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LOWER CENTRAL AND DERIVED SERIES OF SEMI-DIRECT PRODUCTS,
AND APPLICATIONS TO SURFACE BRAID GROUPS

JOHN GUASCHI AND CAROLINA DE MIRANDA E PEREIRO

ABSTRACT. For an arbitrary semi-direct product, we give a general description of its lower central
series and an estimation of its derived series. In the second part of the paper, we study these series
for the full braid group B, (M) and pure braid group P, (M) of a compact surface M, orientable
or non-orientable, the aim being to determine the values of n for which B, (M) and P,(M) are
residually nilpotent or residually soluble. We first solve this problem in the case where M is the
2-torus. We then use the results of the first part of the paper to calculate explicitly the lower
central series of P,(K), where K is the Klein bottle. Finally, if M is a non-orientable, compact
surface without boundary, we determine the values of n for which B, (M) is residually nilpotent or
residually soluble in the cases that were not already known in the literature.

1. INTRODUCTION

Let G be a group. If g,¢' € G then [g, ¢'] = g¢’g *¢'~! denotes their commutator, and if H and
K are subgroups of G, then the commutator subgroup of H and K, denoted by [H, K], is defined by
[H,K] = ([h,k] : h € H and k € K), the subgroup of G generated by the commutators of H and
K. The lower central series {I';(G)},»; of G is defined inductively by I'1(G) = G, and for i > 1,
[i41(G) = [04(G), G], and the derived series {G"} _ ~of G is defined inductively by G = G, and
for i > 0, G*Y =[G, GY]. The quotient G/I'y(G) is the Abelianisation of G that we denote
by GAP. Following P. Hall, for any group-theoretic property P, a group G is said to be residually
P if for any (non-trivial) element x € G, there exists a group H that possesses property P and a
surjective homomorphism ¢ : G — H such that ¢(x) # 1 (see also [28]). It is well known that
a group G is residually nilpotent (resp. residually soluble) if and only if ()5, [';/(G) = {1} (resp.
Niso GO = {1}). zz

If p is a prime number, the lower F,-linear central filtration {+? (G)},~, of G is defined inductively
by W(G) = G, and for i > 1,7, ,(G) = ((W(G),G], 2P : x € 47(G)) [30]. If the group G is finitely
generated, then G is residually p-finite if and only if (,», 77 (G) = {1} [30, Proposition 2.3(2)]. For
any group G, G C I';,1(G) C +? +1(G), so if G is residually p-finite then it is residually nilpotent,
which in turn implies that it is residually soluble. The combinatorial study of the lower central
and derived series of a group is an interesting and important problem, see [11, 13, 22, 25, 26, 27]
for example.

The first part of this paper is devoted to the analysis of the lower central and derived series of
arbitrary semi-direct products. Our first main result describes the lower central series of such a
group, and gives some information about its derived series.

Theorem 1.1. Let G and H be groups, and let ¢: G — Aut(H) be an action of G on H. We
define recursively the following subgroups of H: Ly =V, = H, and if n > 2:

K, = <cp(g)(h).h_1 g€l 1(G), he H>, H, = <g0(g)(h).h_1 cg€G, he Ln_1> ,

jj[n = <()0(g)(h)hil 9 € G, h e Vn71> ) Ln = <Kn7 Hna [H, Ln71]> )

V, = <Hn, [H, Vn,1]>.
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Then ¢ induces an action, which we also denote by @, of T,,(G) on L, (resp. of G on Vi ),
and for all n € N, we have:

(1) T, (H %, G) = L, x, ', (G).

(2) (H x, G)"=Y CV, x, G"=Y,

For the case of the commutator subgroup, namely n = 2, part (1) was obtained in [15, Proposi-
tion 3.3].

In the rest of this paper, we will be interested in computing the lower central and derived
series of the full and pure braid groups of compact surfaces without boundary, and we will apply
Theorem 1.1 to part of this calculation. We first recall some facts about these braid groups and
their lower central and derived series. The braid groups of the disc, also called the Artin braid
groups, were introduced by E. Artin [1]. If n > 1, the n-string Artin braid group, denoted by B,,

is generated by elements o1,...,0,_1 that are subject to the Artin relations:
0;0;110; = 0,410,041 for all 1 S 1 S n—2
0;0; = 0,0; ifli—j|>2and 1 <4, <n-—1.

The notion of braid group was generalised to surfaces by Fox and Neuwirth using configuration
spaces as follows [12]. Let M be a compact, connected surface, and let n € N. The n* configuration
space of M, denoted by F, (M), is defined by:

F,(M)={(z1,...,2y) tx; € M, and o; # z; if i #£ 5,4, =1,...,n}.

The n-string pure braid group P,(M) of M is defined by P,(M) = m(F,(M)). The symmetric
group S, on n letters acts freely on F, (M) by permuting coordinates, and the n-string braid group
B, (M) of M is defined by B, (M) = m(F,(M)/S,). This gives rise to the following short exact
sequence:

l1— P, (M) — B,(M) — S, — 1. (1.1)

If m > 1, the projection p: F, (M) — F,(M) defined by p(x1, ..., Zn, ..., Tpim) = (1, ..., Ty)
induces a homomorphism p.: P, (M) — P,(M). Geometrically, p, is the homomorphism that
‘forgets’ the last m strings. If M is without boundary, Fadell and Neuwirth showed that p is a
locally-trivial fibration [9, Theorem 1], with fibre F,,(M \ {x1,...,2,}) over the point (z1,...,x,),
which we consider to be a subspace of the total space via the map i: F,,(M \ {z1,...,2,}) — Fhipm(M)
defined by i((y1,.--,Ym)) = (T1,. ., Zn, Y1, .-, Ym). Applying the associated long exact sequence
in homotopy to this fibration, we obtain the Fadell-Neuwirth short exact sequence of pure braid
groups:

1 — Po(M\{xy,...,2,}) = Pyi(M) 25 P (M) — 1, (1.2)
where n > 3 if M is the sphere S? [8, 10], n > 2 if M is the projective plane RP? [10], and
n > 1 otherwise [9], and i, is the homomorphism induced by the map i. This sequence has been
widely studied. If M is the torus T or the Klein bottle K, the existence of a non-vanishing vector
field on M allows one to construct a section for p [9, Theorem 5|. This implies that the short
exact sequence (1.2) splits for all n,m € N, and that P,(M) may be decomposed as an iterated
semi-direct product (see Proposition 5.1 for an explicit section for p, in the case M = K).

We then use the above results to study the derived series of the braid groups of the torus and
the lower central series and derived series of non-orientable surfaces. Theorem 1.1 will be used
in the computation of the lower central series of P,(K), but we believe that it is of independent
interest, and that it may be applicable to other groups. We first recall some facts about these
series for surface braid groups. The lower central series of the Artin braid groups were analysed by
Gorin and Lin who gave a presentation of the commutator subgroup I's(B,,) of B,, for n > 3, and
who showed that (B,)") = (B,)® for all n > 5, which implies that (B,)" is perfect [21]. As a
consequence, I'y(B,,) = I's(B,,) for all n > 3, so B, is not residually nilpotent. The lower central
series of the pure braid group P, was studied by Falk and Randell [11] and by Kohno [25], who
proved independently that P, is residually nilpotent for all n > 1.
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The braid groups of orientable surfaces were studied by Bellingeri, Gervais and Guaschi [5]. If
M, , is a compact, connected, orientable surface of genus g > 1 with m > 0 boundary components,
then B, (M, ,) is not residually nilpotent if n > 3, and Bs(T) is residually nilpotent. In the case
of the pure braid groups, P, (M, ) is residually torsion-free nilpotent for all n > 1 if m > 1, or if
g =1 and m = 0 (the torus). If m = 0 and g > 1, Bardakov and Bellingeri proved that P, (M, ,)
is residually torsion-free nilpotent for all n > 1, and the braid group By(M, ;) is residually 2-finite,
in particular, it is residually nilpotent [2]. Gongalves and Guaschi studied the lower central and
derived series of the braid groups of the sphere S* and the projective plane RP? [15, 18]. For the
sphere, B, (S?) is residually nilpotent if and only if n < 2, and residually soluble if and only if
n < 4. In the case of the projective plane, B, (RP?) is residually nilpotent if and only if n < 2, and
if n # 4, B,(RP?) is residually soluble if and only if n < 4. More recently, if M is a non-orientable
surface different from RP?, Bellingeri and Gervais showed that P, (M) is residually 2-finite, and so
is residually nilpotent [4].

In the second part of this paper, we study the derived series of the torus and the lower central
series and derived series of non-orientable surfaces. Our main results in this direction are as follows.

Theorem 1.2. The group B,(T) is residually soluble if and only if n < 4.

For non-orientable surfaces, we first analyse the case of the Klein bottle. Using Theorem 1.1,
we compute explicitly T',,(P(K)) and 72(P,(K)) in Theorems 5.4 and 5.13 respectively. From this
it will follow that P»(K) is residually nilpotent and residually 2-finite. In Theorem 5.25, we show
that P,(K) is residually nilpotent for all n € N. This will allow us to determine the values of n for
which B, (K) is residually nilpotent or residually soluble as follows.

Theorem 1.3. Let n > 1. Then:

(1) P,(K) is residually nilpotent for all n > 1.
(2) B, (K) is residually nilpotent if and only if n < 2, and residually soluble if and only if n < 4.

For a non-orientable surface M without boundary of higher genus, we may decide whether B, (M)
is residually nilpotent or residually soluble using results of [4, 18].

Theorem 1.4. Let n,g € N, and let M be a compact non-orientable surface of genus g without
boundary. Then B, (M) is residually nilpotent if and only if n < 2, and is residually soluble if and
only if n < 4.

Although Theorem 1.4 contains Theorem 1.3(2) as a special case, we state the latter separately
because the braid groups of the Klein bottle will be the focus of most of the second part of the
paper.

The manuscript is organised as follows. In Section 2, we give presentations of the braid groups
used in this paper, as well as the statement of Theorem 2.5 due to Gruenberg that will be required
in the proofs of some of our results. Theorem 1.1 is proved in Section 3. In Section 4, we study
the case of the torus and we prove Theorem 1.2. In Section 5, our focus is on the braid groups of
the Klein bottle, and we use Theorem 1.1 in the proof of Theorem 1.3. Theorem 1.4 is proved in
Section 6. If M is a compact surface different from K and the M6bius band, the centre Z(B,,(M))
of B,(M) is known [6, 7, 14, 29, 31, 34]. We determine Z(B,(K)) in Proposition 5.2, and for
the sake of completeness, in Proposition Al of the Appendix, we compute the centre of the braid
groups of the Mobius band.

Acknowledgements. The authors would like to thank P. Bellingeri, S. Gervais, D. Gongalves, L. Paris
and D. Vendruscolo for stimulating conversations. C. M. Pereiro was supported by project grant
n° 2010/18930-6 and 2012/01740-5 from FAPESP. During the writing of this paper, J. Guaschi was
partially supported by the CNRS/FAPESP PRC project n® 275209.
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2. GENERALITIES

In this section, we give the presentations of the braid and pure braid groups that will be used in
this paper. If M =T or K, we will make use of the following presentations of P, (M) and B, (M).

Theorem 2.1 ([32]). Let n > 1, and let M be the torus T or the Klein bottle K. The following
constitutes a presentation of the pure braid group P,(M) of M:
generators: {a;, b;,i=1,...,.n}U{C;;, 1 <i<j<n}.
relations:

(1) aia; = aja;, (1 <i<j< n)

(2) a; 1baz—bajC 'Ciy1ja; : L<i<j<n)

(3) a-1C, a-—{ C’]k, (1<z<j<k<n) or(1<j<k<i<n)

v 3k Cz-l—l kCZ kakl(]] kC kICH_l ks (1 S] <i < k < n)
o0 O = Cik, (1<z<l<]<k:<n) or(1<j<i<l<k<n)

(4) il Ik CZ kCl-{-l kClkCszJ kCl,k ClJrLk, (1 <1< j <l<k< n)

5) [T Z+1CICZ+1j—aszUa_1b_ (1<i<n), if M=T
[T7-i1 CiyCiih ;= 0iCia; 'b; ta —1 (1<i<n), if M=K
(6) b;jb; = b;b;, (1<2<]§n), if M =T
bibi = 0ibiCiyCiyy (LS i< j <), of M=K
) b; ! ajb a]b (J”(Jlfl bl (1<i<j<n), ifM=T
bagh; = a;by(Coy O Y6t (1<i<j<n), if M=K
_ Cir, (I1<i<j<k<n)or(1<j<k<i<n) .
b: 10_ bzz 7 - M=T
(8) L {Ci+1,kci,lclcj7kbkclkc+lkbk17 (I1<j<i<k<n) J
O b Cik, 1<i<j<k<n)or(1<j<k<i<n) FM = K
TR T Gk G Ok (Cin Gl )7, (1< <i<k<m) Y00 T

Theorem 2.2 ([32]). Let n > 1, and let M be the torus T or the Klein bottle K. The following
constitutes a presentation of the braid group B,(M) of M:
generators: a,b,o1,...,0, 1.
relations:
(1) 00410, = 04100415
(2) 0;0; = 0;0j, Zf |'l —]I > 2,’
(3) ac; = oja, if j > 2;
(4) baj—aj ij>2
(5) b o1a = 0'16L0'1b a1,
(6) a(ora01) = (01a07)a;
by boy ') = (o7 "oy )b, if M =T,
(7) ~1 1 1 ,
b(oy boy) = (o7 boy )b, if M =K,

bab~ta~! if M =T,
(8) 0102~ Un—ZO%—lo-n—2 cr 00201 = { ba‘lb_lcfl ZJ{M — K.

We consider the torus and the Klein bottle to be a square whose edges are identified as indicated
in Figure 1. Geometric representatives of the generators of P,(T) and P,(K) given in Theorem 2.1
are illustrated in Figure 2, and may be interpreted as follows. For 1 < i < n, the i*® string is the
only non-trivial string of the braid a; (resp. of b;), and it passes through the edge a (resp. 3). If
1 <i < j < mn, the j% string is the only non-trivial string of the braid C;;, and it encircles all
of the basepoints between the i®® and j™ points. If i = j, it will be convenient to define C;; to
be the trivial braid. The figures represent the projection of the braids onto M, so the constant
paths in each figure correspond to vertical strings of the braid. =~ The generators of B,(T) and
B,(K) given in Theorem 2.2 may be taken to be the standard Artin generators oy,...,0,_1 of
B,, as shown in Figure 3, and @ = a; and b = b;. Various presentations of the braid and pure



LOWER CENTRAL AND DERIVED SERIES OF SEMI-DIRECT PRODUCTS 5
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M=T M=K

FIGURE 1. Squares representing T and K

bi

FIGURE 2. The generators of P,(T) and P,(K)
1 1—1 4 i+1 ¢+2 n
i

FiGURE 3. The braid o;

braid groups of the torus and the Klein bottle may be found in the literature [3, 6, 20, 33], but
we choose to work with those of Theorems 2.1 and 2.2 because they highlight the similarities and
differences between the braid groups of T and K. For example, the word C’m-leL ; that appears in
our presentation of P,(T) is often replaced by its inverse in P, (K). To prove Theorem 2.1 (resp.
Theorem 2.2), one may use the Fadell-Neuwirth short exact sequence (1.2) (resp. the short exact

sequence (1.1)), induction on n, and the following standard method for obtaining a presentation
of a group extension [24, Proposition 1, p. 139]. Given a short exact sequence 1 — A s
B 25 C — 1 and presentations C' = (X | R) and A = (Y| S), then B = <X,§7|§, E,f>, where
Y ={j=i(y) :yeY}, X ={7 : zc X} is a transversal for Im(i) in B such that p(Z) = = for
all z € X, S = {5 : s € S} is the set of words in Y obtained from S by replacing each letter y by
y. For each r € R, let 7 is the word in X obtained from r by replacing each letter z by z. Then

7 € Ker(p), so it may be written as a word, v, say, in the elements of Y. Since Im(i) is normal
in B, forallz € X and y € Y, 2 'yx € Ker(p), so may be written as a word, w,, say, in the
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elements of Y. Then R = {7v;! : r € R} and T = {z7'y 7w, , : € X,y € Y}. The details of
the proofs of Theorems 2.1 and 2.2 are left to the reader.

Remark 2.3. Using Theorem 2.2, it is straightforward to check that:

By(T)"" 2 Z&Z& Ly = (@,b,o : [a,b] = [a,0] = [b,0] =0® =1)
B,(K)*" ¥ Z & Zy ® Zy = (a,b,0 : [a,b] = [a,0] = b,o] = 0> =a° = 1),
for all n > 2, where @ (resp. b, o) represents the I'p-coset of a (resp. of b, o).

For compact non-orientable surfaces of genus g > 3 without boundary, we shall make use of the
following presentation of their braid groups due to Bellingeri.

Theorem 2.4 ([3]). Let N, be a compact, connected non-orientable surface of genus g > 3 without
boundary. The braid group B,(N,) admits the following presentation:
generators: 01,...,0,_1,01,...,0q4.
relations:
(1) 0,0i110; = 0410:041.
(2) 0;0; = 0,04, Zf|’l —jl Z 2.
(3) a,0; = oia, (1 <r <g;i#1).
(4) o7tarorta, = apo7taroy (1 <r < g).
(5) o7 asora, = a0y a0 (1< s <1 <g).

2 2 _ 2
(6) al...ag_0'10'2...0'71_1...0'20'1.

To prove some of our results, we will also require the following theorem of Gruenberg.

Theorem 2.5 ([22]). Let P denote one of the following classes:

(1) the class of soluble groups.
(2) the class of finite groups.
(3) the class of p-finite groups for a given prime number p.

Let K and H be groups, and suppose that K is P and that H is residually P. Then, for any group
extension 1 — H — G — K — 1, the group G s residually P.

3. THE LOWER CENTRAL AND DERIVED SERIES OF SEMI-DIRECT PRODUCTS

The main aim of this section is to establish the general decomposition of the lower central series
and an estimate of the derived series of an arbitrary semi-direct product given in the statement of
Theorem 1.1, which will be used in later computations of the lower central and derived series of
P,(K). We first prove two lemmas that will be used in what follows. If z1,...,z, are elements of
a group G, we set:

[‘rhx% s axn—hxn] = |:I17 [I% R [xn—hxn]]]?
and if X is a subset of G then we denote the normal closure of X in G by (X)),.

Lemma 3.1. Let G be a group, and let x,y € G. For all n € N, we have:

n n—1 n—1 n—1 n—1
(2% y] = [z, 2,22, ... 0¥yl fx, 2?2y 2P )R [Ty (3.1)
Proof. We prove the lemma by induction on n. Observe that:
[2*y) = vxya o ly T = afr,ylya Ty = alryleT 2y = [ e ) e,y (32)

which proves (3.1) in the case n = 1. Now let n > 2, and suppose that the result holds for all
1 <i<n. Applying (3.2) to the elements 2%" and [2%",y], we have:

22 y) = (@), y] = [0, 27,y

and applying (3.2) to the elements 22" and y, we obtain:

[xQ"’ [1,2"7y]:| = [:Ea .Z',.CEQ, SR 71"2“71’ [xQ"’ y]] [ZL’,.QTZ, B ’xQ"*I’ [1,2"’ y]:|2 s |:x2"71’ [x2"’y}j|2‘

n

L)%,



LOWER CENTRAL AND DERIVED SERIES OF SEMI-DIRECT PRODUCTS 7

Thus:
[x2"+17y} = [ZL‘, xz, xZ’ s ’$2”’1’ [3;27: y]] [[L’, 1727 s ’12"*1’ [9327: yHQ U [93,2"71’ ['IT: yHZ [I‘QT: y]Qv
which completes the proof by induction. [

Remark 3.2. With the notation of Theorem 1.1, In what follows, for the groups K,, H, or H,,
we will use the word generator to mean a word of the form (g)(h).h™!, where g € T',,_1(G) and
he H ge Gand h € V,,_4, or g € I',_1(G) and h € H respectively. Similarly, a generator of
the group L,, (resp. V,,) will mean either a generator of K,, or H,, or an element of the form [h, ],

where h € H and | € L,,_; (resp. either a generator of H,, or an element of the form [h, v], where
he Handv eV, ).

Lemma 3.3. Let n > 2. With the notation of Theorem 1.1, the subgroups K,, L, and V, are
normal in H for all n > 2, and we have the inclusions K, C K,, H,.1 C H,, H,.1 C H,,
Ln+1 C Ln and vn+1 C Vn

Proof. The proof is by induction on n. The proof in the case n = 2 was given in [15, Proposition 3.3].
So suppose that n > 2, and assume that L, (resp. V},) is a normal subgroup of H, let x € L,

(resp. V,41) and let h € H. Since L, = <Kn+1, H,.1,[H, Ln]> (resp. Vg = <Hn+1, [H, Vn]>), it
suffices to show that hzh™' € L., where x is a generator of K,,,1, H,,1 or [H, L,] (resp. of H,
or [H,V,]), in the sense of Remark 3.2.

e Suppose that z = p(g)(y)y~' € K, 11, where g € T',(G) and y € H. Then ¢(g) € Aut(H),
and there exists b’ € H such that ¢(g)(h') = h, so:

hah™ = h(p(9)(y).y A" = (e(g)(Wy)y "W ") () (W)W € Kpy1 C Lusa.

This also implies that K, is a normal subgroup of H for all n > 2.

e Suppose that x = (g)(y)y~ ' is an element of H,,; (resp. of ﬁ[nﬂ), where g € G and
y € L, (resp. y € V,,), and let A’ € H be such that ¢(g)(h’) = h. Then:

hazh™" = h(p(g)(y)y~ )b~
= (@(g)(h'yh~").(Wy =)W, Yy, ©(g)(R)] € Luy (vesp. Vii1),

because h'yh'~' € L, (resp. V,,) by the normality of L, (resp. V,,) in H using the induction
hypothesis.

e Suppose that © = [y,l] € [H, L,] (resp. [H,V,]), where y € H and [ € L, (resp. [ € V},).
Then:

hah™ = [hyh™' hh™" € [H, L,) C Ly (resp. [H,V,] C Voy1),
because hlh™' € L, (resp. V,,) by the normality of L,, (resp. V,,) in H.
This proves that L,, (resp. V) is a normal subgroup of H for all n > 2.

To prove the second part of the statement, notice that the inclusion I',,(G) C I';,_1(G) implies
that K, .1 C K, for all n > 2. Tt is straightforward to see that Hz C Hy (resp. ﬁg, - _ﬁg) because
Ly C H (resp. Vo C H). By induction, suppose that H,, C H,_; (resp. H, C ﬁ[n_l) for some n > 3.
Since L, (resp. V;,—1) is normal in H, we have [H, L,,_1] C L,,_1 (resp. [H,V,,_1] C V,,_1). Further,
using the definitions and the induction hypothesis, we have the inclusions K, C K,,_1 C L,_1 and
H, C H, 1 C L, (resp. ]:ln C -H’n,—l C V,—1). It follows that L, C L,y (resp. V,, C V,_1),
and then that H,,; C H, (resp. ﬁn—i—l C f[n) Consequently, L, 1 C L, and V,,.; C V,, for all
n > 2. 0

Proof of Theorem 1.1. The proof is by induction on n. The case n = 1 is trivial. If n = 2,
part (1) was proved in [15, Proposition 3.3], and part (2) follows from part (1) and the fact that
Ly = V5. Now suppose that parts (1) and (2) hold for some n > 2, and let us prove the result
for n 4+ 1. Let ¢: I',(G) — Aut(L,) be the action (also denoted by ¢) induced by ¢ such that
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L, x,T,(G)=T,(H %, G). We claim that ¢ also induces an action ¢: I',11(G) — Aut(Ly41).

To see this, let g € I',,11(G). To prove that ¢(g)(Lnt1) C Lyy1, it suffices to take € L,4; to be

of the form x = ¢(¢')(h).h™!, where either ¢’ € T',,(G) and h € H, or ¢’ € G and h € L, or of the

form x = [h,l] € [H, L,], where h € H and [ € L,,. The result will then follow for all elements of
L,+1 because ¢(g) is a homomorphism.

oIfm—gp( "(h).h™' € K, 41, where ¢ € T,,(G) and h € H, or z = p(¢')(h).h™! € H,,,
where ¢’ € G and h € L, then:

p(9)(x) = (9) (p(g")(R).27Y) = (g9 )(h).h7") (w(g)(R).h7T)
)

If ¢ € I',(G) and h € H then ¢(g)(z) € K11 C Ly4q since g and gg’ belong to I',(G). If
¢ € Gand h € Ly, then ¢(g)(x) € H,11 C L4 because h € Ly ;.
o If x =[h,l] € [H, L,], where h € H and [ € L,, then:

w(9)(x) = [p(g)(h), w(9)(1)] € [H, L],
since g € I',,11(G) C T, (G), so p(g)(1) € Ly.
Since ¢(g): Lj+1 — L,y is the restriction of an automorphism, it is injective, so to show that
it is an automorphism, it suffices to prove surjectivity. We first consider the following two cases:
(a) If x = @(g')(h).h !, where either ¢ € T',,(G) and h € H, or ¢’ € G and h € L,, let

y=(p(g~"g)(h).h~") h(e(g™")(h™").h) K" € Lisy,
because K41 and L, are normal in H, and one may check that ¢(g)(y) = «.
(b) If x = [h,l] € [H, L,|, where h € H and [ € L,, there exist I’ € L, and b’ € H such that
©(g)(I") =l and ¢(g)(h') = h by the induction hypothesis. Taking y = [W/,l'] € [H, L,] C L1,
we see that ¢(g)(y) = .

-1

This shows that if x is a generator of K, .1, H,.1 or [H, L,], there exists y € L, such that
©(g)(y) = x. Given an arbitrary element x € L, 1, there exist z1, ..., x,, each of which satisfies one
of the conditions of cases (a) and (b) above, such that © = 1 ---z5. So fori =1,..., s, there exists
Y; € Ly41 such that ¢(g)(y;) = z;, and we have o(g)(yr -~ ys) = x, which proves the surjectivity of
©(g): Lyt1 — Lyqq1. Therefore the semi-direct product Ly41 X ['yq1(G) is well defined. Similar
computations show that the same is true for the semi-direct product V,, 41 x, (G)™.

To complete the proof of part (1) of Theorem 1.1, it remains to show that L,y %, '11(G) =
[pi1(H %, G). We first prove that Ly, 11 X, 11(G) C Iygi (H 3, G). Let (z,9) € L1 X lga (G),
where x € L,1 and g € I',,11(G). Since (z,9) = (z,1)(1, g), it suffices to show that (x,1) and
(1,9) belong to I', 11 (H %, G). Clearly, (1,9) € I'yiq(H %, G). Further, (z,1) is a product of
elements each of which is of one of the following forms:

e (o(g)(h).h"1,1) =[(1,9), (h,1)], where g € T',,(G), h € H, and (1,9) € T',(H %, G). Then
(p()(h) B 1) € s (H %, G).
e (p(g)(h).h1,1) =[(1,9),(h,1)], where g € G and h € L,.. Then (h,1) € L, x,',(G) =

I'n(H %, G) by the induction hypothesis, and (¢(g)(h).h™1,1) € Tpi1(H %, G).

o ([h,1], 1) [H,L,], where h € H and | € L,. Then ([h,l],1) = [(h,1),(I,1)], and [ €

L, x,T'(G) =T,(H %, G) by the induction hypothesis, so ([h,l],1) € I',,11(H %, G).
Since all of these elements belong to I',, 1 (H x, G), it follows that (z,1) € I',+1(H X%, G), whence
Ln+1 N Fn+1(G) C Fn+1(H N G)

For the other inclusion, let [(h, g), (z,vy)] € T'hi1(H %, G), where (h,g) € H 1, G and (z,y
I'n(H %, G). By the induction hypothesis, I',(H %, G) = L, x,I',(G), so z € L, and y € I', (
and thus:

) €
G)?

[(h, 9), (2, y)] = (hp(g)(@)-p(gyg™ ) (h™1).0(lg, yD) (=), [g, ) (33)
The second factor [g,y] on the right-hand side of (3.3) belongs to I',41(H i, G), and the first
factor, denoted by p, may be written in the following form:

p = |h, ] .xhx_l(go(g)(x) w_l)xh_lx_l wh(gp(gyg_l)(h_l).h) htlez=ta (ga([g, y])($_1).x)a:_1.
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Note that:
[h,x] € [H, L,) C Ly.1, since h € H and x € L,.
o(g)(x).x™t € Hyy1 C Ly, since x € Ly,.
o(gyg ) (h™1).h € K11 C Ly, since y € T,(G), so gyg~! € T',,(G) because T',(G) is a
normal subgroup of G.
o(lg,y])(z™Y).x € Hpyy N Ky C Ly, since x € L, and [g,y] € T, (G).
By Lemma 3.3, the conjugates by elements of H of the elements [h, x], p(g)(z).z~, ¢(gyg~")(h™1).h
and ¢([g,y])(z™!).x also belong to L, 1, therefore p € L, as required. This proves part (1) of
the statement.

To prove part (2), suppose by induction that (H x, G)™™Y C V,, x, G™Y. Then:

(H », G)™ =[(H x, G)" ™V (H %, G)" V] C [V, 3, GV, 2, GOV

To show that [V;, x, GV, V, x, G"D] C Vipy %, G™ et (R, g), (z,y) € V;, ¥, G, Then:
e [h,z] € [H,V,] C V.41 because h,z € V,, C H.
e the three elements ¢(g)(z).27, ©(gyg)(h™).h and ¢([g,y])(z™).z belong to H, 1 be-
cause h,x € V,,, so they belong to V,, ;.

Arguing in a manner similar to that for part (1) from (3.3) onwards, it follows that [(h, g), (z,y)] €
Vi1 X, G™ as required. OJ

The following lemma will help us simplify some of the calculations in the following sections.

Lemma 3.4. With the notation of Theorem 1.1, let G be a subgroup of G, let H be a subgroup of
H, and let X (resp. Y') be a generating set of G (resp. H ).
(1) The subgroup
{p(g)(h).h™ : g€ G, he H)
15 contained in the normal closure <<Z>>H of
Z={p(g)(h).h " 1 ge X, heY}

i H. In particular, if this subgroup is a mormal subgroup of G, it is equal to <<Z>>H
Consequently, if X (resp. Y ) is a generating set of I',,_1(G) (resp. of H) then to calculate
the subgroup K,, it suffices to compute the elements p(g)(h).h™t, where g€ X and h €Y.

(2) Let W be a subset of H such that L, = (W), (resp. V, = (W)),,) is the normal
closure of W in H. Let X (resp. Y ) be a generating set of G (resp. of H). Then H, 4
is contained in ({o(g)(w)w™ : g€ X, we W), U[H, Ly, (resp. Ho.1 is contained in
Ho(g)(w)w™ : ge X, we W}),, U[H,V,]). Therefore:

Ly = <<Kn+1,<p(g)(w w hhw i geX, heEY, weE W>>H
Vi1 = {p(g)(w)w ™ [h,w] : g€ X, h €Y, weE W -

]
Remark 3.5. With the notation of Lemma 3.4(1), we will say that the elements of Z are generators
of the subgroup <<Z >> - 1t follows from part (2) that to determine L,, 1 and V,,,1, we need only com-
pute K,,,1 in the case of L, 1, and calculate the elements of the set {(g)(w).w™, [h,w] : g € X, w € W}.

Proof of Lemma 3.J.

(1) To prove the first part of the statement, note that it suffices to prove the result for elements
of the subgroup of the form ¢(g)(h).h™t, where g € Gand h € H. If g € G, there
exist g1,...,9p € G and €1,...,6,€ {1,—1} such that g;' € X for all ¢ = 1,...,p and
g=gi'-- g, Now:

P

p(g)(h).h" =TT elgs) (so (547 - 97) (h)> : (so(gfff o g7) (h)> B

i=1
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P
= [T w(g)(R)).07", (3.4)
i=1
where for all i = 1,...,p, hl = go(gz_ff- og;”)(h). Further, for all # € H, there exist
hi,...,h, € H and d1,...,6, € {1,—1} such that hj-j €Y forall j =1,...,q and b/ =
ot .. byt Since
q
_ 5; 58 7 =05\ 5 —0;_ _
w(g")(h).h = H(hil T hjfll (‘P(gl)(hj )'hj )hjfl Lol 61) (3.5)
j=1
for all ¢ € G, the first part of the statement follows by combining (3.4) and (3.5). The
second and third parts are consequences of the first part.

Let ¢(g)(h).h™" € H,.y (vesp. Hyy1), where ¢ € G and h € L, (vesp. V,)). As in (1)
above, (3.4) holds. For all b’ € L,, (resp. V},), there exist z1,...,x, € W, 6y,...,0, € {1,—1}
and aq,...,a, € H, such that xf-j e W and W = aqzltagt--- aqaﬁm;l. Then we obtain an
equation similar to (3.5), where for all j = 1,...,¢, h?j is replaced by &jmj-jaj_l. Further,

forall j =1,...,q, go(g’)(ajx?jaj_l).(ajx?jozj_l)*l

() () ()@ )x; el ) (a5 ) -y [a o(g) (), 2] (3.6)
€[H,Ly]
Part (1) then follows from (3.4), (3.5) and (3.6). O

is equal to:

4. THE CASE OF THE TORUS

In this section, we study the derived series of B,(T), the aim being to prove Theorem 1.2. We
shall consider two cases, n < 4 and n > 5.

Proposition 4.1. If n <4 then B,(T) is residually soluble.

Proof. If n < 4, the result follows by using the short exact sequence (1.1), Theorem 2.5, the
solubility of S,, if n < 4, and the fact that P, (T) is residually soluble for all n > 1[5, Theorem 4]. [

To study the case n > 5, we start by exhibiting a presentation of (B, (T))®.

Proposition 4.2. A presentation of (B, (T))" is given by:
generators: forksm € Z andi=1,...,n—1:

bim = bEamba—mp k1

dim = bkamalbafla*mbflfk
apm = bFa™(ora0; ta™ a7k
O km = ba™ o0 a b7k
Pikm = bram o o0 bk

relations:

(3)
(4)
(5)

(){ zkmpz—i-lkmezkm:0i+lkmpikm9i+lkm

pzkm z+1kmp1km_pz+1km91kmpz+lkm
zkmp]k;m_ 5.k,mPik,m Zf|l_]’>2
pzkm]km_p]kmezkm

Qf, km-+1 .

" kajler for j > 2.

bkm ]k+1m:6]kmdkm .
or g > 2.

{dkmp]k—l-lm—p]kmbkm f J=
{ h— 1mak 1,m bk~ 1m+lp1km+1ak11n:1

d.” 1mP1k lmplk 1m+1dk lm—i—lplkm:l
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Akm+1P1,km+2 = Qk,mpP1,k,m+1
(6)
P1.kmAkm+1 = Ak, mpP1,km+1
-1 _ -1
(7) bk7mp1,]f+1,mdk+17m - pl,k,mdk7mbk+%7m
bkvmpl,k+1,mdk+17m = dkvmbk+17mp1,k+2,m
(8) if n is odd:
-1
Hl,k,mp&k,me&k,m ot pn—l,k,men—l,k,m e p3,k,m82,k,mp1,k,m = bk,mbk7m+1
0 .0 ] 0 =d d1 -1
P1,mY2,kmpP3 km n—1,k;mPn—1km 3,k,;mP2,kmV1 km = QO mAk4+1,m k,m+la’k,m
(9) if n is even:
-1
el,k,mp2,k,m03,k,m T enfl,k,mpnfl,k,m e p3,k,m02,k,mp1,k,m = bk,mbhm_,_l
0 e 0 .0 4 —d dL -1
P1,k,mY2,kmP3,k,m Pn—1,kmUn—1km 3,k,mP2,kmV1 km = Ak mAk+1,m k,m+1ak,m'
Proof. One applies the Reidemeister-Schreier rewriting process [23, Appendix 1] to the short exact

sequence:
1 — (B,(T))Y — B,(T) — B,(T)** — 1,

N——

VASYASYA)
using the presentation of the group B,,(T) given in Theorem 2.2, and taking the Schreier transversal
to be {bkam; bramoy - k,m € Z}. The details are left to the reader. [

Proposition 4.3. Ifn > 5, then B, (T) is not residually soluble. Moreover, (B,(T))? = (B,(T))®.
Theorem 1.2 then follows directly from Propositions 4.1 and 4.3.

Proof of Proposition /.3. The first step is a standard procedure that may be found in [15, The-
orem 1.4, p. 3389], and uses just the Artin relations and some properties of the derived series. For
future reference, we note that it may also be applied to the braid groups of non-orientable surfaces.
If M is a compact surface, consider the following short exact sequence:

(Ba(M)V i Ba(M)
(.00~ (B,(0D)®
where p is the canonical projection. By using the above-mentioned procedure, fort=1,...,n—1,
the (B,(M))®-cosets of the o; coincide in B,(M)/(B,(M))®, and are equal to an element that
we denote by o.

Now suppose that M = T. Using relations (3) and (4) of Theorem 2.2, the (B,(T))®-cosets
of @ and b commute with o in B,(T)/(B,(T))®. Using this fact and relations (5) and (8) of
Theorem 2.2, it follows that 072 = bab~'a~! and o*® = 1, and so ¢ has order at most 2n. To show
that the order of o in B,(T)/(B,(T))? is exactly 2n, using Proposition 4.2, we note that:

B,(T)H)® /(B,,(T))®
BB "
where O is the normal closure in (B, (T))™ /(B,(T))? of the (B, (T))®-cosets of the elements of the
set {0;xm, k,m €Z,i=1,...,n—1}. Let ¢ be the canonical projection of (B, (T))" /(B,(T))?®
B, (T)M /(B,,(T))®
((Bn(T))™/(Bn(T)) ) The order of ¢ in B,(T)/(B,(T))® is even because p(c) is the
2

generator of Z,. Suppose that the order of ¢ is 2r, where r < n. Then i(p;90) = o°, and

i(p o) = 0° = 1. Since i is injective, pf o = 1, and it follows that 1 = q(pf,,) = pigo In

((Ba(T)M/(B,(T))?)
C)

1— L Bu(M)AY — 1,

onto

. Thus p1 0, is of order r < n, which contradicts (4.1). Hence:

Bn(T)/(Bn(T))(Z) = <0, a,b : [a,0] =[b,0] = 0™ =1, [b,a] = 0’2>.
To complete the proof, consider the short exact sequence:
(B, (T))® Ba(T) 5. Bu(T)

" BME  BI)®  (BT)®

— 1,
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where p is the canonical projection. Then p(o;) = o for alli =1,...,n — 1, and as above, we see
that fori =1,...,n—1, the (B, (T))(3) cosets of the o; coincide in B (T)/(B,(T))®, and are equal
to an element that we denote by o. Using the same relations of B, (T) as before it follows that
the (B,(T))®-cosets of a and b commute with & in B,(T)/(B,(T))®, [b,a] = 072 and 0" =

p is an isomorphism, and hence (B,(T))® = (B,(T))®. We conclude that B,(T) is not residually
soluble if n > 5, because (B,(T))? is non trivial. O

5. THE CASE OF THE KLEIN BOTTLE

In this section, we study the lower central and derived series of the (pure) braid groups of the
Klein bottle, and we prove Theorem 1.3. In Section 5.1, we exhibit an algebraic section of the
Fadell-Neuwirth short exact sequence (1.2) for the Klein bottle, and we determine the centre of
B, (K). These results will be used in the rest of the section, and we believe that they are interesting
in their own right. In Section 5.2, we focus on the case n = 2, and in Theorems 5.4 and 5.13, we
describe the lower central and the lower Fo-linear central ﬁltratlon respectively of P(K) in an
explicit manner. In Section 5.4, we study the lower central series of P,(K), if n > 3, and in
Section 5.5, we complete the proof of Theorem 1.3 by extending our results to B, (K).

5.1. A section in the case of the Klein bottle. As we mentioned previously, the Fadell-
Neuwirth short exact sequence (1.2) admits a section for geometric reasons. We start by giving an
explicit section.

Proposition 5.1. In terms of the presentation of P, (K) given by Theorem 2.1, the map s: P, (K) —
P,.1(K) defined on the generators of P,(K) by:

(a;—a;, 1=1,...,n—1
bj—b;, i=1,...,n—1
Cij—Cij, 1<i<ji<n-—1

Cin— CinCins1Crmyr, 1<i<n—1
bn — bn+1bn

\
extends to an algebraic section for the Fadell-Neuwirth short exact sequence arising from equa-
tion (1.2):

1 — m(K\ {21,...,2,}) — Po1(K) 2> P, (K) — 1. (5.1)

The geometric idea behind this section is to make use of the non-vanishing vector field on K to
duplicate the last string of the elements of P,(K).

Proof of Proposition 5.1. In what follows, the numbers (1)—(8) refer to the relations of P,(K) given
by Theorem 2.1. To prove the proposition, it suffices to check that the images under s of these
relations remain valid in P,1(K). We do this for relations (2) and (6). For relation (2), which is
a; tbya; = bnanC’;@lCiH,na;l, we consider two cases.
o If i +1=n then:
8(&;1bnai) = a;1 bn+1bn a; = azl(bnbn+l Cn,nJrl)ai = aglbnai G;15n+1(&z’ Cn,n+1)
S—— —_— =\
(6) (3) (2) (2)
= (bnanCzTnl agl)(bnﬂ an+1Cz‘}}ﬂcn,nﬂa;}rl)cn,nﬂ
—_——
(2)
= bya, Cy, l(bn—l—lan-l—l Cn n+1 n+1a l)an-i-l Oijr;rlcn,n-&-lar:j—lcn,n—&-l
\—,_/ —— ——

(3) and (8) (1)
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—1\ -1 —1\ —
= b, an(bns1 an—s—lcz',n )Cy n+l ( )C; n+1Cn n+1 an+1Cn n+1
—— o
() (%)
-1
= bn( n+1Cn n+1a’n)a’n+1c Cn n+1 (Cn7n+1 Cz n+1 - an, )an+1Cn,n+1
—— —— 7

@

-1, -1 -1 -1
= b7lb7l4fl(:zlﬂlﬁ—1'(Ln(zn—kl' (jg,n,(;27n4—1((:21ﬂ14’1 (Ln (Lnﬁ—l)
NS g
-~

(4)
= bnanC’n,nH.ananﬂ.(C’n,nHC C’Z n+1> a, la = 5(bpanC; la ),

m,mn

where (%) (resp. (%)) is a consequence of relation (3) (resp. relations (2) and (3)).
o If 1+ 1 < n then:

S(Gi_lbnai) = ai_l bn+1bn a; = ai_l(bnbn+1 Cn,n+1)ai 1b nQ; 4 1bn—i—l (az Cn n+1)
N—— N— ; SN
(6) 3) 2 ©)
= (bnanCi Cily 0 ) (bait @1 Crp 1 Cit a1y ) Cripeg
)
2

-1 -1
- bnan Ci,n Ci+1,n<bn+1an+1 Cn n+1 n+1a )an+1 CZ n+1Ci+1,n+1an+1 Cn,n—H

(3) and () (1)

1 —1 —1
= bn an<bn+1 CLn—HC’ Cz-i-l n)cn n41 (an )Ci,n+1ci+1,n+1 a'n+1Cn,n+1
—— — _

—1 —1 —1 —1
= D (bn+1Cnn410n) an1C Cian Crit (Crinn Cr 1 Citina Gy 1 G Dant1Cninta
——_— ——— ~

®3)

= bpbny1Ch, n+1anan+10 Cis1 nCz_nJrl Cit1,n+1 an-q-l(cn,n-&-l a;la;il)
—_——— ——_— —
(4)
=b anrlCn n+1-Gndn41- C (CZ y}+ICZ+1 n)Cerl n+1- CL an+1 - S(b anc Oz+1,na7;1)7
where (%) is a consequence of relation (3), similar to that in the case i + 1 = n, and (xx) is
the same relation as in the case i +1 = n.

Thus s respects relation (2). For relation (6), which is b,b; = b;b,C,,Ci} ., we also consider two
cases.

e if i +1 =mn then:
S(bnbi) - bn+1bn bi - (bnbn—H On,n+1)bi - bn bn—l—l(bz’ On,n—H) = bn(bi bn+10i,n+101:n+1)cn,n+1
—— —— N—— ~—~

©) ) ©) ©)
- (bzbn Ci,n)bn+1 Ci,n+1 - bibn(bn+10i,n)ci,n+l — bibnbn+1 (Cn,n—l—l C;nJrl)Cz nCz n+1
—

(8) (1)
= bibnanrlCn,nJrl(Ci,nCi,nJrlC;;Jrl) = S(blbncz,n)

eifi+1<n:

S(bnbz) - bn+1bn bz - (bnbn—l—l Cn,n—i—l)bi - bn bn—l—l(bi Cn,n—l—l) = bn(bz bn+10i,n+10i_.~_117n+1)Cn,n—H
(6) (8) (6) (6)
= (bibn CinCi iy )bns1 Cin1C i1 Ot = bibn(bns1Cin Ciy ) Cint1 Ot it Crnst

-~

(®) (4)
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— -1 -1 -1
- bibnbnﬂ (Cn,n+1 Cn,n+1)ci,n (Ci,nﬂ Ci+1,n)0i+1,n+1cn7n+1
v >
Vv Vv

(4) (4)
= bibubn1Crns1(CinCins1Cn n1) (Crini1Cit i1 Ciiin) = 8(bibnCinCily )

Thus s respects relation (6). The computations for the other relations are similar, and are left to
the reader. O

As we mentioned at the end of the introduction, for any compact surface M and for all n € N,
the centre Z (B, (M)) of B,(M) is known, with the exception of the Klein bottle and the Mdbius
band. The section given by Proposition 5.1 allows us to determine Z(B,(M)) if M = K. For the
sake of completeness, in Proposition A1 of the Appendix of this paper, we also compute the centre
of the braid groups of the Mobius band.

Proposition 5.2. For all n € N, the centre of B,(K) is equal to {(b,---b1)?), and is isomorphic
to Z.

Proof. The idea of the proof is similar to that of [31, Proposition 4.2]. Let £, = b, --- by, and let
Z,, = (82). We will show by induction on n that Z,, = Z(B,(K)). Arguing as in [31, Proposition 4.2,
step 4], we see that Z(B,(K)) C P,(K), so Z(B,(K)) C Z(P,(K)). Thus it suffices to show that
Z(P,(K)) = Z, and Z,, C Z(B,(K)). We prove that Z(P,(K)) = Z, by induction on n. If n =1,
by Theorem 2.1, we have:

m(K) = <G1,bl Darhy = blafl>> (5.2)
and it is well known that Z(m (K)) = Z;. Now suppose by induction that Z(F,_;(K)) = Z,,_; for
some n > 2.

We first prove that Z(P,(K)) C Z, in a manner similar to that of [31, Proposition 4.2, step 3].
Let g € Z(P,(K)), and consider the Fadell-Neuwirth short exact sequence arising from (1.2):

1 — m K\ {21,...,201}) — Pu(K) 25 P,_1(K) — 1.

Since p. is surjective, p.(g9) € Z(P,—1(K)) = Z,_1, and since p.(Z,) = Z,_1, there exists h €
Z, such that p,(h) = p.(g). If ¢ = gh™! then ¢’ belongs to Z(P,(K)) and to the free group
m (K\ {z1,...,2,-1}) by exactness. Hence ¢’ € Z(m (K \ {z1,...,2,-1})) = {1}, s0 ¢ =1, and
thus g = h € Z,,, which shows that Z(P,(K)) C Z,.

Still under the above induction hypothesis, we now prove that Z, C Z(F,(K)). Using the
section s: B, 1(K) — P,(K) given by Proposition 5.1, we have s(32_,) = 2. By the induction
hypothesis, Bﬁflai = azﬂgfl and 6371171‘ = biﬁgfl for all 1 <i<n-— 1, and 63710@]’ = U4 371
forall 1 <i<j<n-—1in P, ;(K). Taking the image of both sides of these equations by s, we
obtain the following relations:

B2a; = a; % and B2b; = b; 3> itl<i<n-—1 (5.3)
B2 an 10, = ap_1a,. 3% and B2.b,b, 1 = bpb, 1. 5% ifi=n—1, '
and
ﬁ%oi,j: m’ﬁi 1f1§z<]<n—1 (54)
Br. Ci,nflci,ncg_llm = i,nflci,ncyj_llm- g ifl<i<j=n-1 '

Let us prove that a,, and b,, commute with 32, from which it will follow from (5.3) that 32 commutes
with a; and b; for all 1 <+ < n. Using relations (6)—(8) of Theorem 2.1, we have:

Chnay, b = Cis1nbiC;, Crpar,! (5.5)
b, Ci1b; = b;0,C;
for all i = 1,...,n — 1. To prove relation (5.5), notice that by relations (7) and (8) we have:
by anb; = an b (CinCily ) 710, = an(CLY b7 Cinby),

®
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and taking the inverse of both sides, it follows that a,'b; = C’g r} b;iCita, »a,; . We thus obtain:
Ol,n CLT_lei = C’Ln(C[;biCﬂLna;l) = (bz bl_l)OLn(bZ b;l)C’ lb OH—I n(l
N—— ’ .

(®) (8)
= bl(Cerl C 1Cl nb ClJrl,nCz n bn )(ani,nCz‘;ll nbglcij—ll n>0i+17na7_7,1
A , ) )

(8)
= (Ci-i-l,nbi)ci}i Cynan’t.

To prove relation (5.6), one may use relation (6) and the fact that b; commutes with Cjyq,, by
relation (8). We now claim that:

nfr = by -+ - bi+10;11,n01,na;1bibz‘—1 --by and b,8, = by, - - bi+1bnci+1,nbi ceoby
forall2 = 0,...,n — 1. We shall prove the claim by reverse induction on 7. First, we have

anBn = an(bpbp_1 - bl) (b Cinay )by—q -+ by and b,B, = byb, -+ b1, so the claim is valid if
1 =n — 1. Suppose that it holds for some 1 <7 < n — 1. Then:

ApfBn = by - H—lC +1, 2Cina, by by 2 by -+ bipa ;:aniﬂ,nbicgnlcl,na;lbz’—1 by
= bn tee bi+1bi0i773017nan bz’—l e bl, and

BB = by - biabnCiprnbi -+ b1 = by -+ b1 by Clinbiy -+ - by

so the claim holds. Taking i = 0, we obtain a,(, = B,a,' and b,3, = BrbnCh . Hence a,B? =
Bna; B, = B%a,, and applying (5) with ¢ = n twice, we obtain:

bnﬁi = Bnbncl,nﬁn = /Bnanbnanﬁn = Zarglbncl,nagl = ﬂgbn

Thus 32 commutes with a, and b,, and so with a; and b; for all i € {1,...,n}. Finally, by
relation (5), Cy,, = b, ta,b,a, and Ciy 1, = C;na; b, a; 'b,a;a, by relation (2). Since 32 commutes
with a; and b; for all 1 < ¢ < n, it follows that 82 commutes with Cy, by relation (5), and by
induction that 52 commutes with C;,, for all 1 <i < n. So by (5.4), 82 commutes with C; ; for all
1 <i < j < n, and therefore commutes with all of the elements of a generating set of P, (K), hence

To complete the proof of the proposition, it remains to show that Z, C Z(B,(K)). To do so,
from above, it suffices to prove that o; commutes with 32 for all i = 1,...,n — 1. One may see by
Figure 2 that 0? = C; ;.. Further:

bz’+1<7@'2 ifj=i

b; otherwise.
The case 7 =1 is illustrated in Figure 4. If j =1 —|— 1 then o, leJZ = a’l a’lb 0. O ’2. o; = U’Zbi
using the case j =¢. Fori =1,...,n — 1, using (5.7) and relatlon of Theorem 2.1, we have:
lb 104 z+10

FIGURE 4. The relation Ji_lbiai = b; 1102

2y

0-'_1(bn e bl)o-z - bn o bi+2 . Cljl}kl bl . bi+1ci7i+1 'bi—l cee bl = C_7,1+1b7"b e bl — o-i_an . b17
—— ——
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from which it follows that (b, - - - b1)?0; = 0;(by, - - - b1)? as required. O

Remark 5.3. For n = 2, we modify slightly the presentation of P5(K) given by Theorem 2.1 by
removing the generator C} o using relation (5), so Cj o = by asboay. Hence Py(K) is generated by
ai,as, by and by, subject to the relations:

(1
(
(
(
(

) a2a1 = Q2.

) al Yboay = ay b2a2 :

) bl Clgbl = a2b2a2 b2 CL2 .
) b bgbl = a2b2a2

) b a2b2a2 = b1(11 b aq 1.

2
3
4
5

Using Proposition 5.1 and the Fadell-Neuwirth short exact sequence (5.1), P,41(K) may be
written as a semi-direct product of the free group m (K \ {z1,...,z,}) by s(P,(K)) for all n € N.
In particular, if n = 1 then:

By(K) = m (K {21}) %, s(P1(K)), (58)
where 1 (K \ {z1}) = (ag, bs) is a free group of rank 2,
s(P(K)) = <a1a2, boby @ (beby)(ajas) = (alag)’l(bgbl)>
by (5.2), and where the action ¢: s(Pi(K)) — Aut(m (K \ {z1})) is given by:

( ) Qg —— Q3
a1a .
pidbs bg — a;sz

1
g — aq
boby) :
SO( ? 1) {bz — asbsay,

using Remark 5.3.

5.2. The lower central series of P(K). In this section, we use Theorem 1.1 to calculate explicitly
the lower central series of P(K). This will enable us to prove that P»(K) is residually nilpotent.

Theorem 5.4. Let n > 2. With the notation of Theorem 2.1, we have:

= ((af 2" e TumEN o }), 20 <) gy X ((@102)77),

where @ is as defined in equation (5.9). Consequently, Ps(K) is residually nilpotent.

The idea of the proof is to apply Theorem 1.1(1) to the semi-direct product structure of P(K)
given by (5.8). From now on, we shall make use of the notation of that theorem, taking H =
m(K\{z1}), G = s(P1(K)) and P»(K) = H %, G. In the lemmas that follow, we first compute the
subgroups K,, H, and L, for these choices of G and H, and in Proposition 5.12, we calculate the
subgroup L,,, which will enable us to prove Theorem 5.4. We first need to know the lower central
series of P;(K). Applying Theorem 1.1 to the semi-direct product structure (a;) x (b;) of m (K)
given by (5.2), it is straightforward to see that Ky = Hy = Ly = (a?), and if n > 3, K,, = {1} and
H, =L, =(al""), therefore the lower central series of s(P;(K)) is given by:

In(s(Pi(K))) = <(a1a2)2"71> (5.10)
for all n > 1. We now turn to the case of P(K). We first determine K.

Lemma 5.5. With the notation of Theorem 1.1, and taking H = m (K \ {z1}), G = s(P1(K)) and
Py(K) = H %, G, the subgroup K, is equal to {(a3,T2(H)) if n =2, and to <<a%n_l>>H if n > 3.
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Proof. First suppose that n = 2. By (5.9), we have:

plaras)(as).ay” =1
p(aras)(be).by " = @(baby)(az).a5" = ay” (5.11)
(bgbl)(bg).b_l = (lgbgagb = CL2 [CL2 s ]7

and so {ag, ay ', b } C K. Since K3 is normal in H by Lemma 3.3, <<a§, ay ', b >> is a subgroup
of K», and therefore (a2, T5(H))),; C K» because I's(H) = {([a5", ba])) ;- For the other inclusion,
(5.11) implies that ¢(g)(h).h™t € (a3, Ts(H))), for all h (resp. all g) belonging to the generating
set {az,ba} (vesp. {aiaz, babi}) of H (resp. of G). The inclusion Ky C ((a3,T2(H))),; then follows
from Lemma 3.4(1). This proves the result for n = 2.

Now assume that n > 3. Then I',_1(G) = <(&1a2)2n_2> by (5.10). Using (5.9), we have
o((a1a2)*" ") (az).a5' = 1 and:

p((a102)*) (b2) = p(araz)(azby) = a3*(aby) = ay by,
Suppose by induction that ¢((aias)?)(bs) = ay by for some j > 2. Then:
((ara2) 1) (b2) = p(ara2)p((a102)7) (ba) = plaraz)(az bs) = a3 (a5%bs) = a; > by,

In particular, if j = 2772, we have ¢((a1a2)®" ") (b2).b;" = (a 2_2(2n ?) bg) by ! 2_20%1), and hence
<a§n_1>>H C K,. Conversely, taking G = {(a1a)?" "} and H = {az,be} in Lemma 3.4(1) and
using (5.10), we obtain K,, C (Z)),, where:

Z={plg)m)n7 : g€ {(ma)” "} he {az b} b= {7},
whence the inclusion K, C <<a§n_l>> &> and this proves the lemma. -

If 3 € H then Ba3f~ = [B,a3la2 € (a3,T3(H)), and since ['y(H) is normal in H, it follows that
the subgroup (a3, '5(H)) is also normal in H, so (a3,T2(H)) = ((a3,T2(H))),. Using the relations
Ky = Hy and [H, L] = I'y(H), it follows from Lemma 5.5 that:

Ly = (a2, To(H)) = ({2, [z, b)), - (5.12)

Let Wy = WQ = Lo, and for n > 3, define:
= (Tn(H), 2> : € Wyy) (5.13)
Wo={a3" ", 2™ cxeTy(H),2<i<n)),. (5.14)

Note that W,, is normal in H for all n > 2. This follows from the fact that I',(H) is normal in
H for all n > 2 and arguing by induction on n as follows. If n = 2 then Wy = Ly by Lemma 3.3,
so suppose that n > 3, and that W,,_; is normal in H. Then hzh™' € W,_; for all z € Wn,l
and h € H, thus ha?h—t — (hzh=%)? € W,, and W, is normal in H as claimed. If x € T';(H) and
2 < i < n, we will refer to the elements a%n_l and 22" as generators of W,,. In order to prove
Theorem 5.4, we will show in Proposition 5.12 that L, = W,, = W, for all n > 2. Supposing this to
be the case, the following lemma implies that to determine the lower central series of P,(K) using
Theorem 1.1, it is not necessary to calculate the subgroups H,.

Lemma 5.6. Suppose that L, = W; = ﬁ//z for all 2 < i <n. Then Hyy1 C (Kyi1,[H, Ly)). In
particular, Ly = <Kn+17 [Ha Ln])

Proof. We prove the given inclusion by induction on n. If n = 2, using (5.9) notice that:

o p(aas)(a)a;? = 1.
o p(bobi)(ad)ay? = ay* € K3 by Lemma 5.5

[ J go(alag)([ag,bg])[bg,ag] = [CLQ_Z,(Inga;le_ICLz_I] € [LQ,H] by (512)
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o 9(bobi)([az, ba]) (b2, as] = [bo, @3] [as, [as, bo]] € [Lo, H] by (5.12).
€[H,Ls] €lr's(H)

Using these calculations and the description of Ly given in (5.12), it follows from the first part of
Lemma 3.4(2) and Lemma 5.5 that:

Hy = ([H, Lo], p(g)(w)w™" : g € {a1az,bobi}, w € {a3, [az, b]})),, C (K3, [H, Lo]) ,

which proves the result if n = 2.

Now suppose that the given inclusion holds for n — 1 for some n > 3, and assume that L; =
W, =W, for all 2 < i < n. Let ¢(g)(x).z! be an element of H,,;, where g € G and = € L,, =
(K, [H, L,_1]) by the induction hypothesis. We wish to show that ¢(g)(x).2™' € (K, 11, [H, L,]).

By Lemma 3.4(1), we only need to check the following two possibilities:

ez =a?"". Then z € K, by Lemma 5.5, ¢(ajas)(z).z7" = 1 and @(byby)(z)z™! = a52" €

K, 41 by Lemma 5.5 and (5.11).
ez =Ihl €[H, L, ], where h € H and [ € L,,_;. Then ©(g)([h,[])[h,]]”" may be written
in the following form:

(@)™ 2@ D o)1 o)) ) [(pl)B )L L (5.15)

-~

~~
G[anH] E[LQ,Ln_ﬂ

To complete the proof, it suffices to show that the subgroup [Ls, L,,—1] is contained in [H, L,].
To do so, first note that [Ly, L,,_1] is normal in H because L; is normal in H for all j > 2 by
Lemma 3.3. Using the fact that Ly = (a3, T9(H)) by (5.12), it suffices to show that the following
elements belong to [H, L,]:

e [[y,z],1] € [T'9(H), Ly_1], where y,z € H and | € L,,_;. Then:
.2l 0 =y [o [y 0]y dyz [0 0 ]y 27y 7,
~—_——

. /

-~

€[H,Ly] €[H,Ly]

because [H, L,_1] C L,. Thus [[y,z],l] € [H, L,] because [H, L,] is a normal subgroup of
H, and therefore [['5(H), L,_1] C [H, Ly].
e [a3,1] € [(a3), L,_1], where | € L,,_;. Then using (3.2), we have:

[a3,1] = [az, [a, 1] [az, 1], (5.16)
€[H,Lny]

since [H, L,,_1] C L,. Further [ay,l]? € [H, L,] because | € L,,_; = W,,_; by hypothesis, so
1>c W, =L,, and

[127(12} = [lv [lan]][lua2}2
—— N —
€[Ln,H] €[H,Ly]

by (3.2). So [l,as)? € [H, L,), and thus [a3,]] € [H, L,] by (5.16).
This shows that [Ls, L,,—1] C [H, Ly,], hence H, 11 C (K11, [H, Ly,]) as desired, which concludes

the proof of the first part of the statement. The second part follows from the first part and the
definition of L, 1. OJ

In order to prove Proposition 5.12, we shall require a couple of intermediate results. Let A be
either the empty set or a normal subgroup of H, and for m > 1, let:

_ qom—i-k , CAl< g << g < myy, ., T, € A,
Bm<[$l>"'7xl] eFl(H) nggm_landlzlj’m ’
For 1 <[ < m, let:

m—i- <h < <pp<icay,..., T
5l,m=<[x1,...,xi]2 Cemy(H) TSNS S ST >%€A’>.

0<k<m-—iandl<i<m (5.17)
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In the case that A = &, we will denote the subgroup & ,,, by gzm This corresponds to taking £ = 0
in (5.17), so:

g:l,m fry <[x17 e ,xi]2mii
If & = [21,...,2;] € [;(H), the elements 22" " (resp. 22™") of & (vesp. of &) given in (5.17)
(resp. in (5.18)) will be termed generators of &, (resp. of &,,). Note that I',,(H) = Enm C
Eivim C Em C E1n = By by [27, Problem 3, Section 5.3, p. 297] for all [ =1,...,m — 1, and that
for all 1 <1 < m, &, is normal in H, since if h € H and A P generator of &, where
z = [z1,...,2;] € [y(H), then hlzy,...,z]*" " "h™' = [hayh™', ... ha;h 112" " € &, because
A is normal in H or is empty. In particular, taking A = &, we have:

eli(H) : 1<i<m). (5.18)

Fm<H) = gm,m C é:vl—l—l,m - (ct;l,m C é‘vl,m = Bm; (519>
and that g’lm isnormal in H forall 1 <[ <m.

Lemma 5.7. Lety € H, let m > 1, and let 1 <i <m. If v = [v1,...,2;] is an element of I';(H)
for which z2"~"" is a generator of Eim, where 0 < k <m —i (resp. z*" " is a generator of E;im),
then:

22"yl = 2y mod Eiv1my1 and (5.20)

2" mod Eipt.mit (5.21)

"y = [,y

respectively.

Remark 5.8. Let m > 1, and let 1 < ¢ < m. Since &iy1m+1 C Bt (resp. gz’+1,m+1 C ggmﬂ C
Wini1 by (5.14)), the congruence (5.20) (resp. (5.21)) is also valid modulo B,,;; (resp. modulo

Wm—i—l)'

Proof. 1t suffices to prove (5.20), since then the congruence (5.21) follows by taking A = @. We
will do so by induction on m. If m = 1 then ¢ = 1 and k£ = 0, and the congruence is in fact an
equality. If m = 2, we consider two cases:

e ifi=2 orifi==Fk=1, then x € I'y(H), and the two sides of (5.20) are equal.
eifi =1and k = 0 then x € T'\(H) = H. Thus [2%,y] = [z,z,9][z,y]* by (3.2), and
[z,2,y] € Ts(H), so [x,x,y] € 3, and we obtain (5.20).

This proves the result if m = 2. We now consider the general case.

Induction hypothesis 1: suppose that the congruence (5.20) holds for some m > 1. Let us show
by induction that the result holds for m+1i.e.if 1 <i <m+1,z € I';(H), 22" s a generator
of Eimi1, 0 <kE<m+1—i¢andye H, then:

2m+l—’i—k 2m+l—i—k
[z

Y] = [z, ] mod &iy1,m+2. (5.22)

This will be achieved by making a second induction hypothesis as follows.

Induction hypothesis 2: let 1 <i < m + 1 be such that:

[x2m+1fjfk’ ]

yl =[x,y

]2m+17j7k

mod gj+1,m+2 (523)
for all i < j < m+ 1, where z € I';(H), 22" g g generator of & y1, 0 <k <m+1—j
and y € H. If i = m + 1 then (5.23) holds trivially. So suppose that (5.23) is valid for some
2 <1< m+1, and let us prove by reverse induction on ¢ that it also holds for : — 1. By induction
hypothesis 2, it suffices to prove (5.23) for j = i—1. Let y € H, and let x = [xy,...,2;1] € T;_1(H),
2T g A generator of Eitmyrand 0 <k <m+1—(i—1). Then [22™ """V 4

where
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[x2m+2—i—k: ]

,yl. If k =m + 2 — i then (5.23) is an equality. So assume that 0 < k < m+ 1 —i. By

Proposition 3.1, [22” 777" 4] is equal to:

1—i—k 1—i—k —i—k 1—i—k 1—i—k
[a:,:lc,a:2,...,a:2m+ ' ,y][:zc,.tﬁ,...,xzm+ oy a2 ,y]Q[:chn+ Ty (5.24)

(- < J
-~ -~

(*) (%)

Using induction hypotheses 1 and 2, we will first show that the expression (xx) is congruent to
I:l‘) y] 2m+277,7k

modulo &; 42, and then that the expression (x) belongs to &; 42, from which we will

conclude by inductionlthalit (2277 ] = [:p,ky]2n+2_i_k modulo &; 40 foralli=1,...,m+ 1.

To sh0\17v tkllatk 22"y = [,y modulo & pys, since @ = [z, .., 2] € Tiy(H)
and 22"V i a generator of Ei1ms1, there exist 1 < j; < -+ < jr < i — 1 such that
Tj,...,xj, € A, and therefore [z4,... ,a:i,l]Qm_(l_l)_k is a generator of &_; ,,,. Applying induction
hypothesis 1, we have:

[:UQmH*HC, y] = [x,y]QmePk mod &; 1.
It follows that there exist generators as, . .., o4 of & i1 and 0y, ..., 0y € {1, —1} for which [x2m+17i7k, yl =
[z, ]2 - o and so
[I2m+l_i_k7 ]2 :([ZE, y]2m+1_i_ka(151 U a?t)2 - [ZL’, y]2m+2_i_k [[I7 ]—2”+1_i_k7 Ofi:l e aft} ’
oty e aftad® ot oo™ (5.25)

We claim that:
(1) &2 .. a2 € & s
(2) [as, 0], [, 0] € Eimao forall s=1,...,t and all § € H.
(3) [[w,y]72""""",0] € Einyo for all 0 € H.
Claim (1) follows from (5.17). To prove (2), let s € {1,...,t}. Since ay is a generator of & 41,

g = 52’"“47;, where 8 = [B1,..., 8] € [W(H), Bjy, .-, Bj. € A;i <1 <m+1land0 < k< m+1-L.
By induction hypothesis 2,

o, 6] = [B 775,00 = [8,07" 7 mod Ermae. (5.26)

Moreover, [0, 8] = [0, 51, ..., 8] € ['41(H), where B;,,...,8; € A, so [«9,6]2(m+2)_(l+1)_g € Eit1m2
sincei <l+1<m+2and 0 <k < (m+2)—(l+1). Hence:

(B0 = (0,817 € e
The fact that &1 mi2 C & mo implies that the congruence (5.26) is also valid modulo &; 42, from
which it follows using (5.26) that [as, 0] € Er1mi2 C Eimra. Further, [t 0] = a2, 0](0a2071) €
Eim+2, using also (1) and the fact that & ,, 42 is normal in H, which proves (2). To prove (3), since
g2 Ei1ms1, where © = [z1,..., 2, 1] € T;_1(H) and 0 < k < m+1—14, and there exist
1<ji <---<jr <i—1suchthat zj,...,x; € A, it follows that [y, z] = [y, z1,...,2;-1] € [';(H)

and [y, 31:]2(Tn+1)_i_1c € & m+1. So applying induction hypothesis 2, we have:
m+1—i— m+1—i— m+1—i—k
[[m,y]_Q o k,@} = [[y,x]Q o k,@} = [[y,av],@}2 mod ;41 ma- (5.27)
Now
Hy7 .%'], 0] = [97 Y, x]il = Hy7 .1'], 9] = [97 Y, Ty - 7331‘71]717
and since [0, y, x1, . . . ,xi_1]2(m+2)_(i+1)_k € &i11,m+2, we conclude that [[z, y] 2 0] € Eivimiz C
Ei.m+2, and this proves claim (3). Thus it follows from (5.25) and claims (1), (2) and (3) that:
[l‘2m+177l7k’ y]2 — [1‘7 y]2m+27727k mod gi7m+2’

]2m+2—i—k

which proves that the expression (xx) is congruent to [z, y modulo &; 4.
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To see that the expression (x) belongs to &; ,,,+2, notice that each of its terms is a commutator, so

2m7i7k 7 [x2m+1fifk : y]]

can be written as a product of conjugates of the element [x or its inverse. Since

Eim+2 is normal in H, it thus suffices to show that [0, 22" ", y]] o [[¢2m+1_i_k, yl,0] € & mio
for all y,0 € H and for all © = [z1,...,2;,_1] € T';_1(H) for which g2 Ei—1.m+1, Where
1 >3, 0<k<m+1—4 25, ...,75, € Aand 1 < 3, < --- < j5 <1 —1. To do so, note
that 22777 = 2OV ¢ Eictms 50 [22TT Y] = [,y mod &; ,11 by induction
hypothesis 1. Thus there exist generators ap, ... oq of &y, and 60y, ...,0; € {1, —1} such that

]2m+17i7k

22" g = [y ad, and hence
Hx2m+1 i— k,y],e] _ Hx’y]2m+1 i— ka(lsl . aft,(ﬂ
_ ([x y]2m+17ifk[afl a?t,e] [x y]72m+172’7k) |:|::C y]2m+lfifk,61|. (528)
Further, [041 . at *, 0] belongs to the normal closure of {[al ,9] . [at , ]} in H. This may be
seen by applymg reverse induction on 1 < s < ¢, and by noting that for 5> 2,
[ags 110[63 ’ O‘ft7 0] = (ags_ll [aés ’ O‘?? 6]053_53_1)[ ss 117 9] (5 29)
Then [[22 7" y,0] € [z, y)*"" ", 0], [a,0] ..., [ad, 0])), by (5.28) and (5.29). Now by
claims (2) and (3), the elements [, 4], ..., [a?, ] and [[z,y]>"" ", 0] belong to & e, and

since &; 42 1s normal in H, we conclude that the expression (x) belongs to &; ,,12. This completes
the proof of (5.23) for ¢ — 1, and so by induction, (5.23) holds for all 1 < ¢ < m + 1, which is
exactly (5.22). By induction, we conclude that (5.20) holds, and this completes the proof of the
lemma. 0J

Lemma 5.7 has the following consequences.
Corollary 5.9. For all1 <1 <m, [Em, H] C Ei1ms1 and [glm, H] C ng,mH.

Proof. Let | < i < m. First assume that « = [z1,...,2;] € T;(H) is such that 22" " is a generator

of & m, and let y € H. Then by (5.20), [22" k,y] = [z,y>""" mod & 1mi1. Since [y,z] =

[y, @1, 2] € Tipa(H), it follows that [y, m]Q(MH)_(ZH)_k € Eip1mt1, S0 (22 Y] € Ervrmr-
Now suppose that x = ozfl- S

m—i—k

-oy', where for all ¢ = 1,...,¢, a; is a generator of &,,, and
d; € {1,—1}. Then [z,y] belongs to the normal closure of {[a’,y],i=1,...,t} in H by (5.29),
and so [z,y] € Ep1m11 for all x € &,,, y € H by the first paragraph of the proof and the fact that
Ei41,m+1 1s normal in H. Once more, the result for glm is obtained from that for & ,, by taking
A=0. O
Corollary 5.10. If m > 2, then W,, = = ((a3"" ' gg’m»H

Proof. 1t suffices to prove that

Eom = (2" s w €Ty(H), 2 <i<m) (5.30)
forallm > 2. If m = 2, (5.30) follows from (5.12) and (5.18). Suppose by induction on m that (5.30)
holds for some m > 2. It is clear from (5.18) that & mi C (@2 e Ty(H), 2 < i < m).

To prove the converse, let y = 2" ' where € Ty(H) and 2 < i < m+1. Ifi = m+1

then y € I',,11(H) C g‘gmﬂ by (5.19). So suppose that 2 < i < m. Then 22" € gg,m by the

induction hypothesis, so 22" = a' - - -, where for all i = 1,...,t, ; is a generator of &, and

d; € {1, —1}. Hence:

y=("")?=(a - al")? = a0 o - - a0y 0 0] - [at O e
SNo y € gzkmﬂ because for all i = 1,...,1, Ozi‘;’ € 527m+1 by (5.18), and [a; 9] [ng, H] C

Esm+1 C Exmy1 by Corollary 5.9 and (5.19). The inclusion <x2m7i cxely(H),2<i< m> C
E9.m+1 then follows. O
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Corollary 5.11. For allm > 2, [H, Wm] C Wmﬂ.

Proof. Since [Egm, H] C & m+1 using Corollary 5.9, by Corollary 5.10, it suffices to prove that
[h,a?" '] € Wyyq for all h € H. To sece this, observe that [h,a2" 1] = [h, a)?"" mod Wy,iy
by taking ¢ = 1 and x = ay in (5.21) and using Remark 5.8. So there exists w € Wmﬂ such
that [h,a2" '] = [h, as)?" . @. Now [h,as] € To(H), hence [h, as)?" ™" € Wit by (5.14), and we
conclude that [h, 2" '] € Wini1 as required. O

The following result will enable us to obtain the explicit characterisation of I',(P(K)) given in
Theorem 5.4.

Proposition 5.12. For alln > 2, L, =W, = Wn

Proof. If n = 2, the statement is true by definition. So suppose by induction that L, = W, = W,
for some n > 2. Then we have the following inclusions:

—~

e W,.1 C Wyi1. To see this, let y € Wnﬂ. If y is a generator of WnH, then by (5 +172’

y either belongs to I',,41(H), and so belongs to W, by (5.13) or is of the form 2 ,
where 1 < i <n, z € Ty(H), and z = ay if i = 1. Hence 22" " € W = W, by induction,
and thus y = 22" = (22"7')2 € W4y by (5.13). If y is an arbitrary element of W1, it
may be written as a product of conjugates of generators and their inverses, so it belongs to
Wit1 because W4y is normal in H.

e L,.1C Wn+1, since K, 41 C Wn+1 by Lemma 5.5 and (5.14), and [H, L,,| = [H,W,,] C W11
by induction and Corollary 5.11, so L1 = (K11, [H, L,]) C W, using Lemma 5.6.

o Wyt C Ly, First, Ty (H) = [H,To(H)| C [H,W,] = [H,L,] C Lysi by (5.13) and
induction. Secondly, let 22 € W,,, 1, where x € W,, = L,, is a generator. If n = 2, by (5.12),
r = a2 or x = [by, ay], then 2 = aj € K3 C L3 by Lemma 5.5, or 2% = [by, a3 ][as, [as, bo]] €

— =
€Ls €L2
[H, Ls] C L3. So assume that n > 3. By Lemma 5.6, there are two possibilities for x:

—if x € K,,, then z = a2~ by Lemma 5.5, and 22 = 42" € K41 C Lyiq.

—if x = [h,l] € [H,L,_1], where h € H and | € L,y = W,_y, then 2? = [h,]]* =
[h, I2][1, |1, h]]. Now I* € W,, = L, by induction and [I,h] € L,, so [h,[*] and [I,[l, h]]
belong to [H, L,|, which is contained in L, .

Finally, let 22 € W,,1, where z is an arbitrary element of W,,. Then there exists ¢ € N

such that x = x; --- x4, where for all ¢ = 1,...,¢, x; is a generator of W,, = L,,. Then as
n (5.25), we have:

? =afloy wywglad[ay wy o wg] - [w )l wg)al (5.31)
From the second case above, for alli =1,...,q, #? € L, ;. Further, foralli=1,...,q—1,

(27!, 2ip1 -+ 2y) € [Ly, H) C Lpyq. Tt then follows from (5.31) that 22 € L.
It follows from these three inclusions that L,,; = W, = /V[7n+1. O

Proof of Theorem 5./. The result is a consequence of Theorem 1.1(1), Proposition 5.12, and equa-
tions (5.8), (5.10) and (5.14). To see that P(K) is residually nilpotent, note first that W,, C v2(H)
for all n > 2 by (5.13). Since H is a free group of finite rank, it is residually 2-finite, and it follows
using Proposition 5.12 that (1,5, Ly = (5o Ws = {1}. The residual nilpotence of P5(K) is then a
consequence of the first part of the statem?ent, equation (5.14) and Proposition 5.12. O

5.3. The lower [Fy-linear central filtration of P,(K). Now that we have a good description of
[',.(P(K)), we may obtain the following decomposition of v2(P5(K)).

Theorem 5.13. Let n > 2. With the notation of Theorem 2.1, v2(Py(K)) is equal to:
<< on— b2n 22 e Li(m(K\ {z1})), 2 < < n>>7r1(JK\{z H X < a1a2 B 7([)2()1)2”_ >
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Consequently, Py(K) is residually 2-finite.

Remark 5.14. Using the action given by (5.9) and the description of I',,(P(K)) given by The-
orem 5.4, it is straightforward to see that:

<<a§n_1, b%n_l,xQn_i creTi(m(K\ {z1})),2<i< n>>m(K\{xl}) N <(a1a2)2n_1, (bgbl)Zn_l>

is equal to U,,, where:
Un — <<Fn<P2(K))7 b%n_ 5 (b2b1>2n_ >>P2(]K) (532)

Proof of Theorem 5.15. Let n > 2. By Remark 5.14, it suffices to prove by induction on n that
U, = v2(P(K)), where U, is defined by (5.32). If n = 2, Uy C 73(P2(K)) because b3 and (byb)?
belong to {z? : x € P»(K)}, which is contained in v3(P(K)), ['y(P2(K)) is contained in 73 (P (K)),
and 2 (P,(K)) is normal in P(K). For the converse inclusion, we know that Ty(P(K)) C Us, that
P,(K) is generated by {ag, asay, ba, bob } by Remark 5.3, and that the square of each element of this
set belongs to Us, since by Theorem 5.4, a3 € T'y(P2(K)) and (aga1)? € Ty(s(m1(K))) C Ta(P(K)).
Further, if z = ;- 1, where for i = 1,...,q, z; € {ay", (asa1)™,b3y", (bb1)*'}, then using
the decomposition given in (5.31), we have z? € U, because xf € U, for all 1 < i < ¢ and
(27! i1y € To(Py(K)) C Uy for all 1 <4 < g — 1. Thus 12(Py(K)) C Us, and therefore
% (P(K)) = Ue.

Now assume that n > 2, and suppose by induction that U; = v(P(K)) for all 2 < i < n. Then
Unt1 € Y (Po(K)) since T i1 (Po(K)) C 72y (Po(K)), Toga (Po(K)) and 57, (P2(K)) are normal
in Py(K), and if & € {b, byby } then 22" = (2" ")2, where 22" € U, = 72(P,(K)) by the induction
hypothesis, so %" € 72, (P (K)).

To prove that 72, | (P2(K)) C U,1, using the induction hypothesis and the fact that 72, (P (K))
is generated by [P(K), 12 (P(K))| U {z? : x € v2(P(K))}, it suffices to show that [P»(K),U,| C
Uni1, and that 22 € U,y for all x € U,. We first show that [P(K),U,] C U,11. Let z € Py(K),
and let u € U,.

(1) If u € I, (Py(K)) then [z,u] € Uyq1.

(2) If u = (byby)*" " then [z,u] = 1 because (byby)?" " € Z(Py(K)) by Proposition 5.2.

(3) If u = b3, we claim that [b2" 2] € Ly for all z € {ag, (aza;1)", by, (boby)™'}. The
result is clear if x = by, so we consider the three other cases. We proceed by induction on
n. Suppose first that n = 2. If x = ay then by (3.2), (5.13) and Proposition 5.12, we have:

[u, 2] = [b3, as] = [ba, by, as] [by, as]® € Ls.
—_—
eWs=Ls €W3=Ls
In the remaining two cases, by (5.9), (5.12), (5.14) and Proposition 5.12, we have:
[(a2a1) 7", u] = [(a2a1) 71, B3] = (a3?ba)(a3ba)b3° = a3 las,bo] € Ly
EW‘;ZL;; G[LQ,H]CLg
[(b201) " u] = [(b2b1) ™", 03] = (azbaaz)(azboaz)by”
= lasho,a3] a3 ag" ba? [[02. 03], bs] € Ly,
€lH,L2]CLs eWs=Ls €Ws=Ls €I's(H)CLs

which proves the claim in the case n = 2. Now suppose that [bgj_l,x] € Lj;q for all
2 < j < nand x € {ay,(aza;), by, (byb1)"'}. Then by Proposition 5.12 and (5.13),
(02", 2] € Lty = Wiyq, and hence [b3" ", 2] € Wyig = Lyis. So by (3.2), we have:

w2 o] = 02" [bg"‘l,x]] 12" 2]2 € Loy,

GLn+1 GLn+2

N

TV
E[H,Ln+1]CLn+2
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which proves the claim for all n > 2. Now let x be an arbitrary element of P(K). Since
the set {as, (agai)™t, by, (beby) '} generates P»(K), for some ¢ > 0, there exist xq,...,7; €
{ag, (azar) ™t by, (bab1) ™'} and ey, ..., &, € {1,—1} for which z = 27'25? - - - 2*. Asin (5.29),
we have the following relation:

[u, 2] = [u, 27" (.7:? u, x?]xfal) e (x‘ilx;? ezt xS S x2_52x1_51) ) (5.33)

Using the fact that L, is normal in H by Lemma 3.3, it follows from (5.33) that [b3" ", 2] €
2n—1

L1, and since Ly, C Iy (P2(K)) by Theorem 1.1, we deduce that [b5 x| € Upyq.

This concludes the proof of the inclusion [P(K), U,] C U,1;. It remains to prove that {z* : x € U,} C
Upir. Itz = 02" or & = (bydy)¥" " then clearly 2% € U,,1. Using Theorems 1.1(1) and 5.4, if
x €' (P(K)) = L, % <(a1a2)2"_1>, then in terms of this semi-direct product, x = (21, x2), where
21 € Ly and x5 € <(a1a2)2n71>, and 2? = (z1, 22) (21, 22) = (21.0(22)(21),23). Now 23 € ((a1a2)*"),
and since 1y € L, = W,, we have x% € Wyui1 = Ly by Proposition 5.12; and therefore
z1.p(x2) (1) = 23 (p(22)(21").21) ™" € Lysq and 2% € Lpiy % ((a1a2)*") = i1 (Po(K)) C Upaar.
If z is a product of conjugates of generators of U, then x? € U, using (5.31). This shows that
{2? : 2 € U,} C Upyr. It follows that 72, (P2(K)) C Upi1, s0 2,1 (P2(K)) = Upyq. Using the
explicit characterisation of I, (P2(K)) given by Theorem 5.4 and Remark 5.14, the first part of the
statement follows. The second part is a consequence of the fact that (1), -, U, = {1} using the first
part. Il

5.4. The lower central series of P, (K). For n > 3, the situation is more complicated due to the
complexity of the lower central series of P»(IK). The idea is to use the Fadell-Neuwirth short exact
sequence (5.1) and to calculate recursively I';,,(P,(K)) for m > 1 and n > 3. Thus will allows us to
prove that P,(K) is residually nilpotent for all n > 1 in Theorem 5.25.

With the notation of Theorem 1.1 and equation (5.1), we may write P,;(K) = H x, G, where
H=m(K\{z,...,2,}), G = s(P,(K)), and s is the section for p, given by Proposition 5.1.

Remark 5.15. Notice that H,, = [G, Ly,—1] and K,,, = [I',,—1(G), H], for all m > 2, since the action
¢ of G on H is defined by conjugation.

In what follows, we will take G to be equipped with the generating set:

X:{s(z) sz €{a;, b, Cip - 1§@'§nand1§j<k§n}}
= {Cli, bi, Ci e, anGpngt, bpbpy1Chongrs Ci,nci,n+10;;+1 1< <k<n-— 1}. (5.34)

In P11 (K), for 1 < j <, let D; = C’;;HC}H,”H. Since Cjn41 = D;l---Dj_Jrlle_1 for all
j=1,...,n, the set:

Y = {an+1,bn+1,Dj : ] = ]_, ce ,’I’L} (535)
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generates H, and using Theorem 2.1, the action ¢: s(P,(K)) — Aut(m (K \ {z1,...,2,})) is
given by:

( (

Q1 if 2 =a,41
(,O(CLZ)(Z) = bn+1an+1Dia;j_1 1f Z:bn+1
\ai,ijO./i_j it z=D,
( an+1bn+1Cz',n+1DzCiTnl+1b;}r1 if 2=an4
bpi1CinDICHE if z=b,
p(b)(2) =g T e LT
ﬁi,z‘Di ﬁi,i le—Di
gﬁi,ijB;jl le:D],j#Z
( .
an+1 if z=a,41
©(Cix)(2) =4 bptr if 2=0b,41
SiiwD;0 if z=D;
\ LRI 5k j
. ' (5.36)
Ant 1 if 2=a,41
P(anan41)(2) =X aylbpi1an1 Dy if 2=byyy
k&ij&j*l lf Z:Dj

(Dnb;lrlanﬂbnﬂ if z=an4
D! it z=D,,
{0541 D;bni1 if z=Dj, j#n

@(bnbn-‘rlcn,n-i-l)(z) =

( -1 -1 .
Cn,n—i—l Ci7n+1an+10i,n+lcn’n+1 if z= (p41

—1 _ -1 -1 : _
SO(Ci,nCi,n—‘rl Cn,n—i—l) (Z) - Cn,nJrl Ci,n—i—l bn+1 Oi,n+1 Cn,n—H lf = bn+1

\ ggiJDjéz‘le if z=D;,
where:
1 iti<j 1 if i < j
@iy = Cittnminn = Bij =4 but1Cini1 if i = j
\CilllerlC"v"‘H ifi>7 b"+1Ci7n+1Ci_+11,n+1b;_|1.1 iti>
(1 ifh<jori>j
Oige =4 Cilinn1Cinen itk =
| Crtrnp1Chmpr i k> >
forall 1 <i<k<n—1and1<j<n,and where &; = a;} 0, and 8;j = Crpi1C5 1 0ijin.

Our aim is to determine the subgroups L,, that were defined in the statement of Theorem 1.1
for all m > 2. For ¢ > 0, let:

A =Dy - j=1,....n),. (5.37)
If i = 0, we write A, = AL. To compute Ky, recall that Ky = H,, and that this subgroup is
normal in H by Lemma 3.3. Using (5.36), observe that ¢(a;)(bny1)by11 = bui1ani1Dia, 1b, 1, for
all 1 <4 <n—1, and @(bubys1Crnt1) (bni1)byty = b1 Dy, 1. So by normality of Ko, D; belongs
to Ky for all 1 < j <n, and therefore A,, C K, by (5.37). Moreover, go(bnanC’n,nH)(an+1)aﬁ1 =
Dby 41 ani1bpiia, e, SO [by1y, ant1] belongs to Ko also. Applying Lemma 3.4(1) with X and Y as
defined in (5.34) and (5.35), and using (5.36), we see that Ky = ((An, [an1, bns1])) ,, and therefore:

Ly = (To(H), Ay) . (5.38)
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Let Y7 = Ly = H, and for m > 2, let:
Vi = (A2 VY] s 1<i<k<m,i+k=m). (5.39)
In what follows, we will refer to the elements of the set
{D?m_Q, i,y  j=1,...,n, 4y, €Y;, yp €Yy and i + k = m}

as generators of Y,,. Since I';,(P,41(K)) = Ly, x I';,(P,(K)) by Theorem 1.1(1), to prove that
P, +1(K) is residually nilpotent by induction on n, it will suffice to show that L,, C Y,, for all
m > 2 (we will show in fact that L,, =Y,,), and then that (-, Y, = {1}.

Remark 5.16. For all m > 1, Y,, is a normal subgroup of H, and Y,,,1 C Y, by induction on m.
Further, we claim that ¢(g)(Y;) C Y; for all i > 1 and g € G. To see this, observe that ¢(g)(D;) is
a conjugate of Dj or D;" for all j = 1,...,n by (5.36), so ©(g)(A2) c A% for all i > 1. Also, if
yr € Yy and y; € Y] then o(g)([yr, vi]) = [©(9)(vk), ¢(g)(y1)], and the claim follows by induction on
i

Lemma 5.17. [G,Y,,] C Y41 for allm > 1.

Proof. If m = 1, then [G,Y;] = [G,H] = Hy C Ly = Y,. Now, by induction on m, suppose
that [G,Y;] C Yiyq, for all 1 < ¢ < m. Let us prove that [G,Y,,11] C Y10, To do so, let
lg,h] = ¢(g)(h).h™! € [G,Y11], where g € G and h € Y,,41. By Lemma 3.4(2), we need only
analyse the following cases where g € X and h is a generator of Y,,,:

(1) h=D?"" where j € {1,...,n}. By (5.36), if j € {1,...,n — 1} then:
p(b) (D" ).D7" " = (B35, D7D € Yinga,
because D?m_l € Y,,41, and if j = n then:
P(bnbn1Crn))(D2 ). D" = D" € Vi,

Similarly, by (5.36), one may check that if ¢ is any other element of X then ¢(g) (D]?"H).Dj_Qm_1
is a commutator of DJQ»m_1 with an element of H, and so belongs to [H, Y, 1], which is con-
tained in Y, 1o by (5.39).

(2) h = ly;,y;], where 1 <4,5 <m, i+j=m+1,y; € Y;and y; € Y;. By Remark 5.16, we have
that ¢(g)(Y;) C Y; for all I > 1. By the induction hypothesis (¢(g)(y; ').y;) ™" € [G, Y]] C
Vi and (@(9)(y; )y) ™" € [G,Y] C Yipr. Therefore [(0(g)(y;")y) " e(9)(yi )] €
Vi1, Yi] C Yoo and [(0(9)(y;)-v) ™"yl € [Yier,Y)] C Yoo by (5.39), and writing

9, v, yi]] = ©(9)([yi,yi])-ly;, vi] in the form of (5.15) and Remark 5.16, where we re-
place [ by y; and h by y;, and using the fact that Y5 is normal in H, it follows that
2(9) (> yil)- 15 vi] € Yimsa. O

Remark 5.18. For all m > 1, Y,, is a normal subgroup of H x, G. To see this, recall that Y,, is
normal in H by Remark 5.16, and if y € Y,,, and g € G, [g,y] € Yint1 C Y, by Lemma 5.17, and
therefore gyg~! = [g,yly € Y.

To prove the results that follow, we will make use of two commutator identities [27, Theorem 5.1]:
[a, bc] = [a,b][b, [a,c]][a, ] (5.40)
[[a, 0], "] [[b, ], a%] [[c, a], 0°] =1 (5.41)

where ¢® = bcb™!. The following two lemmas are inspired by those of [11, Section 3].

Lemma 5.19. Let x € Y, and y,w € H X, G. Suppose that [w,y] € Y,. Then [x,y| € Y,1, if and
only if [x,y"] € Vg
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Proof. Set z = [w,y]. Then y* = zy, so by (5.40), [z,y"] = [z,2y] = [z, 2][2, [z, y]][z,y]. Since
z € Y, by hypothesis, we have that [z, z] € [Y,, Y] C Y4+, by Remark 5.16. Also, [z,y] € Y}, because
Y, is normal in H x, G by Remark 5.18, and so [z, [z, y]] € [Y,,Y,] C Y,4, by Remark 5.16. The
result then follows. O

Lemma 5.20. For all k,m > 1, [['x(G), Y] C Yiim.

Proof. It k = 1, the result is a consequence of Lemma 5.17. Now suppose by induction that
Te(G), Y] C Yigx for some & > 1 and all m > 1, and let us prove that [y 1(G), Y] C Yiemir
for all m > 1. Applying (5.41) to elements g € G, g, € I'y(G) C G and h € Y}, of the commutator
[Fk’Jrl (G>7 Ym] = [[Fk’(G)v G]a Ym]a we obtain:

[[glmg]v hg} Hga h‘]aglﬂ Hhagk]aggk] =1 (5'42)

By Lemma 5.17, [g,h] € Y41, and [[g, h],gk] € [Yos1,Tk(G)] C Yiiky1 using also the in-
duction hypothesis. Further, [h,gx] € [Yin,Tk(G)] C Yok C Y by the induction hypothesis
and Remark 5.16, and consequently [[g, h],g,@] € Yirxr1 by Lemma 5.19. Also, [[h,gk],gg’“} €
[V, Te(G)], G] C [Yoik, G] C Yiiks1 by the induction hypothesis and Lemma 5.17. Thus
{9k g], h9] € Yinyrir by (5.42). By (5.40), we see that:

([9%. 9], 1] = [lgw. 9], lg, BB] = [lg. 9], l9, B} [lg. R, Lok, 9], 2] Lok, 9], Io].- (5.43)

Now [[g, 9], [9,h]] € [Tk(G),Yims1] C Yiirsr by the induction hypothesis, and by Remark 5.16,
we see that

“ga h]7 [[gkag]’ h}} € [Ym-‘rl) [Pk<G>’ Ym“ - [Ym+17Yk+m] C }/2m+k+1 - Ym+k+1‘
We conclude from (5.43) that [[gs, g, h] € Yiist1, and the result follows. O
Lemma 5.21. Forallm > 1, L, =Y,,.

Proof. We prove the lemma by induction on m > 1. For m = 1,2, the result follows from (5.38)
and (5.39). Suppose that m > 2 is such that L; =Y; for all 1 <i < m.

We first show that Y, ;1 C L,,1. For all i,7 > 0, it follows from [27, Theorem 5.3] and
Theorem 1.1(1) that:

[Li %, Ti(G), Ly %, T;(G)] = [Ti(H %, G),T;(H %, G)]
C Loy (H %, Q) = Livj ¥, Tii(G). (5.44)

Let z; € L; and x; € Lj. Then (z;,1) € L; x, I';,(G) and (z;,1) € L; x, ';(G), and using (3.3)
and (5.44), we obtain:

([zs, 23], 1) = [(@3,1), (2, 1)] € Lig; %, Tigs(G).
Hence [z;,x;] € Liyj, then [L;, L;] C Liyj. Soif 1 < 4,5 < m, where i + j = m + 1, we see

2m71

that [Y;,Y;] = [L;, L;] C Ly,+1 using the induction hypothesis. To prove that A2"  C L1, by
induction, we have D?"* € Y;, = L,, for all j = 1,...,n. Therefore gp(bj)(D?-m_Q).Dj_QW2 and
@ (bpbrs1Crngr ) (DF"7).D;2" " belong to Hyyy C Ly for all j = 1,...,n — 1. Consequently
[ﬁj,j,D;2m72]D;2m71 and D;2""" belong to Ly for all j = 1,...,n — 1. Now [,BjJ,Dj_Wﬂ] €
[H,L,,] C Ly forall j =1,...,n—1, and thus D]Zm_1 € L1. Using the fact that L,, 1 is
normal in H by Remark 5.16, Lemma 3.3 and (5.39), we conclude that Y, 11 C Lyy1.

To prove that L,,.1 C Y11, the induction hypothesis implies that [H, L,,] = [H,Y,] C
Yni1. By Remark 5.15 and the induction hypothesis, we have H,, .1 = [G, L,] = [G,Y,,] and
K1 = [[n(G), H]. So by Lemma 5.20 H,,,; and K, are contained in Y;, ;1. Since L, =
([H, L), Hpt1, Kina1), it follows that Ly, 11 C Yi,41, and hence Ly, 1 = Y11 O
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To prove that P,;1(K) is residually nilpotent, it remains to show that (7,5, Y, = {1} To do

so, we define two families (Z,,)m>1 and (Zm)m>1 of subgroups of H as follows. Let Z; = 7, = H,
Zy=Vy=Y5, and if m > 3, let:

={({2? 1 2 € Zy, JUX,)),, and Zyoy = (A2 U X,1)),,, where: (5.45)

X _ (1,0 €eTi(H): 31 < ji1 < .o < Jei <4, Ty ooy, €Ay
me for all i = 2, .

& {[xl,...,xi]Qm_i_kE FZ(H) d1 << ..o < gk <, Tjryeey Ty, € A

}forallm>3

X= ”} for all m > 2.

foral 0 <k<m-—i¢,andi=2,...,m
Note that if i = m (resp. k = 0), the elements z1,...,x; of H that appear in the definition
of X, (resp. of X,,) are arbitrary. If m > 3 (resp. m > 2), we will refer to the elements of
XnU{z? : x € Z, 1} (resp. of X,, U {D?m*2 : j=1,...,n}) as generators of Z,, (vesp. of Z,).
Proposition 5.22. Let m > 1. Then 2 C 7? Jo1(H), where [2] denotes the least integer greater
than or equal to x. In particular, ﬂm>1 ={1}.

Proof. If m € {1,2} then [m/2] =1, v*(H) = H and thus Z,, C v2(H). So suppose by induction
on m that Z; C 9f, 5 (H) for some m > 2 and all 1 iz < m. Since 7?(m+1)/2] (H) is normal in
H, by (5.37) and (5.45), it suffices to show that {D?" : j =1,...,n} U Xpy1 C Vmsr)y2 (H)-
If j =1,...,n then DQW1 = (D2m72)2, and since DJQ-W € A" and A2"7* C Z,,, it follows by
the mductlon hypothes&s that D" ‘e Ve o1 (H), and hence Dy = Vo111 (H). The fact that
(m/2]+1> [jm + 1)/2] implies that ’y?m/zngH)kC Ve 1)/21(H), whence D" e Vi1 (H)-
Now let z € X,,41, and let z = [zq,... ,$i]2m+ " e Ty(H), where 2 < i < m+ 1 and there exist
1 < g1 < <jr <14, such that zj,...,2;, € Ay, forall 0 <k <m+1—-4 Ifi=m+1
then z € 72, (H) C 73,11y/2(H) because m2+ 1> [(m+1)/2]. So suppose that 2 < i < m.
If0<k<m—ithenz= ([xr,...,2>" "), where [z1,...,z)"" " € X,, C Ve oy (H) using
the induction hypothesis, and thus x € 7?m/2]+1<H) C 7%(m+1)/21<H)' Finally, if k = m + 1 —1
then © = [zq,...,2;] € T;(H). Since k < i, we have i > (m 4+ 1)/2 > [(m+ 1)/2], and hence
v € I'i(H) C T2 (H) C 7%(m+1)/21 (H) as required, and this completes the proof of the

inclusion {DJQ-"H pj =1, nb U X1 C )0 (H). Finally, since H is a free group of finite
rank, it is residually 2-finite and (.~ 72, (H) = {1}, 50 (.5, Zm = {1}. O

The aim now is to prove that Y,, = Z,, = Zm for all m > 2, from which we will conclude that
(Nns1 Ym = {1} and that P, (K) is residually nilpotent.
Remark 5.23. Let m > 2. Taking A = A,, in (5.17), we have <)?m> = & ;. Further, since D; € A,
for all j = 1,...,n, we see that DJQ-W2 € &1.m, where we take i = k =1, so A%WQ C &1m- Therefore
Zm C &1,m, and Corollary 5.9 then implies that

[H, Zm] C [H, gl,m] C 827m+1 = <5(:m+1> C Zm+1.

Note also that if m =1 then [H, Z,] = [y(H) = <)22> C Zs.

Lemma 5.24. Forallm>1,Y,, = Z,, = Z,,.

Proof. If m = 1, the given equality holds by definition. If m = 2 then <)N(2> = I'y(H), and
Zy = (A, U FQ(H)>>H = V5 using (5.38) and the fact that V5 is normal in H by Lemma 3.3. So
suppose by induction that:

Y, =7, = Z for some m > 2 and all 1 <i < m. (5.46)
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To prove that Zmi1 C Zmyii, let us show that A2 and X1 are contained in Z,,q. For all
j=1,...,n, we have Df-mﬂ*2 = (DJQ-WH)2 and DJQ.W2 € Zym = Zp by induction, so A" C Z,i1
by (5.45). Now suppose that [z, ... ,mi]2m+1_i_k € )?mﬂ, so k elements of {xy,...,z;} belong to
A,, where 0 < k <m+1—i Ifm+1—i>Fkthen [z1,...,2]*" " belongs to Z = Zm by
induction, so [z1,..., 2" " = ([e1, ..., 2] )2 belongs to Zpyyi. If m+1—i = k then
[z, .,z = [24,..., 2] € Ti(H), where k = (m + 1) — i elements of this commutator
belong to A,, so [z1,...,z;] € Z,,+1. Hence )~(m+1 C Zm+1, and thus Zm+1 C Zms1-

We now show that Z,,,1 C Zm+1 First note that X,,,1 C )?mﬂ, for if the commutator
[z1,...,2;] belongs to ) Xppy1 then m 41— of its elements belong to A,, and so [z1,...,2;] =
(71, .. xl]QmH " e X1, where k =m +1—i. Now let y € Zm+1 be of the form y = 22, where
T € Zy = L by induction. If z is a generator of Z,, then 22 € Zm+1 from the definition of Zm+1
If 2 = x1---x;, where z; is a generator of Zm forall 1 <i < [, then making use of a decomposi-
tion of x analogous to that of (5.31), the previous sentence and the fact that [H, Zy] C Zms1 by
Remark 5.23, it follows that y € Zm+1. We conclude that Z,,.1 C Zm+1, and hence 7,11 = Zm—&-l‘

To show that Z,,,1 C Y11, let y € Z,,11. We first consider the following two possibilities:

(i) y = 22, where z € Z,, = Y,, by induction. If x = Df-mf2 for some j = 1,...,n, it follows from

the definition of Y,,,; that y = 2? = DJZ-W1 € Yy If o = [z, 2], where 1 <i < j <m,
i+J=m,x; €Y;and x; € Y}, then:

y =[x, 1> = [aci, [z, ;] } zja; [xj_l, x; ] Tt
——

~—

€[Y3,Y;]1CYm €Z7.+1_Yz+1
—_— ~

€[H,Ym]CYm+1 €[y; Y+1]CYm+1

Note that to obtain xf € Y;11, we have 1 < m, so Y; = Z; and Y;,1 = Z;;1 by the induction
hypothesis. Therefore y € Y,,,1 since Y;,.1 is normal in H by Remark 5.16

(i) y = [x1,...,25] € T;(H), where 2 < i < m+1, xq,...,2; € H, and there exist 1 < j; <
oo < Jmg1—i < i such that x;,...,2; ., . € A,. If j; =1, i.e. 21 € Ay, then z; € Y5,
[Ty, ...,z € Ty_1(H),and m —i = (m — 1) — (i — 1) elements of {zs,...,z;} belong to A4,,
so [za, ..., 24 € Zy—1 = Y1 by induction. Hence:

Yy = ['Tla [x27 s axz]] € D/Qa Ym—l] C Ym+1-
If j1 > 1 then [zo,...,2;] € I''_1(H) and m +1 —4 = m — (i — 1) elements of {z,,...,2;}
belong to A,. Therefore [zs,...,x;] € Z,, = Y,, by induction, and thus:
y = [z1, 22, ..., 25]] € [H, Y] C Yius.

For the general case, if y is a product of conjugates of the two types of elements described in (i)
and (ii) above, then y € Y;, 1 because Y,,,1 is normal in H by Remark 5.16, and we conclude that
Zm+1 C Yy _ _

To complete the proof, it remains to see that Y,,,1 C Z,,41. From the definition of Z,,,; given
in (o 45), it is clear that A2" C Zms1. Applying the induction hypothesis, we have [Y,,Y]]
Z;, Z] for all 1 <,j < m for which i +j = m + 1, so it suffices to show that Z;, Z] C Zzﬂ We
shall prove by induction on i that [ZZ, Z; ;] C ZHJ for all 1 <4 <m and j > 1. The inclusion that
we require then follows as a special case. So let j > 1. If i = 1 then [Zl, Z] [H, Z] C Z i+1 by
Remark 5.23. So assume that 1 < ¢ < m, and suppose by induction that:

[Zk,Z]CZkﬂ forall j >1land 1 <k <i<m. (5.47)

The aim is to prove that [ZZ-, Zj] C Z,-+j. Let z € Zi and y € Zj. Then x € Y; by the induction
hypothesis (5.46) and the fact that 1 < ¢ < m. Assume first that z is a generator of Y;, so that one
of the following conditions holds:
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(1) 2 € [V}, Y], where 1 <l <k <i<mandl+k=1i Thenx € [Z,Zk] by the induction
hypothesis (5.46).
(2) z € A2,

and let us prove that [z,y] € Z-Jrj. In case (1), [27, Theorem 5.2] implies that:
121, 24, Zj] = (2,0, Zx)) € (20,20, Z,)). 120 | 2, 2. (5.48)
By the induction hypothesis (5.47) and the fact that k,I < m, we have:

{[217 [2]4)72]]] C [Z,Zkﬂ] - Z+k+j = ~i+j (5.49)
[Zlm [Zja Z]] = [Zk, [Z, Z]H - [Zka ZlJrj] C Zk+l+j = ~i+ja

and thus [z,y] € Zi+j for all y € Zj using (5.48) and (5.49). In case (2), let 2 = D¥ ", where
ke {1,...,n}. We consider the following cases:

e i = 2. Then z € A,. Let us show by induction on j that [A,, Z;] C Z;o for all j > 1.
Suppose first that j = 1, let € A, and let y € Z; = H. Then [z,y] € I'5(H), and the
set {z,y} has one element, z, in A,, therefore [z,y] € X3 C Z3, and thus [A4,, Z] C Zs.
Now suppose that j > 1 and that [A,, Z;_;] C Z;41 by induction. Let x € A,, and let
y € Z;. First assume that y is a generator of Z;. If y = [y1,...,u] € I'/(H) belongs
to X, then j — [ elements of {yi,...,y} belong to A,, therefore [z,y] € T'41(H), where
j—1l4+1=(j+2)—(I+1) elements of {z,y1,...,y} belong to A,. So [z,y] € X;12 C Zji2
If y = 22, where z € Z;_4, then:

[z, y] = [z, 2%] = [z, 2] [[2, 2], 2],

by (3.2). Since [z, 2] € [An, Zj_1] C Z;11 by induction, it follows that [z, 2]? € Z;15 from the
definition of Z;,5 in (5.45), and [[z, 2], 2] € [Zj+1, H] C Z;42 by Remark 5.23 and the fact

that Z, = Z, for all [ > 1. Therefore [z,y] € Zjro. Now if y = (a1ydarl) - (auy®agl),

where for all k = 1,...,s, y; is a generator of Z;, ay € H and 0, € {1,—1}, then apply-

ing (5.29) and induction on s, we see that [z,y] may be written as a product of conjugates

of commutators of the form [x,y*]. Then [z,y] € 2j+2 using the above computations, the

normality of Z; 5 in H, and the fact Z; = Z; for all [ > 1 from the first part of the proof.
e ; > 3. Then:

[, y] = [D} ",y = [DF ", [DF )] [DF ., y)?

by (3.2). Now [D27* 4] € [Z;_ -1, Z; fife ZZ 1+; using (5.47), and we deduce from Remark 5.23
that [DZ°, [D¥” S,y]] [H,Zi_14;] C Zij. Since [D2" yl € Zi_14; = Zi_14j, we have

(D27 Y2 € Ziy; = Zigs, 50 |1,y € Zins.
If now z € Y] is a product of conjugates of [ generators of Y;, then [x y] € ZHJ using the above
computations, (5.29), and the normality of ZH] This shows that [ZZ,Z | = [Vi,Z,] C Ziyj as
claimed, and so Y11 C Zm+1 as required. OJ

Theorem 5.25. For all n,m > 1, we have T, (P,11(K)) = Z,,, x T, (P,(K)).

Proof. If n = 1,2 then P,(K) is residually nilpotent by Theorem 5.4 and (5.10). Suppose by
induction that P, (K) is residually nilpotent for some n > 2. Using the Fadell-Neuwirth split short
exact sequence (5.1), the result follows by induction, and by applying Theorem 1.1, Lemmas 5.21

and 5.24. 0

Proof of Theorem 1.3(1). If n = 1 (resp. n = 2), the result is a consequence of (5.10) (resp.
Theorem 5.4). If n > 3, the result follows by induction on n, Proposition 5.22 and Theorem 5.25. [
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5.5. The case of the braid group B,(K). In this section, we prove Theorem 1.3(2). We start
by giving two propositions in the cases where B, (K) is not residually nilpotent or is not residually
soluble.

Proposition 5.26. If n > 3 then B,(K) is not residually nilpotent. Further, for all i > 3,
Lo(Bo(K)) = L(Bu(K) = {(03'01) 5, .

Proof. In this proof, the relation numbers are those of Theorem 2.2. Let n > 3, and consider the
following short exact sequence:

NBuK)  BuK) 5. Bu(K)
LB.(K)  Ta(BuK)  (B.K)

where p, is the canonical projection. Using relations (1) and (2), and arguing as in [16, p. 680]
or [5, Proposition 3], it follows that the I's(B,,(K))-cosets of oy, ...,0,-1 in B,(K)/I'3(B,(K)) are
all identified to a single element, which we denote by o. Since n > 3, it follows from relations (3)
and (4) that the I's(B,(K))-cosets of @ and b commute with o. By relation (7) and (5.50), o is
of order 2, by relation (5), the I'3(B,(K))-cosets of a and b commute, and from relation (8), the
I'3(B,(K))-coset of a is of order 2 in B, (K)/I';(B,(K)). By Remark 2.3, & and the I'y(B,,(K))-cosets
of a and b are non trivial in B, (K)/T's(B,(K)), therefore o and the I'3(B,,(K))-cosets of a and b are
also non trivial in B, (K)/T's(B,(K)) and satisfy the same relations in B,(K)/TI'3(B,(K)) as their
images in B, (K)/I'y(B,(K)) under p.. Hence p, is a isomorphism, and I'y(B,(K)) = I's(B,(K)),
so ['9(B,(K)) = I';(B,(K)) for all i« > 3. Since I'y(B,(K)) is non trivial, we see that B, (K) is not
residually nilpotent.

It remains to show that I'z(B,(K)) = <<05101>>Bn(K). From relations (1) and (2), for all i =

1 —

(5.50)

-1 -1 -1 . . -1
1,...,n—=2, we have [0y, 0511] = 0,0,410; 0, = 0,04, in particular, <<<72 01>>Bn(K) C Ty (B, (K)).
To prove the other inclusion, for all © = 2,...,n — 2, note that:
-1 -1 -1 _-1 -1 -1 -1
05, 0i41] = 0;410i = 011 0i(0i10; 0; Uz‘—l) = Ui+1(0i—1 Uiai—l)gz‘ ;-1
—_—— —_——

1) 2)
_ -1 -1 -1 _ s (P R |
= (0i-10i41)010i-10; 0, = 0i-1(0i01410; 0,3)0i-10; 0
—— ———

(1 (2)

= ai_laiaiﬂ(cr-_lai_l)aifla-_la-__ll.
It follows by induction on i that [o;, 04 1] <<02 01>> B, for alli =1,...,n— 2. Further,
_ -1 -1 -1 _ —1y—1,_ -1 -1 —1
la,01] = aci(0q  03)a™ o] = a(og0; ) "a .(0201 ) € (o3 01>>Bn(K), (5.51)

(3)
and similarly, [b,01] € ({05 "01)) B(x) USING relation (4). To see that [b,a] € {05 "01)) B (K)’ first
note that:

o7 = o1b ooy tboy b = (000 oy, b boy [0, b7 € (o) 01>>B (5.52)
using relation (7), and:
bab~ta™! =ba(o;' o)) (o107 )a™t = bao; (atoy o oya)o et
———

= bla, 07 oy 2b o, d] <<05101>>BH(K) ’

by (5.51) and (5.52). Since the result is valid for the generators of B,(K), the result follows
for an arbitrary element of I'y(B,(K)) using the formula given by (5.29) and by the normality
of <<05101>>Bn(K). We conclude that T'y(B,(K)) C <<05101>>Bn(K), and hence that I'y(B,(K)) =

<<0-2_101>>BH(K)‘ 0
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Proposition 5.27. Ifn > 5 then B,(K) is not residually soluble. Further, (B,(K))" = (B,(K))®
for all 1 > 2.

Proof. Let n > 5. Once more, the relation numbers will refer to those of Theorem 2.2. As in the
case of the torus (Proposition 4.3), first consider the following short exact sequence:

(Bu(®)W i Bu(K)
H

(Bn(K))®  (Bn(K))®
where p, is the canonical projection. Using relations (1) and (2), for all z =1,. — 1, the
o; belong to the same (B, (K))®-coset, denoted by o, in B,(K)/(B,(K))® (the hypothesis that
n > 5 is used here, see [15, Theorem 1.4, p. 3389]). By Remark 2.3, ¢ and the (B,(K)®-cosets
of a and b are non trivial. From relations (3) and (4), the (Bn(K))(Q)—cosets of a and b commute
with o. Relation (7) implies that o is of order 2, and so from relation (5), the (B,(K))®-coset
of a commutes with that of b. By relation (8), the (B,(K))®-coset of a is of order 2. So p, is a
isomorphism, and (B, (K))" = (B,(K))®. The second part then follows. O]

Proof of Theorem 1.3(2). By Proposition 5.26 (resp. Proposition 5.27), if n > 3 (resp. n > 5),
B,(K) is not residually nilpotent (resp. not residually soluble). Conversely, using Theorem 2.5,
the short exact sequence (1.1), and the fact that P»(K) is residually 2-finite by Theorem 5.13,
By(K) is residually 2-finite. In particular, Bs(K) is residually nilpotent. By (5.10), B1(K) = m(K)
is residually nilpotent. The fact that P,(K) is residually soluble for all n > 1 by Theorem 5.25
implies that B, (K) is residually soluble for all n < 4 using Theorem 2.5. O

1— 25 B (KA — 1,

6. THE CASE OF NON-ORIENTABLE SURFACES OF HIGHER GENUS

In this short section, we prove Theorem 1.4, by generalising Propositions 5.26 and 5.27 to non-
orientable surfaces of higher genus.

Theorem 6.1. Let M be a compact, connected non-orientable surface without boundary and of
genus g > 3. Then B,(M) is not residually nilpotent if n > 3, and is not residually soluble if
n > 5.

Proof. The relation numbers will refer to those of Theorem 2.4. Using Theorem 2.4 it is easy to
see that

B, (M)A = <0 a,i=1,...,9: a%-~-a§ = o2 (5. a;] = la;,a;] =1,i,j = 1,...,n>,
where o denotes the I'y(B,,(M))-coset of o; for alli = 1,...,n—1. Asin the proof of Proposition 5.26
(resp. Proposition 5.27), using relations (1) and (2), one may show that for all i = 1,...,n — 1,

the o; belong to the same I's(B,(M))-coset (resp. (B, (M))®-coset), which we also denote by o,
in B,(M)/T3(B,(M)) (resp. in B,(M)/(B,(M))®). If n > 3 (resp. n > 5), by relation (3),
the I's(B,(M))-coset (resp. (Bn(M))®-coset) of a, commutes with ¢ for all 1 < r < g. By
relation (5), the T'3(B,,(M))-coset (resp. (B,(M))®-coset) of a, commutes with that of a, for all
1<r,s<g. By (6),a}---a2=0>""1 and relation (4) does not give any new information. Thus
Bn(M)/T3(B,(M)) (resp. Bn(M)/(B,(M))®) is isomorphic to B,(M)*P. Hence B, (M) is not
residually nilpotent if n > 3 (resp. is not residually soluble if n > 5). [
Proof of Theorem 1.4. If M = K, the result follows from Theorem 1.3(2), and if M is a compact
surface without boundary of genus g > 3, the conclusion follows from [4] and from Theorem 6.1.
If M =RP? by [18], B,(RP?) is residually nilpotent if n < 2, and if n # 4, B, (RP?) is residually
soluble if n < 4. The result in the case n = 4 may be obtained by using Theorem 2.5 and the
following Fadell-Neuwirth short exact sequence:
1 — P,(RP?\ {z1,...,7,}) — Ppin(RP?) — P,(RP?) — 1,

where n > 2. Note that if n = 2, P,(RP?) is the quaternion group of order 8 [34], which is 2-finite,
and P, (RP?\ {x1,...,z,}) is residually 2-finite by [4]. Therefore P,,,o(RP?) is residually 2-finite
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for all m > 1, in particular P;(RP?) is residually soluble. Applying Theorem 2.5 to the short exact
sequence (1.1), we see that By(RP?) is residually soluble. O

APPENDIX

Let M be the Mobius band, and let n > 1. The braid groups of M are those of RP? with a
single point removed [17, proof of Theorem 2(a)], and so B,(M) is the group T, ;(RP?) of [19,
Proposition 11]. We use the notation and results of that proposition in what follows. In particular,
P, (M) is generated by the set {A4;;,p; | 1 <i<jand 2<j<n+1}.

Proposition Al. Let n > 1. Then Z(P,(M)) = Z(B,(M)) is infinite cyclic, generated by py if
n =1, and by the full twist A2, if n > 2.

Proof. If n = 1 then P;(M) = By(M) is infinite cyclic, generated by py, and the result follows
in this case. So suppose that n > 2. Using the short exact sequence (1.1), we see that B, (M)
is generated by {oa,...,0n,02,..,pns1}. The braid AiH generates the centre of B,,., thus o;
commutes with A2, for all ¢ = 2,...,n. Further, using [19, Proposition 11, relation (V)], AZ,,
may be written in the following form:

A2 = (A1) (A13423) - (ApAog - Anctn) (A1 Azt - Apns)
= (A12)(A13423) - (A1 n A, - 'Anfl,n)p;il- (A1)

Since p,+1 commutes with A; ; for all 1 <7 < j < n+1 [19, Proposition 11, relation (II)], it follows
that p,41 commutes with A2, ;. Now the relation p; 1 = o] 'pio; ! of [34, p. 83] for B, 1(RP?)
also holds in B, (M) for all i = 2,...,m, S0 p; = 0;+*+ OpPps10, - -+ 04, from which we conclude
that p; commutes with A2, . Thus A2, | commutes with all of the elements of a generating set of

B, (M), hence (A2 ) C Z(B,(M)), and (AZ,,) C Z(P,(M)) since A%, € P,(M). To prove the

converse, we consider the following two cases:

(a) n=2. Let p: Po(M) — P;(M) denote the surjective homomorphism given geometrically by
forgetting the second string. The kernel of p is a free group of rank 2 for which (Ay 3, ps) is a
basis, and P;(M) = (p,) is infinite cyclic. Let Q = (p3) be the index 2 subgroup of P;(M), and
let G = p~'(Q) be the index 2 subgroup of P,(M). Then we have the following commutative
diagram of short exact sequences:

1 1
N p’G N
1 —— Ker(p) > G > Q > 1
1 —— Ker(p) —— Py(M) —2— P (M) — 1, (A2)
q q
Ly Ly

1

where q: Py(M) — Zs is defined by q(p2) = 1, and ¢': P,(M) — Z, is given by ¢ =
qop. From (A1), we have A2 = A 5p5?, and since A; 5 = py ' Ag3py " by [19, Proposition 11,
relation (V)], we see that:
NS =py Asapy ' py” = pa” padasps s (A3)
—_—————

€Ker(p)
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using exactness of (A2). So the restriction p‘ o G — () admits a section given by sending 03
to Az?, and from this and the fact that A2 € Z(Py(M)), the upper row of (A2) splits as a direct
product. In particular, G is the internal direct product of Ker(p) and (A3), and Z(G) = (A3).
Now Py(M) (resp. G) is an index 2 subgroup of By(M) (resp. of Po(M)), and a transversal is
given by {1,055} (resp. by {1, p2}). So every element z of By(M) may be written as z = apio),
where a € G and i, € {0,1} are unique. We shall refer to this expression as the normal form
of z. Let z € Z(By(M)), and assume first that z ¢ Py(M), so j = 1. Consider the basis (u,v)
of Ker(p), where u = Ay 3p3 and v = ps. By [19, Proposition 11, relations (III) and (IV)], we
have:

paupy ' = p3 ' Azzps. Assps = u”ou and prvpyt = . (Ad)
Hence the action by conjugation of ps on Ker(p) is given by composing the involution that
exchanges u and v with conjugation by u~'. The relation p3 = o, 'poo, " implies that:

Ugvogl = 02p3051 = p2052 = pQAQ’}, = pgvu’l = pQUu’lpgl. P2 = v’lupg
by (A4). Since z € Z(By(M)), z and v commute, so:
apyoy = 2 = vzv T = vaphoov oyt oy = vaphpy fuT voy. (A5)
If i = 1 then the left- and right-hand sides of (A5) are in normal form, and they clearly differ.

If i = 0 then using the fact that p? = u~'v™'A;? € G by (A3) and (A4), equation (A5) may
be written as:

aoy = vap;lu’lvag = vap;z. pzuflvpgl. P2092 = vaA§u2p202.

Again the left- and right-hand sides are in normal form, and they differ also. In both cases,
this contradicts the fact that z € Z(By(M)), and so we conclude that j = 0. Hence z € Po(M),
and (A2) C Z(By(M)) C Z(Py(M)). Tt remains to show that z € (A2). Suppose that i = 1.
Since z € Z(Po(M)), z commutes with u, so:

apy = 2 = uzut = uapy[l = uamu’lp;l. P2 = uau’lvflupQ

by (A4). Both sides are in normal form, and thus a = uau™'v"'u in Ker(p), which gives rise
to a contradiction under Abelianisation in this free group. Hence i = 0, and thus z € G.
So z € Z(@G), and therefore z € (AZ). We conclude that (A2) = Z(By(M)) = Z(Po(M)) as
required.

n > 3. Then Z(S,) = {Id}, and since the homomorphism B, (M) — S,, of (1.1) is surjective,
it follows that (A2 ) C Z(B,(M)) C Z(P,(M)). The proof of the fact that Z(P,(M)) C
(A2,,) is analogous to that of the inclusion Z(P,(K)) C Z, given in the second paragraph
of Proposition 5.2, where the kernel of the Fadell-Neuwirth short exact sequence involving the
pure braid groups of M is a free group with trivial centre. |
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