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Mixed FEM for solving a plate type model intended for analysis of 
pavements with discontinuities  

This paper aims at presenting the development of a numerical tool dedicated to 
the computation of the mechanical response of pavements incorporating vertical 
cracks and/or interlayer debonding. In this tool, the structure is modelled as a 
pilling of “plate” elements of type M4-5n (Multi-Particle Model for Multilayer 
Materials) which considers 5 equilibrium equations per layer (n stands for the 
number of layer). Here we focus on the development of a mixed Finite Element 
(FE) method dedicated to the solving of M4-5n. This method relies on the 
derivation of a variational principle based on the complementary energy theorem. 
Expressing stationarity of the functional obtained with respect to all its fields 
leads to the mixed formulation. Special attention is paid to the discretization 
process of this formulation in order to avoid ill-conditioned system of algebraic 
equations after discretization and to insure stability of the solution. The 
developed method is implemented in a FreeFem++ script. The advantage of the 
method is twofold: (i) the initial 3D problem can be handled through 2D FE 
simulations and (ii) finite values of the generalized efforts are obtained at crack 
and interlayer debonding locations. This approach is thus particularly adapted to 
parametric studies and, in the future, might be considered for crack growth in 
layered structures such as pavements. This paper ends with the analysis by means 
of M4-5n of a 3D structure incorporating cracks, representative of a pavement 
tested under full-scale conditions during an accelerated fatigue test performed at 
IFSTTAR. Several scenarios of cracking are analysed and compared to 
experimental results. 

Keywords: Pavement; Multilayer Structure; M4-5n; Mixed Finite Elements; 
Cracking; Debonding 

Introduction 

A pavement is a multilayer structure resting on a soil foundation. It can undergo distress 
due to many phenomena resulting in several types of degradation among which are 
vertical cracking across layers or partial/total interlayer debonding (Chabot et al., 2016). 
To study these mechanisms, existing advanced models are generally based on three-
dimensional continuum mechanics and related to the fracture or the damage theory 
(Pommier et al., 2009).  The elastic frame is generally retained to model the constitutive 
behaviour of the material layers subjected to traffic loads. Many field cases and 
accelerated load testing (ALT) studies have shown that this assumption is reliable 
provided that the equivalent elastic properties for asphalt layers are properly selected 
according to temperature and load speed (e.g. Jameson and Hopman, 2000; Bodin et al., 
2017). Tran et al. (2004) proposed a new approach based on the use of M4-5n belonging 
to the family of the Multi-Particle Model for Multilayer Materials (M4) (Chabot, 1997). 
The M4-5n advantageously reduces the initial problem by one dimension avoiding the 
explicit presence of the z-coordinate in the equations. This is an interesting feature for 
the numerical modelling (mesh generation and computation time). The constitutive 
behaviour assumed for this model is linear elastic. The consideration in this model of 
generalized stress fields which remain of finite values avoids the problem of singularity 
near cracks. M4-5n is particularly adapted to parametric studies (Chabot et al., 2013). 
This model considers five equilibrium equations per layer (𝑛 stands for the number of 
layer). In this model initially intended for the study of delamination in composite 
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materials, the pavement is represented by a piling of plates of type M4-5n. 
Recent advances of M4-5n in the domain of pavements have led to replace the 

modelling of soil originally of Boussinesq type by the use of a Winkler foundation 
(Berthemet and Chabot, 2013; Nasser and Chabot, 2017). These developments were 
implemented using the finite difference method for plane strain problems and result in 
shorter computation time. In this paper, we rather focus on the derivation of a 
systematic solution method of M4-5n based on the mixed FEM and intended for 
application to 3D problems. The starting point is the derivation of the variational 
principle based on the complementary energy theorem whose condition of statically 
admissible stress is taken into account using Lagrange multipliers. The mixed 
formulation is obtained by expressing stationarity of the Lagrangian with respect to all 
its fields. The identification of the Lagrange multipliers yields the generalized 
displacement fields of M4-5n. It is shown also that the functional obtained is equivalent 
to that of Hellinger-Reissner expressed for the generalized fields of M4-5n. Special 
attention is paid to the discretization process in order to avoid an ill-conditioned system 
of algebraic equations after discretization and to insure stability of the solution. The 
developed method is implemented in a FreeFem++ script. 

This paper is outlined as follows: a reminder of the M4-5n strong formulation is 
given in section 1. Derivation of the mixed formulation is detailed in section 2 and 
discretization and solution by the mixed FEM is presented in section 3. Finally, the 
application of the developed method to analysis of a real pavement subject to an 
accelerated fatigue test is shown in section 4. 

Review of the M4-5n strong formulation  

A comprehensive description of M4-5n has been provided in previous works, where the 
reader is referred for more information (Chabot, 1997; Naciri et al., 1998; Chabot and 
Ehrlacher, 1998). The purpose in this section is just to recall the basic equations of this 
model which are solved by a mixed FE method whose establishment is the topic of the 
present paper. Body forces are neglected and linear elasticity is assumed herein. 

In the construction of M4-5n, the stress fields per layer are approximated by 
polynomials of the vertical 𝑧-direction. The mechanical generalized fields of M4-5n 
then only depend on coordinates (𝑥, 𝑦) of the horizontal plane normal to the 𝑧-direction. 

In M4-5n, the usual stress tensor in each layer 𝑖 is replaced by the generalized 
stresses 𝑀!"

# (𝑥, 𝑦), 𝑄!# (𝑥, 𝑦), 𝑁!"# (𝑥, 𝑦) (𝛼, 𝛽 ∈ {1,2}) which stand for components of 
the resultant of moment, the shear and the normal stress in the mid-plane of each layer, 
respectively. The related generalized displacements denoted Φ!

# (𝑥, 𝑦), 𝑉#(𝑥, 𝑦) , 
U!# (𝑥, 𝑦) stand for rotation, the vertical and the horizontal displacements in the same 
mid-plane locations, respectively. The connection between two consecutive layers, 𝑖 and 
𝑖 + 1, is ensured by the interface shear stress, 𝜏!

#,#%&(𝑥, 𝑦), and the normal stress, 
ν#,#%&(𝑥, 𝑦). Each M4-5n layer has its own set of equations: equilibrium, compatibility, 
and elastic constitutive law. Considering summation over the repeated indices {𝛼, 𝛽} ∈
{1,2} , these read within the considered domain Ω of plane (𝑥, 𝑦): 

For equilibrium within layer 𝑖, 
N'(,() + τ'

),)%& − τ'
)*&,) = 0	

(1) M'(,(
) − Q') +

+!

,
Bτ'

),)%& + τ'
)*&,)C = 0		

Q',') + ν),)%& − ν)*&,) = 0	
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For equilibrium at interfaces (0,1) and (𝑛, 𝑛 + 1), 
𝜏&
-,& = 0 ; 𝜏,

-,& = 0 ; 𝜈-,& = −𝑞(𝑥, 𝑦) (2) 
τ&
.,.%& = 0	;	τ,

.,.%& = 0	;	ν.,.%& = 0 

These equations take into account stresses imposed on the upper (0,1) and the lower 
(𝑛, 𝑛 + 1) surface of the multilayer structure considered. In the present case, these are 
assumed equal to zero except for the vertical loading component 𝑞(𝑥, 𝑦) (considered 
positive downward). 

For compatibility within layer 𝑖, 
ε'() = &

,
BU',() + U(,') C		

(3) χ'() = &
,
BΦ',(

) +Φ(,'
) C		

d') = Φ'
) + V,') 	

𝜀# is the tensor field of membrane strain, 𝜒# is the tensor field of curvature and 𝑑# 
denotes strain related to the resultant shear stress. 

For compatibility at the interface between layers 𝑖 and 𝑖 + 1, 
D'
),)%& = U')%& − U') −

+!

,
Φ'
) − +!"#

,
Φ'
)%&  (4) 

D/
),)%& = V)%& − V)  

𝐷! and 𝐷/ are the strains related to interface shear and pull out. 

For the constitutive equations within layer 𝑖, 
ε'() = &

+!0!
PB1 + υ)CN'() − υ)N11δ'(S  for  k ∈ {1,2} 

(5) 𝜒!"# = &,
2$3$

PB1 + 𝜐#C𝑀!"
# − 𝜐#𝑀44𝛿!"S for  𝑘 ∈ {1,2}	

𝑑!# =
&,5&%6$7
82$3$

𝑄!# −
&%6$

83$
B𝜏!

#*&,# + 𝜏!
#,#%&C		

where 𝛿 is the Kronecker delta. 

For the constitutive behaviour between layers 𝑖 and 𝑖 + 1, 
𝐷!
#,#%& = − &%6$

83$
𝑄!# −

&%6$"#

83$"#
𝑄!#%& −

2$5&%6$7
&83$

𝜏!
#*&,# − 2$"#5&%6$"#7

&83$"#
𝜏!
#%&,#%, +

9
&8
P2

$5&%6$7
3$

+ 2$"#5&%6$"#7
3$"#

S 𝜏!
#,#%&  (6) 

𝐷/
#,#%& = :2$

;-3$
𝜈#*&,# + :2$"#

;-3$"#
𝜈#%&,#%, + &/

/8
P2

$

3$
+ 2$"#

3$"#
S 𝜈#,#%&  

 
In the above equations, e) and E) are the thickness and the Young modulus of 

layer i and 𝜐# is Poisson’s ratio. The boundary conditions considered on ∂Ω in this paper 
are specified further. 

Taking into account cracks and debonding in M4-5n 

A crack is defined as crossing the whole thickness of one or several layers. As a 
consequence, the crack tip is always located at an interface and then does not change the 
in-layer equations defined on the mid-planes of the plates. In particular, the 
compatibility equations between the generalised displacement and strains remain valid. 
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The introduction of a vertical crack is then performed by zeroing some of the 
generalized stresses along the crack contour projected on the (𝑥, 𝑦) plane, depending on 
the assumptions considered for load transfer (e.g. Eq. 10).  

In addition, debonding of interface (𝑖, 𝑖 + 1) can be accounted for by zeroing 𝜏!
#,#%& and 

also possibly 𝜈#,#%& on the involved area depending on the contact conditions considered 
in the vertical direction. These conditions result in discontinuities for the generalized 
fields of displacements and of interface shear and normal stress obtained from one side 
to the other of the contour of crack surfaces or delaminated areas. 

Derivation of a mixed formulation for M4-5n 

This section is focused on the establishment of a general and systematic method for 
solving the M4-5n equations based on the mixed FE method. This approach is natural in 
the sense that M4-5n is derived from the 3D Hellinger-Reissner (HR) functional 
(Reissner, 1951) and thus leads to energy densities expressed in terms of generalized 
stresses instead of generalized strains.   

The starting point of the developed formulation is the 3D complementary energy 
theorem which states that among all statically admissible fields, 𝒮(𝑇< , 𝑓) (𝑓 denotes 
body force density), the stress field 𝜎 which is the solution of the equilibrium problem 
in linear elasticity maximizes the complementary energy functional. For a solid 
represented by a volume Ω whose part of its boundary denoted 𝜕Ω= is subject to the 
imposed displacements 𝑢< and the complementary part denoted 𝜕Ω> is subject to the 
imposed stress 𝑇<, this functional reads: 

 
ℱ(𝜎∗) = − &

,∫ 𝜎∗@ : 𝐶: 𝜎∗𝑑Ω + ∫ [𝜎∗ ∙ 𝑛] ∙ 𝑢< 	A@%
𝑑𝑆  (7) 

in which 𝜎∗ ∈ 𝒮(𝑇< , 𝑓) (piecewise continuous and piecewise continuously differentiable 
function), 𝐶 is the compliance tensor and 𝑛 is the outward normal to 𝜕ΩB. The first 
integral in the right hand side of Eq.7 is the opposite of the elastic energy expressed in 
terms of stress. Then the complementary energy theorem for ℱ strictly convex simply 
reads: 

 
For	(𝜎, 𝑢, 𝜀)	solution, ∀𝜎∗ ∈ 𝒮(𝑇< , 𝑓), 𝜎∗ ≠ 𝜎	, ℱ(𝜎∗) < ℱ(𝜎) (8) 

 
Then, the idea is to transpose this theorem to the generalized fields of M4-5n. 

Let us first present the density of elastic energy, 𝑤2 , for this model. 𝑤2 is obtained from 
the elastic energy density derived from the 3D problem and considering few classical 
assumptions in particular related to the modelling of plates (Chabot , 1997). Thus the 
elastic energy density for M4-5n is a quadratic form of the generalized stress tensors 
and can be decomposed into three densities related to the several (symmetric) tensors. 
𝑤2 reads: 

 
w2 = ∑ (𝑤C# +𝑤D# +𝑤E# )F

#G&   (9) 
  

where 𝑤C#, 𝑤D#  and 𝑤E#  are given in the appendix. 
For the sake of conciseness, we assume in the rest of the paper a combination of 

boundary conditions either traction free or zero displacement that is: 
 



6  

𝑁!"# 𝑛" = 0 ; 𝑀!"
# 𝑛" = 0 ; 𝑄!# 𝑛! = 0   on	𝜕ω>

#  (10) 
𝑈!# = 0 ; Φ!

# = 0 ; 𝑉# = 0   on	𝜕ω=
#   (11) 

Then in both bases the M4-5n complementary energy simply reads: −∫ 𝑤2H 	𝑑𝜔, with 𝜔 
the integration domain of M4-5n (2D or 1D). The maximum of this functional is sought 
for the generalized stress fields which are statically admissible. This condition can be 
accounted for using Lagrange multipliers denoted 𝜆# and 𝜇#. This results in the 
following functional (Lagrangian): 

 

𝐿 = −∫ w+H dω + ∑ ∫ ~λ'
I,)BN'(,() + τ'

),)%& − τ'
)*&,)C + λ'

J,) �M'(,(
) − Q') +H

.
)G&

+!

,
Bτ'
),)%& + τ'

)*&,)C� + λK,)BQ',') + ν),)%& − ν)*&,)C�	 dω +

∑ ∫ �µ'
I,)BN'() n() − N�') C + µ'

J,)BM'(
) n() −M�') C + µK,)BQ') n' − Q�') C	ds�	LH&

!
.
)G&   

(12) 

In which quantities with an overbar denote imposed generalized stresses on 𝜕ω>
#  of 

normal 𝑛. These are taken equal to zero according to Eq.10. Note that the generalized 
stress fields involved in the Lagrangian above are not constrained anymore since the 
statically admissible condition has been relaxed. In the case of a plate geometry, ω is 
represented by a 2D surface.  Imposed conditions at the upper and the lower surface of 
the multilayer under consideration involve the interface shear and normal stresses (𝜏!

-,&, 
𝜈-,&, 𝜏!

F,F%&, 𝜈F,F%&) which must be replaced by their known values in the Lagrangian 
(integral over Ω) according to Eq.2. Obviously, these quantities must not be considered 
as variables of the Lagrangian. Also we make the choice (explained further) of taking 
𝜇!
M,# , 𝜇!

N,# , 𝜇E,# equal to the opposite of functions 𝜆!
M,# , 𝜆!

N,# , 𝜆E,# on border ∂ω>
#  . Then it 

can be shown successively that: (i) stationarity of the resulting expression with respect 
to the Lagrange multipliers yields the equilibrium equations within ω; (ii) stationarity 
with respect to the values of the Lagrange multipliers on 𝜕ω>

#  leads to the traction free 
boundary conditions (Eq.10). In addition, the expression of 𝐿	can be further integrated 
by parts to avoid spatial derivatives of the generalized stress tensors and consider 
straightly differentiation with respect to the stress fields. After integration and because 
of the choice made concerning 𝜇!

M,# , 𝜇!
N,# , 𝜇E,#, integrals over 𝜕ω>

#  are found to remove 
from the expression of 𝐿 which now reads: 

 

𝐿 = −∫ w2H 𝑑ω + ∑ ∫ ~−𝜆!,"
M,# 𝑁!"# + 𝜆!

M,#B𝜏!
#,#%& − 𝜏!

#*&,#C − 𝜆!,"
N,#𝑀!"

# +H
F
#G&

𝜆!
N,# �−𝑄!# +

2$

,
B𝜏!

#,#%& + 𝜏!
#*&,#C� − 𝜆,!

E,#𝑄!# + 𝜆E,#B𝜈#,#%& − 𝜈#*&,#C�	 𝑑ω +

∑ ∫ �𝜆!
M,#B𝑁!"# 𝑛"# C + 𝜆!

N,#B𝑀!"
# 𝑛"# C + 𝜆E,#B𝑄!# 𝑛!C�AH%

$ 𝑑𝑠F
#G&   

(13) 

Then taking equal to zero the variation of 𝐿 above with respect to the generalized stress 
fields (within layers and at interfaces) within ω leads to the relationships between the 
Lagrange multipliers and the generalized strain tensors associated to these stress fields 
through the M4-5n constitutive behaviour derived from the derivatives of the elastic 
energy density, 𝑤2. Furthermore, stationarity of 𝐿 on 𝜕ω=

#  yields the boundary 
conditions for the Lagrange multipliers which happen to be zero on this border. Now 
setting: 
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𝜆!
M,# = −𝑈!#  ; 𝜆!

N,# = −Φ!
#  ; 𝜆E,# = −𝑉# (14) 

within the relationships obtained from stationarity of 𝐿 (in ω and on borders) after and 
prior to integration by parts allows us to verified the whole set of equations of the strong 
formulation (equilibrium, constitutive behaviour, kinematics compatibility, boundary 
conditions on 𝜕ω>

#  and 𝜕ω=
# ). This attests of the equivalence between the strong 

formulation and the derived mixed formulation (without considering the question of the 
functional spaces on which each formulation is defined). Finally, substituting 
identification of the Lagrange multipliers (Eq.14) into Eq.13 leads to the following 
expression: 

 

𝐿 = −∫ 𝑤2O 𝑑𝜔 + ∑ ∫ ~𝑈!,"# 𝑁!"# − 𝑈!# B𝜏!
#,#%& − 𝜏!

#*&,#C + 𝛷!,"# 𝑀!"
# −O

F
#G&

𝛷!# �−𝑄!# +
2$

,
B𝜏!

#,#%& + 𝜏!
#*&,#C� + 𝑉,!#𝑄!# − 𝑉#B𝜈#,#%& − 𝜈#*&,#C�	 𝑑𝜔 −

∑ ∫ �𝑈!# B𝑁!"# 𝑛"# C + 𝛷!# B𝑀!"
# 𝑛"# C + 𝑉#B𝑄!# 𝑛!C�AO%

$ 𝑑𝑠F
#G&   

(15) 

which is equivalent to the HR functional expressed in terms of the generalized fields 
(under the arbitrary assumptions made on the boundary conditions Eq.(10) and Eq.(11) 
to simplify the mathematical expressions). The solution of the M4-5n problem is a 
saddle point for 𝐿 with regards to the generalized stress and displacement fields. To 
seek for this saddle point of 𝐿, Eq.15 is differentiated with respect to all its arguments 
leading to equation 𝛿𝐿 = 0 on which the FE solution of M4-5n relies.  

Discretization and solution of the mixed formulation 

The solution of the mixed formulation obtained in the previous section is approximated 
using the FE method with its classical rules to derive a discretized problem from the 
weak formulation given by Eq.(15). The solution procedure is implemented using the 
FreeFem++ (Hecht, 2012) environment which handles discretization of domain Ω and 
of the generalized field variables automatically provided that the mesh and the 
associated interpolation spaces (of finite dimensions) are defined. The generalized fields 
which do not involve derivatives in Eq.(15) (basically the stress fields that we gather all 
together under notation Σ) must be at least of type 𝒞*& (piecewise constant). On the 
other hand, the generalized displacement fields, denoted 𝒰 as a whole, involving first 
order derivatives must be at least of type 𝒞- (piecewise continuous). Because of the 
layer-wise construction of M4-5n, the elementary “stiffness” matrices resulting from 
discretization are banded since no interaction occurs between layers 𝑖 and 𝑖 + 2. Given 
the structure of the Lagrangian under consideration (sum of quadratic and linear forms) 
the linear system to be solved once the assembly process has been performed reads: 

 

�−
[𝐾PP] [𝐾PQ]
[𝐾QP] 0 � �

{Σ}
{𝑈}� = �

{FP}
{𝐹=}

� (16) 

which is a classical form when it comes to mixed formulation (Zienkiewicz and Taylor, 
2000; Bathe, 2006). {Σ} and {𝑈} are the nodal arrays of the generalized stress and 
displacement fields, respectively. [𝐾PP] is a symmetric positive definite compliance 
matrix and [𝐾=P] = [𝐾P=> ]. The whole matrix is symmetric and banded. {𝐹P} is the right 
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hand side array related to imposed stress at the surface of the multilayer structure 
brought in through the elastic energy and to the imposed displacements on 𝜕ω= (if not 
equal to zero). {𝐹=} is the right hand side array related to the imposed stress at the 
surface of the multilayer structure brought in through the equilibrium equations or 𝜕Ω>. 

This kind of algebraic system with zeros on part of the diagonal is known to be 
potentially over- or under-determined depending on the interpolation spaces of {Σ} 
(resp. {𝛿Σ}) and {𝑈} (resp. {𝛿𝑈}). A first condition to avoid the under-determination 
issue consists in picking out the dimension of the Lagrange multiplier space (denoted 
𝑛= for {𝑈}) constraining the problem lower than that of the primal quantities (denoted 
𝑛P for {Σ}): 𝑛= < 𝑛P. Another condition to be verified to ensure unicity of the solution 
is the invertibility of 𝐾P=. These two requirements yield the so-called Ladyzhenskaya-
Babuška-Breezi (LBB) conditions which are necessary and sufficient to ensure 
existence and unicity of mixed formulations. While the first condition is easy to achieve 
a priori, the second will be checked a posteriori based on the well-progress of the 
solution process. 

We implemented two different choices of functional spaces (verifying the LBB 
conditions) in the Freefem++ scripts developed to compute the solution. The first one 
relies on Lagrange polynomials in 𝑥 and 𝑦 of degree relatively high whose order is 
function of the type of fields addressed. We have made the following choices: 

 
order PPI'(! S = 3, dim PPI'(! S = 10 ;   order PPJ'(

! S = 2, dimPPJ'(
! S = 6 

orderPPK'! S = 3, dimPPK'! S = 10 ;      orderPPR'! S = 2, dimPPR'! S = 6 

orderBPS!,!"#C = 2, dimBPS!,!"#C = 6 ;   orderPPQ'! S = 3, dimPPQ'! S = 10 

orderPPT'
! S = 1,  dimPPT'

! S = 3 ;      orderBPU!C = 2, dimBPU!C = 6 

(17) 

in which the dimensions of spaces are given by 𝑑𝑖𝑚 = (𝑜𝑟𝑑𝑒𝑟 + 1)(𝑜𝑟𝑑𝑒𝑟 + 2)/2) 
that is the number of monomials in the Lagrange polynomials. In particular, this choice 
leads to the triangular finite element shown in Figure 1 and used in the Freefem++ 
meshes. Its elementary stiffness matrix for 𝑛 layers is of size 118𝑛 − 12 × 118𝑛 − 12. 
The number of degrees of freedom (DOF) becomes rapidly great for meshes composed 
of such elements. However, as a benefit coarse meshes can be considered when using 
this type of element because of its high level of accuracy. Note also that the elementary 
matrix is of great size but it has many zeros due to its property of bandedness. 

The second choice of interpolation involves the so-called P1-bubble element for 
fields Σ and P1 (linear interpolation) for fields 𝑈. The P1-bubble element consists in 
adding to the P1 element one DOF at the barycentre of the element. This DOF is 
associated to the following interpolation function with bubble shape: 

 
𝑁V(𝑏&, 𝑏,, 𝑏/) =

V#V*V+
,;

  (18) 

 where 𝑏&, 𝑏, and 𝑏/ are the barycentric coordinates of the point considered within the 
triangular element. This function is equal to 1 at the barycentre and to 0 on edges of the 
element. Then, the stress components of Σ are interpolated as follows: 

 
Σ(x, y) = ∑ N)(x, y)Σ) + NWBb&(x, y), b,(x, y), b/(x, y)C PΣW −

P#%P*%P+
/

S/
)G&   (19) 

in which 𝑁# are the shape functions of the P1 element and ΣV is the value of Σ at the 
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barycentre. The M4-5n elementary matrix for this type of triangular element P1-
bubble/P1 is of size 59𝑛 − 8 × 59𝑛 − 8, i.e. approximately four times less than for the 
previous choice. Note that this size can be diminished to that of an element of type 
P1/P1 (48𝑛 − 6 × 48𝑛 − 6) by means of static condensation (loss of the bandedness 
property).  

Once the system has been assembled on the basis of the elementary matrices 
deriving from one or the other of the two choices described above, the linear system 
(Eq.16) is solved according to a multifrontal Gauss LU factorization (for sparse 
matrices). 

The validation of the mixed FE method and its implementation was performed 
by comparison to prior M4-5n solutions (finite differences) developed in plane strain 
(leading to a 1D discretization in the frame of M4-5n) (Nasser et al., 2016). An 
analytical solution was also used for the validation (Nasser, 2016). Application of the 
method developed on a M4-5n 3D case (2D discretization) is presented in section 5. 

Improvements to the M4-5n mixed formulation  

In this section, we present some adjustments to the M4-5n formulation that are useful in 
applications dedicated to the analysis of pavements.  

Elastic support for M4-5n 

To be more representative of the soil behaviour of a pavement, a Winkler support can be 
added to the M4-5n plates. Considering this condition leads to two modifications to be 
accounted for in the formulation: the normal stress 𝜈F,F%& below the bottom layer 
becomes an unknown variable and is taken into account through the elastic energy 
density of Winkler springs expressed, in terms of stress, as follows: 

 

wX#F4Y2Z =
&
,
5D,,,"#7

*

4
  (20) 

where 𝑘 is the stiffness of Winkler springs. In the variational form, 𝑤X#F4Y2Z must be 
added to 𝑤2. 

Enforcing the stress boundary conditions 

As explained in section 2, the stress boundary conditions are imposed through Lagrange 
multipliers 𝜇# in the variational formulation. These are assumed to be equal to −𝜆# on 
𝜕ω>

# . However, once discretization has been performed this relationship between values 
of the Lagrange multipliers in Ω and at its boundary does not allow us to strictly reach 
the condition. Then, to enforce the stress boundary conditions in the discrete form of the 
problem, we add the following penalty term to the Lagrangian: 
 

−
1
2¤¥ �ΛI) BN'() n(N'[) n[C + ΛJ) BM'(

) n(M'[
) n[C + ΛK) BQ') n'Q() n(C�ds

LH&
!

		
.

)G&

 (21) 

   in which ΛM# , ΛN# , ΛE#  are arbitrary penalty coefficients, positive and of great values 
chosen a priori but in relation with the order of magnitude of the solution for 𝑁, 𝑀, and 
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𝑄, respectively. Addition of this penalty term in the variational formulation yields the 
augmented Lagrangian. 

Accounting for vertical cracks and interface debonding 

This section deals with two types of discontinuity (of zero thickness): discontinuities 
within vertical plans (joints or cracks) and discontinuities at interfaces (construction 
will, partial debonding due to damaging at the interface between layers). 

To take into account a vertical crack spreading over the height of one or several 
layers, the developed approach requires the insertion, at the location of the crack, of a 
vertical plan in the mesh in which nodes are doubled to enable jumps of discontinuous 
fields. Then, for the cracked layers of the structure the traction free boundary condition 
applies and is handled by penalization according to Eq.21. For the non-cracked layers of 
this plan, the generalized displacements and stresses are made continuous by 
penalization two-by-two of the fields face-to-face by adding terms as: 

 

− \
,
∑ ∫ ~

BU')% − U')*C(U')% − U')*) + (ϕ')% − ϕ')*)(ϕ')% − ϕ')*)
																																															+(V)% − V)*)(V)% − V)*)

� 	ds]-
	..-

)G&   (22) 

Or 
 
− \

,
∑ ∫ �¨𝑁!"# ©𝑛"¨𝑁!^# ©𝑛^ + ¨𝑀!"

# ©𝑛"¨𝑀!^
# ©𝑛^ + ¨𝑄!# ©𝑛!¨𝑄"# ©𝑛"�𝑑𝑠]/

F,/
#G&   (23) 

with 𝑛F_ the number of non-cracked layers. Γ_ is the trace of the vertical crack plan over 
plan (0, 𝑥, 𝑦), (∙)% et (∙)* denote quantities from both sides of Γ_ and ⟦∙⟧ is the jump 
(∙)% − (∙)*. Existing discontinuities at ends of a crack related to 𝜏!

#,#%& and 𝜈#,#%& are 
made possible by doubling the interface DOF’s. 

In the general case for which the crack tip does not coincide with a physical 
interface of the multilayer structure, the layer that contains the crack can be split in two 
sublayers of similar mechanical properties to enable application of the technique 
described right above. This cutting may also introduce non horizontal interfaces which 
can be dealt with varying the thickness 𝑒#(𝑥, 𝑦) of the sublayers in the Lagrangian 
formulation. 

About debonding, we assume that debonded faces remain in contact but may slip 
without friction. In this case, the interface shear stress 𝜏!

#,#%& only is zero. This condition 
can be straightly enforced through penalization by adding for interface (𝑖, 𝑖 + 1) the 
following term: 

 
− \

, ∫ τ'
),)%&τ'

),)%&
` dω  (24) 

in which 𝐷 is the projection of the debonded domain over plan (𝑥, 𝑦). Continuity of the 
vertical displacements at the interface is naturally verified by construction of M4-5n as 
long as no specific condition is imposed on the interface normal stress 𝜈#,#%&. However, 
nodes must be doubled on 𝜕𝐷 to account for the discontinuity of 𝜏!

#,#%& on this 
boundary. Continuity must then be reestablished for the other fields following the 
penalization technique used to derive Eq.23. 

Two remarks can be made to close this section: 
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(1) The penalty methods described above are not necessary for vertical cracks 
located on a symmetry plan of the mesh. In this case, cracks are taken into 
account through the boundary conditions of zero traction vector or zero 
displacement (possibly mixed) as expressed in section 2.  

(2) The expression of the augmented Lagrangian can usefully be made 
dimensionless with all the aforementioned fields having the same order of 
magnitude. This makes it possible to choose a unique value a priori for all the 
penalty coefficients independently of the nature of the coefficient to be 
penalized. 

These improvements to the method developed originally were implemented in the 
Freefem++ scripts mentioned in section 3. 

Application to the study of a real pavement 
ALT testing 

In this section, the developed method implemented using the Freefem++ environment is 
applied to the study of a cracked real bituminous pavement which was instrumented and 
subjected to traffic using the so-called FABAC accelerated load testing facility (see 
Figure 2) (Perez et al., 2007). The aim of this test was to follow the propagation of 
cracking in the pavement. To localize the initiation of damage in the structure, a 
transversal metal corner of 3cm height was placed at the bottom of the asphalt layers. 
As a matter of fact a transversal crack was observed at the pavement surface right above 
the metal corner after approximately one million loading cycles. The M4-5n modelling 
presented further is related to this specific bottom-up cracking. 

At different stages of this experiment, Falling Weight Deflectometer (FWD) 
campaigns were run to evaluate the evolution of deflection with damaging of the 
structure. These monitoring sessions took place prior to launching the fatigue 
experiment (FWD0) and at the end of it, as well as after 350 000 loading cycles 
(FWD1). The applied FWD load was equal to 65kN with an “equivalent frequency” 
considered of about 35Hz. For a given FWD campaign, the different measurements are 
performed at small distances (10cm) between each other one stepping over the metal 
corner location (in 𝑥 = 0 in Figure 2). Simulations of these tests with M4-5n are shown 
below. 

The structure under consideration is composed of two HMA layers of height 5 
and 6 cm, respectively. These are resting on a granular base and soil. The mechanical 
characteristics of the HMA are known from complex modulus tests performed in the 
laboratory. Since M4-5n is developed in elasticity, an equivalent elastic modulus for the 
HMA materials under FWD loading is needed for the computations. This is obtained 
from the Huet-Sayegh model (Huet, 1963, 1999; Sayegh, 1965) fitted from the complex 
modulus tests and is taken equal to the norm of the complex modulus computed for the 
FWD “equivalent frequency” and the temperature within the HMA layers measured 
during the FWD campaign (about 12°C). The equivalent elastic moduli obtained are 
equal to 14000MPa.  

Modelling of the FWD campaigns (no inertia forces) 

The pavement tested is modelled as a bilayer M4-5n structure resting on a Winkler 
foundation representing both the granular base and soil. This structure is assumed 
homogeneous apart from cracks and its total thickness is set to 11cm. Following the 
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rules defined in Section 4.3, the interface between the two layers is positioned according 
to the crack tip location and does not coincide necessarily with the physical interface 
between the asphalt layers. 

Inertia forces are neglected and the FWD loading is modelled as a static force 
with intensity equal to the maximum value (𝐹abc) obtained during the FWD rebound. 
Then the conditions at the pavement surface read: 𝜏!

-,& = 0, 𝜈-,& = −𝑞 under the FWD 
load and 𝜈-,& = 0 elsewhere,  𝜏!

,,/ = 0 with 𝑞 = 𝐹abc/𝑆 and 𝑆 denoting the FWD 
imprint area. In practice, we take 𝑞 = 0.72𝑀𝑃𝑎 applied on a square of side 30cm 
(resultant equal to 65kN). In our computations, we move this load step-by-step from 0 
to 1m every 5cm. As an illustration, Figure 3 shows two meshes of the problem 
corresponding to two locations of the FWD load.  

Only quarter of the structure is modelled because of symmetry with respect to 
(𝑂, 𝑥, 𝑧) and (𝑂, 𝑦, 𝑧). Then the following boundary conditions are applied on the four 
borders of the two layers numbered from 1 to 4 as shown in Figure 2: 

• Border #1: 𝑈,#(𝑥, 0) = 0, Φ,
# (𝑥, 0) = 0, 𝑄,# (𝑥, 0) = 0 (symmetry with respect to 

(𝑂, 𝑥, 𝑧)) 
• Border #2: 𝑈!# (𝐿c/2, 𝑦) = 0, Φ!

# (𝐿c/2, 𝑦) = 0, 𝑉#(𝐿c/2, 𝑦) = 0 (clamped 
boundary condition) 

• Border #3: 𝑈!# B𝑥, 𝐿d/2C = 0, Φ!
# B𝑥, 𝐿d/2C = 0, 𝑉#B𝑥, 𝐿d/2C = 0 (clamped 

boundary condition) 
• Border #4: when the location of the load centre is not in 𝑥 = 0 two computations 

are obviously needed to represent the loading according to the symmetrized 
geometry. The ad hoc load magnitude must be considered for each computation. 
In the first computation, the following symmetry conditions with respect to 
(𝑂, 𝑦, 𝑧) are imposed: 𝑈&#(𝑥, 0) = 0, Φ&

# (𝑥, 0) = 0, 𝑄&#(𝑥, 0) = 0. In the second 
computation, the following anti-symmetry conditions with respect to (𝑂, 𝑦, 𝑧) 
are imposed: 𝑁&&# (0, 𝑦) = 0, M&&

# (0, 𝑦) = 0, 𝑉#(0, 𝑦) = 0. Taking advantage of 
the linearity of the M4-5n equations, the solution is obtained by summation of 
the solutions stemming from the two computations. When the load is in 𝑥 = 0 
only one computation with the symmetry conditions is needed. 

Campaigns FWD0 and FWD1 are simulated. FWD0 was performed on the 
healthy pavement so the interface for this campaign is positioned coincident with the 
physical one between the two HMA layers. About FWD1, two scenarios are envisaged 
to interpret the measurements obtained after 350 000 loadings. In scenario #1 the bilayer 
structure is assumed cracked over its whole transversal length in the symmetry plane 
𝑥 = 0. The crack height (ℎ_)	is not measured directly. It is only estimated based on the 
results from the FWD1 campaign (after 350 000 ALT loading cycles) and the 3cm 
height metal corner placed at the bottom of the asphalt layers (ℎ_ = 3	and	5𝑐𝑚). This is 
modelled by setting the thickness of the lower layer to ℎ_ and summing Eq.21 to the 
Lagrangian. In scenario #2, the geometry of scenario #1 is complemented by a vertical 
crack lying on the whole length of the structure along the symmetry plane 𝑦 = 0. This 
crack is also assumed of height ℎ_. The results from the FWD campaigns are analysed 
plotting the maximum deflection obtained under the falling weight when the latter is 
moved step-by-step from 𝑥 = 0 (location of the defect in the x-direction) to 𝑥 = 0.5𝑚 
(Figure 4). 

The spring stiffness of the Winkler foundation is back calculated from the value 
of deflection stemming from FWD0 and is set to 𝑘 = 150𝑀𝑃𝑎/𝑚. This value leads to a 
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numerical deflection of 452𝜇𝑚 for the healthy structure which after conversion using 
Odemark’s formula (Odemark, 1949) corresponds to a homogeneous semi-infinite 
platform of modulus 75MPa (in good agreement with that measured on site prior to the 
asphalt concrete laying). Figure 4 shows the experimental measurements from FWD0 
and FWD1 as well as the simulations performed for a non-cracked structure and those 
following scenario #1 and #2. As expected, simulation by M4-5n of the healthy 
structure leads to a constant deflection with 𝑥, which is close to that measured during 
FWD0. Measurements obtained after 350 000 FABAC loading (FWD1) show two 
features departing from FWD0: (i) a global increase of about 50𝜇𝑚 in the circulated 
area of the FABAC machine, (ii) a hat-shaped deflection curve above the initial defect 
placed in the structure. To retrieve these effects by means of simulation we first tried to 
interpret them through a transversal crack which would have developed in the vertical 
plane of the defect (scenario #1).  Two heights of crack were tested: ℎ_ = 0.03𝑚 and 
ℎ_ = 0.05𝑚. The results from these computations are also plotted in Figure 4. The hat-
shaped trend is indeed highlighted considering this scenario. For ℎ_ = 0.05𝑚, the 
maximum value of the deflection computed is equal to that measured. However this 
scenario does not account for the overall increase of the deflection level. A first possible 
explanation could be a change of the bearing capacity of soil due to an increase of water 
content between FWD0 and FWD1. It should be possible to check this at the end of the 
experiment after dismantling the pavement. Other causes are possible to explain these 
measurements (temperature change; Nasser, 2016). Here we examine another possible 
explanation (scenario #2) which illustrates the capability of the developed mixed FEM 
program to handle crossing of two vertical cracks. Indeed as shown in Figure 4, 
scenario #2 can lead to both a hat-shaped curve and an overall increase of deflection. 
Cracks of height ℎ_ = 0.05𝑚 lead to overestimation of the deflection but those of 
height ℎ_ = 0.03𝑚 yield a good estimate of the measurements.  

The post-mortem analysis of the structure planned after completion of the 
FABAC test will include trenches and should help identify the actual origin for the 
change of the pavement response with time. The major point emerging from applying 
M4-5n to the present study of a real pavement is that the mixed FEM combined to M4-
5n offers a promising numerical tool for investigation of various cracking scenarios in 
pavements. 

Conclusion 
We have presented in this paper the development of a numerical tool dedicated to the 
analysis of 3D pavement structures assumed elastic and with cracks or debonding 
areas. This tool relies on a model of plate-type called M4-5n. We have generalized the 
solving procedure of the model by use of the mixed finite element method. The 
solution procedure was implemented into a Freefem++ script and validated against 
plane strain problems and an analytical solution of a plate bending problem. As an 
illustration, the developed method was used to simulate the response of a real pavement 
structure tested under accelerated loading conditions for which two scenarios of 
cracking were examined. Two main benefits are expected from this novel approach. 
One is the simplification on how taking into account complex crack geometry as 
compared to classical 3D FEM models. The other is related to the resulting finite 
values of the generalized interface stresses that can be used straightforward in criteria 
for crack growth. 
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Figures 

 

Figure 1. M4-5n mixed finite element with multiple nodes related to the field 
interpolations and of multiple degrees of freedom related to the number of layers in the 
structure 
 

 



16  

Figure 2. Sketch of the top view of the pavement tested by the FABAC machine and 
some locations of FWD tests performed as part of the experimental campaigns 
 

 
 
Figure 3. Meshes of a quarter of the pavement structure for two locations of the FWD 
load 
 
 

 

Figure 4. Deflection under the falling weight as a function of its location: experimental 
results and simulations related to scenario#1 and scenario#2 for two heights of cracking 
 
Appendix 

The elastic energy density for M4-5n is decomposed into three densities: we
) , wS

)  and 
wK
)  given as follows: 
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