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ABSTRACT
In turbomachinery, it is well known that tighter operating

clearances improve the efficiency. However, this leads to unwanted
potential unilateral and frictional contact occurrences between
the rotating (blades) and stationary components (casings) together
with attendant thermal excitations. Unilateral contact induces dis-
continuities in the velocity at impact times, hence the terminology
nonsmooth dynamics. Current modeling strategies of rotor-stator
interactions are either based on regularizing penalty methods or
on explicit time-marching methods derived from Carpenter’s for-
ward Lagrange multiplier method. Regularization introduces an
artificial time scale in the formulation corresponding to numeri-
cal stiffness which is not desirable. Carpenter’s scheme has been
successfully applied to turbomachinery industrial models in the
sole mechanical framework, but faces serious stability issues when
dealing with the additional heat equation.

This work overcomes the above issues by using the Moreau–
Jean nonsmooth integration scheme within an implicit �-method.
This numerical scheme is based on a mathematically sound de-
scription of the contact dynamics by means of measure differential
inclusions and enjoys attractive features. The procedure is uncondi-
tionally stable opening doors to quick preliminary simulations with
time-steps one hundred times larger than with previous algorithms.
It can also deal with strongly coupled thermomechanical problems.

Keywords: nonsmooth dynamics, unilateral contact, friction,
rotor-stator interaction

INTRODUCTION
Turbomachinery equipment manufacturers tend to improve the
aerodynamic performance by reducing operating gaps between
rotating and stationary components. This leads to frequent contact
occurrences, referred to as rotor-stator interaction, in compressor
and turbine stages of modern aircraft and helicopter engines [1].
To reduce the possibly harmful effects of such events on the global
dynamics and subsequent damage, casings are commonly coated
with abradable materials [1]. This strategy has proven efficient,
however the resulting dynamics, coupling contact and frictional
heating, is still not well understood and modelled.

Various developments have been dedicated to the improve-
ment of turbomachines design to account for blade–tip rubbing,
modal interaction or whip–whirl motions [1]. In these works, con-
tact is dealt with using either a regularized approach [2] or the
forward Lagrange multiplier formulation [3, 4]. The regularized
approach consists in modeling the contact between the rotor and
the stator through a stiff spring. Though very simple to imple-
ment, the additional and somehow artificial spring leads to stiff

numerical problems which are prone to stability issues [5, 6]. The
Lagrange multiplier formulation preserves the nonsmooth frame-
work induced by contact conditions but uses an explicit procedure
in time for which stability is guaranteed only for sufficiently small
time-steps. This is particularly problematic since thermal fluxes
generated by frictional heating seem to play a significant role in
rotor-stator interactions [7] and are thus considered in the model.
Indeed, explicit schemes are not well-suited for the heat equation
as they lead to stiff numerical problems [8]. More specifically,
the stability is typically governed by a relationship of the form
�t � �x2=2, implying that a refinement of the space discretiza-
tion has drastic consequences on the necessary refinement in time.

A simple thermo-mechanical model of a bladed-disk sec-
tor section 1 is first considered in this work. The coupling is
two-fold: from heat diffusion to mechanics via thermal expansion
and from mechanics to heat through a frictional heating law. The
governing equations are solved via dedicated nonsmooth solvers
which rely on an implicit numerical scheme [6] as described in sec-
tion 2. Time-domain histories, systematic comparison with the
forward Lagrange multiplier method as well as sensitivity analysis
to time-step are discussed in section 3. Finally, the methodology is
adapted to an industrial-size model in section 4.

1 DESCRIPTION OF THE SIMPLIFIED MODEL
Due to the high computational costs induced by non-linear phe-
nomena in large-scale problems, model-order reduction methods
are often implemented for realizable computations, as exposed
in section 4. However, the simple one-sector model illustrated
in fig. 1 is first used to validate the methodology. The stator is rigid

rotor

rigid stator
contact node 3
contact node 4

FIGURE 1: Simplified finite element sector. Contact nodes [ ],
constrained nodes [ ] and corresponding contact forces [ ].

and the rotor includes 2028 degrees of freedom (507 free nodes
in each space direction and temperature) and seven contact points.
It possesses constrained nodes (zero displacement and prescribed
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temperature of 25 ıC) on its internal bore and contact nodes on the
blade tip. The structural dynamics is governed by an equation of
the form

Muu
RuC Cuu PuCKuuuCKu�� D fu C fuc (1)

where u is the vector of generalized displacements, � is the vector
of generalized temperatures, Muu, Cuu and Kuu are respectively
the mass, damping and stiffness matrices stemming from the finite
element discretization. The temperature-induced expansions are ac-
counted for through the coupling matrix Ku� . The external forces
are split into the external load fu and the contact forces fuc . In a
more elaborate model, fu could include centrifugal or aerodynamic
effects while contact could be induced by the static deflection or
the vibrations of the stator. In this work, the load fu, described
further, activates contact. To every contact node i D 1; : : : ; 7 cor-
responds a gap function gi .u/ measuring the algebraic distance to
the stator and an impulsive contact force �i in the inward-pointing
normal direction. The following so-called Signorini conditions
complements eq. (1):8̂<̂
:
gi � 0

�i � 0

gi�i D 0:

(2a)
(2b)
(2c)

The first two inequalities enforce the non-penetration and the non-
sticking condition, respectively. Equality (2c) translates the fact
that the gap is open (gi > 0) if and only if the associated contact
force is zero, except in the very specific case gi D 0 and �i D 0.
The seven Signorini conditions (one for each contact node) are
usually gathered in the compact form 0 � g ? � � 0 where g D
Œg1; : : : ; g7�

>, � D Œ�1; : : : ; �7�
> and the operators �, ? and �

are defined component-wise. In addition to Signorini conditions, as
in any space semi-discretized contact formulation, an impact law is
required to ensure uniqueness of the solution [9]. In order to mimic
lasting contact phases, we choose an inelastic Newton impact law:
yCi D 0 where yCi D Pgi .u.tC// denotes the normal velocity
right after the impact time. In the tangential direction, fuc includes
Coulomb friction, therefore proportional to the normal forces. This
can be written as fuc D CuNT� where CNT is a rectangular matrix
transferring the normal impulses � in the local coordinates to the
generalized coordinates in the normal direction, as well as in the
tangential direction through the Coulomb friction coefficient. In
the present case, the local nodal reference frames at the contact
nodes are oriented according to the global cylindrical directions so
that CuNT takes the form

CuNT D I7 ˝

24 �1

��R�

0

35 (3)

where R is the stator radius and � the angular velocity—the con-
tribution of the blade vibration in the tangential contact velocity is
neglected. Note that because of the high tangential contact velocity,
there is no stick-slip transitions and friction is therefore not source
of nonsmoothness here. Also, eq. (1) does not include centrifugal
stiffening or spin softening. They could however be incorporated
in a straightforward manner.

The thermal dynamics is governed by an equation of the form

C�� P� CK��� D f� C f�c (4)

where C�� and K�� are the heat capacity and heat conductivity
matrices. As for the structure, the external load is separated into
external fluxes f� and frictional heating due to contact f�c . Each of
the seven frictional heat fluxes ��i follows a simple law ��i D ˛�i
which are included in f�c through a relationship of the form f�c D
C�NT� where C�NT D ˛I7. This means that each contact occurrence
generates a heat flux proportional to the normal contact force. This
simple law [10] is sufficient to illustrate the capabilities of the
proposed numerical method. However it is worth mentioning that
it might induce temperature discontinuities. Indeed, if one �i is
impulsive, eq. (4) shows that P� will also be corresponding to a
discontinuous � . Integrating more complex laws is straightforward.
Also, in contrast to other available investigations [11, 12], contact-
induced wear in rotor-stator interactions are not considered in the
present model.

Altogether, eq. (1) and eq. (4) are compactly recast in the form

MRxC CPxCKx D fC fc (5)

with

M D
�

Muu 0
0 0

�
; C D

�
Cuu 0

0 C��

�
; K D

�
Kuu Ku�

0 K��

�
(6)

and

x D
�

u
�

�
; f D

�
fu
f�

�
; fc D

�
fuc
f�c

�
: (7)

The matrices M and K were obtained using SOLID226 coupled–
field elements in ANSYS R. The damping matrix verifies Cuu D
10�5Kuu. Contact is activated via fu, chosen here as a sinusoidal
function of frequency 33 Hz and amplitude 100 N, in the radial
direction and on all contact nodes. The frequency corresponds
to � D 2000 rpm, assuming the blade hits the stator once per
rotation. For comparison, the first flexural mode of the blade has a
frequency of 1300 Hz. The contact frequency could also be due to
the vibration of the blade, as in section 4.

A TA6V titanium alloy, widely used for the production of air-
craft compressor components, is considered. The material proper-
ties, estimated from several alloys properties, read as follows: den-
sity 4430 kg m�3, Young’s modulus 110 GPa, Poisson’s ratio 0:3,
heat capacitance 520 J K�1 kg�1, heat conductivity 6:7 J K�1 m�1,
dilatation coefficient 9 µm m�1 K�1. The coefficient of frictional
heating is ˛ D 0:1 and the coefficient of friction in Coulomb’s law
is � D 0:15.

2 NONSMOOTH NUMERICAL METHODS
2.1 Formulation using Differential Measures
Equation (1) may seem to be an Ordinary Differential Equation
(ODE). More rigorously, it should be described by means of weaker
mathematical objects such as distributions or measures. Indeed,
fuc contains impulsive terms: every time a gap closes, the corre-
sponding contact node instantly looses all its kinetic energy. This
instantaneous loss of kinetic energy is mirrored by an impulse that
is proportional to a Dirac distribution. Equation (1) is therefore an
abuse of notation in the context of nonsmooth dynamics. In this
subsection, the model is reformulated in a sounder mathematical
manner, using measure differential inclusions, making the use of
efficient dedicated numerical methods possible.
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Introducing differential measures dv and d� [6] and the
Lebesgue measure dt , eq. (5) can be expressed as�

MdvC .CvCKx � f/dt D dr
v D Px:

(8a)
(8b)

In short, the prefactors of dt are smooth terms, while dv and dr
are measures which, when integrated between two arbitrarily close
times, can yield non-zero values: they contain impulses, which are
proportional to Dirac delta distributions. The measure dr stores all
contact forces and frictional heating. Loosely speaking, the reader
who is not familiar with measures can compare eq. (8a) to eq. (5)
multiplied by dt .

Using convex analysis, the Signorini conditions (2) together
with the inelastic impact law mentioned above can be formulated
using the proj operator and the tangent cone T in RC [6] as:

yC D proj.TRC.g.u//; y�/ (9)

where the equality is componentwise and the vector y stacks the
normal contact velocities Œ Pg1; : : : ; Pg7�>. The contact impulses are
related to y through

� D OW�1.yC � y�/ and OW D .rug/>M�1.rug/: (10)

Let us inspect eq. (9) for the i th unilateral constraint. By definition,
the tangent cone reads as

TRC.gi .u// D

(
R if gi .u/ > 0
RC if gi .u/ D 0

(11)

and the following can be said.
� During a free flight, gi .u/ > 0 so yC D proj.R; y�/ D y�

and from eq. (11), �i D 0 follows: there is no reaction impulse
and velocity is continuous.
� At the beginning of a contact phase, gi .u/ D 0 and y�i � 0

so that yCi D 0 and the impact law is recovered. The corre-
sponding impulse is � D � OW�1y� � 0.
� In the middle of a contact phase, gi .u/ D 0 and y� D 0 so

that yC D 0 and there is no reaction impulse.
� At the end of a contact phase, gi .u/ D 0 and y�i < 0 so

that yC D proj.RC; 0/ D 0 and �i D 0. The contact force
vanishes and the gap opens.

To summarize, the problem is governed by eq. (8), eq. (9), the
frictional heating law f�c D C�NT� as well as the geometric relation-
ships fuc D CuNT� and y D rug Px.

2.2 Time discretization
We now proceed with the Moreau–Jean discretisation [13, 14]
of eq. (8), using an linearly implicit solver. For n 2 N�C, let tn
denote the nth time-step such that tn D nhwhere h is the time-step.
Integrating eq. (8) between tn and tnC1 yields:8̂<̂
:
Z tnC1

tn

MdvC
Z tnC1

tn

.CvCKx � f/dt D
Z tnC1

tn

dr

v D Pu:

(12a)

(12b)

Smooth quantities are discretized by means of the � -method, where
to avoid confusion with the temperature � , the numerical parameter

is denoted by  :Z tnC1

tn

vdt D h
�
vnC1 C .1 � /vn

�
WD hvnC (13)

and similarly for x and f, so that eq. (12a) becomes(
M.vnC1 � vn/C h

�
CvnC CKxnC � fnC

�
DpnC1

vn D Pun

(14a)
(14b)

with pnC1D
R tnC1

tn
dr. Introducing OM D .MC hCC h22K/,

eq. (14a) is rewritten as

OM.vnC1�vn/D�h.CvnCKun�fnC /�h2KvnCpnC1: (15)

We now introduce a predictor step, corresponding to the dy-
namics without the unilateral constraints. The purpose of this step
is to estimate whether the contact status is about to change in the
next time-step. Two new quantities are defined: the predicted gap
chosen as QgnC1 D g.unC hvn=2/ and the predicted velocity QvnC1
such that

OM.vnC1 � QvnC1/ D pnC1: (16)

The predicted normal velocities in the local coordinates are given
by QynC1 D rug QvnC1. Equation (9) is discretized as

ynC1 D proj.TRC.QgnC1/; QynC1/: (17)

Then, the reactions in the global frame pnC1 are computed from the
normal contact reactions in the local frame �nC1 D OW�1.ynC1 �
yn/ through the geometric relationship pnC1 D CuNT�nC1. The
velocity is finally updated by adding the effects of contact to the
contact-less prediction QvnC1:

vnC1 D QvnC1 C OM�1pnC1: (18)

3 VALIDATION USING THE SIMPLE MODEL
In this section, the reference solution is generated via the method-
ology described in the previous section, with a time-step h D
1=3 � 10�6. The error of a data series is defined as the integral
of the absolute value of the difference with the reference solution,
divided by the integral of absolute value of the reference solution,
over the time interval Œ0 s; 1 s�. For example, a time series of the
temperature of the first node �1 shows the error

� D

R
Œ0;1�
j�1 � �

ref
1 jR

Œ0;1�
j� ref
1 j

: (19)

Although imperfect, this definition is useful to quantify discrepan-
cies in the remaining.

3.1 Time-step sensitivity analysis
Figure 2 displays the time evolution of the radial displacement,
the temperature and the normal contact force for the middle of the
blade tip, that is, contact node 4 in fig. 1, and different time-steps.
For h D 10�4 s, the error is about 3 %, while temperature and
contact force show 16 % and 25 % errors, respectively. After one
second, the temperature is underestimated by about 5 %, result-
ing from an underestimation of the normal contact force. This
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FIGURE 2: Sensitivity to time-step at node 4 in terms of radial
displacement ur , temperature � and normal contact force �. Refer-
ence [ ], h D 10�4 s [ ] and h D 10�5 s [ ].

can lead to significant errors on longer simulations, but might be
sufficient if contact events are expected to be of short durations.
With h D 10�5 s, the errors reduce to 0:21 %, 0:18 % and 1:72 %:
the curves cannot be distinguished from the reference. Due to the
strong thermomechanical coupling, the temperature oscillates at
the loading frequency of 33 Hz. Heat accumulates and the temper-
ature globally increases. As a result, the blade expands through the
coupling term Ku� and the gap tends to reduce while the normal
force tend to increase. A close-up view on the last time range 0:9 s
to 1 s is provided in fig. 3. Note that the simulated temperatures of

�2
�1

0
1

u
r

[�
10

�5
m

]

0:9 0:92 0:94 0:96 0:98 1

0
1
0
2
0
3
0
4
0

Time [s]

�
[d

aN
]

1
:5
2
2
:5
3

�
[�

10
3

ı C
]

FIGURE 3: Close-up view of fig. 2.

thousands of degrees go far beyond the material capabilities: that
is an obvious shortcoming of the simple chosen model, which does
not include nonlinear effects (other than contact) nor damage, but
is sufficient for the present scope: validating the methodology. A
more realistic model is presented in section 4.

The normal contact force, always non-negative, is seen to
be non-zero only when the gap is closed, in accordance with the
Signorini conditions eq. (2). Even with relatively large time-steps,
the position exhibits clear kinks when the gap opens and closes,
corresponding to velocity discontinuities induced by the inelastic
impact law, features which would not be accurately captured via
a classical time-domain integration scheme dedicated to smooth
dynamics.

The proposed algorithm does not strictly prevent penetration,
as illustrated in fig. 4. However, the residual penetration, which
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FIGURE 4: Sensitivity of the residual penetration and contact force
to time-step. Reference [ ], h D 10�4 s [ ] and h D 10�5 s [ ].

is small compared to the geometrical tolerances of the machine
components, tends to zero as the time-step reduces. Also, once
contact is activated, penetration never increases.

To conclude on the convergence analysis, the error is depicted
as a function of the time-step in fig. 5. Given that the Carpenter’s
algorithm is unstable with h > 5 � 10�7 s (see section 3.3), the
proposed method enable the use of time-steps larger by several of
orders of magnitude.

10�4 10�5 10�6

1
0

�1
1

0
0

1
0

1

Time-step size

E
rr

or
[%

]

FIGURE 5: Error at node 4: ur [ ], � [ ] and � [ ]

3.2 Effect of coupling on contact geometry
The previous figures were depicted for contact node 4 (middle of
the blade tip), which is the first one to close the gap. In this section,
it is shown that thermomechanical coupling can have an effect on
the contact geometry. Figure 6 compares the simulation results
between node 4 and its neighbour node 3, as defined in fig. 1. For
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FIGURE 6: Time histories for contact nodes 3 [ ] and 4 [ ].

both nodes, the contact force � is non-zero if and only if the gap
is closed. The middle node touches the stator on a longer interval
than node 3, resulting in a normal force of larger amplitude and
higher temperature due to frictional heating. At the beginning, all
boundary nodes impact the stator. After a few contact occurrences,
the middle of the blade has expanded so much due to heating that
the nodes located at the end of the blade tip (nodes 1 and 7) separate
from the stator. This is a logical consequence of the simple model
and tend to validate the simulation methods. Every time the gap
g4 closes and opens, the trajectory of node 3 displays a small kink
because of the structural coupling Muu and Kuu. In contrast, when
thermomechanical coupling is ignored, the discrepancies between
normal forces and displacements tend to reduce, see fig. 7. The
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FIGURE 7: Time histories for contact nodes 3 [ ] and 4 [ ]
without thermomechanical coupling.

effect of temperature on the normal force appears clearly when
comparing the bottom plot with that of fig. 6: thermal expansion
further magnifies gap closure and attendant contact force.

3.3 Comparison with Carpenter’s scheme
Results are now compared to the ones obtained with Carpenter’s
forward Lagrange multiplier method. Figure 8 shows that displace-
ments and normal forces match well, with overall relative errors of
0:82 % on nodal displacement, 5:1 % on temperature and 7:3 % on

contact force. Figure 9 is a close-up of fig. 8. The major benefit
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FIGURE 8: Comparison of time histories for node 4. Moreau–
Jean [ ] and Carpenter [ ].
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FIGURE 9: Close-up view of fig. 8.

of the proposed method is its unconditional stability while Carpen-
ter’s scheme is unstable whenever h > 4:6 � 10�7 s. It enables the
use of time-steps larger by several orders of magnitude.

4 INDUSTRIAL APPLICATION
We now show that the above simulation methods are not limited to
simple models such as section 1 by using a more realistic model of
an axial compressor sector with a twisted blade.

4.1 Model
The model illustrated in fig. 10 comprises 5686 nodes and a total
of 18768 DOFs (including 4692 thermal DOFs), with 9 contact
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node 1

(a) Positions at rest

node 1

(b) First flexural modeshape

FIGURE 10: Finite element model of simplified industrial compres-
sor sector. Contact nodes [ ] and constrained nodes [ ]. Colouring
refers to the radial displacement.

nodes located on the middle plane of the blade tip. In order to
obtain reasonable computational times (of the order of the minute),
the model is first reduced using a thermomechanical model-order
reduction method developed by the authors [15]. The contact
simulations were performed by periodically forcing the blade on
its first flexural mode at frequency 507 Hz to reflect an aerodynamic
excitation. The forcing amplitude was chosen in order to obtain
approximately a steady-state radial displacement amplitude of
10�4 m on node 1 without contact.

4.2 Sensitivity to model parameters
To emphasize the effect of friction-induced heating during rotor-
stator interactions in turbomachinery, a contact simulation is per-
formed with and without frictional heating. The structure is initially
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FIGURE 11: Time histories for node 1 with [ ] and without [ ]
frictional heating.

at rest. The results are depicted for node 1 in fig. 11. The response
curves oscillate very fast because the simulation time is much
larger than the excitation period.

During the first contacts, little difference is observed between
the two responses. Then, the gap in the simulation with heating
tends to reduce, while the contact force increases. At the end of the
simulation, discrepancies of the order of 25 % on the displacement
and 30 % on the contact force are predicted. This qualitative analy-
sis shows that thermal effects have noticeable influence during the
contacts, even for short durations.

The nonlinear nature of the system, stemming from the contact
conditions, can be emphasized by doubling the excitation force am-
plitude, see fig. 12. Magnification on the time interval [0 s,0:05 s]
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FIGURE 12: Time histories for node 1. Effect of excitation ampli-
tude: forcing of 1 [ ] and 2 [ ] normalized amplitude.

is provided in fig. 13. As expected, the first contact occurs earlier
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FIGURE 13: Close-up view of fig. 12.

when the external load is magnified, due to higher vibration ampli-
tudes. The higher excitation level also leads to an increased contact
force and thereby to higher temperatures, inducing slightly smaller
displacements. The temperature seems to diverge with the doubled
load, probably because frictional heating generates more heat than
the blade can diffuse. A thermoelastic instability emerges: it could
advance the wear of machine components or even lead to more
extensive damages.
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4.3 Sensitivity to time-step
For this model, the stability condition required by Carpenter’s
algorithm is h D 5 � 10�7 s with which Moreau–Jean and Carpen-
ter algorithms were implemented. The responses for node 1 are
displayed in fig. 14. Again, they are in very good agreement.
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FIGURE 14: Contact simulation results for node 1. Carpenter
algorithm [ ] and Moreau algorithm [ ] for h D 5 � 10�7 s.

Figure 15 shows results for various time-steps with Moreau–
Jean’s procedure only. The responses with h D 10�5 s and
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FIGURE 15: Moreau–Jean’s scheme sensitivity to time-step for
node 1: h D 5 � 10�7 s [ ], 10�6 s [ ], 5 � 10�6 s [ ] and
10�5 s [ ].

h D 5 � 10�7 s are almost identical, meaning that convergence
is achieved for h D 10�5 s. Therefore, the stability condition of
Carpenter’s algorithm is unnecessarily limiting. Moreover, for the
same time-step h D 5 � 10�7 s, Carpenter’s algorithm took about

twice as long as Moreau–Jean’s algorithm in our implementation—
this might be due to implementation difference and may not be
true in general. More computation times are reported in fig. 16.
All computations were performed using MATLAB R on a 4-core
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FIGURE 16: Computation times for a 1 s simulation. Carpenter
algorithm [ ] versus Moreau–Jean algorithm [ ].

computer (2:3 GHz clock frequency).

CONCLUSION
Conventional time-domain integration schemes to simulate rotor-
stator interaction thermomechanical formulations face numerical
stability issues: regularized contact constraints lead to numeri-
cal stiffness while explicit solution methods such as Carpenter’s
forward Lagrange multiplier scheme are not suited for the heat
equation. The methodology proposed in the present paper, based
on the Moreau–Jean procedure for measure differential inclusions
addresses these shortcomings. It is shown to be very robust on two
models of different sizes. While Carpenter’s stability requires time-
steps of the order of 5 � 10�7 s, the thermomechanical Moreau–
Jean scheme generates reasonable responses with time-steps of
the order of 10�4 s for the simplified model and 10�5 s for the
industrial model, offering significant gains in the computational
effort. With h D 10�5 s, the error in displacement, temperature and
normal contact force is approximately 2 %. The methodology is
also compatible with model reduction [15] offering additional com-
putation gains of several orders of magnitude and application to
industrial-size models, including those with complex geometries.
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NOMENCLATURE
Muu, Cuu, Kuu Structural mass, damping and stiffness matrices
C�� , K�� Heat capacity and heat conductivity matrices
Ku� Thermoelastic coupling matrix
I Identity matrix
0 Zero matrix
u, � Nodal displacement and temperature vectors
x Generalized degrees of freedom vector
v Generalized velocity vector
M;C;K Generalized mass, damping, stiffness matrices
fu, f� Nodal force and heat flow vectors
� Normal contact force (Lagrange multiplier)
g Gap vector
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y Relative velocity vector
� Coulomb friction coefficient
ur Radial displacement
� Nodal temperature
�N Normal nodal contact force
h Time-step size
 �-method numerical parameter
proj.K; y/ Projection operator of y on K
TK.x/ Tangent cone to K evaluated at x
˝ Kronecker tensor product
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