
HAL Id: hal-01713937
https://hal.science/hal-01713937v1

Preprint submitted on 21 Feb 2018 (v1), last revised 22 May 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A unifying framework for redundancy models: product
form and impact of independence assumption

Urtzi Ayesta, Tejas Bodas, Ina Maria Maaike Verloop

To cite this version:
Urtzi Ayesta, Tejas Bodas, Ina Maria Maaike Verloop. A unifying framework for redundancy models:
product form and impact of independence assumption. 2018. �hal-01713937v1�

https://hal.science/hal-01713937v1
https://hal.archives-ouvertes.fr

A unifying framework for redundancy models: product form and impact of

independence assumption

Urtzi Ayesta1,3,4,5, Tejas Bodas ∗,2,3 and Ina Maria Verloop1,3

1CNRS, IRIT, 2 rue C. Camichel, 31071 Toulouse, France
2CNRS, LAAS, 7 avenue du colonel Roche, 31400 Toulouse, France

3Univ. de Toulouse, LAAS, INP, 31400 Toulouse, France
4IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
5UPV/EHU, University of the Basque Country, 20018 Donostia, Spain

Abstract

In this paper, we present a unifying analysis for redundancy
systems with cancel-on-start (c.o.s.) and cancel-on-complete
(c.o.c.) with exponentially distributed service requirements.
With c.o.s. (c.o.c.) all redundant copies are removed as soon as
one of the copies starts (completes) service. As a consequence,
c.o.s. does not waste any computing resources, as opposed to
c.o.c..

We show that the c.o.s. model is equivalent to a queue-
ing system with multi-type jobs and servers, which was an-
alyzed in [1], and show that c.o.c. (under the assumption of
i.i.d. copies) can be analyzed by a generalization of [1] where
state-dependent departure rates are permitted. This allows
us to show that the stationary distribution for both the c.o.c.
and c.o.s. models have a product form. We give a detailed
first-time analysis for c.o.s and derive a closed form expres-
sion for important metrics like mean number of jobs in the
system, and probability of waiting. Comparing the perfor-
mance of c.o.s. with that of c.o.c. gives the unexpected result
(since c.o.s. does not waste any resources), that c.o.s. is worse
in terms of mean number of jobs. The latter illustrates that
the i.i.d. assumption (together with exponentially distributed
requirements) might lead to conclusions that are qualitatively
different from that observed in practice. We also show that
the c.o.s. model is equivalent to Join-Shortest-Work queue
with redundancy (JSW(d)). In the latter, an incoming job
is dispatched to the server with smallest workload among d
randomly chosen ones. Thus, all our results apply mutatis-
mutandis to JSW(d).

1 Introduction

Using redundancy to minimize latency in parallel server sys-
tems has become very popular in recent years [2–7]. While

∗Corresponding author: tejaspbodas@gmail.com.
Research partially supported by the French ”Agence Nationale de la
Recherche (ANR)” through the project ANR-15-CE25-0004 (ANR JCJC
RACON)

there are several variants of a redundancy-based system, the
general notion of redundancy is to create multiple copies of
the same job that will be sent to a subset of servers. By
allowing for redundant copies, the aim is to minimize the sys-
tem latency by exploiting the variability in the queue lengths
of the different queues. Several recent works, both empir-
ically [2, 3, 8, 9] and theoretically [4–6, 10–12], have provided
indications that redundancy can help in reducing the response
time of a system.

Broadly speaking, depending on when replicas are
deleted, we can consider two classes of redundancy systems:
cancel-on-start (c.o.s) and cancel-on-completion (c.o.c). In
redundancy systems with c.o.c, once one of the copies has
completed service, the other copies are deleted and the job is
said to have received service. On the other hand, in redun-
dancy systems with c.o.s, copies are deleted as soon as one
copy starts being served. From a practical point of view, if
servers have similar computing capacity the c.o.s system is
preferable: both configurations require the same amount of
signaling among servers, but the c.o.s system does not waste
any computation resources. In some concrete applications,
for instance in the context of organ transplants where people
list themselves in multiple waiting-lists across various states,
c.o.s. is clearly closer to reality than c.o.c.. In spite of this,
most of the recent literature focuses on systems with c.o.c,
and c.o.s. has remained largely elusive to exact analysis.

In a recent series of papers, Gardner et al. [6,7] have pro-
vided a thorough analysis of redundancy systems with c.o.c
in a system with K servers each with their own queue. In
the redundancy-d model of [7], redundant copies of an ar-
riving job are sent to d ≤ K homogeneous servers chosen
uniformly at random. Under the additional assumptions that
service times are exponentially distributed and that the re-
dundant copies are independent and identically distributed
(we call this the independence assumption), Gardner et al.
have shown that the steady-state distribution has a product
form. Further, they derive the mean response time in closed
form and it is shown that the stability region, i.e., the arrival
rate for which steady state exists, does not reduce. The latter

1

seems counter-intuitive, because having multiple copies of the
same job should imply more work for the servers and as a con-
sequence a reduction of the stability region. The reason that
this does not happen is due to the independence assumption
made in [7]: the exponential assumption together with i.i.d.
copies creates the situation where the effective departure rate
of a job is d times faster than that in a single server. Our
objective in this paper is to further assess the impact of this
independence assumption on the performance.

In this paper, we provide, to the best of our knowledge,
the first analysis on a redundancy-d system with c.o.s for 1 ≤
d ≤ K. We assume exponentially distributed service times,
but copies do not need to be i.i.d. We adopt as a benchmark
the same underlying multi-server topology as the one of [7].
This model is very convenient, everything is symmetric and
homogeneous and this permits to isolate the impact of the
redundancy scheme. We first show that c.o.s is equivalent to
a system with a single central queue and multi-type jobs and
multiple servers, as analyzed in Visschers et. al. [1]. This
allows us to conclude that the steady-state distribution of
c.o.s is of product-form. In addition, we obtain an expression
for the generating function for the number of waiting jobs in
the system and for the mean number of jobs in the system.

We then show that redundancy-d with c.o.s is equiva-
lent to Join-Shortest-Work queue with redundancy (JSW(d)).
In the latter, an incoming job is dispatched to the server with
smallest workload among d randomly chosen ones. The re-
dundancy model hence represents a method of implementing
JSW(d) without requiring to know the residual work in each
of the queues. In addition, performance measures obtained
for the c.o.s model carry over to JSW(d).

We then extend and adapt the model of Visschers et al.
[1] in such a way that, using a new state descriptor (different
from [1]), the redundancy systems with c.o.c and i.i.d. copies
can be analyzed.

Even though c.o.s does not waste any computation re-
sources, a comparison of the two redundancy-d systems yields
the surprising result that for any value of the redundancy
parameter, the performance of c.o.c is better than that of
c.o.s. The reason for this is the independence assumption in
the analysis of c.o.c, which together with exponentially dis-
tributed jobs makes c.o.c. artificially efficient. We comment
more on this in Example 1 of Section 3 and Section 8.

We believe that our results open an important avenue
for research, as it establishes the link between redundancy
models and the central queue model as analyzed in [1]. A
summary of our main contribution is given below:

1. We obtain a unifying approach to derive the stationary dis-
tribution for both c.o.c and c.o.smodel, which is of product
form (Proposition 1 and Proposition 6.).

2. We provide the first exact analysis for the c.o.s model and
derive the generating function for the number of waiting
jobs and its mean (in Proposition 2). A key interpretation

from the generating function is the fact that the number
of waiting jobs is a mixture of sums of geometric random
variables.

3. By allowing redundant copies that cancel-on start, we
achieve the performance of JSW(d) without knowing the
job sizes and the workload in the servers (Proposition 1).

4. We also give the first exact analysis for the performance
under JSW(d) (Proposition 3).

5. In Proposition 5, we generalize the modeling framework
of [1] and use this generalization to provide an alternative
analysis of redundancy systems with c.o.c.

6. Numerically we observe that the impact of the modeling
assumption of independent copies is non-negligible.

The rest of the paper is organized as follows. In the next
section, we look at some of the related work and discuss the
model and preliminaries in Section 3. We analyze the c.o.s.
model in Section 4, its equivalence to JSW(d) in Section 5
and consider some asymptotic regimes in Section 6. We give
an alternate product form for the c.o.c. model in Section 7
followed by some numerical results in Section 8.

2 Related work

The main motivation to investigate redundancy models comes
from empirical evidence suggesting that redundancy can help
improve the performance in real-world applications. For ex-
ample Vulimiri et al. [3] illustrate the advantages of redun-
dancy in a DNS query network where a host computer can
query multiple DNS servers simultaneously to resolve a name.
Deal et al. [9] note that Google’s big table services use redun-
dancy in order to improve latency.

Most of the literature deals with the c.o.c model with
exponentially distributed service times and the independence
assumption. Gardner et al. [6,7] have provided a comprehen-
sive analysis of redundancy c.o.c queueing models. In [6] the
authors consider a class-based model where redundant copies
of an arriving job type are dispatched to a type-specific sub-
set of servers, and show that the steady state distribution has
a product form. In [7], the previous result is applied to an-
alyze a multi-server model with homogeneous servers where
incoming jobs are dispatched to randomly selected d servers.
Bonald et al. [13, 14] have shown that the c.o.c. model under
the independence assumption and the balance fairness alloca-
tion yields the same steady-state distribution. An important
result in the c.o.c. model with exponential service times and
i.i.d. redundant copies is that the necessary condition for sta-
bility, i.e. that the arrival rate per server is smaller than the
service rate, is also sufficient, see both [13] and [7]. An impor-
tant observation made in [13] is that the c.o.c model is a spe-
cial case of the Order Independent queue [15], which provides

2

a direct path to derive the steady-state distribution. However
we note that the departure rates from a state under the c.o.s
model fail to satisfy the order independence condition, which
in turn implies the necessity of a different approach from that
used in [13] to analyze c.o.s. We give more details in Section 7.

A more general redundancy model is the so-called
(n, k, r) proposed and studied by Joshi et al. [16]. In this
model there are n servers, r redundant copies and a job is said
to be served if k copies are served. For this model, in [16], the
authors analyze the impact of the service time distribution
on the performance. Shah et al. [5] have showed that under
i.i.d memoryless service the average response time reduces as
r increases, and that r = n minimizes the average latency
among all possible redundancy policies.

To the best of our knowledge, the only results available
for the c.o.s model have appeared in [16, Section 4] and [12,
Section 9]. In both cases, the analysis is restricted to the
particular case in which redundancy copies are sent to all the
servers.

Regarding the independence assumption, Gardner et al.
[12] propose a more accurate model in which the service time
of a redundant copy is decoupled into two components, one re-
lated to the inherent job size of the task, and the other related
to the server’s slowdown. As written in the abstract of [12]
”The independent runtime model is unrealistic, and has led
to theoretical results which can be at odds with computer sys-
tems implementation results.” One of our main contributions
is to provide concrete examples of this statement, and to pro-
vide an exact analysis for a redundancy model that does not
need the independence assumption.

Redundancy models have also been studied in other ap-
plication domains. For example an analysis of redundant
models in the context of storage systems is provided in [10],
and Ananthanarayanan et al. [2,8] have studied the benefits of
redundancy in straggler mitigation in data centers and cloud
computing.

3 Model, Preliminaries and Nota-
tion

In this section, we will first describe the redundancy-d model
with c.o.s. and c.o.c., give some preliminaries, as well as dis-
cuss the impact of the independence assumption by looking at
the case d = K. This is followed by a brief description of the
multi-type job and multi-server model of Visschers et al. [1]
which forms the basis for our analysis of the two redundancy
models.

3.1 Redundancy-d with c.o.s. and c.o.c.

The redundancy-d model consists of K homogeneous servers
each with a first-in first-out (FIFO) queue. The service rate of
each server is denoted by µ. Jobs arrive according to a Poisson

process with rate λ and have an exponentially distributed
service requirement with unit mean. An arriving job chooses
d of K servers uniformly at random and sends d copies of the
same job to these feasible servers.

Under cancel-on-start (c.o.s.), once any of the copies is
taken for service, the remaining copies are canceled immedi-
ately. Further, on arrival of a job, if more than one of its d
feasible servers are idle, then the job is served immediately
at one of the idle feasible servers based on a predefined as-
signment rule and the remaining copies are canceled. For this
c.o.s. model, a natural assignment rule is the uniform assign-
ment rule, that is, choose an idle feasible server uniformly at
random.

Under cancel-on-complete (c.o.c.), when one of the d
copies of a job completes its service (hence the name cancel-
on-complete), the other copies are removed. In addition, when
referring to c.o.c., we assume that the service requirements of
the copies of the same job are independent. We have referred
to this assumption as the independence assumption.

Before giving the preliminaries, we first illustrate the
impact of the independence assumption for the particular case
of d = K.

Example 1. Case d = K: impact of independence

assumption: When redundant copies are independent, the
c.o.c. model is equivalent to a single-server queue with arrival
rate λ and service rate µK.1 In particular, this means that the
mean number of jobs in the system is ρ/(1−ρ) where ρ := λ

Kµ
.

However, if instead we assume that all copies have exactly the
same service requirement, for d = K, the c.o.c. model reduces
to K completely synchronized single-server queues, each hav-
ing an arrival rate of λ and a service rate of µ.2 The stability
condition is now λ < µ, i.e., ρ < 1

K
, and thus considerably

smaller than the stability condition under the independence
assumption (ρ < 1). In addition, without the independence
assumption, the mean number of jobs increases significantly
to ρK/(1−Kρ).

Turning now to the c.o.s. model, when d = K, with and
without the independence assumption, this model is equiva-
lent to an M/M/K queue (see Section 9 for details). We can
thus conclude that with independent copies, the c.o.c. model
significantly outperforms the c.o.s. model. However, when
this assumption is removed, the performance of c.o.c. degrades
severely, as the stability condition is more stringent than for
c.o.s. This illustrates well the unfair advantage due to the in-
dependence assumption.

Recall that redundancy models were created to improve
the performance by sending copies to d servers simultaneously.
However, for c.o.c. and without the independence assumption,

1This can be seen as follows: starting from an empty queue, a first
job will have copies in all K servers. A copy will hence finish at rate
µK, after which a new job starts being served in all servers.

2A job will be served simultaneously in all K servers. Since the service
requirement is identical, all copies finish after an exponential time with
mean µ.

3

implementing full redundancy (d = K) gives much worse per-
formance than when no redundancy is done (d = 1). Note
that d = 1 is Bernoulli routing, hence, gives rise to K inde-
pendent M/M/1 queues with rates λ/K and µ, while d = K
results in K synchronized single-servers with rates λ and µ.
This inefficiency comes from the fact that under c.o.c. with-
out the independence assumption, all servers work on copies
that have the exact same size. Under c.o.s., such inefficiency
does not arise. This therefore shows the importance to study
c.o.s. when one assumes identical copies.

3.1.1 Preliminaries

We define the total load as ρ = λ
Kµ

and assume ρ < 1. For
both c.o.s. and for c.o.c., ρ < 1 is also the stability condition,
that is, the condition under which a stationary distribution
exists. This was proved in [6] for c.o.c. For c.o.s. it follows
as well: by symmetry, each server serves a fraction 1/K of
the jobs. Since the service rate of a server is µ, each server is
stable if λ/K < µ, i.e., ρ < 1.

Mean number of busy servers: Let p(i) denote the prob-
ability that there are i servers busy. Using the rate balance
principle, we have (both for c.o.s. and for c.o.c.)

λ = µ

K
∑

i=0

ip(i). (1)

Hence, the mean number of busy servers in the redundancy-d
system is

∑K

i=0 ip(i) =
λ
µ
= ρK.

Probability of an idle server: We now identify the prob-
ability of an arbitrary server (say server 1) being idle. Let
P1 denote the probability that server 1 is idle. Given i busy
servers, let qi denote the probability that server 1 is idle. We
have,

P1 =
K
∑

i=0

p(i)qi

=

K
∑

i=0

p(i)

(

K−1
i

)

(

K
i

)

= 1−
K
∑

i=0

p(i)
i

K

= 1− ρ, from Eq. (1).

3.1.2 Central queue architecture

An important point to note is that both these redundancy-
d models have a central queue architecture with multiple
servers. While a job in the traditional representation is iden-
tified by its d copies in the d feasible servers, the same job is
represented only once in the central queue (albeit with a type
label to indicate its d feasible server). The jobs in the central
queue are ordered in a FIFO manner (and hence requires the
knowledge of the sequence in which the arrivals came). An

3 41

3 41

2

(1,2)

(1,3)

(1,3)

(2,3) (2,3)

(2,4)

(2,4)

1 2 3 4

(1,2)(1,2)

2

(1,2) (1,3)(2,3) (2,4)

c.o.c

c.o.s

(1,3)

(2,3)

(2,4)

(1,4)

(1,4)

(1,4)

(1,4)

Figure 1: A representation of redundancy-2 c.o.s. and c.o.c.
system and their associated central queue. Jobs are denoted
by their set of feasible servers and such jobs are arranged in
the central queue in a FIFO manner. The choice of server in
c.o.s. is by the uniform assignment rule.

important interpretation with the central queue architecture
is that the servers on completion of service will select the next
feasible job from the FIFO central queue (skipping over infea-
sible jobs). Here a feasible job for a server are those jobs that
have the server to be feasible. Note that in c.o.c., multiple
servers can serve a single job in the central queue while in
c.o.s., each server can serve only one job. See Fig. 1 for the
representation of a central queue in terms of c.o.c. and c.o.s.
models.

It is this central queue architecture for the two redun-
dancy models, that enables us to offer a unifying framework
for their analysis. This unifying analysis is based on the multi-
type job and server model of Visschers et al [1] which also
has a central queue architecture. We use the model of [1] to
analyze redundancy-d with c.o.s. in detail in Section 4 and
Section 6. In Section 7, we give an alternative analysis for
redundancy-d with c.o.c. model that is based on an exten-
sion, together with an adaptation of the state descriptor, of
Visschers et al. [1]. Thus, our extension of [1] provides a com-
prehensive analysis for redundancy systems with c.o.s. and
c.o.c..

4

3.2 Multi-type job and server model of [1]

In this section we present the multi-type job and multi-type
server model and the results as presented in Visschers et al.
[1]. This will form the basis in order to prove the steady-state
probabilities for our redundancy models.

Visschers et al. [1] consider a central queue system with
K possibly heterogeneous servers and multi-type jobs. Let C
denote the set of job types and M = {m1, . . . ,mK} denote
the set of servers respectively. Let µi denote the service rate of
servermi. For a ∈ C, Sa denotes the set of feasible servers that
can serve jobs of type a. Similarly, associated with a server
M ∈ M is a set of job types it can serve, denoted henceforth
by C(M). The jobs of type a ∈ C arrive according to a Poisson
process with rate λa and the total arrival rate λ =

∑

a∈C λa.
All jobs have an exponential service requirement with unit
mean and the service rate of server mi ∈ M is denoted by
µi for 1 ≤ i ≤ K. Each arriving job waits in a central queue
and is served in a first-in first-out (FIFO) basis. Each job can
only be served by one of its feasible server. If an arriving job
finds that more than one of its feasible servers are idle, then
an assignment rule decides which of the idle feasible server to
be assigned.

State space representation

An appropriate Markovian descriptor used in [1] to describe
the system is of the type (ni,Mi, ni−1,Mi−1, . . . , n1,M1)
which denotes states with i busy servers (denoted by
M1, . . . ,Mi) and nj waiting jobs between servers Mj and
Mj+1 for 1 ≤ j ≤ i − 1. In this state space representa-
tion, jobs and active servers are arranged in a FIFO basis
from right to left. Therefore all nj jobs have arrived be-
fore nk jobs where 1 ≤ j < k ≤ i. Note that a job is wait-
ing in the central queue only if all of its feasible servers are
busy (serving jobs that came before it). Therefore n1 de-
notes the number of those jobs (who have arrived before nj

jobs where j > 1) that have to wait since they have server
M1 as their only feasible server which happens to be busy.
Let us denote the set of such job types by U({M1}) where
clearly U({M1}) = {a ∈ C : Sa = M1}. Similarly, nj repre-
sent jobs (that arrived after nj−1 but before nj+1 jobs) that
have to wait because their feasible servers are busy. The
feasible servers for these nj jobs must clearly be a subset
of the active servers {M1,M2, . . . ,Mj} ahead of it (other-
wise the job would not have been waiting if any of its fea-
sible server was idle). Therefore for 1 ≤ j ≤ i, we have
U({M1,M2, . . . ,Mj}) := {a ∈ C : Sa ⊆ {M1, . . .Mj}} as the
set of possible job types for nj waiting jobs in the represen-
tation. (See [1] for more details.)

Denote the state space of the Markov chain by S
and let any generic state s ∈ S be of the type s =
(ni,Mi, . . . , n1,M1). Define λM ({M1, . . . ,Mi}) as the acti-
vation rate of server M, when the set of active servers is
{M1, . . . ,Mi}. In state s = (ni,Mi, . . . , n1,M1), this is the

transition rate from state s to state (0,M, s). This activation
rate λM ({M1, . . . ,Mi}) depends on the assignment rule de-
fined for the model, which determines to which idle feasible
machine (if any) a job is routed. By considering assignment
rules that satisfy the following assignment condition, Vissch-
ers et al. [1] obtain a product form stationary distribution.

Assignment Condition 1. For i = 1 . . . K, and for every
subset {Mi, . . . ,M1} of M of size i, the following holds:

i
∏

j=1

λMj
({M1, . . .Mj−1}) =

i
∏

j=1

λM̄j
({M̄1, . . . M̄j−1}) (2)

for every permutation M̄1, . . . M̄i of M1, . . .Mi.

We now recall the following theorem from [1] that pro-
vides a product form stationary distribution.

Theorem 1. For the multi-type job and server model
with an assignment rule satisfying the assignment con-
dition, the steady state probability for all states s =
(ni,Mi, . . . , n1,M1) ∈ S, is given by

π(s) = αi
ni . . . α1

n1
Πλ({M1, . . . ,Mi})
Πµ(Mi, . . . ,M1)

π(0) (3)

where Πλ({M1, . . . ,Mi}) =
i
∏

j=1

λMj
({M1, . . .Mj−1}),

Πµ(Mi, . . . ,M1) =

i
∏

j=1

µ{M1,...Mj},

αj =
λU({M1,...,Mj})

µ{M1,...Mj}
,

µ{M1...Mi} =

i
∑

j=1

µMj
and

λU({M1,M2,...,Mj}) =
∑

a∈U({M1,M2,...,Mj})

λa.

4 Redundancy-d with c.o.s.: An ex-
act analysis

In this section, we provide the first exact analysis for the
redundancy-d model with c.o.s.. For this model, we will say
that all jobs that choose the same d servers are said to be
of the same type. In all, there are

(

K
d

)

job types and the

arrival rate of any job type is λtype =
λ

(Kd)
. In order to analyze

the redundancy-d model with c.o.s., we use the central queue
architecture (see Section 3.1.2) that allows us to view our
model as a multi-type multi-server model [1]. To see how,
note that under c.o.s., once one copy starts being served, all
other copies are canceled. Hence, each time a server becomes

5

available, it chooses a feasible job from the central queue in
a FIFO manner (recall that a job is feasible for a server if
this server is among the d randomly chosen servers for this
job). See also Figure 1. Further, again because of c.o.s., a
job will be served by only one server and hence, if an arriving
job finds multiple feasible servers as idle, then the choice of
a server is made based on an assignment rule. But this is
exactly the model setting for the multi-type and multi-server
model defined in Visschers et al. [1] and hence we are in a
position to analyze the c.o.s. model using Theorem 1.

For the c.o.s. model, we use the Markovian descriptor
(ni,Mi, ni−1,Mi−1, . . . , n1,M1) to represent any state s ∈ S
(following [1], see Section 3.2). Recall that active servers and
jobs are arranged in a FIFO basis from right to left. Fur-
ther, Mj in the representation denotes that server Mj is cur-
rently serving a job. For a given state s, nj (j ≥ d) repre-
sents jobs that have their d feasible servers to be a subset of
{Mj , . . . ,M1}. In fact, from the discussion in Section 3.2, the
type of such jobs belongs to the set U({M1,M2, . . . ,Mj}). An
important point to note is that since each job type has d fea-
sible servers, it can never happen that there are jobs in the
central queue waiting to be served and that there are less than
d busy servers in the system. Therefore, n1 = . . . = nd−1 = 0.

Recall that to apply Theorem 1, we need to consider
an assignment rule that satisfies the assignment condition.
We consider the uniform assignment rule: if an arriving job
finds α of its d (α ≤ d) servers busy, then the probability of
choosing each idle server for service is 1

d−α
. For the uniform

assignment rule, we prove that it satisfies the assignment con-
dition. The proof is in the Appendix.

Lemma 1. The uniform assignment rule satisfies the assign-
ment condition given by Eq. (2).

4.1 Product form stationary distribution

In this section we provide the steady state distribution for
the Markovian descriptor s = (ni,Mi, . . . , n1,M1), which
turns out to have a product form. We obtain this by applying
Theorem 1 to the c.o.s. model. (See the Appendix for the
proof.)

Proposition 1. The steady state distribution for any state
s = (ni,Mi, . . . , n1,M1) ∈ S is given by

π(s) =

Gi(K, d)
π(0)

i!µi for i < d and n1 = . . . = nd−1 = 0

ri
ni . . . rd

ndGi(K, d)
π(0)

i!µi for i ≥ d and n1 = . . . = nd−1 = 0

0 elsewhere

(4)

where π(0) is the probability of an empty system and where

Gi(K, d) =
i
∏

j=1

Gj(K, d)

Gj(K, d) =
λ
(

K
d

)

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

(

j−1
α

)(

K−j
d−α−1

)

d− α
and

ri =
λ
(

i
d

)

iµ
(

K
d

) .

The stationary distribution for any state s can be writ-
ten in an alternative form as follows. Define

Ḡj(K, d) =
Gj(K, d) ·K

λ

=
d

(

K−1
d−1

)

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

(

j−1
α

)(

K−j
d−α−1

)

d− α
,

Ḡi(K, d) =
∏i

j=1 Ḡj(K, d) and r̄i =
ri
ρ
=

(i−1

d−1)
(K−1

d−1)
. The station-

ary distribution for any states s with n1 = . . . = nd−1 = 0
can now be expressed as

π(s) =

{

Ḡi(K, d)ρ
iπ(0)
i! for i < d

r̄ni

i . . . r̄nd

d Ḡi(K, d)π(0)
i! ρ(i+

∑i
j=d

nj) for i ≥ d.
(5)

Note that i+
∑i

j=d nj represents the total number of jobs in
the system. From (5), one directly concludes that the station-
ary distribution is a function only of ρ,K and d.

It is interesting to point out that the stationary distri-
bution does not depend on the identity of the servers that
are active since the servers are assumed to be homogeneous.
Hence the stationary probabilities for states with the same
number of active servers (i) and same number of waiting (ni)
jobs between servers are the same.

4.2 Normalization constant and probability
of busy servers

We denote by p(i) the stationary probability that the
redundancy-d model with c.o.s. has i busy servers, for 1 ≤
i ≤ K. This metric would be useful in obtaining the nor-
malizing constant π(0), which is also the probability that the
system is empty, i.e., there are no busy servers (p(0) = π(0)).
Noting that

p(i) =
∑

s∈Si

π(s) (6)

where Si = {s ∈ S : exactly i servers are busy}, we have the
following lemma. The proof can be found in the Appendix.

6

Lemma 2. The probability that i servers are busy is given by

p(i) = p̄(i)π(0) (7)

where

p̄(i) =

{(

K
i

)

Ḡi(K, d)ρi, for i < d
(

1
1−ri

)

. . .
(

1
1−rd

)

(

K
i

)

Ḡi(K, d)ρi, for i ≥ d.
(8)

Further, π(0) is given by

π(0) =

(

1 +
K
∑

i=1

p̄(i)

)−1

. (9)

A related performance metric of interest is Pw(j), the
probability that an arriving job sees j of its d feasible servers
as busy. When a job arrives, conditioned on i busy servers,

the probability that j of its servers are already busy is
(K−j

i−j)
(Ki)

,

i ≥ j. Therefore we have

Pw(j) =
K
∑

i=j

p(i)

(

K−j
i−j

)

(

K
i

) . (10)

In particular, the probability a job has to wait, denoted by
Pw, is given by Pw(d).

4.3 Distribution of number of jobs

An important performance metric for the c.o.s. system is the
number of waiting jobs. In this section, we obtain the expres-
sion for the probability-generating function for the number of
waiting jobs in the system. An inversion of this transform
gives us the distribution of the number of waiting jobs.

Define p(i,m) as the probability that the system has i
busy servers and m waiting jobs in the system. When i < d,
there are no jobs waiting in the central queue, hence, we have

p(i,m) =

{

p(i) for m = 0

0 elsewhere.

For i ≥ d, it follows from Proposition 1 that

p(i,m) = π(0)

(

K

i

)

Ḡi(K, d)ρili(m)

where li(m) =
∑

{ni...nd:∑i
l=d

nl=m}

rni

i . . . rnd

d .

Let Q denote the random variable corresponding to the num-
ber of waiting jobs in the c.o.s. system. The probabil-
ity that there are m waiting jobs (Q = m) is given by

p̂(m) =
∑K

i=1 p(i,m). Using the above expressions for p(i,m),
we can derive the distribution for the number of waiting jobs.
Its proof can be found in the Appendix.

Proposition 2. The P.G.F. for the number of waiting jobs
is given by

E(zQ) =

d−1
∑

i=0

p(i) +

K
∑

i=d

p(i)

i
∏

j=d

Geomrj (z)

 (11)

where

Geomrj (z) =
1− rj
1− rjz

and p(i) is given by Eq. (7) and (9). The expected number of
waiting jobs in the system is given by

E(Q) =

K
∑

i=d

p(i)

i
∑

j=d

rj
1− rj

 (12)

and the expected number of jobs in the system is given by
E(N) = E(Q) + ρK.

Remark 1. From the P.G.F above, one can conclude that the
random variable Q is a mixture of sum of geometric random
variables.

Remark 2. Special cases: We now discuss two special
cases for the redundancy-d model with c.o.s. namely d = 1
and d = K. The case d = 1 or redundancy-1 c.o.s. corre-
sponds to the system with Bernoulli routing of jobs to the K
servers. This is also the case for redundancy-1 with c.o.c..
The redundancy-K with c.o.s. is equivalent to an M/M/K
system. This is easy to see from the central queue architec-
ture; since each job can be served at any of the K servers,
a server that becomes free ends up choosing the head of the
queue customer for service. We verify in Appendix E that
our expressions for c.o.s. for these special cases indeed coin-
cide with the known results for these cases.

5 Equivalence of JSW(d) and
redundancy-d with c.o.s.

In this section, we will show the equivalence of the
redundancy-d c.o.s. model with that of the join the short-
est work among d servers (JSW(d)) policy. This is trivial
to note for the case when d = 1 and d = K. When d = 1,
the redundancy-1 c.o.s. model as well as the JSW(1) model
are equivalent to probabilistic routing to K queues when
the routing probabilities are Bernoulli (1

K
). When d = K,

redundancy-K c.o.s.model is equivalent to anM/M/K multi-
server queue (see Section 9) whereas the JSW (K) policy is
simply the traditional JSW (join shortest work) policy. But
the JSW policy is known to be equivalent to the M/M/K
queue [17]. While the equivalence is now apparent for d = 1
and d = K, we give a formal proof of this fact for any d in this
section. The reasoning is based on a sample-path argument,
hence, the equivalence holds for generally distributed service
requirements.

7

Proposition 1. Assume generally distributed service require-
ments and heterogeneous servers. For any given sample-path
realization, a given job will be served under both JSW(d) and
redundancy-d with c.o.s. in the same server. As a result, the
following performance measures are the same under both mod-
els:

• Joint probability of servers being busy or idle.

• Delay distribution of a job.

• Total number of jobs in the system.

Proof. For a given realization, we couple the arrivals of jobs,
the d servers sampled upon arrival, and their service require-
ments. For redundancy-d with c.o.s., a job cannot be over-
taken by copies that arrive after him in any of its d sampled
servers (since it has copies in all d FIFO-queues). It therefore
follows directly that upon arrival of the job, one can deter-
mine the server in which the job will be served. In order to
describe this server, we define the effective workload, V red

i (t)
to denote the work present in server i that will be served in
this server. This ignores the workload due to those copies in
server i that will not be served in the server. As such, for
redundancy-d with c.o.s. an arriving job will be served at the
server with smallest workload V red

i (t), among the d servers.

Under JSW(d), an arriving job is send to the server with

smallest workload W JSQ
i (t), among the d servers. Hence, in

order to prove that a given job will be served in the same
server under both models we are left to show that W JSQ

i (t) =
V red
i (t). This can be seen as follows. First note that the

(effective) workload decreases at rate 1 whenever the process

is positive. Now assume W JSQ
i (t) = V red

i (t) is true at time t,
and a new job arrives. (This is trivial to note for t = 0.) It
is served in the server (among the d servers) with smallest

value for W JSQ
i (t) (V red

i (t)), under JSW(d) (redundancy-d,

respectively). Since W JSQ
i (t) = V red

i (t), it is the same server
say server m, that has the smallest value in the two system
and hence, the service requirement of this job is added both
to W JSQ

m (t+) and to V red
m (t+).

Remark 3. With the above proposition, redundancy-d with
c.o.s. can be perceived as a method of implementing JSW(d)
without requiring the knowledge of the residual work in each of
the queue. But such an implementation of JSW(d) would only
be possible if the underlying system allows for the possibility to
use extra copies of the same job. Indeed, the power of allowing
even a single extra copy per job may prove to be very beneficial
in the absence of workload information at the queues.

Now from the equivalence between JSW(d) and
redundancy-d with c.o.s., we have the following proposition
that to the best of our knowledge provides performance met-
rics for JSW(d) that have not been obtained before.

Proposition 3. For a JSW(d) system, the P.G.F. for the
number of waiting jobs is given by

E(zQ) =

d−1
∑

i=0

p(i) +

K
∑

i=d

p(i)

i
∏

j=d

Geomrj (z)

where

Geomrj (z) =
1− rj
1− rjz

and p(i) is given by Eq. (7) and (9). The expected number of
waiting jobs in JSW(d) is given by

E(Q) =

K
∑

i=d

p(i)

i
∑

j=d

rj
1− rj

 ,

and the expected number of jobs in JSW(d) is given by
E(N) = E(Q) + ρK.

6 Asymptotic regimes for c.o.s

In this section, we consider the redundancy-d system with
cancel-on-start under limiting regimes. We first consider the
heavy-traffic regime where the number of servers is fixed and
the traffic intensity approaches 1. In the second regime, we
scale the number of servers and the arrival rate while keeping
the traffic intensity unchanged, that is, the mean-field regime.

6.1 Heavy-traffic regime

For the heavy-traffic analysis, we keep the number of servers,
K, fixed and let λ

µ
↑ K, so that ρ ↑ 1. When d = 1, we have

a system of K independent M/M/1 queues with parameters
λ/K and µ. Hence, after scaling by 1 − ρ, the total number
of jobs in the system converges, as ρ ↑ 1, to the sum of K
exponentially distributed random variables with mean 1. In
the result below, we derive the distribution of the total scaled
number of waiting jobs for d ≥ 2.

Proposition 4. Assume d ≥ 2. Then

lim
ρ↑1

p(K) = 1 and limρ↑1E[e−s(1−ρ)Q] =
1

1 + s
,

for any s > 0. In words, this implies that (1− ρ)Q converges
to an exponential random variable with unity parameter, as
ρ ↑ 1.

Proof. From Eq. (8) we have p̄(i) = O(ρi) for i < d, while
p̄(K) = O(ρK/(1 − ρ)). Since ρ ↑ 1, this implies that
limρ↑1 p(K) = 1. Now, substituting z = e−s(1−ρ) in Eq. (11),
together with
limρ↑1 p(K) = 1 and taking the limit ρ → 1 gives

limρ→1E[e−s(1−ρ)Q] = lim
ρ→1

K
∏

j=d

Geomrj (z)

 .

8

For i < K, we have limρ→1ri = r̄i < 1, since
d ≥ 2. Further, limρ→1rK = r̄K = 1. This im-
plies that limρ→1 Geomrj (e

−(1−ρ)s) = 1 for j 6= K. For
the case j = K, using L’Hopital’s rule it can be seen
that limρ→1 GeomrK (e−(1−ρ)s) = 1

1+s
. This completes the

proof.

The above result shows that there is a large drop in the
performance when passing from d = 1 to d = 2. Further, for
d ≥ 2, the performance is independent on the parameter d.

6.2 Mean-field regime

In this subsection we consider the mean-field regime and as-
sume that the arrival rate into the system is λ = λ̂K where

λ̂ < µ, and let K → ∞. Define ρ̂ = λ̂
µ
.

For JSW(d), asymptotic independence in the mean-field
limit has been proved in [18]. This, together with the equiv-
alence between JSW(d) and red-d c.o.s. and the fact that a
given server under red-d c.o.s. is busy with probability ρ̂ (see
preliminaries), gives the following result for the probability
Pw(j) that an arriving job sees j busy feasible servers.

Proposition 2. Let λ = Kλ̂. We have

lim
K→∞

Pw(j) = ρ̂j(1− ρ̂)d−j

(

d

j

)

.

Proof. In [18, Theorem 2.1], JSW(d) is considered in the
mean-field regime. It is proved there that given a finite set
of servers, these servers behave independent in the mean-field
limit. Note that the joint distribution of servers being idle is
the same for both JSW(d) and red-d c.o.s. (Proposition 1).
In addition, we showed that the probability a server is busy
equals ρ. Hence, the probability that j servers are busy out
of d, follows a binomial distribution with parameters d and
ρ̂.

7 Redundancy with c.o.c.: an alter-
nate product from

In this section, we give an alternate analysis for the c.o.c.
redundancy models of [6,7] by generalizing the multi-type job
and multi-server model of Visschers et. al. [1].

In the c.o.c. model, multiple feasible servers can serve a
job simultaneously and hence a direct application of Theorem
1 is not possible. Additionally, the service rate of a job in
the central queue of the c.o.c. model depends on the service
rate received by jobs ahead of it (in the central queue), since
the job will be served simultaneously in all those servers that
cannot serve jobs ahead of him. Therefore, the departure rate
of a job is in fact state dependent.

In Section 7.1 we first present our generalization of [1]
that allows for state dependent departure rates. This gen-
eralization shall allow us to provide a Markovian state space

descriptor for the c.o.c. redundancy systems, whose stationary
distribution is of product form, see Subsection 7.2.

7.1 A generalized multi-type job and server
model

In the existing model of [1], in any state s ∈ S, an active
server Mj ∈ M has a fixed service rate µMj

. Associated with
the model is what we call a standard departure set function
µ{·} ({·} is used to denote a set) which is defined as

µY =
∑

t∈Y

µt for Y ⊆ M. (13)

Therefore the total departure rate in state s =
(ni,Mi, . . . , n1,M1), is given by µ{M1...Mi} =

∑i

j=1 µMj
. In

this case, one can see that the departure rate from a server
is independent of the machines that are active. We will show
that it is in fact possible to generalize this and allow state
dependent departure rates without affecting the nature of the
results in [1]. We say that a departure set function µ{·} is a
generalized departure set function if it satisfies the following
condition.

Condition 1. For 1 ≤ j ≤ K and a subset {M1 . . .Mj} of
M,

µ{M1...Mj} − µ{M1...Mj−1} ≥ 0. (14)

For any state s = (ni,Mi, . . . , n1,M1) and a generalized
departure set function µ{·} define

µ̂Mj
(s) := µ{M1...Mj} − µ{M1...Mj−1}.

µ̂Mj
(s) now denotes the state dependent departure rate from

server Mj where 1 ≤ j ≤ i. From the definition of a gener-
alized departure set function, it should be clear that we are
restricting to state dependent departure rates of a specific
type where the departure rate from an active server depends
only on the active servers ahead of it. Of course, the total
departure rate in state s = (ni,Mi, . . . , n1,M1) is µ{M1...Mi}

where

µ{M1...Mi} =

i
∑

j=0

µ̂Mj
(s)

(noting that for j = 1, we have µ{M1...Mj−1} = µ{φ} = 0.) It
should be noted that the set function defined by Eq. (13) is
just a special case as it satisfies the Condition 1. Also note
that the generalized departure set functions could be such that
in state s , µ̂Mj

(s) = 0 for some 1 ≤ j ≤ i. This implies
that although server Mj has picked a job it can serve, the
configuration of servers in front of it is such that its current
service rate is zero.

We shall henceforth refer to the multi-type job and
server model with a generalized departure set function satis-
fying Condition 1 by the name generalized multi-type job and

9

server model. This model is thus a generalization of [1] that
allows a more general departure rate functions. We now have
the following proposition that upholds the validity of Theo-
rem 1 for the generalized multi-type job and server model.

Proposition 5. Consider a generalized multi-type job and
server model with an assignment rule satisfying the as-
signment condition (Eq. (2)). Assuming the steady state
exists, the steady state probability for any state s =
(ni,Mi, . . . , n1,M1) ∈ S is given by

π(s) = αi
ni . . . α1

n1
Πλ({M1, . . . ,Mi})
Πµ(Mi, . . . ,M1)

π(0) (15)

where

Πλ({M1, . . . ,Mi}) =
i
∏

j=1

λMj
({M1, . . .Mj−1}),

Πµ(Mi, . . . ,M1) =

i
∏

j=1

µ{M1,...Mj},

αj =
λU({M1,...,Mj})

µ{M1,...Mj}
.

Proof. The proof of this proposition is similar to that of The-
orem 2 of [1] (Theorem 1 in this paper). An outline of the
proof is given in the appendix to point out to the changes due
to the generalized departure rate functions.

7.2 An alternate product form for c.o.c.

In Proposition 5, we have generalized the results of [1] by
considering generalized departure set functions. This gen-
eralization can now be exploited to apply Proposition 5 to
redundancy-d with c.o.c..

For the redundancy-d c.o.c. model, one can view a type
for a job as the choice of d servers that are chosen (see pre-
liminaries). Since this choice is uniform over the set of all
servers, each type is equally likely. Recall that λtype denotes
the arrival rate of each type where λtype = λ

(Kd)
. Also recall

some earlier notation where C denotes the set of all job types.
For any type c ∈ C, let Sc denote the set of d feasible servers
for that type. For each type c ∈ C, we associate a label Oc.
This label will be used to identify the least recent (oldest)
type c job present in the central queue.

A new state space representation for c.o.c.

We propose a new state space representation
(ni, Oci , . . . , n1, Oc1) to analyze the redundancy-d model
of [7]. In such a state, the job at the head of line (of the
central queue) is of type c1. Since the central queue has
FIFO ordering from right to left, this is also the oldest type
c1 job in state s and is therefore indicated by the label Oc1 .
n1 denotes the number of type-c1 jobs that arrived after

Oc1 . These jobs were followed by a type-c2 job, represented
by Oc2 . Now n2 denotes the subsequent arrivals that are of
either type c1 or c2. In general, in state s and for 0 ≤ j ≤ i,
Ocj indicates the position in the central queue of the oldest

type-cj job and nj denotes waiting jobs of type c ∈
j
⋃

i=1

ci.

Now in state s , the jobs that can receive service are the ones
that are represented by the labels (Oc). This is because of
the FIFO scheduling in the central queue and the fact that
the waiting jobs (nj) are not the oldest jobs in their type. In
state s = (ni, Oci , . . . , n1, Oc1), the departure rate of job Ocj

equals µ times the number of its feasible machines that are
not used by the jobs Ocj−1

, . . . , Oc1 . Hence, it is given by

µ̂cj (s) := µ (|Fj(s)| − |Fj−1(s)|) ,

where Fj(s) :=
j
⋃

l=1

Scl . The total departure rate in state s is

the sum of the departure rates at each Ocj for 0 ≤ j ≤ i. This
corresponds to the departure rate set function for the model
and is given by

µ{Oc1
,...Ocj

} =
∑

t∈
j⋃

l=1

Scl

µ = µ|Fj(s)|, (16)

which satisfies Condition 1 (Eq. (14)).

Redundancy-d c.o.c. as generalized multi-type

job and server model

With a state space representation of s = (ni, Oci , . . . , n1, Oc1),
the c.o.c. model can now be viewed as a generalized multi-
type job and server model where Ocj resembles a super-server
of state dependent service rate µ (|Fj(s)| − |Fj−1(s)|). An-
other artifact of this representation is that each super-server
Ocj can serve jobs only of type cj and therefore each type
has a dedicated super-server that will only serve jobs of its
type. From this interpretation, it should be clear that there
is no need to specify any assignment rule because an arriv-
ing job is never faced with the prospect of being served by
multiple super-servers (although he will be served by multi-
ple servers that define the super-server). Due to this, we have
λOc

({Oc1 , . . . , Ocj}) = λc and hence the assignment condi-
tion is trivially satisfied. Proposition 5 can now be used to
provide a new product form distribution for this redundancy
model. This distribution is different from that of [7] due to a
different state space representation. At the end of this section
we comment on the latter. We have the following proposition
(proof in appendix).

Proposition 6. For the redundancy-d c.o.c. model, the steady
state distribution for state s = (ni, Oci , . . . , n1, Oc1) is given
by

π(s) =
π(0)

i!

i
∏

j=1

(

jλtype

µ|Fj(s)|

)nj+1

. (17)

10

The redundancy-d c.o.c. system has already been ex-
tensively studied by Gardner et al [6, 7] and hence we do not
analyze this any further. The main purpose of Proposition 6
is to illustrate the unifying framework for redundancy models
via Visschers et al [1] and an adaptation of its generalization.
To recall the main results from [7], the normalizing constant
π(0) in Proposition 6 is given by

π(0) =

K
∏

i=d

(

1−
(

i−1
d−1

)

(

K−1
d−1

)ρ

)

,

and the mean number of customers in the system E(N) is

E[N] =

K
∑

i=d

ρ

(K−1

d−1)
(i−1

d−1)
− ρ

. (18)

Since our state space representation for analyzing c.o.c.
is different from that used in [6, 7], a direct comparison be-
tween Proposition 6 and [7, Theorem 2] is cumbersome. How-
ever one can compare certain states of the system to show
that the stationary probabilities obtained from Proposition 6
and [7, Theorem 2] are indeed the same. For example, con-
sider a state withm customers, all belonging to the same type.
Such a state in our representation is denoted by (m− 1, Oc),
hence i = 1 and F1(s) = d in Proposition 6, so

π((m− 1, Oc)) = π(0)

(

λtype

dµ

)m

.

This is the same as the steady state probability given in [7,
Theorem 2]. Similarly, consider a state with m customers all
from distinct types. In our representation, such a state is
represented by (Ocm , . . . , Oc1) and from Proposition 6,

π((Ocm , . . . , Oc1)) = π(0)

(

λtype

dµ

)m

.

Again, this coincides with [7, Theorem 2].

8 Numerical Results

In this section we present numerical results to further ana-
lyze the redundancy-d model considered in this paper. In
Section 8.1 we numerically compare the performance between
redundancy-d systems with c.o.s. and c.o.c.. In Section 8.2, we
provide some more numerical results for redundancy-d c.o.s.
This is followed by the numerical results for the mean-field
regime in Section 8.3.

8.1 Comparing c.o.c. and c.o.s., impact of in-
dependence assumption

In this section we compare the performance of both systems
and in particular we assess the impact of the independence
assumption (as made in c.o.c.) on the performance.

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

Figure 2: E(N) for c.o.c. and c.o.s. for ρ = 0.35, 0.7 and
K = 10.

We first compare the mean number of customers (E(N))
in the system under c.o.s. and c.o.c.. The mean number of
customers E(N) in the c.o.c. system is given by Eq. (18), as
derived in [7]. Consider c.o.c. and c.o.s. systems with param-
eters K = 10, ρ = 0.35 and 0.7. For varying values of d, Fig.
2 compares E(N) for the two systems. The case d = 1 for
both models is equivalent to Bernoulli routing to K servers
in which case we have E(N) = Kρ

1−ρ
. The case, d = K for

the c.o.c. model coincides with an M/M/1 server with arrival
rate of λ and service rate of Kµ and hence E(N) = ρ

1−ρ
. On

the other hand, d = K for c.o.s. corresponds to an M/M/K
system with arrival rate λ and K servers each with a service
rate 1. Naturally as expected, E(N) for the M/M/K sys-
tem is larger than that of the M/M/1 system associated with
d = K for c.o.c. For 1 < d < K, we see that E(N) for the
c.o.c. model is lower than that of the c.o.s. model and this is
true for any value of ρ (illustrated in the figure for ρ = 0.35
and 0.7.) What is also noticeable from the figure is that the
proportion of reduction in E(N) from having an extra copy
(d = 2) in both the redundancy models depends on the load
ρ in the system.

To elaborate on this, in Table 1, we compare E(N) for
c.o.s. and c.o.c. when increasing the redundancy parameter
from d = 1 to d = 2. We fix K = 10 and µ = 1 and take vary-
ing values of ρ. Note from the discussion after Proposition 1
that the stationary distribution for the c.o.s. system is merely
a function of ρ,K and d. This is also the case for the c.o.c.
system (see Proposition 6) and this justifies the choice of ρ as
a parameter for this table. Table 1 indicates that E(N) for
c.o.c. system is lower than that of the c.o.s. system for vari-
ous values of ρ. We also quantify the percentage reduction in
E(N) when increasing the redundancy parameter from d = 1
to d = 2. A key observation from the table is the fact that for
low values of ρ, the reduction with c.o.s. is smaller than that

11

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

Figure 3: E(T) for c.o.c. and c.o.s. with K = 10.

obtained with c.o.c.. This is due to the independence assump-
tion: at low loads, an arriving job will likely find the system
empty. Under c.o.c., the job will then get an instantaneous
service rate of 2µ, which explains the reduction of the order
of 50% in the table. However, with c.o.s., even if the system
is empty, an arriving job will only get served in one server.
However, for higher values of ρ, the gain obtained with c.o.s.
becomes comparable to that obtained with c.o.c.. In this case,
the common feature that helps improve the performance with
both systems is that by sending redundant copies, they can
more efficiently use the capacity of the system.

ρ d = 1 % decrease in % decrease in
E(N) E(N) for c.o.s. E(N) for c.o.c.

with d = 2 with d = 2
0.1 1.11 9.5 51.56
0.2 2.5 18.17 53.3
0.3 4.28 26.25 55.26
0.4 6.66 33.94 57.5
0.5 10 41.44 60.09
0.6 15 48.95 63.17
0.7 23.33 56.75 66.95
0.8 40 65.28 71.79
0.9 90 75.44 78.56

Table 1: Reduction in the mean number of jobs with c.o.c. and
c.o.s. for K = 10, when increasing the redundancy parameter
from d = 1 to d = 2.

In Figure 3 we compare the mean sojourn time. We
observe that almost up to ρ = 0.7, the mean sojourn time
with c.o.c. is below 1. Since the mean service time is 1 (µ = 1)
for this example, this is a result that will not happen in most
situations in practice. On the other hand, with c.o.s., the

0 2 4 6 8 10

d

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Pw for c.o.c. and c.o.s. with K = 10, ρ = 0.7.

mean sojourn time is always larger than 1.

From the examples above, one is tempted to conclude
the superiority of c.o.c. over c.o.s. This might seem counter-
intuitive at first, since in the c.o.c. model redundant copies
can be served simultaneously, which implies extra work for
the servers. The superiority of c.o.c. system over c.o.s. is
primarily because of the independence assumption as made
in c.o.c. (see also the example in Section 3.)

In Figure 4 we plot the metric Pw, the probability that
an arriving job has to wait with K = 10, ρ = 0.7 and for
various values of d. We use Equation (5) from Gardner et.
al. [7] to obtain the numerical values for p(i) in c.o.c. The
probability an arriving job has to wait under c.o.c. can then
be calculated using Equation (10) with j = d. With c.o.s.
the probability that an arriving customer has to wait is lower
than that for the c.o.c. system. The probability to wait under
c.o.s. decreases with d, which is expected since as d increases,
resources are more efficiently pooled together. With c.o.c., for
large values of d, the probability of waiting increases because
multiple servers serve a single job and hence an arriving job is
more likely to have its feasible servers to be busy. In spite of
this, the performance of c.o.c. is superior in terms of sojourn
time (see Figure 3), because as d increases, the system gets
closer to being a single super-server (see also the discussion
on d = K in Section 3.)

8.2 Performance of redundancy-d with c.o.s.

In Figure 5 we plot the metric p(i), that is, the probability
that i servers are busy, for parameters K = 10, ρ = 0.7 and
for different values of d. We observe from Figure 5 that p(K)
increases in d. This is because a larger d implies a better
utilization of all the servers and increases the probability of
all servers being busy. This is however not the case in general

12

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

Figure 5: p(i) for different d when K = 10, ρ = 0.7.

for p(i), for 2 ≤ i < K. In fact, p(i) is increasing with d for
lower values of i, (typically i ≤ 5) and p(i) is decreasing with
d for higher values of i (5 < i < 10.) The effect reverses again
for i = K and we have p(K) increasing in d. To explain this,
let us consider the case d = 10. When i < K, p(i) corresponds
to having exactly i jobs present in the system. However, p(10)
is the probability that the number of jobs is equal or larger
than 10, that is, it corresponds to the tail of the distribution.
A similar reason holds for other values of d.

In Figure 6, we examine the metrics Pw, 1 − p̂(0) and
p(K) for the c.o.s. system with parameters K = 10 and ρ =
0.7 and for various values of d. While Pw denotes the probabil-
ity that an arriving customer has to wait, 1− p̂(0) denotes the
probability that the system has waiting customers. Note that
p̂(0) =

∑d−1
i=0 p(i) +

∑K

l=d p(l, 0) = π(0)(1 +
∑K

i=1 f
i(K, d)).

Fig. 6 illustrates the difference in the two quantities as a func-
tion of d. In fact, Pw < 1 − p̂(0) for d < 5, Pw > 1 − p̂(0)
for d > 5 and Pw = 1 − p̂(0) for d = 5. From the figure, we
also observe that for all d, p(K) ≤ Pw (with an equality when
d = K). A justification for this is the fact that all servers be-
ing busy implies that an arriving customer has to wait. When
d = K, an arriving customer having to wait implies that all
servers are busy (M/M/K system) and hence the equality.

8.3 Asymptotic regimes

In this section we focus on the mean-field regime. That is, we
set λ = λ̂K, for a fixed λ̂, and let K → ∞. In other words,
the load per server is kept constant, while taking the number
of servers to infinity. In Fig. 7 we plot Pw as a function
of K and for different values of d. As expected, due to the
asymptotic independence of the servers, Pw converges to ρ̂d

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Figure 6: Pw, 1− p̂(0) and p(K) for K = 10 and ρ = 0.7.

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

d = 2

d=3

d = 10

Figure 7: For λ̂ = 0.5 and K → ∞, for a fixed d, we have
limK→∞ Pw = ρ̂d.

where ρ̂ = λ̂
µ
(see Proposition 2).

Recall that for d = K, the models JSW , redundancy-
d c.o.s., and M/M/K are all the same. It is known for the
M/M/K (and hence for JSW), see for example [19], that in
this regime the probability of waiting and the mean waiting
time vanish in the limit. The same holds for the well-known
JSQ dispatching policy. In recent work, van der Boor et
al. [20] have shown that JSQ(d(K)) with d = o(K) can be
asymptotically optimal in the sense of giving probability of
waiting and mean waiting time equal to 0 in the limit. The
latter implies that JSQ(d(K)) yields the same asymptotic
performance as JSQ, but with a considerably smaller amount
of overhead in terms of signaling. Getting back to our model,
an interesting question is then how big d needs to be, in order
for c.o.s. and JSW (d), to be asymptotically optimal with
respect to the waiting probability. In Figure 8 we consider the

13

0 20 40 60 80 100

K

0

0.1

0.2

0.3

0.4

0.5

Figure 8: Asymptotic optimality of d(K) = ⌊
√
K⌋ for ρ̂ =

0.45.

10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

Figure 9: Asymptotics for E(N)/K for c.o.s and c.o.c. system

with λ̂ = 0.45 and various values of d.

case d(K) = ⌊
√
K⌋, for ρ̂ = 0.45. This figure indicates that

c.o.s. might also be asymptotically optimal for an appropriate
scaling of the redundancy parameter. A formal proof of the
latter is left for future work.

Finally, we look at the asymptotic value of E(N)/K for
redundancy-d system with c.o.s and c.o.c. This is illustrated in
Figure 9. We can derive a simple approximation for the mean
sojourn time under c.o.s. and hence for the mean number
of jobs in the system. If an incoming job does not need to
wait, its sojourn time will be 1/µ. If it has to wait, then
its sojourn time will be its waiting time plus its service time
1/µ. To calculate the waiting time in the latter case, we
assume that there are no other jobs (with feasible servers in
common) waiting in front of the job. Hence, the waiting time
will be equal to the minimum of d exponential service times,
i.e. 1/(µd). Now, recalling that the probability of waiting
in the limit is ρ̂d (Proposition 2), and using Little’s law, the
mean number of jobs in the system, when K is sufficiently

large, can be approximated by:

E(N) ≈ λ̂K

(

(1− Pw)
1

µ
+ Pw(

1

µd
+

1

µ
)

)

= ˆρK

(

1 +
ρ̂d

d

)

.

For the values of Figure 9, for d = 2 the approximation yields
0.496 whereas the value from the plots are 0.504, and for
d = 4 these values are 0.4646 and 0.4553, respectively. For
sufficiently large K, we expect the approximation to get more
accurate as the load decreases and as the parameter d in-
creases, since then the probability of waiting decreases.

9 Concluding remarks

We have obtained a unifying framework to investigate the
steady state distribution of c.o.s. and c.o.c. redundancy mod-
els. In the literature there are already several studies of c.o.c.,
but to the best of our knowledge, we are the first to analyze
c.o.s. for any 1 ≤ d ≤ K. In addition, we have established the
equivalence between c.o.s. and JSW (d), and as a consequence
our approach provides a first exact analysis of workload-based
load balancing schemes.

There are several interesting research problems that
stem from our work. An important extension is to investi-
gate c.o.s. with heterogeneous servers and class-based models.
Our approach based on the multi-type multi-server queue will
still be valid, however, the routing discipline that will satisfy
the assignment condition, see Equation (2), needs to be de-
termined. In this paper we have mostly focused on the queue
length and related performance metrics. Obviously, the wait-
ing time and the sojourn time distribution are very relevant
metrics as well. We plan to extend the central queue ap-
proach to study the waiting time distribution of both c.o.s.
and c.o.c. models. Another research path pertains with a
thorough analysis of c.o.s. model in the mean- field regime.
The proof for asymptotic optimality of JSWd(K) is part of
future work. Last but not least, the analysis of c.o.c. without
the independence assumption is a very relevant problem, and
we plan to study whether this model can be analyzed through
a similar approach as the one developed in this paper.

References

[1] Jeremy Visschers, Ivo Adan, and Gideon Weiss, “A prod-
uct form solution to a system with multi-type jobs and
multi-type servers,” Queueing Systems, vol. 70, no. 3,
pp. 269–298, 2012.

[2] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G
Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward
Harris, “Reining in the outliers in map-reduce clusters
using mantri.,” in OSDI, 2010, vol. 10, p. 24.

[3] Ashish Vulimiri, Philip Brighten Godfrey, Radhika
Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott

14

Shenker, “Low latency via redundancy,” in Proceedings
of the ACM conference on Emerging networking experi-
ments and technologies. ACM, 2013, pp. 283–294.

[4] Gauri Joshi, Emina Soljanin, and Gregory Wornell,
“Queues with redundancy: Latency-cost analysis,” ACM
SIGMETRICS Performance Evaluation Review, vol. 43,
no. 2, pp. 54–56, 2015.

[5] Nihar B Shah, Kangwook Lee, and Kannan Ramchan-
dran, “When do redundant requests reduce latency?,”
IEEE Transactions on Communications, vol. 64, no. 2,
pp. 715–722, 2016.

[6] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi,
Mor Harchol-Balter, Esa Hyytiä, and Alan Scheller-Wolf,
“Queueing with redundant requests: exact analysis,”
Queueing Systems, vol. 83, no. 3-4, pp. 227–259, 2016.

[7] Kristen Gardner, Mor Harchol-Balter, Alan Scheller-
Wolf, Mark Velednitsky, and Samuel Zbarsky,
“Redundancy-d: The power of d choices for redun-
dancy,” Operations Research, 2017.

[8] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker,
and Ion Stoica, “Effective straggler mitigation: Attack
of the clones.,” in NSDI, 2013, vol. 13, pp. 185–198.

[9] Jeffrey Dean and Luiz André Barroso, “The tail at scale,”
Communications of the ACM, vol. 56, no. 2, pp. 74–80,
2013.

[10] Kangwook Lee, Nihar B Shah, Longbo Huang, and Kan-
nan Ramchandran, “The mds queue: Analysing the la-
tency performance of erasure codes,” IEEE Transactions
on Information Theory, vol. 63, no. 5, pp. 2822–2842,
2017.

[11] Kangwook Lee, Ramtin Pedarsani, and Kannan Ram-
chandran, “On scheduling redundant requests with can-
cellation overheads,” IEEE/ACM Transactions on Net-
working (TON), vol. 25, no. 2, pp. 1279–1290, 2017.

[12] Kristen Gardner, Mor Harchol-Balter, Alan Scheller-
Wolf, and Benny Van Houdt, “A better model for job
redundancy: Decoupling server slowdown and job size,”
IEEE/ACM Transactions on Networking, vol. 25, no. 6,
pp. 3353–3367, 2017.

[13] Thomas Bonald and Céline Comte, “Balanced fair re-
source sharing in computer clusters,” Performance Eval-
uation, vol. 116, pp. 70–83, 2017.

[14] Thomas Bonald, Céline Comte, and Fabien Mathieu,
“Performance of balanced fairness in resource pools: A
recursive approach,” Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems, vol. 1, no.
2, pp. 41, 2017.

[15] AE Krzesinski, “Order independent queues,” Queueing
Networks, pp. 85–120, 2011.

[16] Gauri Joshi, Emina Soljanin, and Gregory Wornell, “Ef-
ficient redundancy techniques for latency reduction in
cloud systems,” ACM Transactions on Modeling and
Performance Evaluation of Computing Systems (TOM-
PECS), vol. 2, no. 2, pp. 12, 2017.

[17] Mor Harchol-Balter, Performance Modeling and Design
of Computer Systems: Queueing Theory in Action, Cam-
bridge University Press, New York, NY, USA, 2013.

[18] Maury Bramson, Yi Lu, and Balaji Prabhakar, “Asymp-
totic independence of queues under randomized load bal-
ancing,” Queueing Systems, vol. 71, no. 3, pp. 247–292,
2012.

[19] Shlomo Halfin and Ward Whitt, “Heavy-traffic limits
for queues with many exponential servers,” Operations
research, vol. 29, no. 3, pp. 567–588, 1981.

[20] Mark van der Boor, Sem C Borst, Johan SH van
Leeuwaarden, and Debankur Mukherjee, “Scalable load
balancing in networked systems: Universality proper-
ties and stochastic coupling methods,” arXiv preprint
arXiv:1712.08555, 2017.

Appendix

A: Proof of Lemma 1

Assuming the uniform assignment rule, we will prove that for
every subset {Mi, . . . ,M1} of M of size i and for every j (1 ≤
j ≤ i) we have λMj

({M1, . . .Mj−1}) = λM̄j
({M̄1, . . . M̄j−1})

for every permutation M̄1, . . . M̄i of M1, . . .Mi. From Eq.
(14), this will imply the assignment condition.

To characterize λMj
({M1, . . . ,Mj−1}) (the activation

rate of server Mj , when the set of active servers is
{M1, . . . ,Mj−1}), we will require the number of types that
can activate server Mj when servers M1 to Mj−1 are busy.
This can be obtained by first counting the number of types
that can activate server Mj while having exactly α of its d
feasible servers already busy (and hence among M1 to Mj−1)
and then summing over α.

Now let C(mi) denote the set of types which have mi as
a feasible server. Likewise, C(Mi) would denote the same for
a generic server Mi. Let Sc denote the set of d feasible servers
for type c jobs. Now when the system has exactly j − 1 busy
servers denoted by {M1, . . . ,Mj−1} and when Mj is an idle
server, define

Cα
Mj

({M1, . . . ,Mj−1}) :=
{c ∈ C(Mj) : |Sc ∩ {M1, . . . ,Mj−1}| = α}

as the set of types that have the idle server Mj as fea-
sible and have exactly α out of their d feasible servers

15

in the set {M1, . . . ,Mj−1}. Hence for any type c ∈
Cα

Mj
({M1, . . . ,Mj−1}), there are exactly d − α idle servers

(which include server Mj) and due to the uniform assignment
rule, an arriving customer of this type will activate server Mj

with probability 1
d−α

. Now it can be seen that

|Cα
Mj

({M1, . . .Mj−1})| =
(

j − 1

α

)(

K − j

d− α− 1

)

.

Here
(

j−1
α

)

is the number of ways of choosing α servers out
of {M1, . . .Mj−1}. For a particular choice of α servers say
{M1, . . .Mα}, and given Mj , the number of types that have

these particular α + 1 servers as feasible servers is
(

K−j
d−α−1

)

.
This explains the value of |Cα

Mj
({M1, . . .Mj−1})|. Note addi-

tionally that this cardinality depends only on the number of
busy servers j − 1 and not on the label of the servers that
are actually busy. This implies that for any permutation
M̄1, . . . M̄i of M1, . . .Mi and for 0 ≤ j ≤ i, we have

|Cα
Mj

({M1, . . .Mj−1})| = |Cα
M̄j

({M̄1, . . . M̄j−1})|. (19)

Here {M̄1, . . . M̄j−1} is the first j servers from the permuta-
tion
M̄1, . . . M̄i of M1, . . .Mi for 0 ≤ j ≤ i. Now note that

λMj
({M1, . . .Mj−1})

=

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

∑

c∈Cα
Mj

({M1,...Mj−1})

λtype

d− α

=

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

λtype|Cα
Mj

({M1, . . .Mj−1})|
d− α

=

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

λtype|Cα
M̄j

({M̄1, . . . M̄j−1})|
d− α

= λM̄j
({M̄1, . . . M̄j−1})

where {M̄1, . . . M̄j−1} is the first j servers from the permuta-
tion M̄1, . . . M̄i ofM1, . . .Mi for 0 ≤ j ≤ i. Here the range of α
in the index of the summation is so chosen that the quantity
(

j−1
α

)(

K−j
d−α−1

)

is property defined. The first equality above
follows from the fact the each type
c ∈ Cα

Mj
({M1, . . .Mj−1}) activates its idle feasible server Mj

with rate
λtype

d−α
and the total activation rate for Mj is ob-

tained by summing over all such types and then over all α.
The third equality follows from Eq. (19) and the last equality
in fact follows from the first. From this, it is easy to see that
for i = 1 . . . K,

i
∏

j=1

λMj
({M1, . . .Mj−1}) =

i
∏

j=1

λM̄j
({M̄1, . . . M̄j−1}) (20)

for every permutation M̄1, . . . M̄i of M1, . . .Mi. This com-
pletes the proof.

B: Proof of Proposition 1

For a redundancy-d system with c.o.s, first note that if less
than d servers are busy, then the number of waiting copies (in
the traditional parallel server representation) is zero. This
is because a waiting copy implies that all the other d − 1
copies are also waiting for service; this is possible when at
least d servers are busy in the system. Therefore for any
feasible state s = (ni,Mi, . . . , n1,M1) we have n1 = n2 =
. . .−nd−1 = 0. Since the redundancy-d system with c.o.s can
be seen as a multi-type job and server model and since the
uniform assignment rule satisfies the assignment condition
(Lemma 1), we can apply Proposition 1. The steady state
distribution for any state s = (ni,Mi, . . . , n1,M1) with i < d
and n1 = . . . = nd−1 = 0 is now given by

π(s) =
Πλ({M1, . . . ,Mi})
Πµ(Mi, . . . ,M1)

π(0)

and for i ≥ d and n1 = . . . = nd−1 = 0 by

π(s) = αi
ni . . . αd

nd
Πλ({M1, . . . ,Mi})
Πµ(Mi, . . . ,M1)

π(0).

Here

Πλ({M1, . . . ,Mi}) =

i
∏

j=1

λMj
({M1, . . .Mj−1})

Πµ(Mi, . . . ,M1) =

i
∏

j=1

µ{M1,...Mj}

αj =
λU({M1,...,Mj})

µ{M1,...Mj}
for 1 ≤ j ≤ i.

For the redundancy-d system with c.o.s, the departure rate
from any state with active servers {M1, . . .Mj} is given by
µ{M1, . . .Mj} = jµ and hence

Πµ(Mi, . . . ,M1) = µii!.

Recall from the preliminaries that λU({M1,...,Mj}) denotes
the arrival rate of types that can be served only at servers
{M1, . . . ,Mj}. The number of such types is

(

j
d

)

and the ar-

rival rate of each such type is λtype =
λ

(Kd)
. Therefore

λU({M1,...,Mj}) = λ

(

j
d

)

(

K
d

) .

Now using the fact that

λMj
({M1, . . .Mj−1})

= λtype

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

|Cα
Mj

({M1, . . .Mj−1})|
d− α

= λtype

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

(

j−1
α

)(

K−j
d−α−1

)

d− α
,

16

we have

Πλ({M1, . . . ,Mi}) =

i
∏

j=1

λMj
({M1, . . .Mj−1})

=

i
∏

j=1

λtype

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

(

j−1
α

)(

K−j
d−α−1

)

d− α
.

Now define

Gj(K, d) := λtype

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

(

j−1
α

)(

K−j
d−α−1

)

d− α

=

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

λ
(

j−1
α

)(

K−j
d−α−1

)

(d− α)
(

K
d

)

Gi(K, d) :=

i
∏

j=1

Gj(K, d) and

ri :=

(

λ

(

i
d

)

iµ
(

K
d

)

)

Using these definitions, the statement of the theorem follows.
This completes the proof.

C: Proof of Lemma 2

When i < d it is easy to see that

p(i) =

(

K

i

)

i!π(s)

where s is any state of the form s = (0,Mi, 0,Mi−1, . . . , 0,M1)
(since the servers are homogeneous, π(s) for all such states is
the same). The i busy servers can be chosen in

(

K
i

)

ways and
there are i! ways to arrange the servers leading to the above
expression.

Recall that ri = ρr̄i. Since ρ < 1, and r̄i =
(i−1

d−1)
(K−1

d−1)
< 1,

it directly follows that ri < 1. The probability of having i
busy servers, p(i), for i ≥ d is now given by

p(i) =

(

K

i

)

i!
∑

ni

. . .
∑

nd

π(ni,Mi, . . . , n
d,Md, . . . , 0,M1)

=

(

K

i

)

i!
∑

ni

. . .
∑

nd

ri
ni . . . rd

ndGi(K, d)
π(0)

i!µ

=

(

K

i

)(

1

1− ri

)

. . .

(

1

1− rd

)

Gi(K, d)
π(0)

µi
.

Therefore we have

p(i) =

{(

K
i

)

Gi(K, d)π(0)
µi for i < d

(

K
i

)

(

1
1−ri

)

. . .
(

1
1−rd

)

Gi(K, d)π(0)
µi for i ≥ d.

Recall that
(

K
i

)

Gi(K,d)
µi =

(

K
i

)

Ḡi(K, d)ρi and hence p̄(i) given

in the statement now follows. Using the fact that
∑K

i=0 p(i) =
1 and p(i) = p̄(i)π(0), one can see that

π(0) =

(

1 +

K
∑

i=1

p̄(i)

)−1

.

D: Proof of Proposition 2

We first analyze li(m) and try to obtain a recursive form for
it. First note that for i = d, we have ld(m) = rmd for m ≥ 0.
Now for i > d,

li(m) =
∑

{ni...nd:∑i
l=d

nl=m}

rni

i . . . rnd

d

=

∞
∑

ni=0

rni

i

∑

{ni−1...nd:∑i−1

l=d
nl=m−ni}

r
ni−1

i−1 . . . rnd

d

=

m
∑

ni=0

rni

i li−1(m− ni)

= (hi ⋆ li−1)(m)

where hi(j) := rji and ⋆ represents the convolution operator.
We will now obtain the expression for Pi(z), the P.G.F. for
p(i,m). Let Hi(z) and Li(z) be the P.G.F.’s for hi(·) and li(·)
respectively. When there are i < d servers busy, there are no
jobs waiting. Hence, we directly have Pi(z) = p(i), for i < d.

Let

f i(K, d) =

(

K

i

)

Ḡi(K, d)ρi.

For i ≥ d, we have p(i,m) = π(0)f i(K, d)li(m). Further note
when i ≥ d, we have

Hi(z) =
1

1− riz

Li+1(z) = Hi+1(z)Li(z) and

Pi(z) = π(0)f i(K, d)Li(z),

and since ld(m) = rmd , we have Ld(z) = Hd(z). We therefore
have for i ≥ d,

Pi(z) = π(0)f i(K, d)

i
∏

j=d

Hj(z)

 , (21)

where π(0) is given by Eq. (9). Now define

Geomrj (z) :=
1− rj
1− rjz

.

17

Geomrj (z) denotes the P.G.F. of a geometric random variable
Xj with parameter rj . (Xj has the distribution P (Xj = n) =
(1− rj)r

n
j .). Together with Lemma 2, we then have for i ≥ d

Pi(z) = π(0)f i(K, d)

i
∏

j=d

Hj(z)

= p(i)

i
∏

j=d

Geomrj (z)

 . (22)

The P.G.F. for the number of waiting jobs is then given
by

P̂ (z) =

K
∑

i=1

Pi(z) =

d−1
∑

i=0

p(i) +

K
∑

i=d

Pi(z).

The required P.G.F. in the statement of the theorem now
follows from Eq. (22).

The expected number of waiting jobs is given by
∑K

i=1
dPi(z)

dz

∣

∣

∣

z=1
. Note that dPi(z)

dz
= 0 when i < d. When

i ≥ d,

dPi(z)

dz

∣

∣

∣

z=1
= p(i)

i
∏

j=d

Geomrj (z)

∣

∣

∣

z=1

i
∑

j=d

rj
1− rj

= p(i)

i
∑

j=d

rj
1− rj

 .

(The second equality is because
(

∏i
j=d Geomrj (z)

) ∣

∣

∣

z=1
= 1)

The expected number of waiting jobs in the system (E(Q)) is
hence given by

E(Q) =

K
∑

i=d

p(i)

i
∑

j=d

rj
1− rj

where p(i) is given by Eq. (7) and (9). Since the mean number
of jobs at the servers is same as the mean number of busy
servers we have E(N) = E(Q) +Kρ.

E: Special cases; d = 1 and d = K

In this appendix, we will discuss the special cases for the c.o.s.
model corresponding to d = 1 and d = K.

When d = 1, both c.o.s. and c.o.c. system are equivalent
to a system with Bernoulli routing to the K servers. The
queue length process of each server is independent and each
server represents an M/M/1 queue with arrival rate λ

K
and

service rate µ. It is easy to check from our analysis of Section

4 that when d = 1, we have Gj(K, d) = λ
K
, Gi(K, d) =

(

λ
K

)i

and ri = ρ. Using the notation that ρ = λ
Kµ

(the load per

M/M/1 queue), the steady-state probability from Eq (4) for
any state s = (ni,Mi, . . . , n1,M1) for i ≥ 0 is given by

π(s) = π(0)
ρ(i+

∑i
j=1

nj)

i!
.

p(i) is given by p̄(i)π(0) where from Eq. (8) we have p̄(i) =
(

K
i

)

(

ρ
1−ρ

)i

. From Eq. (9), the normalizing constant is ob-

tained as

π(0) =

(

1 +

K
∑

i=1

(

K

i

)(

ρ

1− ρ

)i
)−1

=

(

(

1 +
ρ

1− ρ

)K
)−1

= (1− ρ)
K
.

Since π(0) is also the probability that the system of K in-
dependent M/M/1 queues is empty, this justifies π(0) =

(1− ρ)
K
. Using this, p(i) can be simplified to p(i) =

(

K
i

)

ρi(1− ρ)
K−i

. Now using Proposition 2, it is easy to
see that the P.G.F. for the number of waiting jobs in the
redundancy-1 system is given by

P̂ (z) =

(

1 + ρ− ρz

1− ρz

)K

(1− ρ)
K
.

Further, the mean number of waiting jobs and the total num-

ber of jobs in the system is given by E(Q) = Kρ2

1−ρ
and

E(N) = K ρ
1−ρ

.
We now analyze the redundancy-K system with c.o.s..

The redundancy-K system is same as an M/M/K system
with arrival rate of λ and K servers each with rate µ. For this
case, substituting d = K in our analysis of Section 4 gives us

Gj(K,K) = λ
K−j+1 , G

i(K,K) = λi(K−i)!
K! and rK = ρ. Again,

by simple substitution, the probability of i busy servers p(i)
is given by p(i) = π(0)p̄(i) where

p̄(i) =

(Kρ)i

i! for i < K
(

1
1−ρ

)

(Kρ)K

K! for i = K.

The normalizing constant π(0) is given by

π(0) =

(

K−1
∑

i=0

(Kρ)
i

i!
+

(

1

1− ρ

)

(Kρ)
K

K!

)−1

which coincides with the normalizing constant of an M/M/K
system (see page 260, [17]). Note that p(K), the probability
that all servers are busy corresponds to the blocking proba-
bility of the M/M/K system. In fact, we obtain

p(K) = π(0)

(

1

1− ρ

)

(Kρ)
K

K!

18

which as expected coincides with the celebrated Erlang-C for-
mula. Based on substituting d = K in Proposition 2, we
see that the P.G.F. for the number of waiting jobs in the
redundancy-K system is given by

P̂ (z) =
K−1
∑

i=0

p(i) + p(K)Geomρ(z).

Further, the mean number of waiting jobs and total number of
jobs in the system is given by E(Q) = p(K) ρ

1−ρ
and E(N) =

p(K) ρ
1−ρ

+ λ
µ
. These expressions verify with the corresponding

quantities for the M/M/K system (see [17]).

F: Proof outline of Proposition 5

The proof outline is as follows. We first state the transi-
tion rates and the global balance equation for the generalized
multi-type job and server model. Then, we identify the partial
balance equations (as in [1]) that need to be satisfied by our
guess for the stationary distribution given in the statement of
the theorem. Using the generalized departure set functions in
the equations, we show that the stationary distribution from
the theorem indeed satisfies the partial balance resulting in a
product-form.

Transition rates and global balance

The transitions from an arbitrary state are of the following
type.

Arrivals: When in state s = (ni,Mi, . . . , n1,M1), the
total arrival rate is λ. An arriving job either finds no feasible
server to be idle or is picked for service by a feasible idle server.
In case of multiple feasible idle server, the assignment rule will
determine which of the feasible and idle server will serve this
arrival. It is asumed in the statement of the theorem that the
assignment rule must satisfy the assignment condition. The
arrival rate of jobs that find no feasible server to be idle is
given by λU({M1,...,Mi}). The arrival rate of jobs that activate
a feasible server (according to the assignment rule) is λ −
λU({M1,...,Mi}) respectively. As in [1], we have

λ− λU({M1,...,Mi}) =
∑

M∈M\{M1,...,Mi}

λM ({M1, . . . ,Mi}).

(23)
Departures: On departure of a job in service, either the
server serving this job become idle or the server serving this
job picks some waiting job. These two cases are defined by the
following two events that describe transition rates associated
with a departure.

• { Rate P } : the rate of transition into state s due to a
departure such that the server serving the departing job
becomes idle.

• { Rate Q } : the rate of transition into state s due to a
departure such that the server serving the departing job
picks a waiting job.

The global balance equations for any state that is of the form
s = (ni,Mi, . . . , n1,M1) are as follows. When ni > 0, we have

π(s)
(

λ+ µ{M1,...Mi}

)

= { Rate P }+ { Rate Q } (24)
+ λU({M1,...,Mi})

× π(ni − 1,Mi, . . . , n1,M1).

When ni = 0, we have

π(s)
(

λ+ µ{M1,...Mi}

)

= { Rate P }+ { Rate Q } (25)

+ λMi
({M1, . . . ,Mi−1})

× π(ni−1,Mi−1, . . . , n1,M1).

We will now characterize Rate P and Q in detail. As in [1],
we denote the state (ni,Mi, . . . , l,M, nk − l,Mk, . . . , n1,M1)
by
insertMkl (s) and the state

(ni,Mi, . . . , nj+1,Mj+1, nj + nj−1 + 1,Mj−1, . . . ,

. . . ,Mk+1, l,Mj , nk − l,Mk, . . . , n1,M1)

by swap
Mj

kl (s). Note that in state insertMkl (s) (resp.

swap
Mj

kl (s)), the departure rate of server M (resp. Mj) in
our system is given by

µ{M1,...,Mk,M}−µ{M1,...,Mk}(resp.µ{M1,...,Mk,Mj}−µ{M1,...,Mk}).

Define

δj(M) :=
λU({M1...Mj})

λU({M1...Mj ,M})
, j = 1 . . . i.

Let pMkl (s) (resp. q
Mj

kl (s)) denote the probability of transition

from state insertMkl (s) (resp. swap
Mj

kl (s)) to state s due to de-
parture of server M (resp. Mj). Therefore p

M
kl (s) is the prob-

ability that after departure of server M, the state insertMkl (s)
is such that there are no waiting jobs in the system that are

feasible to server M. Similarly, q
Mj

kl (s) is the probability that

after departure of server Mj , the state swap
Mj

kl (s) is such that
after departure of server Mj , the next feasible job for this
server is the nj−1 + 1st job after server Mj−1. Therefore we
have,

pMkl (s) = δk(M)
l
δk+1(M)

nk+1 . . . δi(M)
ni

and

q
Mj

kl (s) = δk(Mj)
l
δk+1(Mj)

nk+1 . . . δj−1(Mj)
nj−1(1− δj−1(Mj)).

The rates P and Q can be quantified as below:

{ Rate P } =
∑

M∈M\{M1,...,Mi}

PM (s)

{ Rate Q } =
i
∑

j=1

QMj
(s)

19

where

PM (s) =

i
∑

k=1

nk
∑

l=0

µ̂M (insertMkl (s))p
M
kl (s)π(insert

M
kl (s))

+ µMpM00(s)π(s , 0,M),

QMj
(s) =

j−1
∑

k=1

nk
∑

l=0

µ̂Mj
(swap

Mj

kl (s))q
Mj

kl (s)π(swap
Mj

kl (s))

+ µMj
q
Mj

00 (s)π(swap
Mj

00 (s)).

Note the subtle difference between our definition of
PM (s),QMj

(s) given above and that in [1]. Unlike [1], we
have subsumed the departure rates inside the definition of
PM (s),QMj

(s).
Partial Balance: Now as in the proof of Theorem

2, [1], the aim is to prove that the expression for π(s) in
the statement of the theorem satisfies the following 4 partial
balance equation. For ni > 0

π(s)µ{M1,...Mi} = λU({M1,...,Mi})π(ni − 1,Mi, . . . , n1,M1) (26)

and for ni = 0,

π(s)µ{M1,...Mi} =

λMi
({M1, . . . ,Mi−i})π(ni−1,Mi−1, . . . , n1,M1).(27)

π(s)λU({M1,...,Mi}) = { Rate Q }

=

i
∑

j=1

QMj
(s) (28)

π(s)λM ({M1, . . . ,Mi}) = PM (s). (29)

Here we have made use of Eq (23) to replace λ in the global
balance equations (24) and (25). Firstly, it is easy to see
that Eq. (3) satisfies Eq. (26) and (27). Hence to com-
plete the proof, it is sufficient to prove that Eq. (3) satisfies
Eq. (28) and Eq. (29). Let us first prove that Eq. (3)
satisfies Eq. (29). We proceed exactly as in the proof of
Theorem 2 in [1] and divide each term in the summation
of PM (s) by π(s)λM ({M1, . . . ,Mi}). In the corresponding
part of the proof of Theorem 2 in [1], we have µM instead
of µ̂M (insertMkl (s)). Proceeding in the same way and using
the fact that µ̂M (insertMkl (s)) = µ{M1,...Mk,M} − µ{M1,...Mk}

it can be shown that

µ̂M (insertMkl (s))p
M
kl (s)

π(insertMkl (s))

π(s)λM ({M1, . . . ,Mi})
= (1− βk)(βk)

l(βk+1)
nk+1+1 . . . (βi)

ni+1

where
βj =

µ{M1,...Mj}

µ{M1,...Mj ,M}
1 ≤ j ≤ i.

A similar procedure for the boundary state gives us

µ̂M (s , 0,M)pM1n1
(s)

π(s , 0,M)

π(s)λM ({M1, . . . ,Mi})
=

i
∏

j=1

(βj)
nj+1.

Now as in [1], this implies that

PM (s)

π(s)λM ({M1, . . . ,Mi})
=

i
∏

j=1

(βj)
nj+1 +

i
∑

k=1

nk
∑

l=0

(1− βk)(βk)
l

i
∏

h=k+1

(βh)
nh+1

= 1.

To prove, that Eq. (3) satisfies Eq. (28), as in the proof
of Theorem 2 in [1], divide each term in the summation of

QMj
(s) by π(s). Since the departure rate µ̂Mj

(swap
Mj

kl (s)) in

state swap
Mj

kl (s) is given by µ{M1,...,Mk,Mj} −µ{M1,...,Mk}, we
can follow the exact steps in the proof of Theorem 2 in [1] to
obtain

µ̂Mj
(swap

Mj

kl (s))q
Mj

kl (s)
π(swap

Mj

kl (s))

π(s)

=
(

λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

)

× (1− βk,j)(βk,j)
l(βk+1,j)

nk+1+1 . . . (βj−1,j)
nj−1+1

where
βh,j =

µ{M1,...Mh}

µ{M1,...Mh,Mj}
, 1 ≤ h ≤ j − 1.

For the boundary states, we can show

µ̂Mj
(swap

Mj

00 (s))q
Mj

1,n1
(s)

π(swap
Mj

00 (s))

π(s)
=

(

λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

)

j−1
∏

h=1

(βh,j)
nh+1

and that for 1 ≤ j ≤ i, adding terms over k and l we would
get

QMj
(s) = π(s)

(

λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

)

.

Summing over all j we have

π(s)λU({M1,...,Mi}) =

i
∑

j=1

QMj
(s)

which is same as Eq. (28). This completes the proof outline.

G: Proof of Proposition 6

From Section 3, recall that the steady state exists for any
ρ < 1. Since the redundancy-d c.o.c model can be viewed
as a generalized multi-type job and server model with state
space representation (ni, Oci , . . . , n1, Oc1), we are in position
to invoke Proposition 5 for this model. Therefore the steady
state distribution in state s = (ni, Oci , . . . , n1, Oc1) is given
by

π(s) = αi
ni . . . α1

n1
Πλ({Oc1 , . . . , Oci})
Πµ(Oci , . . . , Oc1)

π(0) (30)

20

where

Πλ({Oc1 , . . . , Oci}) =

i
∏

j=1

λOcj
({Oc1 , . . . Ocj−1

}),

Πµ(Oci , . . . , Oc1) =
i
∏

j=1

µ{Oc1
,...Ocj

},

αj =
λU({Oc1

,...,Ocj
})

µ{Oc1
,...Ocj

}
.

Now for the redundancy-d c.o.c model, we have
λOcj

({Oc1 , . . . Ocj−1
}) = λcj = λtype. Further

λU({Oc1
,...,Ocj

}) =
∑j

l=1 λcl = jλtype. Therefore we have,

Πλ({Oc1 , . . . , Oci}) =

i
∏

j=1

λtype,

αj =

(

jλtype

µ|Fj(s)|

)

.

After rearranging the terms and bit of algebra, the steady
state distribution for state s = (ni, Oci , . . . , n1, Oc1) is given
by

π(s) =
π(0)

i!

i
∏

j=1

(

jλtype

µ|Fj(s)|

)nj+1

(31)

21

	Introduction
	Related work
	Model, Preliminaries and Notation
	Redundancy-d with c.o.s. and c.o.c.
	Preliminaries
	Central queue architecture

	Multi-type job and server model of Visschers12

	Redundancy-d with c.o.s.: An exact analysis
	Product form stationary distribution
	Normalization constant and probability of busy servers
	Distribution of number of jobs

	Equivalence of JSW(d) and redundancy-d with c.o.s.
	Asymptotic regimes for c.o.s
	Heavy-traffic regime
	Mean-field regime

	Redundancy with c.o.c.: an alternate product from
	A generalized multi-type job and server model
	An alternate product form for c.o.c.

	Numerical Results
	Comparing c.o.c. and c.o.s., impact of independence assumption
	Performance of redundancy-d with c.o.s.
	Asymptotic regimes

	Concluding remarks

