ︷︷ ︸

(2)

an+1C
−1
i,n+1Ci+1,n+1a

−1
n+1)Cn,n+1

= bnanC
−1
i,nCi+1,n(bn+1an+1︸ ︷︷ ︸

(3) and (8)

C−1
n,n+1 a

−1
n+1a

−1
n )an+1︸ ︷︷ ︸
(1)

C−1
i,n+1Ci+1,n+1a

−1
n+1Cn,n+1

= bn an(bn+1︸ ︷︷ ︸
(∗∗)

an+1C
−1
i,nCi+1,n)C−1

n,n+1 (a−1
n )C−1

i,n+1Ci+1,n+1︸ ︷︷ ︸
(∗)

a−1
n+1Cn,n+1

= bn(bn+1Cn,n+1an)an+1C
−1
i,nCi+1,nC

−1
n,n+1(Cn,n+1︸ ︷︷ ︸C−1

i,n+1Ci+1,n+1C
−1
n,n+1 a

−1
n )a−1

n+1Cn,n+1︸ ︷︷ ︸
(3)

= bnbn+1Cn,n+1anan+1C
−1
i,n Ci+1,nC

−1
i,n+1︸ ︷︷ ︸

(4)

Ci+1,n+1C
−1
n,n+1(Cn,n+1︸ ︷︷ ︸ a−1

n a−1
n+1)

= bnbn+1Cn,n+1.anan+1.C
−1
i,n (C−1

i,n+1Ci+1,n)Ci+1,n+1.a
−1
n a−1

n+1 = s(bnanC
−1
i,nCi+1,na

−1
n ),

where (∗) is a consequence of relation (3), similar to that in the case i+ 1 = n, and (∗∗) is
the same relation as in the case i+ 1 = n.

Thus s respects relation (2). For relation (6), which is bnbi = bibnCi,nC
−1
i+1,n, we also consider two

cases.

• if i+ 1 = n then:

s(bnbi) = bn+1bn︸ ︷︷ ︸
(6)

bi = (bnbn+1Cn,n+1)bi︸ ︷︷ ︸
(8)

= bn bn+1(bi︸ ︷︷ ︸
(6)

Cn,n+1) = bn(bi︸︷︷︸
(6)

bn+1Ci,n+1C
−1
n,n+1)Cn,n+1

= (bibnCi,n)bn+1︸ ︷︷ ︸
(8)

Ci,n+1 = bibn(bn+1Ci,n)Ci,n+1 = bibnbn+1(Cn,n+1C
−1
n,n+1)Ci,nCi,n+1︸ ︷︷ ︸

(4)

= bibnbn+1Cn,n+1(Ci,nCi,n+1C
−1
n,n+1) = s(bibnCi,n).

• if i+ 1 < n:

s(bnbi) = bn+1bn︸ ︷︷ ︸
(6)

bi = (bnbn+1Cn,n+1)bi︸ ︷︷ ︸
(8)

= bn bn+1(bi︸ ︷︷ ︸
(6)

Cn,n+1) = bn(bi︸︷︷︸
(6)

bn+1Ci,n+1C
−1
i+1,n+1)Cn,n+1

= (bibnCi,nC
−1
i+1,n)bn+1︸ ︷︷ ︸
(8)

Ci,n+1C
−1
i+1,n+1Cn,n+1 = bibn(bn+1Ci,nC

−1
i+1,n)Ci,n+1︸ ︷︷ ︸

(4)

C−1
i+1,n+1Cn,n+1
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= bibnbn+1(Cn,n+1C
−1
n,n+1)Ci,n(Ci,n+1︸ ︷︷ ︸

(4)

C−1
i+1,n)C−1

i+1,n+1Cn,n+1︸ ︷︷ ︸
(4)

= bibnbn+1Cn,n+1(Ci,nCi,n+1C
−1
n,n+1)(Cn,n+1C

−1
i+1,n+1C

−1
i+1,n) = s(bibnCi,nC

−1
i+1,n).

Thus s respects relation (6). The computations for the other relations are similar, and are left to
the reader. �

As we mentioned at the end of the introduction, for any compact surface M and for all n ∈ N,
the centre Z(Bn(M)) of Bn(M) is known, with the exception of the Klein bottle and the Möbius
band. The section given by Proposition 5.1 allows us to determine Z(Bn(M)) if M = K. For the
sake of completeness, in Proposition A1 of the Appendix of this paper, we also compute the centre
of the braid groups of the Möbius band.

Proposition 5.2. For all n ∈ N, the centre of Bn(K) is equal to 〈(bn · · · b1)2〉, and is isomorphic
to Z.

Proof. The idea of the proof is similar to that of [31, Proposition 4.2]. Let βn = bn · · · b1, and let
Zn = 〈β2

n〉. We will show by induction on n that Zn = Z(Bn(K)). Arguing as in [31, Proposition 4.2,
step 4], we see that Z(Bn(K)) ⊂ Pn(K), so Z(Bn(K)) ⊂ Z(Pn(K)). Thus it suffices to show that
Z(Pn(K)) = Zn and Zn ⊂ Z(Bn(K)). We prove that Z(Pn(K)) = Zn by induction on n. If n = 1,
by Theorem 2.1, we have:

π1(K) =
〈
a1, b1 : a1b1 = b1a

−1
1

〉
, (5.2)

and it is well known that Z(π1(K)) = Z1. Now suppose by induction that Z(Pn−1(K)) = Zn−1 for
some n ≥ 2.

We first prove that Z(Pn(K)) ⊂ Zn in a manner similar to that of [31, Proposition 4.2, step 3].
Let g ∈ Z(Pn(K)), and consider the Fadell-Neuwirth short exact sequence arising from (1.2):

1 −→ π1(K \ {x1, . . . , xn−1}) −→ Pn(K)
p∗−→ Pn−1(K) −→ 1.

Since p∗ is surjective, p∗(g) ∈ Z(Pn−1(K)) = Zn−1, and since p∗(Zn) = Zn−1, there exists h ∈
Zn such that p∗(h) = p∗(g). If g′ = gh−1 then g′ belongs to Z(Pn(K)) and to the free group
π1(K \ {x1, . . . , xn−1}) by exactness. Hence g′ ∈ Z(π1(K \ {x1, . . . , xn−1})) = {1}, so g′ = 1, and
thus g = h ∈ Zn, which shows that Z(Pn(K)) ⊂ Zn.

Still under the above induction hypothesis, we now prove that Zn ⊂ Z(Pn(K)). Using the
section s : Pn−1(K) −→ Pn(K) given by Proposition 5.1, we have s(β2

n−1) = β2
n. By the induction

hypothesis, β2
n−1ai = aiβ

2
n−1 and β2

n−1bi = biβ
2
n−1 for all 1 ≤ i ≤ n − 1, and β2

n−1Ci,j = Ci,jβ
2
n−1

for all 1 ≤ i < j ≤ n − 1 in Pn−1(K). Taking the image of both sides of these equations by s, we
obtain the following relations:{

β2
nai = aiβ

2
n and β2

nbi = biβ
2
n if 1 ≤ i < n− 1

β2
n. an−1an = an−1an. β

2
n and β2

n. bnbn−1 = bnbn−1. β
2
n if i = n− 1,

(5.3)

and {
β2
nCi,j = Ci,jβ

2
n if 1 ≤ i < j < n− 1

β2
n. Ci,n−1Ci,nC

−1
n−1,n = Ci,n−1Ci,nC

−1
n−1,n. β

2
n if 1 ≤ i < j = n− 1.

(5.4)

Let us prove that an and bn commute with β2
n, from which it will follow from (5.3) that β2

n commutes
with ai and bi for all 1 ≤ i ≤ n. Using relations (6)–(8) of Theorem 2.1, we have:

C1,na
−1
n bi = Ci+1,nbiC

−1
i,nC1,na

−1
n (5.5)

bnCi+1bi = bibnCi,n (5.6)

for all i = 1, . . . , n− 1. To prove relation (5.5), notice that by relations (7) and (8) we have:

b−1
i anbi = an bn(Ci,nC

−1
i+1,n)−1b−1

n︸ ︷︷ ︸
(8)

= an(C−1
i+1,nb

−1
i Ci,nbi),
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and taking the inverse of both sides, it follows that a−1
n bi = C−1

i,n biCi+1,na
−1
n . We thus obtain:

C1,n a
−1
n bi︸ ︷︷ ︸ = C1,n(C−1

i,n biCi+1,na
−1
n ) = (bi b

−1
i )C1,n(bi︸ ︷︷ ︸

(8)

b−1
i )C−1

i,n bi︸ ︷︷ ︸
(8)

Ci+1,na
−1
n

= bi(Ci+1︸ ︷︷ ︸
(8)

C−1
i,nC1,nbnCi+1,nC

−1
i,n b

−1
n )(bnCi,nC

−1
i+1,nb

−1
n C−1

i+1,n)Ci+1,na
−1
n

= (Ci+1,nbi)C
−1
i,nC1,na

−1
n .

To prove relation (5.6), one may use relation (6) and the fact that bi commutes with Ci+1,n by
relation (8). We now claim that:

anβn = bn · · · bi+1C
−1
i+1,nC1,na

−1
n bibi−1 · · · b1 and bnβn = bn · · · bi+1bnCi+1,nbi · · · b1

for all i = 0, . . . , n − 1. We shall prove the claim by reverse induction on i. First, we have

anβn = an(bnbn−1 · · · b1)
(5)
= (bnC1,na

−1
n )bn−1 · · · b1 and bnβn = bnbn · · · b1, so the claim is valid if

i = n− 1. Suppose that it holds for some 1 ≤ i ≤ n− 1. Then:

anβn = bn · · · bi+1C
−1
i+1,nC1,na

−1
n bibi−1 · · · b1

(5.5)
= bn · · · bi+1C

−1
i+1,nCi+1,nbiC

−1
i,nC1,na

−1
n bi−1 · · · b1

= bn · · · bi+1biC
−1
i,nC1,na

−1
n bi−1 · · · b1, and

bnβn = bn · · · bi+1bnCi+1,nbi · · · b1
(5.6)
= bn · · · bi+1bibnCi,nbi−1 · · · b1

so the claim holds. Taking i = 0, we obtain anβn = βna
−1
n and bnβn = βnbnC1,n. Hence anβ

2
n =

βna
−1
n βn = β2

nan, and applying (5) with i = n twice, we obtain:

bnβ
2
n = βnbnC1,nβn = βnanbnanβn = β2

na
−1
n bnC1,na

−1
n = β2

nbn.

Thus β2
n commutes with an and bn, and so with ai and bi for all i ∈ {1, . . . , n}. Finally, by

relation (5), C1,n = b−1
n anbnan and Ci+1,n = Ci,na

−1
n b−1

n a−1
i bnaian by relation (2). Since β2

n commutes
with ai and bi for all 1 ≤ i ≤ n, it follows that β2

n commutes with C1,n by relation (5), and by
induction that β2

n commutes with Ci,n for all 1 ≤ i < n. So by (5.4), β2
n commutes with Ci,j for all

1 ≤ i < j ≤ n, and therefore commutes with all of the elements of a generating set of Pn(K), hence
Zn = Z(Pn(K)).

To complete the proof of the proposition, it remains to show that Zn ⊂ Z(Bn(K)). To do so,
from above, it suffices to prove that σi commutes with β2

n for all i = 1, . . . , n− 1. One may see by
Figure 2 that σ2

i = Ci,i+1. Further:

σ−1
i bjσi =


bi+1σ

2
i if j = i

σ−2
i bi if j = i+ 1

bj otherwise.

(5.7)

The case j = i is illustrated in Figure 4. If j = i+ 1 then σ−1
i bi+1σi = σ−1

i . σ−1
i biσi. σ

−2
i . σi = σ−2

i bi
using the case j = i. For i = 1, . . . , n− 1, using (5.7) and relation (6) of Theorem 2.1, we have:

σ−1
i biσi bi+1σ

2
i

Figure 4. The relation σ−1
i biσi = bi+1σ

2
i .

σ−1
i (bn · · · b1)σi = bn · · · bi+2 · C−1

i,i+1 bi · bi+1Ci,i+1︸ ︷︷ ︸ ·bi−1 · · · b1 = C−1
i,i+1bn · · · b1 = σ−2

i bn · · · b1,
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from which it follows that (bn · · · b1)2σi = σi(bn · · · b1)2 as required. �

Remark 5.3. For n = 2, we modify slightly the presentation of P2(K) given by Theorem 2.1 by
removing the generator C1,2 using relation (5), so C1,2 = b−1

2 a2b2a2. Hence P2(K) is generated by
a1, a2, b1 and b2, subject to the relations:

(1) a−1
1 a2a1 = a2.

(2) a−1
1 b2a1 = a−1

2 b2a
−1
2 .

(3) b−1
1 a2b1 = a2b2a

−1
2 b−1

2 a−1
2 .

(4) b−1
1 b2b1 = a2b2a2.

(5) b−1
2 a2b2a2 = b1a

−1
1 b−1

1 a−1
1 .

Using Proposition 5.1 and the Fadell-Neuwirth short exact sequence (5.1), Pn+1(K) may be
written as a semi-direct product of the free group π1(K \ {x1, . . . , xn}) by s(Pn(K)) for all n ∈ N.
In particular, if n = 1 then:

P2(K) ∼= π1(K \ {x1}) oϕ s(P1(K)), (5.8)

where π1(K \ {x1}) = 〈a2, b2〉 is a free group of rank 2,

s(P1(K)) =
〈
a1a2, b2b1 : (b2b1)(a1a2) = (a1a2)−1(b2b1)

〉
by (5.2), and where the action ϕ : s(P1(K)) −→ Aut(π1(K \ {x1})) is given by:

ϕ(a1a2) :

{
a2 7−→ a2

b2 7−→ a−2
2 b2

ϕ(b2b1) :

{
a2 7−→ a−1

2

b2 7−→ a2b2a2,

(5.9)

using Remark 5.3.

5.2. The lower central series of P2(K). In this section, we use Theorem 1.1 to calculate explicitly
the lower central series of P2(K). This will enable us to prove that P2(K) is residually nilpotent.

Theorem 5.4. Let n ≥ 2. With the notation of Theorem 2.1, we have:

Γn(P2(K)) =
〈〈
a2n−1

2 , x2n−i

: x ∈ Γi(π1(K \ {x1})), 2 ≤ i ≤ n
〉〉
π1(K\{x1})

oϕ

〈
(a1a2)2n−1〉

,

where ϕ is as defined in equation (5.9). Consequently, P2(K) is residually nilpotent.

The idea of the proof is to apply Theorem 1.1(1) to the semi-direct product structure of P2(K)
given by (5.8). From now on, we shall make use of the notation of that theorem, taking H =
π1(K \ {x1}), G = s(P1(K)) and P2(K) = H oϕG. In the lemmas that follow, we first compute the
subgroups Kn, Hn and Ln for these choices of G and H, and in Proposition 5.12, we calculate the
subgroup Ln, which will enable us to prove Theorem 5.4. We first need to know the lower central
series of P1(K). Applying Theorem 1.1 to the semi-direct product structure 〈a1〉 o 〈b1〉 of π1(K)
given by (5.2), it is straightforward to see that K2 = H2 = L2 = 〈a2

1〉, and if n ≥ 3, Kn = {1} and

Hn = Ln =
〈
a2n−1

1

〉
, therefore the lower central series of s(P1(K)) is given by:

Γn(s(P1(K))) =
〈
(a1a2)2n−1〉

(5.10)

for all n > 1. We now turn to the case of P2(K). We first determine Kn.

Lemma 5.5. With the notation of Theorem 1.1, and taking H = π1(K \ {x1}), G = s(P1(K)) and

P2(K) = H oϕ G, the subgroup Kn is equal to 〈〈a2
2,Γ2(H)〉〉H if n = 2, and to

〈〈
a2n−1

2

〉〉
H

if n ≥ 3.
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Proof. First suppose that n = 2. By (5.9), we have:
ϕ(a1a2)(a2).a−1

2 = 1

ϕ(a1a2)(b2).b−1
2 = ϕ(b2b1)(a2).a−1

2 = a−2
2

ϕ(b2b1)(b2).b−1
2 = a2b2a2b

−1
2 = a2

2[a−1
2 , b2],

(5.11)

and so
{
a2

2, [a
−1
2 , b2]

}
⊂ K2. Since K2 is normal in H by Lemma 3.3,

〈〈
a2

2, [a
−1
2 , b2]

〉〉
H

is a subgroup

of K2, and therefore 〈〈a2
2,Γ2(H)〉〉H ⊂ K2 because Γ2(H) =

〈〈
[a−1

2 , b2]
〉〉
H

. For the other inclusion,

(5.11) implies that ϕ(g)(h).h−1 ∈ 〈〈a2
2,Γ2(H)〉〉H for all h (resp. all g) belonging to the generating

set {a2, b2} (resp. {a1a2, b2b1}) of H (resp. of G). The inclusion K2 ⊂ 〈〈a2
2,Γ2(H)〉〉H then follows

from Lemma 3.4(1). This proves the result for n = 2.

Now assume that n ≥ 3. Then Γn−1(G) =
〈
(a1a2)2n−2〉

by (5.10). Using (5.9), we have

ϕ((a1a2)2n−2
)(a2).a−1

2 = 1 and:

ϕ((a1a2)2)(b2) = ϕ(a1a2)(a−2
2 b2) = a−2

2 (a−2
2 b2) = a−4

2 b2.

Suppose by induction that ϕ((a1a2)j)(b2) = a−2j
2 b2 for some j ≥ 2. Then:

ϕ((a1a2)j+1)(b2) = ϕ(a1a2)ϕ((a1a2)j)(b2) = ϕ(a1a2)(a−2j
2 b2) = a−2j

2 (a−2
2 b2) = a

−2(j+1)
2 b2.

In particular, if j = 2n−2, we have ϕ((a1a2)2n−2
)(b2).b−1

2 = (a
−2(2n−2)
2 b2).b−1

2 = a−2(n−1)

2 , and hence〈〈
a2n−1

2

〉〉
H
⊂ Kn. Conversely, taking G̃ = {(a1a2)2n−2} and H̃ = {a2, b2} in Lemma 3.4(1) and

using (5.10), we obtain Kn ⊂ 〈〈Z〉〉H , where:

Z =
{
ϕ(g)(h).h−1 : g ∈

{
(a1a2)2n−2}

, h ∈ {a2, b2}
}

=
{
a−2(n−1)

2

}
,

whence the inclusion Kn ⊂
〈〈
a2n−1

2

〉〉
H

, and this proves the lemma. �

If β ∈ H then βa2
2β
−1 = [β, a2

2]a2
2 ∈ 〈a2

2,Γ2(H)〉, and since Γ2(H) is normal in H, it follows that
the subgroup 〈a2

2,Γ2(H)〉 is also normal in H, so 〈a2
2,Γ2(H)〉 = 〈〈a2

2,Γ2(H)〉〉H . Using the relations
K2 = H2 and [H,L1] = Γ2(H), it follows from Lemma 5.5 that:

L2 =
〈
a2

2,Γ2(H)
〉

=
〈〈
a2

2, [a2, b2]
〉〉
H
. (5.12)

Let W2 = W̃2 = L2, and for n ≥ 3, define:

Wn =
〈
Γn(H), x2 : x ∈ Wn−1

〉
(5.13)

W̃n =
〈〈
a2n−1

2 , x2n−i

: x ∈ Γi(H), 2 ≤ i ≤ n
〉〉
H
. (5.14)

Note that Wn is normal in H for all n ≥ 2. This follows from the fact that Γn(H) is normal in
H for all n ≥ 2 and arguing by induction on n as follows. If n = 2 then W2 = L2 by Lemma 3.3,
so suppose that n ≥ 3, and that Wn−1 is normal in H. Then hxh−1 ∈ Wn−1 for all x ∈ Wn−1

and h ∈ H, thus hx2h−1 = (hxh−1)2 ∈ Wn, and Wn is normal in H as claimed. If x ∈ Γi(H) and

2 ≤ i ≤ n, we will refer to the elements a2n−1

2 and x2n−i
as generators of W̃n. In order to prove

Theorem 5.4, we will show in Proposition 5.12 that Ln = Wn = W̃n for all n ≥ 2. Supposing this to
be the case, the following lemma implies that to determine the lower central series of P2(K) using
Theorem 1.1, it is not necessary to calculate the subgroups Hn.

Lemma 5.6. Suppose that Li = Wi = W̃i for all 2 ≤ i ≤ n. Then Hn+1 ⊂ 〈Kn+1, [H,Ln]〉. In
particular, Ln+1 = 〈Kn+1, [H,Ln]〉.

Proof. We prove the given inclusion by induction on n. If n = 2, using (5.9) notice that:

• ϕ(a1a2)(a2
2)a−2

2 = 1.
• ϕ(b2b1)(a2

2)a−2
2 = a−4

2 ∈ K3 by Lemma 5.5.
• ϕ(a1a2)([a2, b2])[b2, a2] = [a−2

2 , a2b2a
−1
2 b−1

2 a−1
2 ] ∈ [L2, H] by (5.12).
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• ϕ(b2b1)([a2, b2])[b2, a2] = [b2, a
2
2]︸ ︷︷ ︸

∈[H,L2]

[a2, [a2, b2]]︸ ︷︷ ︸
∈Γ3(H)

∈ [L2, H] by (5.12).

Using these calculations and the description of L2 given in (5.12), it follows from the first part of
Lemma 3.4(2) and Lemma 5.5 that:

H3 =
〈〈

[H,L2], ϕ(g)(w).w−1 : g ∈ {a1a2, b2b1} , w ∈
{
a2

2, [a2, b2]
}〉〉

H
⊂ 〈K3, [H,L2]〉 ,

which proves the result if n = 2.
Now suppose that the given inclusion holds for n − 1 for some n ≥ 3, and assume that Li =

Wi = W̃i for all 2 ≤ i ≤ n. Let ϕ(g)(x).x−1 be an element of Hn+1, where g ∈ G and x ∈ Ln =
〈Kn, [H,Ln−1]〉 by the induction hypothesis. We wish to show that ϕ(g)(x).x−1 ∈ 〈Kn+1, [H,Ln]〉.
By Lemma 3.4(1), we only need to check the following two possibilities:

• x = a2n−1

2 . Then x ∈ Kn by Lemma 5.5, ϕ(a1a2)(x).x−1 = 1 and ϕ(b2b1)(x)x−1 = a−2n

2 ∈
Kn+1 by Lemma 5.5 and (5.11).
• x = [h, l] ∈ [H,Ln−1], where h ∈ H and l ∈ Ln−1. Then ϕ(g)([h, l])[h, l]−1 may be written

in the following form:(
ϕ(g)(h).l [(ϕ(g)(l−1).l)−1, ϕ(g)(h−1)]︸ ︷︷ ︸

∈[Ln,H]

l−1ϕ(g)(h−1)
)
h
[
(ϕ(g)(h−1).h)−1, l

]︸ ︷︷ ︸
∈[L2,Ln−1]

h−1. (5.15)

To complete the proof, it suffices to show that the subgroup [L2, Ln−1] is contained in [H,Ln].
To do so, first note that [L2, Ln−1] is normal in H because Lj is normal in H for all j ≥ 2 by
Lemma 3.3. Using the fact that L2 = 〈a2

2,Γ2(H)〉 by (5.12), it suffices to show that the following
elements belong to [H,Ln]:

• [[y, z], l] ∈ [Γ2(H), Ln−1], where y, z ∈ H and l ∈ Ln−1. Then:

[[y, z], l] = y
[
z, [y−1, l]

]︸ ︷︷ ︸
∈[H,Ln]

y−1.lyz
[
[z−1, l−1], y−1

]︸ ︷︷ ︸
∈[H,Ln]

z−1y−1l−1,

because [H,Ln−1] ⊂ Ln. Thus [[y, z], l] ∈ [H,Ln] because [H,Ln] is a normal subgroup of
H, and therefore [Γ2(H), Ln−1] ⊂ [H,Ln].
• [a2

2, l] ∈ [〈a2
2〉 , Ln−1], where l ∈ Ln−1. Then using (3.2), we have:

[a2
2, l] = [a2, [a2, l]]︸ ︷︷ ︸

∈[H,Ln]

[a2, l]
2, (5.16)

since [H,Ln−1] ⊂ Ln. Further [a2, l]
2 ∈ [H,Ln] because l ∈ Ln−1 = Wn−1 by hypothesis, so

l2 ∈ Wn = Ln, and
[l2, a2]︸ ︷︷ ︸
∈[Ln,H]

= [l, [l, a2]]︸ ︷︷ ︸
∈[H,Ln]

[l, a2]2

by (3.2). So [l, a2]2 ∈ [H,Ln], and thus [a2
2, l] ∈ [H,Ln] by (5.16).

This shows that [L2, Ln−1] ⊂ [H,Ln], hence Hn+1 ⊂ 〈Kn+1, [H,Ln]〉 as desired, which concludes
the proof of the first part of the statement. The second part follows from the first part and the
definition of Ln+1. �

In order to prove Proposition 5.12, we shall require a couple of intermediate results. Let A be
either the empty set or a normal subgroup of H, and for m ≥ 1, let:

Bm =

〈
[x1, . . . , xi]

2m−i−k ∈ Γi(H) :
∃1 ≤ j1 < · · · < jk ≤ i : xj1 , . . . , xjk ∈ A,

0 ≤ k ≤ m− i and i = 1, . . . ,m

〉
.

For 1 ≤ l ≤ m, let:

El,m =

〈
[x1, . . . , xi]

2m−i−k ∈ Γi(H) :
∃1 ≤ j1 < · · · < jk ≤ i : xj1 , . . . , xjk ∈ A,

0 ≤ k ≤ m− i and l ≤ i ≤ m

〉
. (5.17)
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In the case that A = ∅, we will denote the subgroup El,m by Ẽl,m. This corresponds to taking k = 0
in (5.17), so:

Ẽl,m =
〈
[x1, . . . , xi]

2m−i ∈ Γi(H) : l ≤ i ≤ m
〉
. (5.18)

If x = [x1, . . . , xi] ∈ Γi(H), the elements x2m−i−k
(resp. x2m−i

) of El,m (resp. of Ẽl,m) given in (5.17)

(resp. in (5.18)) will be termed generators of El,m (resp. of Ẽl,m). Note that Γm(H) = Em,m ⊂
El+1,m ⊂ El,m ⊂ E1,m = Bm by [27, Problem 3, Section 5.3, p. 297] for all l = 1, . . . ,m− 1, and that

for all 1 ≤ l ≤ m, El,m is normal in H, since if h ∈ H and x2m−i−k
is a generator of El,m, where

x = [x1, . . . , xi] ∈ Γi(H), then h[x1, . . . , xi]
2m−i−k

h−1 = [hx1h
−1, . . . , hxih

−1]2
m−i−k ∈ El,m because

A is normal in H or is empty. In particular, taking A = ∅, we have:

Γm(H) = Ẽm,m ⊂ Ẽl+1,m ⊂ Ẽl,m ⊂ Ẽ1,m = Bm, (5.19)

and that Ẽl,m is normal in H for all 1 ≤ l ≤ m.

Lemma 5.7. Let y ∈ H, let m ≥ 1, and let 1 ≤ i ≤ m. If x = [x1, . . . , xi] is an element of Γi(H)

for which x2m−i−k
is a generator of Ei,m, where 0 ≤ k ≤ m− i (resp. x2m−i

is a generator of Ẽi,m),
then:

[x2m−i−k

, y] ≡ [x, y]2
m−i−k

mod Ei+1,m+1 and (5.20)

[x2m−i

, y] ≡ [x, y]2
m−i

mod Ẽi+1,m+1 (5.21)

respectively.

Remark 5.8. Let m ≥ 1, and let 1 ≤ i ≤ m. Since Ei+1,m+1 ⊂ Bm+1 (resp. Ẽi+1,m+1 ⊂ Ẽ2,m+1 ⊂
W̃m+1 by (5.14)), the congruence (5.20) (resp. (5.21)) is also valid modulo Bm+1 (resp. modulo

W̃m+1).

Proof. It suffices to prove (5.20), since then the congruence (5.21) follows by taking A = ∅. We
will do so by induction on m. If m = 1 then i = 1 and k = 0, and the congruence is in fact an
equality. If m = 2, we consider two cases:

• if i = 2, or if i = k = 1, then x ∈ Γ2(H), and the two sides of (5.20) are equal.
• if i = 1 and k = 0 then x ∈ Γ1(H) = H. Thus [x2, y] = [x, x, y][x, y]2 by (3.2), and

[x, x, y] ∈ Γ3(H), so [x, x, y] ∈ E2,3, and we obtain (5.20).

This proves the result if m = 2. We now consider the general case.

Induction hypothesis 1: suppose that the congruence (5.20) holds for some m ≥ 1. Let us show

by induction that the result holds for m+1 i.e. if 1 ≤ i ≤ m+1, x ∈ Γi(H), x2m+1−i−k
is a generator

of Ei,m+1, 0 ≤ k ≤ m+ 1− i and y ∈ H, then:

[x2m+1−i−k

, y] ≡ [x, y]2
m+1−i−k

mod Ei+1,m+2. (5.22)

This will be achieved by making a second induction hypothesis as follows.

Induction hypothesis 2: let 1 ≤ i ≤ m+ 1 be such that:

[x2m+1−j−k

, y] ≡ [x, y]2
m+1−j−k

mod Ej+1,m+2 (5.23)

for all i ≤ j ≤ m + 1, where x ∈ Γj(H), x2m+1−j−k
is a generator of Ej,m+1, 0 ≤ k ≤ m + 1 − j

and y ∈ H. If i = m + 1 then (5.23) holds trivially. So suppose that (5.23) is valid for some
2 ≤ i ≤ m+ 1, and let us prove by reverse induction on i that it also holds for i− 1. By induction
hypothesis 2, it suffices to prove (5.23) for j = i−1. Let y ∈ H, and let x = [x1, . . . , xi−1] ∈ Γi−1(H),

where x2m+1−(i−1)−k
is a generator of Ei−1,m+1 and 0 ≤ k ≤ m+1− (i−1). Then [x2(m+1)−(i−1)−k

, y] =
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[x2m+2−i−k
, y]. If k = m + 2 − i then (5.23) is an equality. So assume that 0 ≤ k ≤ m + 1 − i. By

Proposition 3.1, [x2(m+1)−(i−1)−k
, y] is equal to:

[x, x, x2, . . . , x2m+1−i−k

, y][x, x2, . . . , x2m+1−i−k

, y]2 · · · [x2m−i−k

, x2m+1−i−k

, y]2︸ ︷︷ ︸
(∗)

[x2m+1−i−k

, y]2︸ ︷︷ ︸
(∗∗)

. (5.24)

Using induction hypotheses 1 and 2, we will first show that the expression (∗∗) is congruent to

[x, y]2
m+2−i−k

modulo Ei,m+2, and then that the expression (∗) belongs to Ei,m+2, from which we will

conclude by induction that [x2n+2−i−k
, y] ≡ [x, y]2

n+2−i−k
modulo Ei,m+2 for all i = 1, . . . ,m+ 1.

To show that [x2m+1−i−k
, y]2 ≡ [x, y]2

m+2−i−k
modulo Ei,m+2, since x = [x1, . . . , xi−1] ∈ Γi−1(H)

and x2m+1−(i−1)−k
is a generator of Ei−1,m+1, there exist 1 ≤ j1 < · · · < jk ≤ i − 1 such that

xj1 , . . . , xjk ∈ A, and therefore [x1, . . . , xi−1]2
m−(i−1)−k

is a generator of Ei−1,m. Applying induction
hypothesis 1, we have:

[x2m+1−i−k

, y] ≡ [x, y]2
m+1−i−k

mod Ei,m+1.

It follows that there exist generators α1, . . . , αt of Ei,m+1 and δ1, . . . , δt ∈ {1,−1} for which [x2m+1−i−k
, y] =

[x, y]2
m+1−i−k

αδ11 · · ·αδtt , and so:

[x2m+1−i−k

, y]2 =([x, y]2
m+1−i−k

αδ11 · · ·αδtt )2 = [x, y]2
m+2−i−k[

[x, y]−2n+1−i−k

, αδ11 · · ·αδtt
]
·

α2δ1
1 [α−δ11 , αδ22 · · ·αδtt ]α2δ2

2 · · · [α
−δt−1

t−1 , αδtt ]α2δt
t . (5.25)

We claim that:

(1) α2δ1
1 , . . . , α2δt

t ∈ Ei,m+2.
(2) [αs, θ], [α

−1
s , θ] ∈ Ei,m+2 for all s = 1, . . . , t and all θ ∈ H.

(3)
[
[x, y]−2m+1−i−k

, θ
]
∈ Ei,m+2 for all θ ∈ H.

Claim (1) follows from (5.17). To prove (2), let s ∈ {1, . . . , t}. Since αs is a generator of Ei,m+1,

αs = β2m+1−l−k̃
, where β = [β1, . . . , βl] ∈ Γl(H), βj1 , . . . , βjk̃ ∈ A, i ≤ l ≤ m+1 and 0 ≤ k̃ ≤ m+1−l.

By induction hypothesis 2,

[αs, θ] = [β2m+1−l−k̃

, θ] ≡ [β, θ]2
m+1−l−k̃

mod El+1,m+2. (5.26)

Moreover, [θ, β] = [θ, β1, . . . , βl] ∈ Γl+1(H), where βj1 , . . . , βjk̃ ∈ A, so [θ, β]2
(m+2)−(l+1)−k̃ ∈ El+1,m+2

since i ≤ l + 1 ≤ m+ 2 and 0 ≤ k̃ ≤ (m+ 2)− (l + 1). Hence:

[β, θ]2
m+1−l−k̃

=
(
[θ, β]2

m+1−l−k̃)−1 ∈ El+1,m+2.

The fact that El+1,m+2 ⊂ Ei,m+2 implies that the congruence (5.26) is also valid modulo Ei,m+2, from
which it follows using (5.26) that [αs, θ] ∈ El+1,m+2 ⊂ Ei,m+2. Further, [α−1

s , θ] = α−2
s [αs, θ](θα

2
sθ
−1) ∈

Ei,m+2, using also (1) and the fact that Ei,m+2 is normal in H, which proves (2). To prove (3), since

x2m+1−(i−1)−k ∈ Ei−1,m+1, where x = [x1, . . . , xi−1] ∈ Γi−1(H) and 0 ≤ k ≤ m+ 1− i, and there exist
1 ≤ j1 < · · · < jk ≤ i−1 such that xj1 , . . . , xjk ∈ A, it follows that [y, x] = [y, x1, . . . , xi−1] ∈ Γi(H)

and [y, x]2
(m+1)−i−k ∈ Ei,m+1. So applying induction hypothesis 2, we have:[

[x, y]−2m+1−i−k

, θ
]

=
[
[y, x]2

m+1−i−k

, θ
]
≡
[
[y, x], θ

]2m+1−i−k

mod Ei+1,m+2. (5.27)

Now

[[y, x], θ] = [θ, y, x]−1 = [[y, x], θ] = [θ, y, x1, . . . , xi−1]−1,

and since [θ, y, x1, . . . , xi−1]2
(m+2)−(i+1)−k ∈ Ei+1,m+2, we conclude that

[
[x, y]−2m+1−i−k

, θ
]
∈ Ei+1,m+2 ⊂

Ei,m+2, and this proves claim (3). Thus it follows from (5.25) and claims (1), (2) and (3) that:

[x2m+1−i−k

, y]2 ≡ [x, y]2
m+2−i−k

mod Ei,m+2,

which proves that the expression (∗∗) is congruent to [x, y]2
m+2−i−k

modulo Ei,m+2.
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To see that the expression (∗) belongs to Ei,m+2, notice that each of its terms is a commutator, so

can be written as a product of conjugates of the element
[
x2m−i−k

, [x2m+1−i−k
, y]
]

or its inverse. Since

Ei,m+2 is normal in H, it thus suffices to show that
[
θ, [x2m+1−i−k

, y]
]−1

=
[
[x2m+1−i−k

, y], θ
]
∈ Ei,m+2

for all y, θ ∈ H and for all x = [x1, . . . , xi−1] ∈ Γi−1(H) for which x2m+1−(i−1)−k ∈ Ei−1,m+1, where
i ≥ 3, 0 ≤ k ≤ m + 1 − i, xj1 , . . . , xjk ∈ A and 1 ≤ ji < · · · < jk ≤ i − 1. To do so, note

that x2m+1−i−k
= x2m−(i−1)−k ∈ Ei−1,m, so [x2m+1−i−k

, y] ≡ [x, y]2
m+1−i−k

mod Ei,m+1 by induction
hypothesis 1. Thus there exist generators α1, . . . , αt of Ei,m+1, and δ1, . . . , δt ∈ {1,−1} such that

[x2m+1−i−k
, y] = [x, y]2

m+1−i−k
αδ11 · · ·αδtt , and hence:[

[x2m+1−i−k

, y], θ
]

=
[
[x, y]2

m+1−i−k

αδ11 · · ·αδtt , θ
]

=
(
[x, y]2

m+1−i−k

[αδ11 · · ·αδtt , θ][x, y]−2m+1−i−k)[
[x, y]2

m+1−i−k

, θ
]
. (5.28)

Further, [αδ11 · · ·αδtt , θ] belongs to the normal closure of
{[
αδ11 , θ

]
, . . . ,

[
αδtt , θ

]}
in H. This may be

seen by applying reverse induction on 1 ≤ s ≤ t, and by noting that for s ≥ 2,

[α
δs−1

s−1 α
δs
s · · ·αδtt , θ] = (α

δs−1

s−1 [αδss · · ·αδtt , θ]α
−δs−1

s−1 )[α
δs−1

s−1 , θ]. (5.29)

Then
[
[x2n+1−i−k

, y], θ
]
∈
〈〈[

[x, y]2
n+1−i−k

, θ
]
,
[
αδ11 , θ

]
, . . . ,

[
αδtt , θ

]〉〉
H

by (5.28) and (5.29). Now by

claims (2) and (3), the elements [αδ11 , θ], . . . , [α
δt
t , θ] and

[
[x, y]2

m+1−i−k
, θ
]

belong to Ei,m+2, and
since Ei,m+2 is normal in H, we conclude that the expression (∗) belongs to Ei,m+2. This completes
the proof of (5.23) for i − 1, and so by induction, (5.23) holds for all 1 ≤ i ≤ m + 1, which is
exactly (5.22). By induction, we conclude that (5.20) holds, and this completes the proof of the
lemma. �

Lemma 5.7 has the following consequences.

Corollary 5.9. For all 1 ≤ l ≤ m, [El,m, H] ⊂ El+1,m+1 and [Ẽl,m, H] ⊂ Ẽl+1,m+1.

Proof. Let l ≤ i ≤ m. First assume that x = [x1, . . . , xi] ∈ Γi(H) is such that x2m−i−k
is a generator

of El,m, and let y ∈ H. Then by (5.20), [x2m−i−k
, y] ≡ [x, y]2

m−i−k
mod El+1,m+1. Since [y, x] =

[y, x1, . . . , xi] ∈ Γi+1(H), it follows that [y, x]2
(m+1)−(i+1)−k ∈ El+1,m+1, so [x2m−i−k

, y] ∈ El+1,m+1.

Now suppose that x = αδ11 · · ·αδtt , where for all i = 1, . . . , t, αi is a generator of El,m, and
δi ∈ {1,−1}. Then [x, y] belongs to the normal closure of

{
[αδi , y], i = 1, . . . , t

}
in H by (5.29),

and so [x, y] ∈ El+1,m+1 for all x ∈ El,m, y ∈ H by the first paragraph of the proof and the fact that

El+1,m+1 is normal in H. Once more, the result for Ẽl,m is obtained from that for El,m by taking
A = ∅. �

Corollary 5.10. If m ≥ 2, then W̃m =
〈〈
a2m−1

2 , Ẽ2,m

〉〉
H

.

Proof. It suffices to prove that

Ẽ2,m =
〈
x2m−i

: x ∈ Γi(H), 2 ≤ i ≤ m
〉

(5.30)

for all m ≥ 2. If m = 2, (5.30) follows from (5.12) and (5.18). Suppose by induction on m that (5.30)

holds for some m ≥ 2. It is clear from (5.18) that Ẽ2,m+1 ⊂
〈
x2m−i

: x ∈ Γi(H), 2 ≤ i ≤ m
〉
.

To prove the converse, let y = x2m+1−i
, where x ∈ Γi(H) and 2 ≤ i ≤ m + 1. If i = m + 1

then y ∈ Γm+1(H) ⊂ Ẽ2,m+1 by (5.19). So suppose that 2 ≤ i ≤ m. Then x2m−i ∈ Ẽ2,m by the

induction hypothesis, so x2m−i
= αδ11 · · ·αδtt , where for all i = 1, . . . , t, αi is a generator of Ẽ2,m and

δi ∈ {1,−1}. Hence:

y=(x2m−i

)2 =(αδ11 · · ·αδtt )2 = α2δ1
1 [α−δ11 , αδ22 · · ·αδtt ]α2δ2

2 [α−δ22 , αδ33 · · ·αδtt ] · · · [α−δt−1

t−1 , αδtt ]α2δt
t .

So y ∈ Ẽ2,m+1 because for all i = 1, . . . , t, α2δi
i ∈ Ẽ2,m+1 by (5.18), and [α−δii , θ] ∈ [Ẽ2,m, H] ⊂

Ẽ3,m+1 ⊂ Ẽ2,m+1 by Corollary 5.9 and (5.19). The inclusion
〈
x2m−i

: x ∈ Γi(H), 2 ≤ i ≤ m
〉
⊂

Ẽ2,m+1 then follows. �
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Corollary 5.11. For all m ≥ 2, [H, W̃m] ⊂ W̃m+1.

Proof. Since [Ẽ2,m, H] ⊂ Ẽ2,m+1 using Corollary 5.9, by Corollary 5.10, it suffices to prove that

[h, a2m−1

2 ] ∈ W̃m+1 for all h ∈ H. To see this, observe that [h, a2m−1

2 ] ≡ [h, a2]2
m−1

mod W̃m+1

by taking i = 1 and x = a2 in (5.21) and using Remark 5.8. So there exists w̃ ∈ W̃m+1 such

that [h, a2m−1

2 ] = [h, a2]2
m−1

. w̃. Now [h, a2] ∈ Γ2(H), hence [h, a2]2
m−1 ∈ W̃m+1 by (5.14), and we

conclude that [h, a2m−1

2 ] ∈ W̃m+1 as required. �

The following result will enable us to obtain the explicit characterisation of Γn(P2(K)) given in
Theorem 5.4.

Proposition 5.12. For all n ≥ 2, Ln = Wn = W̃n.

Proof. If n = 2, the statement is true by definition. So suppose by induction that Ln = Wn = W̃n

for some n ≥ 2. Then we have the following inclusions:

• W̃n+1 ⊂ Wn+1. To see this, let y ∈ W̃n+1. If y is a generator of W̃n+1, then by (5.14),

y either belongs to Γn+1(H), and so belongs to Wn+1 by (5.13), or is of the form x2n+1−i
,

where 1 ≤ i ≤ n, x ∈ Γi(H), and x = a2 if i = 1. Hence x2n−i ∈ W̃n = Wn by induction,

and thus y = x2n+1−i
= (x2n−i

)2 ∈ Wn+1 by (5.13). If y is an arbitrary element of W̃n+1, it
may be written as a product of conjugates of generators and their inverses, so it belongs to
Wn+1 because Wn+1 is normal in H.

• Ln+1 ⊂ W̃n+1, since Kn+1 ⊂ W̃n+1 by Lemma 5.5 and (5.14), and [H,Ln] = [H, W̃n] ⊂ W̃n+1

by induction and Corollary 5.11, so Ln+1 = 〈Kn+1, [H,Ln]〉 ⊂ W̃n+1 using Lemma 5.6.
• Wn+1 ⊂ Ln+1. First, Γn+1(H) = [H,Γn(H)] ⊂ [H,Wn] = [H,Ln] ⊂ Ln+1 by (5.13) and

induction. Secondly, let x2 ∈ Wn+1, where x ∈ Wn = Ln is a generator. If n = 2, by (5.12),
x = a2

2 or x = [b2, a2], then x2 = a4
2 ∈ K3 ⊂ L3 by Lemma 5.5, or x2 = [b2, a

2
2︸︷︷︸

∈L2

][a2, [a2, b2]︸ ︷︷ ︸
∈L2

] ∈

[H,L2] ⊂ L3. So assume that n ≥ 3. By Lemma 5.6, there are two possibilities for x:

– if x ∈ Kn, then x = a2n−1

2 by Lemma 5.5, and x2 = a2n

2 ∈ Kn+1 ⊂ Ln+1.
– if x = [h, l] ∈ [H,Ln−1], where h ∈ H and l ∈ Ln−1 = Wn−1, then x2 = [h, l]2 =

[h, l2][l, [l, h]]. Now l2 ∈ Wn = Ln by induction and [l, h] ∈ Ln, so [h, l2] and [l, [l, h]]
belong to [H,Ln], which is contained in Ln+1.

Finally, let x2 ∈ Wn+1, where x is an arbitrary element of Wn. Then there exists q ∈ N
such that x = x1 · · ·xq, where for all i = 1, . . . , q, xi is a generator of Wn = Ln. Then as
in (5.25), we have:

x2 = x2
1[x−1

1 , x2 · · ·xq]x2
2[x−1

2 , x3 · · ·xq] · · · [x−1
q−1, xq]x

2
q. (5.31)

From the second case above, for all i = 1, . . . , q, x2
i ∈ Ln+1. Further, for all i = 1, . . . , q− 1,

[x−1
i , xi+1 · · ·xq] ∈ [Ln, H] ⊂ Ln+1. It then follows from (5.31) that x2 ∈ Ln+1.

It follows from these three inclusions that Ln+1 = Wn+1 = W̃n+1. �

Proof of Theorem 5.4. The result is a consequence of Theorem 1.1(1), Proposition 5.12, and equa-
tions (5.8), (5.10) and (5.14). To see that P2(K) is residually nilpotent, note first that Wn ⊂ γ2

n(H)
for all n ≥ 2 by (5.13). Since H is a free group of finite rank, it is residually 2-finite, and it follows
using Proposition 5.12 that

⋂
n≥1 Ln =

⋂
n≥2Wn = {1}. The residual nilpotence of P2(K) is then a

consequence of the first part of the statement, equation (5.14) and Proposition 5.12. �

5.3. The lower F2-linear central filtration of P2(K). Now that we have a good description of
Γn(P2(K)), we may obtain the following decomposition of γ2

n(P2(K)).

Theorem 5.13. Let n ≥ 2. With the notation of Theorem 2.1, γ2
n(P2(K)) is equal to:〈〈

a2n−1

2 , b2n−1

2 , x2n−i

: x ∈ Γi(π1(K \ {x1})), 2 ≤ i ≤ n
〉〉
π1(K\{x1})

o
〈
(a1a2)2n−1

, (b2b1)2n−1〉
.
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Consequently, P2(K) is residually 2-finite.

Remark 5.14. Using the action given by (5.9) and the description of Γn(P2(K)) given by The-
orem 5.4, it is straightforward to see that:〈〈

a2n−1

2 , b2n−1

2 , x2n−i

: x ∈ Γi(π1(K \ {x1})), 2 ≤ i ≤ n
〉〉
π1(K\{x1})

o
〈
(a1a2)2n−1

, (b2b1)2n−1〉
is equal to Un, where:

Un =
〈〈

Γn(P2(K)), b2n−1

2 , (b2b1)2n−1〉〉
P2(K)

. (5.32)

Proof of Theorem 5.13. Let n ≥ 2. By Remark 5.14, it suffices to prove by induction on n that
Un = γ2

n(P2(K)), where Un is defined by (5.32). If n = 2, U2 ⊂ γ2
2(P2(K)) because b2

2 and (b2b1)2

belong to {x2 : x ∈ P2(K)}, which is contained in γ2
2(P2(K)), Γ2(P2(K)) is contained in γ2

2(P2(K)),
and γ2

2(P2(K)) is normal in P2(K). For the converse inclusion, we know that Γ2(P2(K)) ⊂ U2, that
P2(K) is generated by {a2, a2a1, b2, b2b1} by Remark 5.3, and that the square of each element of this
set belongs to U2, since by Theorem 5.4, a2

2 ∈ Γ2(P2(K)) and (a2a1)2 ∈ Γ2(s(π1(K))) ⊂ Γ2(P2(K)).
Further, if x = x1 · · ·xq, where for i = 1, . . . , q, xi ∈

{
a±1

2 , (a2a1)±1, b±1
2 , (b2b1)±1

}
, then using

the decomposition given in (5.31), we have x2 ∈ U2 because x2
i ∈ U2 for all 1 ≤ i ≤ q and

[x−1
i , xi+1 · · ·xq] ∈ Γ2(P2(K)) ⊂ U2 for all 1 ≤ i ≤ q − 1. Thus γ2

2(P2(K)) ⊂ U2, and therefore
γ2

2(P2(K)) = U2.
Now assume that n ≥ 2, and suppose by induction that Ui = γ2

i (P2(K)) for all 2 ≤ i ≤ n. Then
Un+1 ⊂ γ2

n+1(P2(K)) since Γn+1(P2(K)) ⊂ γ2
n+1(P2(K)), Γn+1(P2(K)) and γ2

n+1(P2(K)) are normal

in P2(K), and if x ∈ {b2, b2b1} then x2n = (x2n−1
)2, where x2n−1 ∈ Un = γ2

n(P2(K)) by the induction
hypothesis, so x2n ∈ γ2

n+1(P2(K)).
To prove that γ2

n+1(P2(K)) ⊂ Un+1, using the induction hypothesis and the fact that γ2
n+1(P2(K))

is generated by [P2(K), γ2
n(P2(K))] ∪ {x2 : x ∈ γ2

n(P2(K))}, it suffices to show that [P2(K), Un] ⊂
Un+1, and that x2 ∈ Un+1 for all x ∈ Un. We first show that [P2(K), Un] ⊂ Un+1. Let x ∈ P2(K),
and let u ∈ Un.

(1) If u ∈ Γn(P2(K)) then [x, u] ∈ Un+1.

(2) If u = (b2b1)2n−1
then [x, u] = 1 because (b2b1)2n−1 ∈ Z(P2(K)) by Proposition 5.2.

(3) If u = b2n−1

2 , we claim that [b2n−1

2 , x] ∈ Ln+1 for all x ∈ {a2, (a2a1)−1, b2, (b2b1)−1}. The
result is clear if x = b2, so we consider the three other cases. We proceed by induction on
n. Suppose first that n = 2. If x = a2 then by (3.2), (5.13) and Proposition 5.12, we have:

[u, x] = [b2
2, a2] = [b2, b2, a2]︸ ︷︷ ︸

∈W3=L3

[b2, a2]2︸ ︷︷ ︸
∈W3=L3

∈ L3.

In the remaining two cases, by (5.9), (5.12), (5.14) and Proposition 5.12, we have:

[(a2a1)−1, u] = [(a2a1)−1, b2
2] = (a−2

2 b2)(a−2
2 b2)b−2

2 = a−4
2︸︷︷︸

∈W̃3=L3

[a2
2, b2]︸ ︷︷ ︸

∈[L2,H]⊂L3

∈ L3

[(b2b1)−1, u] = [(b2b1)−1, b2
2] = (a2b2a2)(a2b2a2)b−2

2

= [a2b2, a
2
2]︸ ︷︷ ︸

∈[H,L2]⊂L3

a4
2︸︷︷︸

∈W̃3=L3

[a−1
2 , b2]2︸ ︷︷ ︸
∈W̃3=L3

[
[b2, a

−1
2 ], b2

]︸ ︷︷ ︸
∈Γ3(H)⊂L3

∈ L3,

which proves the claim in the case n = 2. Now suppose that [b2j−1

2 , x] ∈ Lj+1 for all
2 ≤ j ≤ n and x ∈ {a2, (a2a1)−1, b2, (b2b1)−1}. Then by Proposition 5.12 and (5.13),

[b2n−1

2 , x] ∈ Ln+1 = Wn+1, and hence [b2n−1

2 , x]2 ∈ Wn+2 = Ln+2. So by (3.2), we have:

[b2n

2 , x] =
[
b2n−1

2 , [b2n−1

2 , x]︸ ︷︷ ︸
∈Ln+1

]
︸ ︷︷ ︸
∈[H,Ln+1]⊂Ln+2

[b2n−1

2 , x]2︸ ︷︷ ︸
∈Ln+2

∈ Ln+2,
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which proves the claim for all n ≥ 2. Now let x be an arbitrary element of P2(K). Since
the set {a2, (a2a1)−1, b2, (b2b1)−1} generates P2(K), for some t ≥ 0, there exist x1, . . . , xt ∈
{a2, (a2a1)−1, b2, (b2b1)−1} and ε1, . . . , εt ∈ {1,−1} for which x = xε11 x

ε2
2 · · ·xεtt . As in (5.29),

we have the following relation:

[u, x] = [u, xε11 ]
(
xε11 [u, xε22 ]x−ε11

)
· · ·
(
xε11 x

ε2
2 · · ·x

εt−1

t−1 [u, xεtt ]x
−εt−1

t−1 · · ·x−ε22 x−ε11

)
. (5.33)

Using the fact that Ln+1 is normal in H by Lemma 3.3, it follows from (5.33) that [b2n−1

2 , x] ∈
Ln+1, and since Ln+1 ⊂ Γn+1(P2(K)) by Theorem 1.1, we deduce that [b2n−1

2 , x] ∈ Un+1.

This concludes the proof of the inclusion [P2(K), Un] ⊂ Un+1. It remains to prove that {x2 : x ∈ Un} ⊂
Un+1. If x = b2n−1

2 or x = (b2b1)2n−1
then clearly x2 ∈ Un+1. Using Theorems 1.1(1) and 5.4, if

x ∈ Γn(P2(K)) = Ln o
〈
(a1a2)2n−1〉

, then in terms of this semi-direct product, x = (x1, x2), where

x1 ∈ Ln and x2 ∈
〈
(a1a2)2n−1〉

, and x2 = (x1, x2)(x1, x2) = (x1.ϕ(x2)(x1), x2
2). Now x2

2 ∈
〈
(a1a2)2n

〉
,

and since x1 ∈ Ln = Wn, we have x2
1 ∈ Wn+1 = Ln+1 by Proposition 5.12, and therefore

x1.ϕ(x2)(x1) = x2
1(ϕ(x2)(x−1

1 ).x1)−1 ∈ Ln+1 and x2 ∈ Ln+1 o
〈
(a1a2)2n

〉
= Γn+1(P2(K)) ⊂ Un+1.

If x is a product of conjugates of generators of Un then x2 ∈ Un+1 using (5.31). This shows that
{x2 : x ∈ Un} ⊂ Un+1. It follows that γ2

n+1(P2(K)) ⊂ Un+1, so γ2
n+1(P2(K)) = Un+1. Using the

explicit characterisation of Γn(P2(K)) given by Theorem 5.4 and Remark 5.14, the first part of the
statement follows. The second part is a consequence of the fact that

⋂
n≥2 Un = {1} using the first

part. �

5.4. The lower central series of Pn(K). For n ≥ 3, the situation is more complicated due to the
complexity of the lower central series of P2(K). The idea is to use the Fadell-Neuwirth short exact
sequence (5.1) and to calculate recursively Γm(Pn(K)) for m ≥ 1 and n ≥ 3. Thus will allows us to
prove that Pn(K) is residually nilpotent for all n ≥ 1 in Theorem 5.25.

With the notation of Theorem 1.1 and equation (5.1), we may write Pn+1(K) = H oϕ G, where
H = π1(K \ {x1, . . . , xn}), G = s(Pn(K)), and s is the section for p∗ given by Proposition 5.1.

Remark 5.15. Notice that Hm = [G,Lm−1] and Km = [Γm−1(G), H], for all m ≥ 2, since the action
ϕ of G on H is defined by conjugation.

In what follows, we will take G to be equipped with the generating set:

X =
{
s(z) : z ∈ {ai, bi, Cj,k : 1 ≤ i ≤ n and 1 ≤ j < k ≤ n}

}
=
{
ai, bi, Ci,k, anan+1, bnbn+1Cn,n+1, Ci,nCi,n+1C

−1
n,n+1 : 1 ≤ i ≤ k ≤ n− 1

}
. (5.34)

In Pn+1(K), for 1 ≤ j ≤ n, let Dj = C−1
j,n+1Cj+1,n+1. Since Cj,n+1 = D−1

n · · ·D−1
j+1D

−1
j for all

j = 1, . . . , n, the set:

Y = {an+1, bn+1, Dj : j = 1, . . . , n} (5.35)
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generates H, and using Theorem 2.1, the action ϕ : s(Pn(K)) −→ Aut(π1(K \ {x1, . . . , xn})) is
given by: 

ϕ(ai)(z)=


an+1 if z = an+1

bn+1an+1Dia
−1
n+1 if z=bn+1

αi,jDjα
−1
i,j if z=Dj

ϕ(bi)(z)=


an+1bn+1Ci,n+1DiC

−1
i,n+1b

−1
n+1 if z=an+1

bn+1Ci,n+1D
−1
i C−1

i,n+1 if z=bn+1

βi,iD
−1
i β−1

i,i if z=Di

βi,jDjβ
−1
i,j if z=Dj, j 6= i

ϕ(Ci,k)(z)=


an+1 if z=an+1

bn+1 if z=bn+1

δi,j,kDjδ
−1
i,j,k if z=Dj

ϕ(anan+1)(z)=


an+1 if z=an+1

a−1
n+1bn+1an+1Dn if z=bn+1

α̃jDjα̃
−1
j if z=Dj

ϕ(bnbn+1Cn,n+1)(z)=


Dnb

−1
n+1an+1bn+1 if z=an+1

bn+1D
−1
n if z=bn+1

D−1
n if z=Dn

b−1
n+1Djbn+1 if z=Dj, j 6= n

ϕ(Ci,nCi,n+1C
−1
n,n+1)(z)=


Cn,n+1C

−1
i,n+1an+1Ci,n+1C

−1
n,n+1 if z=an+1

Cn,n+1C
−1
i,n+1bn+1Ci,n+1C

−1
n,n+1 if z=bn+1

δ̃i,jDj δ̃
−1
i,j if z=Dj,

(5.36)

where:

αi,j =


1 if i < j

C−1
j+1,n+1an+1 if i = j

C−1
i+1,n+1Ci,n+1 if i > j

βi,j =


1 if i < j

bn+1Ci,n+1 if i = j

bn+1Ci,n+1C
−1
i+1,n+1b

−1
n+1 if i > j

δi,j,k =


1 if k < j or i > j

C−1
j+1,n+1Ci,n+1 if k = j

C−1
k+1,n+1Ck,n+1 if k > j ≥ i

for all 1 ≤ i ≤ k ≤ n− 1 and 1 ≤ j ≤ n, and where α̃j = a−1
n+1αn,j and δ̃i,j = Cn,n+1C

−1
i,n+1δi,j,n.

Our aim is to determine the subgroups Lm that were defined in the statement of Theorem 1.1
for all m ≥ 2. For i ≥ 0, let:

A2i

n =
〈〈
D2i

j : j = 1, . . . , n
〉〉
H
. (5.37)

If i = 0, we write An = A1
n. To compute K2, recall that K2 = H2, and that this subgroup is

normal in H by Lemma 3.3. Using (5.36), observe that ϕ(ai)(bn+1)b−1
n+1 = bn+1an+1Dia

−1
n+1b

−1
n+1 for

all 1 ≤ i ≤ n−1, and ϕ(bnbn+1Cn,n+1)(bn+1)b−1
n+1 = bn+1D

−1
n b−1

n+1. So by normality of K2, Dj belongs
to K2 for all 1 ≤ j ≤ n, and therefore An ⊂ K2 by (5.37). Moreover, ϕ(bnbn+1Cn,n+1)(an+1)a−1

n+1 =
Dnb

−1
n+1an+1bn+1a

−1
n+1, so [b−1

n+1, an+1] belongs to K2 also. Applying Lemma 3.4(1) with X and Y as
defined in (5.34) and (5.35), and using (5.36), we see that K2 =

〈〈
An, [an+1, bn+1]

〉〉
H

, and therefore:

L2 = 〈Γ2(H), An〉 . (5.38)
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Let Y1 = L1 = H, and for m ≥ 2, let:

Ym =
〈
A2m−2

n , [Yi, Yk] : 1 ≤ i ≤ k < m, i+ k = m
〉
. (5.39)

In what follows, we will refer to the elements of the set{
D2m−2

j , [yi, yk] : j = 1, . . . , n, yi ∈ Yi, yk ∈ Yk and i+ k = m
}

as generators of Ym. Since Γm(Pn+1(K)) = Lm o Γm(Pn(K)) by Theorem 1.1(1), to prove that
Pn+1(K) is residually nilpotent by induction on n, it will suffice to show that Lm ⊂ Ym for all
m ≥ 2 (we will show in fact that Lm = Ym), and then that

⋂
m≥1 Ym = {1}.

Remark 5.16. For all m ≥ 1, Ym is a normal subgroup of H, and Ym+1 ⊂ Ym by induction on m.
Further, we claim that ϕ(g)(Yi) ⊂ Yi for all i ≥ 1 and g ∈ G. To see this, observe that ϕ(g)(Dj) is

a conjugate of Dj or D−1
j for all j = 1, . . . , n by (5.36), so ϕ(g)(A2i

n ) ⊂ A2i

n for all i ≥ 1. Also, if
yk ∈ Yk and yl ∈ Yl then ϕ(g)([yk, yl]) = [ϕ(g)(yk), ϕ(g)(yl)], and the claim follows by induction on
i.

Lemma 5.17. [G, Ym] ⊂ Ym+1 for all m ≥ 1.

Proof. If m = 1, then [G, Y1] = [G,H] = H2 ⊂ L2 = Y2. Now, by induction on m, suppose
that [G, Yi] ⊂ Yi+1, for all 1 ≤ i ≤ m. Let us prove that [G, Ym+1] ⊂ Ym+2. To do so, let
[g, h] = ϕ(g)(h).h−1 ∈ [G, Ym+1], where g ∈ G and h ∈ Ym+1. By Lemma 3.4(2), we need only
analyse the following cases where g ∈ X and h is a generator of Ym+1:

(1) h = D2m−1

j , where j ∈ {1, . . . , n}. By (5.36), if j ∈ {1, . . . , n− 1} then:

ϕ(bj)(D
2m−1

j ).D−2m−1

j = [βj,j, D
−2m−1

j ]D−2m

j ∈ Ym+2,

because D2m−1

j ∈ Ym+1, and if j = n then:

ϕ(bnbn+1Cn,n+1)(D2m−1

n ).D−2m−1

n = D−2m

n ∈ Ym+2.

Similarly, by (5.36), one may check that if g is any other element ofX then ϕ(g)(D2m−1

j ).D−2m−1

j

is a commutator of D2m−1

j with an element of H, and so belongs to [H,Ym+1], which is con-
tained in Ym+2 by (5.39).

(2) h = [yi, yj], where 1 ≤ i, j ≤ m, i+j = m+1, yi ∈ Yi and yj ∈ Yj. By Remark 5.16, we have
that ϕ(g)(Yl) ⊂ Yl for all l ≥ 1. By the induction hypothesis (ϕ(g)(y−1

j ).yj)
−1 ∈ [G, Yj] ⊂

Yj+1 and (ϕ(g)(y−1
i ).yi)

−1 ∈ [G, Yi] ⊂ Yi+1. Therefore
[
(ϕ(g)(y−1

j ).yj)
−1, ϕ(g)(y−1

i )
]
∈

[Yj+1, Yi] ⊂ Ym+2 and [(ϕ(g)(y−1
i ).yi)

−1, yj] ∈ [Yi+1, Yj] ⊂ Ym+2 by (5.39), and writing
[g, [yi, yj]] = ϕ(g)([yi, yj]).[yj, yi] in the form of (5.15) and Remark 5.16, where we re-
place l by yj and h by yi, and using the fact that Ym+2 is normal in H, it follows that
ϕ(g)([yi, yj]).[yj, yi] ∈ Ym+2. �

Remark 5.18. For all m ≥ 1, Ym is a normal subgroup of H oϕ G. To see this, recall that Ym is
normal in H by Remark 5.16, and if y ∈ Ym and g ∈ G, [g, y] ∈ Ym+1 ⊂ Ym by Lemma 5.17, and
therefore gyg−1 = [g, y]y ∈ Ym.

To prove the results that follow, we will make use of two commutator identities [27, Theorem 5.1]:

[a, bc] = [a, b]
[
b, [a, c]

]
[a, c] (5.40)[

[a, b], cb
][

[b, c], ac
][

[c, a], ba
]

= 1 (5.41)

where cb = bcb−1. The following two lemmas are inspired by those of [11, Section 3].

Lemma 5.19. Let x ∈ Yp, and y, w ∈ H oϕ G. Suppose that [w, y] ∈ Yq. Then [x, y] ∈ Yp+q if and
only if [x, yw] ∈ Yp+q.
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Proof. Set z = [w, y]. Then yw = zy, so by (5.40), [x, yw] = [x, zy] = [x, z]
[
z, [x, y]

]
[x, y]. Since

z ∈ Yq by hypothesis, we have that [x, z] ∈ [Yp, Yq] ⊂ Yp+q by Remark 5.16. Also, [x, y] ∈ Yp because
Yp is normal in H oϕ G by Remark 5.18, and so

[
z, [x, y]

]
∈ [Yq, Yp] ⊂ Yp+q by Remark 5.16. The

result then follows. �

Lemma 5.20. For all k,m ≥ 1, [Γk(G), Ym] ⊂ Yk+m.

Proof. If k = 1, the result is a consequence of Lemma 5.17. Now suppose by induction that
[Γk(G), Ym] ⊂ Ym+k for some k ≥ 1 and all m ≥ 1, and let us prove that [Γk+1(G), Ym] ⊂ Yk+m+1

for all m ≥ 1. Applying (5.41) to elements g ∈ G, gk ∈ Γk(G) ⊂ G and h ∈ Ym of the commutator
[Γk+1(G), Ym] = [[Γk(G), G], Ym], we obtain:[

[gk, g], hg
][

[g, h], ghk
][

[h, gk], g
gk
]

= 1. (5.42)

By Lemma 5.17, [g, h] ∈ Ym+1, and
[
[g, h], gk

]
∈ [Ym+1,Γk(G)] ⊂ Ym+k+1 using also the in-

duction hypothesis. Further, [h, gk] ∈ [Ym,Γk(G)] ⊂ Ym+k ⊂ Yk by the induction hypothesis
and Remark 5.16, and consequently

[
[g, h], ghk

]
∈ Ym+k+1 by Lemma 5.19. Also,

[
[h, gk], g

gk
]
∈

[[Ym,Γk(G)], G] ⊂ [Ym+k, G] ⊂ Ym+k+1 by the induction hypothesis and Lemma 5.17. Thus[
[gk, g], hg

]
∈ Ym+k+1 by (5.42). By (5.40), we see that:[

[gk, g], hg
]

=
[
[gk, g], [g, h]h

]
=
[
[gk, g], [g, h]

][
[g, h],

[
[gk, g], h

]][
[gk, g], h

]
. (5.43)

Now
[
[gk, g], [g, h]

]
∈ [Γk(G), Ym+1] ⊂ Ym+k+1 by the induction hypothesis, and by Remark 5.16,

we see that[
[g, h],

[
[gk, g], h

]]
∈ [Ym+1, [Γk(G), Ym]] ⊂ [Ym+1, Yk+m] ⊂ Y2m+k+1 ⊂ Ym+k+1.

We conclude from (5.43) that
[
[gk, g], h

]
∈ Ym+k+1, and the result follows. �

Lemma 5.21. For all m ≥ 1, Lm = Ym.

Proof. We prove the lemma by induction on m ≥ 1. For m = 1, 2, the result follows from (5.38)
and (5.39). Suppose that m ≥ 2 is such that Li = Yi for all 1 ≤ i ≤ m.

We first show that Ym+1 ⊂ Lm+1. For all i, j ≥ 0, it follows from [27, Theorem 5.3] and
Theorem 1.1(1) that:

[Li oϕ Γi(G), Lj oϕ Γj(G)] = [Γi(H oϕ G),Γj(H oϕ G)]

⊂ Γi+j(H oϕ G) = Li+j oϕ Γi+j(G). (5.44)

Let xi ∈ Li and xj ∈ Lj. Then (xi, 1) ∈ Li oϕ Γi(G) and (xj, 1) ∈ Lj oϕ Γj(G), and using (3.3)
and (5.44), we obtain:

([xi, xj], 1) = [(xi, 1), (xj, 1)] ∈ Li+j oϕ Γi+j(G).

Hence [xi, xj] ∈ Li+j, then [Li, Lj] ⊂ Li+j. So if 1 ≤ i, j ≤ m, where i + j = m + 1, we see

that [Yi, Yj] = [Li, Lj] ⊂ Lm+1 using the induction hypothesis. To prove that A2m−1

n ⊂ Lm+1, by

induction, we have D2m−2

j ∈ Ym = Lm for all j = 1, . . . , n. Therefore ϕ(bj)(D
2m−2

j ).D−2m−2

j and

ϕ(bnbn+1Cn,n+1)(D2m−2

n ).D−2m−2

n belong to Hm+1 ⊂ Lm+1 for all j = 1, . . . , n − 1. Consequently

[βj,j, D
−2m−2

j ]D−2m−1

j and D−2m−1

n belong to Lm+1 for all j = 1, . . . , n − 1. Now [βj,j, D
−2m−2

j ] ∈
[H,Lm] ⊂ Lm+1 for all j = 1, . . . , n − 1, and thus D2m−1

j ∈ Lm+1. Using the fact that Lm+1 is
normal in H by Remark 5.16, Lemma 3.3 and (5.39), we conclude that Ym+1 ⊂ Lm+1.

To prove that Lm+1 ⊂ Ym+1, the induction hypothesis implies that [H,Lm] = [H,Ym] ⊂
Ym+1. By Remark 5.15 and the induction hypothesis, we have Hm+1 = [G,Lm] = [G, Ym] and
Km+1 = [Γm(G), H]. So by Lemma 5.20 Hm+1 and Km+1 are contained in Ym+1. Since Lm+1 =
〈[H,Lm], Hm+1, Km+1〉, it follows that Lm+1 ⊂ Ym+1, and hence Lm+1 = Ym+1. �
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To prove that Pn+1(K) is residually nilpotent, it remains to show that
⋂
m≥1 Ym = {1}. To do

so, we define two families (Zm)m≥1 and (Z̃m)m≥1 of subgroups of H as follows. Let Z1 = Z̃1 = H,
Z2 = V2 = Y2, and if m ≥ 3, let:

Zm =
〈〈{

x2 : x ∈ Zm−1

}
∪Xm

〉〉
H

and Z̃m−1 =
〈〈
A2m−3

n ∪ X̃m−1

〉〉
H

, where: (5.45)

Xm=

{
[x1, . . . , xi] ∈ Γi(H) : ∃ 1 ≤ j1 < . . . < jm−i ≤ i, xj1 , . . . , xjm−i

∈ An
for all i = 2, . . . ,m

}
for all m ≥ 3

X̃m=

{
[x1, . . . , xi]

2m−i−k∈ Γi(H) : ∃ 1 ≤ j1 < . . . < jk ≤ i, xj1 , . . . , xjk ∈ An
for all 0 ≤ k ≤ m− i, and i = 2, . . . ,m

}
for all m ≥ 2.

Note that if i = m (resp. k = 0), the elements x1, . . . , xi of H that appear in the definition

of Xm (resp. of X̃m) are arbitrary. If m ≥ 3 (resp. m ≥ 2), we will refer to the elements of

Xm ∪ {x2 : x ∈ Zm−1} (resp. of X̃m ∪
{
D2m−2

j : j = 1, . . . , n
}

) as generators of Zm (resp. of Z̃m).

Proposition 5.22. Let m ≥ 1. Then Z̃m ⊂ γ2
dm/2e(H), where dxe denotes the least integer greater

than or equal to x. In particular,
⋂
m≥1 Z̃m = {1}.

Proof. If m ∈ {1, 2} then dm/2e = 1, γ2
1(H) = H and thus Z̃m ⊂ γ2

1(H). So suppose by induction

on m that Z̃i ⊂ γ2
di/2e(H) for some m ≥ 2 and all 1 ≤ i ≤ m. Since γ2

d(m+1)/2e(H) is normal in

H, by (5.37) and (5.45), it suffices to show that {D2m−1

j : j = 1, . . . , n} ∪ X̃m+1 ⊂ γ2
d(m+1)/2e(H).

If j = 1, . . . , n then D2m−1

j = (D2m−2

j )2, and since D2m−2

j ∈ A2m−2

n and A2m−2

n ⊂ Z̃m, it follows by

the induction hypothesis that D2m−2

j ∈ γ2
dm/2e(H), and hence D2m−1

j ∈ γ2
dm/2e+1(H). The fact that

dm/2e+1 ≥ d(m+ 1)/2e implies that γ2
dm/2e+1(H) ⊂ γ2

d(m+1)/2e(H), whence D2m−1

j ∈ γ2
d(m+1)/2e(H).

Now let x ∈ X̃m+1, and let x = [x1, . . . , xi]
2m+1−i−k ∈ Γi(H), where 2 ≤ i ≤ m + 1 and there exist

1 ≤ j1 < · · · < jk ≤ i, such that xj1 , . . . , xjk ∈ An, for all 0 ≤ k ≤ m + 1 − i. If i = m + 1
then x ∈ γ2

m+1(H) ⊂ γ2
d(m+1)/2e(H) because m + 1 ≥ d(m+ 1)/2e. So suppose that 2 ≤ i ≤ m.

If 0 ≤ k ≤ m − i then x =
(
[x1, . . . , xi]

2m−i−k)2
, where [x1, . . . , xi]

2m−i−k ∈ X̃m ⊂ γ2
dm/2e(H) using

the induction hypothesis, and thus x ∈ γ2
dm/2e+1(H) ⊂ γ2

d(m+1)/2e(H). Finally, if k = m + 1 − i

then x = [x1, . . . , xi] ∈ Γi(H). Since k ≤ i, we have i ≥ (m + 1)/2 ≥ d(m+ 1)/2e, and hence
x ∈ Γi(H) ⊂ Γd(m+1)/2e(H) ⊂ γ2

d(m+1)/2e(H) as required, and this completes the proof of the

inclusion {D2m−1

j : j = 1, . . . , n} ∪ X̃m+1 ⊂ γ2
d(m+1)/2e(H). Finally, since H is a free group of finite

rank, it is residually 2-finite and
⋂
m≥1 γ

2
m(H) = {1}, so

⋂
m≥1 Z̃m = {1}. �

The aim now is to prove that Ym = Zm = Z̃m for all m ≥ 2, from which we will conclude that⋂
m≥1 Ym = {1} and that Pn+1(K) is residually nilpotent.

Remark 5.23. Let m ≥ 2. Taking A = An in (5.17), we have
〈
X̃m

〉
= E2,m. Further, since Dj ∈ An

for all j = 1, . . . , n, we see that D2m−2

j ∈ E1,m, where we take i = k = 1, so A2m−2

n ⊂ E1,m. Therefore

Z̃m ⊂ E1,m, and Corollary 5.9 then implies that

[H, Z̃m] ⊂ [H, E1,m] ⊂ E2,m+1 =
〈
X̃m+1

〉
⊂ Z̃m+1.

Note also that if m = 1 then [H, Z̃1] = Γ2(H) =
〈
X̃2

〉
⊂ Z̃2.

Lemma 5.24. For all m ≥ 1, Ym = Zm = Z̃m.

Proof. If m = 1, the given equality holds by definition. If m = 2 then
〈
X̃2

〉
= Γ2(H), and

Z̃2 =
〈〈
An ∪ Γ2(H)

〉〉
H

= V2 using (5.38) and the fact that V2 is normal in H by Lemma 3.3. So
suppose by induction that:

Yi = Zi = Z̃i for some m ≥ 2 and all 1 ≤ i ≤ m. (5.46)
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To prove that Z̃m+1 ⊂ Zm+1, let us show that A2m−1

n and X̃m+1 are contained in Zm+1. For all

j = 1, . . . , n, we have D2m+1−2

j = (D2m−2

j )2 and D2m−2

j ∈ Z̃m = Zm by induction, so A2m−1

n ⊂ Zm+1

by (5.45). Now suppose that [x1, . . . , xi]
2m+1−i−k ∈ X̃m+1, so k elements of {x1, . . . , xi} belong to

An, where 0 ≤ k ≤ m + 1 − i. If m + 1 − i > k then [x1, . . . , xi]
2m−i−k

belongs to Z̃m = Zm by

induction, so [x1, . . . , xi]
2m+1−i−k

= ([x1, . . . , xi]
2m−i−k

)2 belongs to Zm+1. If m + 1 − i = k then

[x1, . . . , xi]
2m+1−i−k

= [x1, . . . , xi] ∈ Γi(H), where k = (m + 1) − i elements of this commutator

belong to An, so [x1, . . . , xi] ∈ Zm+1. Hence X̃m+1 ⊂ Zm+1, and thus Z̃m+1 ⊂ Zm+1.

We now show that Zm+1 ⊂ Z̃m+1. First note that Xm+1 ⊂ X̃m+1, for if the commutator
[x1, . . . , xi] belongs to Xm+1 then m + 1 − i of its elements belong to An, and so [x1, . . . , xi] =

[x1, . . . , xi]
2m+1−i−k ∈ X̃m+1, where k = m+ 1− i. Now let y ∈ Zm+1 be of the form y = x2, where

x ∈ Zm = Z̃m by induction. If x is a generator of Z̃m then x2 ∈ Z̃m+1 from the definition of Z̃m+1.

If x = x1 · · ·xl, where xi is a generator of Z̃m for all 1 ≤ i ≤ l, then making use of a decomposi-

tion of x analogous to that of (5.31), the previous sentence and the fact that [H, Z̃m] ⊂ Z̃m+1 by

Remark 5.23, it follows that y ∈ Z̃m+1. We conclude that Zm+1 ⊂ Z̃m+1, and hence Zm+1 = Z̃m+1.
To show that Zm+1 ⊂ Ym+1, let y ∈ Zm+1. We first consider the following two possibilities:

(i) y = x2, where x ∈ Zm = Ym by induction. If x = D2m−2

j for some j = 1, . . . , n, it follows from

the definition of Ym+1 that y = x2 = D2m−1

j ∈ Ym+1. If x = [xi, xj], where 1 ≤ i ≤ j < m,
i+ j = m, xi ∈ Yi and xj ∈ Yj, then:

y = [xi, xj]
2 =

[
xi, [xj, x

−1
i ]︸ ︷︷ ︸

∈[Yi,Yj ]⊂Ym

]
︸ ︷︷ ︸
∈[H,Ym]⊂Ym+1

xjx
−1
i

[
x−1
j , x2

i︸︷︷︸
∈Zi+1=Yi+1

]
︸ ︷︷ ︸
∈[Yj ,Yi+1]⊂Ym+1

xix
−1
j .

Note that to obtain x2
i ∈ Yi+1, we have i < m, so Yi = Zi and Yi+1 = Zi+1 by the induction

hypothesis. Therefore y ∈ Ym+1 since Ym+1 is normal in H by Remark 5.16.
(ii) y = [x1, . . . , xi] ∈ Γi(H), where 2 ≤ i ≤ m + 1, x1, . . . , xi ∈ H, and there exist 1 ≤ j1 <

. . . < jm+1−i ≤ i such that xj1 , . . . , xjm+1−i
∈ An. If j1 = 1, i.e. x1 ∈ An, then x1 ∈ Y2,

[x2, . . . , xi] ∈ Γi−1(H), and m − i = (m − 1) − (i − 1) elements of {x2, . . . , xi} belong to An,
so [x2, . . . , xi] ∈ Zm−1 = Ym−1 by induction. Hence:

y = [x1, [x2, . . . , xi]] ∈ [Y2, Ym−1] ⊂ Ym+1.

If j1 > 1 then [x2, . . . , xi] ∈ Γi−1(H) and m + 1 − i = m − (i − 1) elements of {x2, . . . , xi}
belong to An. Therefore [x2, . . . , xi] ∈ Zm = Ym by induction, and thus:

y = [x1, [x2, . . . , xi]] ∈ [H, Ym] ⊂ Ym+1.

For the general case, if y is a product of conjugates of the two types of elements described in (i)
and (ii) above, then y ∈ Ym+1 because Ym+1 is normal in H by Remark 5.16, and we conclude that
Zm+1 ⊂ Ym+1.

To complete the proof, it remains to see that Ym+1 ⊂ Z̃m+1. From the definition of Z̃m+1 given

in (5.45), it is clear that A2m−1

n ⊂ Z̃m+1. Applying the induction hypothesis, we have [Yi, Yj] =

[Z̃i, Z̃j] for all 1 ≤ i, j ≤ m for which i+ j = m+ 1, so it suffices to show that [Z̃i, Z̃j] ⊂ Z̃i+j. We

shall prove by induction on i that [Z̃i, Z̃j] ⊂ Z̃i+j for all 1 ≤ i ≤ m and j ≥ 1. The inclusion that

we require then follows as a special case. So let j ≥ 1. If i = 1 then [Z̃1, Z̃j] = [H, Z̃j] ⊂ Z̃j+1 by
Remark 5.23. So assume that 1 < i ≤ m, and suppose by induction that:

[Z̃k, Z̃j] ⊂ Z̃k+j for all j ≥ 1 and 1 ≤ k < i ≤ m. (5.47)

The aim is to prove that [Z̃i, Z̃j] ⊂ Z̃i+j. Let x ∈ Z̃i and y ∈ Z̃j. Then x ∈ Yi by the induction
hypothesis (5.46) and the fact that 1 < i ≤ m. Assume first that x is a generator of Yi, so that one
of the following conditions holds:



30 J. GUASCHI AND C. M. PEREIRO

(1) x ∈ [Yl, Yk], where 1 ≤ l ≤ k < i ≤ m and l + k = i. Then x ∈ [Z̃l, Z̃k] by the induction
hypothesis (5.46).

(2) x ∈ A2i−2

n ,

and let us prove that [x, y] ∈ Z̃i+j. In case (1), [27, Theorem 5.2] implies that:

[[Z̃l, Z̃k], Z̃j] = [Z̃j, [Z̃l, Z̃k]] ⊂ [Z̃l, [Z̃k, Z̃j]]. [Z̃k, [Z̃j, Z̃l]]. (5.48)

By the induction hypothesis (5.47) and the fact that k, l < m, we have:{
[Z̃l, [Z̃k, Z̃j]] ⊂ [Z̃l, Z̃k+j] ⊂ Z̃l+k+j = Z̃i+j

[Z̃k, [Z̃j, Z̃l]] = [Z̃k, [Z̃l, Z̃j]] ⊂ [Z̃k, Z̃l+j] ⊂ Z̃k+l+j = Z̃i+j,
(5.49)

and thus [x, y] ∈ Z̃i+j for all y ∈ Z̃j using (5.48) and (5.49). In case (2), let x = D2i−2

k , where
k ∈ {1, . . . , n}. We consider the following cases:

• i = 2. Then x ∈ An. Let us show by induction on j that [An, Zj] ⊂ Zj+2 for all j ≥ 1.
Suppose first that j = 1, let x ∈ An, and let y ∈ Z1 = H. Then [x, y] ∈ Γ2(H), and the
set {x, y} has one element, x, in An, therefore [x, y] ∈ X3 ⊂ Z3, and thus [An, Z1] ⊂ Z3.
Now suppose that j > 1 and that [An, Zj−1] ⊂ Zj+1 by induction. Let x ∈ An, and let
y ∈ Zj. First assume that y is a generator of Zj. If y = [y1, . . . , yl] ∈ Γl(H) belongs
to Xj then j − l elements of {y1, . . . , yl} belong to An, therefore [x, y] ∈ Γl+1(H), where
j− l+1 = (j+2)− (l+1) elements of {x, y1, . . . , yl} belong to An. So [x, y] ∈ Xj+2 ⊂ Zj+2.
If y = z2, where z ∈ Zj−1, then:

[x, y] = [x, z2] = [x, z]2 [[z, x], z] ,

by (3.2). Since [x, z] ∈ [An, Zj−1] ⊂ Zj+1 by induction, it follows that [x, z]2 ∈ Zj+2 from the
definition of Zj+2 in (5.45), and [[z, x], z] ∈ [Zj+1, H] ⊂ Zj+2 by Remark 5.23 and the fact

that Z̃l = Zl for all l ≥ 1. Therefore [x, y] ∈ Zj+2. Now if y = (α1y
δ1
1 α
−1
1 ) · · · (αsyδss α−1

s ),
where for all k = 1, . . . , s, yk is a generator of Zj, αk ∈ H and δk ∈ {1,−1}, then apply-
ing (5.29) and induction on s, we see that [x, y] may be written as a product of conjugates

of commutators of the form [x, yδkk ]. Then [x, y] ∈ Z̃j+2 using the above computations, the

normality of Zj+2 in H, and the fact Z̃l = Zl for all l ≥ 1 from the first part of the proof.
• i ≥ 3. Then:

[x, y] = [D2i−2

k , y] =
[
D2i−3

k , [D2i−3

k , y]
]
[D2i−3

k , y]2

by (3.2). Now [D2i−3

k , y] ∈ [Z̃i−1, Z̃j] ⊂ Z̃i−1+j using (5.47), and we deduce from Remark 5.23

that [D2i−3

k , [D2i−3

k , y]] ∈ [H, Z̃i−1+j] ⊂ Z̃i+j. Since [D2i−3

k , y] ∈ Z̃i−1+j = Zi−1+j, we have

[D2i−3

k , y]2 ∈ Zi+j = Z̃i+j, so [x, y] ∈ Z̃i+j.
If now x ∈ Yi is a product of conjugates of generators of Yi, then [x, y] ∈ Z̃i+j using the above

computations, (5.29), and the normality of Z̃i+j. This shows that [Z̃i, Z̃j] = [Yi, Z̃j] ⊂ Z̃i+j as

claimed, and so Ym+1 ⊂ Z̃m+1 as required. �

Theorem 5.25. For all n,m ≥ 1, we have Γm(Pn+1(K)) = Zm o Γm(Pn(K)).

Proof. If n = 1, 2 then Pn(K) is residually nilpotent by Theorem 5.4 and (5.10). Suppose by
induction that Pn(K) is residually nilpotent for some n ≥ 2. Using the Fadell-Neuwirth split short
exact sequence (5.1), the result follows by induction, and by applying Theorem 1.1, Lemmas 5.21
and 5.24. �

Proof of Theorem 1.3(1). If n = 1 (resp. n = 2), the result is a consequence of (5.10) (resp.
Theorem 5.4). If n ≥ 3, the result follows by induction on n, Proposition 5.22 and Theorem 5.25. �
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5.5. The case of the braid group Bn(K). In this section, we prove Theorem 1.3(2). We start
by giving two propositions in the cases where Bn(K) is not residually nilpotent or is not residually
soluble.

Proposition 5.26. If n ≥ 3 then Bn(K) is not residually nilpotent. Further, for all i ≥ 3,
Γ2(Bn(K)) = Γi(Bn(K)) =

〈〈
σ−1

2 σ1

〉〉
Bn(K)

.

Proof. In this proof, the relation numbers are those of Theorem 2.2. Let n ≥ 3, and consider the
following short exact sequence:

1 −→ Γ2(Bn(K))

Γ3(Bn(K))
−→ Bn(K)

Γ3(Bn(K))

p∗−→ Bn(K)

Γ2(Bn(K))
−→ 1, (5.50)

where p∗ is the canonical projection. Using relations (1) and (2), and arguing as in [16, p. 680]
or [5, Proposition 3], it follows that the Γ3(Bn(K))-cosets of σ1, . . . , σn−1 in Bn(K)/Γ3(Bn(K)) are
all identified to a single element, which we denote by σ. Since n ≥ 3, it follows from relations (3)
and (4) that the Γ3(Bn(K))-cosets of a and b commute with σ. By relation (7) and (5.50), σ is
of order 2, by relation (5), the Γ3(Bn(K))-cosets of a and b commute, and from relation (8), the
Γ3(Bn(K))-coset of a is of order 2 in Bn(K)/Γ3(Bn(K)). By Remark 2.3, σ and the Γ2(Bn(K))-cosets
of a and b are non trivial in Bn(K)/Γ2(Bn(K)), therefore σ and the Γ3(Bn(K))-cosets of a and b are
also non trivial in Bn(K)/Γ2(Bn(K)) and satisfy the same relations in Bn(K)/Γ3(Bn(K)) as their
images in Bn(K)/Γ2(Bn(K)) under p∗. Hence p∗ is a isomorphism, and Γ2(Bn(K)) = Γ3(Bn(K)),
so Γ2(Bn(K)) = Γi(Bn(K)) for all i ≥ 3. Since Γ2(Bn(K)) is non trivial, we see that Bn(K) is not
residually nilpotent.

It remains to show that Γ2(Bn(K)) =
〈〈
σ−1

2 σ1

〉〉
Bn(K)

. From relations (1) and (2), for all i =

1, . . . , n−2, we have [σi, σi+1] = σiσi+1σ
−1
i σ−1

i+1 = σ−1
i+1σi, in particular,

〈〈
σ−1

2 σ1

〉〉
Bn(K)

⊂ Γ2(Bn(K)).

To prove the other inclusion, for all i = 2, . . . , n− 2, note that:

[σi, σi+1] = σ−1
i+1σi = σ−1

i+1 σi(σi−1σi︸ ︷︷ ︸
(1)

σ−1
i σ−1

i−1) = σ−1
i+1(σi−1︸ ︷︷ ︸

(2)

σiσi−1)σ−1
i σ−1

i−1

= (σi−1 σ
−1
i+1)σi︸ ︷︷ ︸

(1)

σi−1σ
−1
i σ−1

i−1 = σi−1(σiσi+1σ
−1
i σ−1

i+1)σi−1︸ ︷︷ ︸
(2)

σ−1
i σ−1

i−1

= σi−1σiσi+1(σ−1
i σi−1)σ−1

i+1σ
−1
i σ−1

i−1.

It follows by induction on i that [σi, σi+1] ∈
〈〈
σ−1

2 σ1

〉〉
Bn(K)

for all i = 1, . . . , n− 2. Further,

[a, σ1] = aσ1(σ−1
2 σ2)a−1︸ ︷︷ ︸

(3)

σ−1
1 = a(σ2σ

−1
1 )−1a−1. (σ2σ

−1
1 ) ∈

〈〈
σ−1

2 σ1

〉〉
Bn(K)

, (5.51)

and similarly, [b, σ1] ∈
〈〈
σ−1

2 σ1

〉〉
Bn(K)

using relation (4). To see that [b, a] ∈
〈〈
σ−1

2 σ1

〉〉
Bn(K)

, first

note that:

σ2
1 = σ1b

−1σ1b
−1σ−1

1 bσ−1
1 b = (σ1b

−1[σ1, b
−1]bσ−1

1 )[σ1, b
−1] ∈

〈〈
σ−1

2 σ1

〉〉
Bn(K)

(5.52)

using relation (7), and:

bab−1a−1 = ba(σ−1
1 σ1)b−1(σ1︸ ︷︷ ︸

(5)

σ−1
1 )a−1 = baσ−1

1 (a−1σ−1
1 b−1σ1a)σ−1

1 a−1

= b[a, σ−1
1 ]σ−2

1 b−1[σ1, a] ∈
〈〈
σ−1

2 σ1

〉〉
Bn(K)

,

by (5.51) and (5.52). Since the result is valid for the generators of Bn(K), the result follows
for an arbitrary element of Γ2(Bn(K)) using the formula given by (5.29) and by the normality
of
〈〈
σ−1

2 σ1

〉〉
Bn(K)

. We conclude that Γ2(Bn(K)) ⊂
〈〈
σ−1

2 σ1

〉〉
Bn(K)

, and hence that Γ2(Bn(K)) =〈〈
σ−1

2 σ1

〉〉
Bn(K)

. �
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Proposition 5.27. If n ≥ 5 then Bn(K) is not residually soluble. Further, (Bn(K))(1) = (Bn(K))(i)

for all i ≥ 2.

Proof. Let n ≥ 5. Once more, the relation numbers will refer to those of Theorem 2.2. As in the
case of the torus (Proposition 4.3), first consider the following short exact sequence:

1 −→ (Bn(K))(1)

(Bn(K))(2)

i−→ Bn(K)

(Bn(K))(2)

p∗−→ Bn(K)Ab −→ 1,

where p∗ is the canonical projection. Using relations (1) and (2), for all i = 1, . . . , n − 1, the
σi belong to the same (Bn(K))(2)-coset, denoted by σ, in Bn(K)/(Bn(K))(2) (the hypothesis that
n ≥ 5 is used here, see [15, Theorem 1.4, p. 3389]). By Remark 2.3, σ and the (Bn(K)(2)-cosets
of a and b are non trivial. From relations (3) and (4), the (Bn(K))(2)-cosets of a and b commute
with σ. Relation (7) implies that σ is of order 2, and so from relation (5), the (Bn(K))(2)-coset
of a commutes with that of b. By relation (8), the (Bn(K))(2)-coset of a is of order 2. So p∗ is a
isomorphism, and (Bn(K))(1) = (Bn(K))(2). The second part then follows. �

Proof of Theorem 1.3(2). By Proposition 5.26 (resp. Proposition 5.27), if n ≥ 3 (resp. n ≥ 5),
Bn(K) is not residually nilpotent (resp. not residually soluble). Conversely, using Theorem 2.5,
the short exact sequence (1.1), and the fact that P2(K) is residually 2-finite by Theorem 5.13,
B2(K) is residually 2-finite. In particular, B2(K) is residually nilpotent. By (5.10), B1(K) = π1(K)
is residually nilpotent. The fact that Pn(K) is residually soluble for all n ≥ 1 by Theorem 5.25
implies that Bn(K) is residually soluble for all n ≤ 4 using Theorem 2.5. �

6. The case of non-orientable surfaces of higher genus

In this short section, we prove Theorem 1.4, by generalising Propositions 5.26 and 5.27 to non-
orientable surfaces of higher genus.

Theorem 6.1. Let M be a compact, connected non-orientable surface without boundary and of
genus g ≥ 3. Then Bn(M) is not residually nilpotent if n ≥ 3, and is not residually soluble if
n ≥ 5.

Proof. The relation numbers will refer to those of Theorem 2.4. Using Theorem 2.4 it is easy to
see that

Bn(M)Ab =
〈
σ, ai, i = 1, . . . , g : a2

1 · · · a2
g = σ2(n−1), [σ, ai] = [ai, aj] = 1, i, j = 1, . . . , n

〉
,

where σ denotes the Γ2(Bn(M))-coset of σi for all i = 1, . . . , n−1. As in the proof of Proposition 5.26
(resp. Proposition 5.27), using relations (1) and (2), one may show that for all i = 1, . . . , n − 1,
the σi belong to the same Γ3(Bn(M))-coset (resp. (Bn(M))(2)-coset), which we also denote by σ,
in Bn(M)/Γ3(Bn(M)) (resp. in Bn(M)/(Bn(M))(2)). If n ≥ 3 (resp. n ≥ 5), by relation (3),
the Γ3(Bn(M))-coset (resp. (Bn(M))(2)-coset) of ar commutes with σ for all 1 ≤ r ≤ g. By
relation (5), the Γ3(Bn(M))-coset (resp. (Bn(M))(2)-coset) of ar commutes with that of as for all
1 ≤ r, s ≤ g. By (6), a2

1 · · · a2
g = σ2(n−1), and relation (4) does not give any new information. Thus

Bn(M)/Γ3(Bn(M)) (resp. Bn(M)/(Bn(M))(2)) is isomorphic to Bn(M)Ab. Hence Bn(M) is not
residually nilpotent if n ≥ 3 (resp. is not residually soluble if n ≥ 5). �

Proof of Theorem 1.4. If M = K, the result follows from Theorem 1.3(2), and if M is a compact
surface without boundary of genus g ≥ 3, the conclusion follows from [4] and from Theorem 6.1.
If M = RP 2, by [18], Bn(RP 2) is residually nilpotent if n ≤ 2, and if n 6= 4, Bn(RP 2) is residually
soluble if n < 4. The result in the case n = 4 may be obtained by using Theorem 2.5 and the
following Fadell-Neuwirth short exact sequence:

1 −→ Pm(RP 2 \ {x1, . . . , xn}) −→ Pm+n(RP 2) −→ Pn(RP 2) −→ 1,

where n ≥ 2. Note that if n = 2, P2(RP 2) is the quaternion group of order 8 [34], which is 2-finite,
and Pm(RP 2 \ {x1, . . . , xn}) is residually 2-finite by [4]. Therefore Pm+2(RP 2) is residually 2-finite
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for all m ≥ 1, in particular P4(RP 2) is residually soluble. Applying Theorem 2.5 to the short exact
sequence (1.1), we see that B4(RP 2) is residually soluble. �

Appendix

Let M be the Möbius band, and let n ≥ 1. The braid groups of M are those of RP 2 with a
single point removed [17, proof of Theorem 2(a)], and so Pn(M) is the group Γn,1(RP 2) of [19,
Proposition 11]. We use the notation and results of that proposition in what follows. In particular,
Pn(M) is generated by the set {Ai,j, ρj | 1 ≤ i < j and 2 ≤ j ≤ n+ 1}.

Proposition A1. Let n ≥ 1. Then Z(Pn(M)) = Z(Bn(M)) is infinite cyclic, generated by ρ2 if
n = 1, and by the full twist ∆2

n+1 if n ≥ 2.

Proof. If n = 1 then P1(M) = B1(M) is infinite cyclic, generated by ρ2, and the result follows
in this case. So suppose that n ≥ 2. Using the short exact sequence (1.1), we see that Bn(M)
is generated by {σ2, . . . , σn, ρ2, . . . , ρn+1}. The braid ∆2

n+1 generates the centre of Bn+1, thus σi
commutes with ∆2

n+1 for all i = 2, . . . , n. Further, using [19, Proposition 11, relation (V)], ∆2
n+1

may be written in the following form:

∆2
n+1 = (A1,2)(A1,3A2,3) · · · (A1,nA2,n · · ·An−1,n)(A1,n+1A2,n+1 · · ·An,n+1)

= (A1,2)(A1,3A2,3) · · · (A1,nA2,n · · ·An−1,n)ρ−2
n+1. (A1)

Since ρn+1 commutes with Ai,j for all 1 ≤ i < j < n+ 1 [19, Proposition 11, relation (II)], it follows
that ρn+1 commutes with ∆2

n+1. Now the relation ρi+1 = σ−1
i ρiσ

−1
i of [34, p. 83] for Bn+1(RP 2)

also holds in Bn(M) for all i = 2, . . . , n, so ρi = σi · · ·σnρn+1σn · · ·σi, from which we conclude
that ρi commutes with ∆2

n+1. Thus ∆2
n+1 commutes with all of the elements of a generating set of

Bn(M), hence
〈
∆2
n+1

〉
⊂ Z(Bn(M)), and

〈
∆2
n+1

〉
⊂ Z(Pn(M)) since ∆2

n+1 ∈ Pn(M). To prove the
converse, we consider the following two cases:

(a) n = 2. Let p : P2(M) −→ P1(M) denote the surjective homomorphism given geometrically by
forgetting the second string. The kernel of p is a free group of rank 2 for which (A2,3, ρ3) is a
basis, and P1(M) = 〈ρ2〉 is infinite cyclic. Let Q = 〈ρ2

2〉 be the index 2 subgroup of P1(M), and
let G = p−1(Q) be the index 2 subgroup of P2(M). Then we have the following commutative
diagram of short exact sequences:

1 1

1 Ker(p) G Q 1

1 Ker(p) P2(M) P1(M) 1,

Z2 Z2

1 1

p
∣∣∣
G

p

q′ q

(A2)

where q : P1(M) −→ Z2 is defined by q(ρ2) = 1, and q′ : P2(M) −→ Z2 is given by q′ =
q ◦ p. From (A1), we have ∆2

3 = A1,2ρ
−2
3 , and since A1,2 = ρ−1

2 A2,3ρ
−1
2 by [19, Proposition 11,

relation (V)], we see that:

∆2
3 = ρ−1

2 A2,3ρ
−1
2 ρ−2

3 = ρ−2
2 . ρ2A2,3ρ

−1
2 ρ−2

3︸ ︷︷ ︸
∈Ker(p)

(A3)
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using exactness of (A2). So the restriction p
∣∣
G

: G −→ Q admits a section given by sending ρ2
2

to ∆−2
3 , and from this and the fact that ∆2

3 ∈ Z(P2(M)), the upper row of (A2) splits as a direct
product. In particular, G is the internal direct product of Ker(p) and 〈∆2

3〉, and Z(G) = 〈∆2
3〉.

Now P2(M) (resp. G) is an index 2 subgroup of B2(M) (resp. of P2(M)), and a transversal is
given by {1, σ2} (resp. by {1, ρ2}). So every element z of B2(M) may be written as z = aρi2σ

j
2,

where a ∈ G and i, j ∈ {0, 1} are unique. We shall refer to this expression as the normal form
of z. Let z ∈ Z(B2(M)), and assume first that z /∈ P2(M), so j = 1. Consider the basis (u, v)
of Ker(p), where u = A2,3ρ3 and v = ρ3. By [19, Proposition 11, relations (III) and (IV)], we
have:

ρ2uρ
−1
2 = ρ−1

3 A−1
2,3ρ3. A2,3ρ3 = u−1vu and ρ2vρ

−1
2 = u. (A4)

Hence the action by conjugation of ρ2 on Ker(p) is given by composing the involution that
exchanges u and v with conjugation by u−1. The relation ρ3 = σ−1

2 ρ2σ
−1
2 implies that:

σ2vσ
−1
2 = σ2ρ3σ

−1
2 = ρ2σ

−2
2 = ρ2A

−1
2,3 = ρ2vu

−1 = ρ2vu
−1ρ−1

2 . ρ2 = v−1uρ2

by (A4). Since z ∈ Z(B2(M)), z and v commute, so:

aρi2σ2 = z = vzv−1 = vaρi2σ2v
−1σ−1

2 . σ2 = vaρi2ρ
−1
2 u−1vσ2. (A5)

If i = 1 then the left- and right-hand sides of (A5) are in normal form, and they clearly differ.
If i = 0 then using the fact that ρ2

2 = u−1v−1∆−2
3 ∈ G by (A3) and (A4), equation (A5) may

be written as:

aσ2 = vaρ−1
2 u−1vσ2 = vaρ−2

2 . ρ2u
−1vρ−1

2 . ρ2σ2 = va∆2
3u

2ρ2σ2.

Again the left- and right-hand sides are in normal form, and they differ also. In both cases,
this contradicts the fact that z ∈ Z(B2(M)), and so we conclude that j = 0. Hence z ∈ P2(M),
and 〈∆2

3〉 ⊂ Z(B2(M)) ⊂ Z(P2(M)). It remains to show that z ∈ 〈∆2
3〉. Suppose that i = 1.

Since z ∈ Z(P2(M)), z commutes with u, so:

aρ2 = z = uzu−1 = uaρ2u
−1 = uaρ2u

−1ρ−1
2 . ρ2 = uau−1v−1uρ2

by (A4). Both sides are in normal form, and thus a = uau−1v−1u in Ker(p), which gives rise
to a contradiction under Abelianisation in this free group. Hence i = 0, and thus z ∈ G.
So z ∈ Z(G), and therefore z ∈ 〈∆2

3〉. We conclude that 〈∆2
3〉 = Z(B2(M)) = Z(P2(M)) as

required.
(b) n ≥ 3. Then Z(Sn) = {Id}, and since the homomorphism Bn(M) −→ Sn of (1.1) is surjective,

it follows that
〈
∆2
n+1

〉
⊂ Z(Bn(M)) ⊂ Z(Pn(M)). The proof of the fact that Z(Pn(M)) ⊂〈

∆2
n+1

〉
is analogous to that of the inclusion Z(Pn(K)) ⊂ Zn given in the second paragraph

of Proposition 5.2, where the kernel of the Fadell-Neuwirth short exact sequence involving the
pure braid groups of M is a free group with trivial centre. �
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[16] D. L. Gonçalves and J. Guaschi, The lower central and derived series of the braid groups of the finitely-punctured

sphere, J. Knot Th. Ramif. 18 (2009), 651–704.
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14000 Caen, France.

Email address: john.guaschi@unicaen.fr

Universidade Federal do Esṕırito Santo, UFES, Departamento de Matemática, 29075-910, Vitória,
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