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ABSTRACT
Turbomachinery rotor-stator unilateral contact induced inter-

actions play a growing role in lifecycle analysis and thus motivate
the use of accurate numerical prediction tools. Recent literature
confirmed by ongoing in-house experiments have shown the impor-
tance of thermomechanical coupling effects in such interactions.
However, most available (possibly reduced-order) models are re-
stricted to the sole mechanical aspects.

This work describes a reduction technique of thermomechan-
ical models involving unilateral contact and frictional contact
occurrences between rotor and stator components. The proposed
methodology is grounded on Guyan and Craig–Bampton meth-
ods for the reduction of the structural dynamics in conjunction
with Krylov subspace techniques, and specifically the Craig–Hale
approach, for the reduction of the thermal equations.

The method has the capability to drastically reduce the size
of the model while preserving accuracy. It stands as a reliable
strategy to perform simulations of thermomechanical models with
localized mechanical and thermal loads.

Keywords component mode synthesis, model order reduction, ther-
momechanical coupling, impeller, rotor-stator interaction, Krylov
subspace method

INTRODUCTION
As the requirements for engine performance become more and
more stringent, multiphysics and nonlinear phenomena are paid a
continued attention in the turbomachinery industry. Of interest in
this work is the mechanism of rotor-stator rubbing [1]. Such inter-
actions were investigated numerically using reduced-order finite
element models [2, 3, 4] or simplified rotor models [5]. Except for
reference [5] in which rotor-stator rub induced thermal expansion
effects are studied, thermomechanical coupling is ignored in this
context. However, thermomechanical coupling was observed to
play a significant role in experimental measurements [6,3]. Indeed,
heat is generated by friction and wear phenomena during rub events,
leading to material expansion, diffusion and convection which in-
duce strains and affect the contact configuration. Accordingly, the
present work targets a reduction method capable of coping with
thermomechanical models. Only a few investigations have been
dedicated to reduction methods to for coupled problems combin-
ing Newton’s second law of motion and the heat equation. They
were mostly developed for spacecraft applications [7], electronic
packages [8], or microelectromechanical systems [9].

Concerning turbomachinery applications, a reduced-order
model was developed for the computation of thermal stresses based
on a modal synthesis using thermal eigenmodes [10], taking into

account convective exchange but ignoring structural dynamics. In
the linear framework, a reduction technique for thermomechanical
MEMS models has been developed, relying on the Craig–Bampton
(CB) method [11] and describing both structural and thermal dy-
namics. This method was implemented to simulate rotor-stator
thermomechanical interactions, using an explicit time-stepping al-
gorithm [12].While it performed well on the small model described
herein, some efficiency issues were encountered for models of
larger orders: the convergence rate of the method is too slow to use
it on industrial models.

Taking advantage of the Krylov subspace [13, 14] and Craig–
Bampton/Craig–Hale methods [15, 16], this paper proposes a new
reduction method for coupled problems yielding significant im-
provement in terms of computational efficiency. As for the reduc-
tion process, the simulation of thermomechanical contact problems
poses modeling and solving issues. The robust treatment of unilat-
eral contact conditions inspired by numerical methods developed
in nonsmooth dynamics is detailed in a companion paper [17]. The
model of interest is first introduced (section 1), then the reduction
methodology is described (section 2). The results are illustrated
and compared to other available methods by means of frequency
response functions and time-stepping simulations (section 3).

1 ROTOR-STATOR MODEL
This section introduces the simplified rotor-stator model used
throughout this study, with a flexible rotor and a rigid stator. It is
supplemented with a more realistic model in section 4.

1.1 System of interest
A single finite element sector of a simplified rotor is considered,
as depicted in fig. 1. The stator is assumed rigid in line with

rotor

stator

3
1

FIGURE 1: Finite element model of bladed-disk sector: boundary
nodes [ ], constrained nodes [ ] and contact forces [ ].

experimental setups involving partial bladed-disks [18] or over-
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sized blades with contact occurrences on a single or few blades
only [3]. The model embeds distinctive features of a turbomachin-
ery compressor bladed-disk sector: a constrained internal bore and
a contact interface along the blade tip. The finite element mesh is
created using SOLID226 coupled-field elements in ANSYS R
 and
possesses 507 free nodes (i.e. 2028 DOFs for the three directions
in space and the temperature), seven of which are boundary nodes
(blue dots in fig. 1).

A standard TA6V titanium alloy, widely used in aircraft com-
pressor components, is considered with the following estimated
properties: mass density 4430 kg m�3, Young’s modulus 110 GPa,
Poisson’s ratio 0:3, heat capacity 520 J K�1 kg�1, heat conductivity
6:7 J K�1 m�1 and dilatation coefficient 9 µm m�1 K�1.

1.2 Linear thermoelastic model
A linear thermoelastic framework is adopted. In particular, centrifu-
gal stiffening and temperature-dependence of material properties
are excluded, as well as convection. The space semi-discretized
governing equations are�

Muu 0
0 0

��
Ru
R�

�
C

�
Cuu 0

0 C��

��
Pu
P�

�
C

�
Kuu Ku�

0 K��

��
u
�

�
D

�
f
q

�
(1)

where Muu, Cuu and Kuu, are the mass, mechanical damping and
stiffness matrices respectively. Matrices C�� and K�� reflect heat
capacity and heat conductivity; Ku� accounts for thermomechan-
ical coupling effects due to thermal expansion. u stands for the
relative nodal displacements, and � the for the nodal temperatures.
In order to activate contact, the external force vector f includes a
sinusoidal term of amplitude 100 N in the radial direction, with a
frequency of 33 Hz corresponding to 2000 rotations per minute, on
each of the seven boundary nodes. It also stores normal forces and
tangential friction. The external heat fluxes are imposed through q.

1.3 Thermomechanical contact
Numerically, rotor-stator rubbing events have essentially been
dealt with using the penalty [19] and the forward Lagrange mul-
tiplier [20, 1] methods. The penalty approach is known to induce
numerical stiffness [21, 22, 1]. The forward Lagrange multiplier
method relies on an explicit scheme which suffers from stability
limitations, especially coping with a thermomechanical model [17].
However, a robust numerical method dedicated to nonsmooth prob-
lems, namely, the Moreau–Jean scheme [22], is employed in the
present work. Its description is detailed in a companion paper [17].
Contact conditions are incorporated via a signed gap function g.u/.
Contact occurs whenever the gap is closed, that is, g.u/ D 0.
The associated reaction impulsive force � in the inward normal
direction is such that the so-called Signorini conditions hold:

8t 2 RC; g.u.t// � 0; �.t/ � 0; g.u.t//�.t/ D 0: (2)

For each of the seven contacting nodes, friction is imposed in
the tangential direction through a friction coefficient � D 0:15

which multiplies �. Frictional heating proportional to the normal
reaction � is included in q, with a coefficient of 0:1 m s�1 [23].
There are hence two thermal couplings: one linear through Ku�

and one nonlinear via q.

2 MODEL ORDER REDUCTION
The idea of reduction methods is to approximate the solution of
the governing equations (1) with the solutions of another system

of Ordinary Differential Equations with fewer DOFs. With the
appropriate notations, eq. (1) simplifies to MRx C CPx C Kx D f.
The reduction consists in assuming x � RQx, then left-multiplying
the differential equation with a matrix P> such that:

.P>MR/RQxC .P>CR/PQxC .P>KR/Qx D P>f: (3)

The choice of the reduction method is governed by the definition
of R and P [24, 25]. The proposed strategy consists in reducing
mechanics and thermics independently, that is R and P are block-
diagonal matrices, so that the reduced equations keep the same
structure as eq. (1) [26]. This is an inappropriate assumption when
coupling terms are considered in R [11]. Additionally, we choose
P D R, as in the Craig–Bampton (CB) reduction.

In the following, we detail two families of reduction methods,
which will be combined: component mode synthesis (specifically
CB) and block-Krylov (specifically CH). CB accurately captures
the mechanical behaviour while CH describes better transient tem-
perature evolutions. For the sake of conciseness, only the thermal
part of eq. (1) is considered in this section, that is

C�� P� CK��� D q: (4)

The inefficiency of CB to approach the solution to this heat equation
will now be illustrated.

2.1 Craig–Bampton order-reduction method for con-
ductive heat transfer: derivation and deficiencies

Component mode synthesis methods, such as MacNeal [27] or
Craig–Bampton, consist in approximating the response within a
subspace spanned by a selection of linear eigenmodes. CB is
known for its ability to preserve stability properties and for its
numerical robustness [28]. It is based on the definition of interior
and boundary DOFs. The interior DOFs are approximated by
chosen mode shapes R while boundary DOFs are preserved in the
substitution x � RQx. This distinction is relevant when dealing with
contact problems as the contact forces directly apply to DOFs of the
reduced model [15,4]. The splitting between internal (subscripts i)
and boundary (subscripts b) DOFs is mirrored in the reorganization
of eq. (4) in the form�

Cbb Cbi
Cib Cii

��
P�b
P� i

�
C

�
Kbb Kbi
Kib Kii

��
�b
� i

�
D

�
qb
qi

�
(5)

where the superscript �� has been dropped in C and K to sim-
plify the notations. The fixed-boundary eigenmodes are computed
by solving the eigenproblem .�Cii CKii/� D 0, and the m eigen-
modes corresponding to the lowest eigenvalues are stored in ˆim.

The CB reduction matrix also includes Guyan static constraint
modes [29], which capture the static response of the complete
system for prescribed boundary loads. More precisely, the j th
Guyan mode corresponds to the response of the internal DOFs to
a prescribed unit temperature on the j th boundary node and zero
temperature on the other boundary nodes. Together with the above-
mentioned internal eigenmodes, CB method leads to a reduction
matrix of the form

R D
�
ˆstatic ˆdynamic

�
D

�
Ibb 0bm

�K�1ii Kib ˆim

�
: (6)

Since boundary DOFs are not reduced, a larger number of boundary
DOFs implies more CPU-intensive computations.
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Despite its successful applications in thermal and or thermo-
mechanical simulations involving slow excitations with respect
to the characteristic time constants of the system [10, 11], CB
method provides poor results with the present application. The
model presented in section 1 is a piecewise-linear thermoelastic
model subject to localized and high-frequency mechanical and
thermal loads. Indeed, frictional heating is proportional to the
contact pressure, which exhibits fast variations (typically, a few
milliseconds), while heat diffusion is a much slower mechanism
(of the order of a second). The main challenge is therefore to build
a compact Reduced-Order Model (ROM) that covers a broad range
of excitation frequencies.

The gain of the thermal transfer function1 of boundary node 1
is depicted in fig. 2, for the full model illustrated in fig. 1 and
successive CB ROMs. Even with m� D 400, that is with 80 % of
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FIGURE 2: Thermal CB ROM transfer function convergence. Full
model [ ], m� D 1 [ ], 10 [ ], 100 [ ] and 400 [ ]. For
m� D 500, the error is of the magnitude of machine precision.

the DOFs of the full model, the error for 1000 Hz reaches about
75 %. While not problematic for low-frequency applications, this
inaccuracy leads to significant errors in time-integration with con-
tact, see section 3. To summarize, CB method fails to describe
response to high-frequency excitations efficiently.

2.2 Krylov subspace iteration techniques
For a given non-singular matrix A 2 Rn�n and a vector b 2 Rn, a
Krylov subspace of a n-dimensional vector space is a `-dimensional
subspace spanned by the ` vectors .b;Ab;A2b; : : : ;A`�1b/, with
` � n. Krylov model reduction methods are based on the conserva-
tion of the transfer function of the system throughout the reduction
process [14]. Assuming K�� is non-singular, eq. (4) implies

� � A P� D b (7)

with A D �K���1C�� . In the Laplace domain and denoting
by s the Laplace variable, eq. (7) becomes .I � As/� D b. The
transfer function H.s/ is defined by H.s/ D .I�As/�1. Its Taylor
expansion around s D 0 is

H.s/ D
`�1X
kD0

Aksk C o.s`�1/ (8)

1The thermal transfer function was computed by means of a Fourier transform
of the governing ODE (4) with a unit heat flux.

so that

�.s/ D H.s/b D
`�1X
kD0

mkC1 sk C o.s`�1/ (9)

with mkC1 D Akb. The vectors mk are called the moments of the
transfer function and the family .m1; : : : ;m`/ forms the Krylov
subspace associated to matrix A and vector b. It can be efficiently
computed using Arnoldi [30] or Lanczos [31] algorithms or their
recent improvements [14].

Krylov reduction methods use the matrix R D Œm1 m2 : : :m`�.
They can be extended to second-order systems [32]. The main
limitation with these methods for the present application is that
they do not preserve boundary nodes in the reduced basis. Dealing
with contact conditions hence necessitates a systematic mapping
between the full and reduced bases and thus requires additional
computations.

The Taylor series of H.s/ can also be expanded around ar-
bitrary points s and for various loads b. Krylov methods involv-
ing several expansion points are referred to as Rational Krylov
methods [33]. They improve the precision of the reduced mod-
els over broader frequency ranges. Methods using multiple vec-
tors b (stored in a matrix B) for the computation of the reduction
basis, are called Block-Krylov Methods [33]. For each order of
expansion, the moments are computed for B instead of b, result-
ing in matrix blocks instead of vectors: R D ŒM1 M2 : : :M`�.
The block-Krylov subspace is then the span of the columns in
.B;AB;A2B; : : : ;A`�1B/.

2.3 Proposed method: Rational Craig–Hale
The reduction methodology proposed in this work combines the
efficiency of boundary/interior splitting for contact with the broad-
frequency capabilities of Krylov-subspace methods. The sought
reduction matrix is thus of the form (6) and the objective is to find
an appropriate ˆim using Krylov subspaces.

Moment-matching techniques were combined with bound-
ary/interior splitting in the Craig–Hale (CH) method [16] and affil-
iates [25, 34]. They differ from CB in that they use a block-Krylov
family of moments in ˆim instead of component normal modes for
the description of the internal dynamics of the system. In CH, ˆim
is built through a single expansion around s D 0, resulting in a
limited frequency range of accuracy. Instead, the extension of CH
to multiple expansion points s is implemented in the present work.
Additional vectors will be included inˆim. By analogy to Rational
Krylov Methods, we refer to the following method as the Rational
Craig–Hale method.

The Laplace transform of (5) is arranged as �
Cbb Cbi
Cib Cii

�
s C

�
Kbb Kbi
Kib Kii

�!�
�b
� i

�
D

�
qb
qi

�
: (10)

Unit temperatures are then successively enforced on each boundary
DOF (i.e. �b D Œ1 0 0 : : : 0�>, �b D Œ0 1 0 : : : 0�>, etc.) and the
internal equilibrium qi D 0 is guaranteed by an appropriate choice
of the interior temperature � i. Stacking the successive Œ�b; � i�

>
column-wise generates a matrix of the form ŒIbb ˆib�

> such that �
Cbb Cbi
Cib Cii

�
s C

�
Kbb Kbi
Kib Kii

�!�
Ibb
ˆib

�
D

�
Qbb
0ib

�
(11)
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for an appropriate Qbb. The second block row of eq. (11) yields

ˆib.s/ D �.Ciis CKii/
�1.Cibs CKib/: (12)

As such, ŒIbb ˆib.s/�
> is written as a static constraint mode matrix

(see first column of right-hand side in eq. (6)). In order to compute
the fixed interface modes from ˆib.s/, the static constraint modes
participation should be deducted, from the linear transformation�

Ibb Ibb
�K�1ii Kib ˆib.s/

�
!

�
Ibb 0bb

�K�1ii Kib ˆib.s/CK�1ii Kib

�
(13)

leading to a structure of the usual CB reduction matrix (right hand
side in eq. (6)).

Because it provides the temperature of the interior nodes in
response to a loading on the boundary, ˆib.s/ can be seen as a
transfer function. It is now expanded using multiple points. Let s0
be one of them. The Taylor expansion of ˆib.s/ in eq. (12) takes
the general form

ˆib.s/D�H0
ib�

X̀
kD1

.H2
ii/
k�1H`

ib.s0 � s/
k
C o..s0 � s/

`/ (14)

where H0
ib D .A

0
ii/
�1.Cibs0 CKib/, H1

ib D .A
0
ii/
�1.CiiH0

ib � Cib/,
H2

ii D .A0ii/
�1Cii and A0ii D .Ciis0 C Kii/. In this formulation,

H0
ib, H1

ib and H2
ii correspond to zero-, first- and second-order terms,

respectively. As in eq. (9), the block mode Mk is given by the
matrix coefficient of .s0 � s/k , which depends on H0

ib, H1
ib and H2

ii.
Such a formulation is valid for any order ` and any point

of expansion s0. For p expansion points .s.1/0 ; : : : ; s
.p/
0 / and a

common order expansion ` for simplicity, p � ` block modes
are obtained: .M.1/

1 ; : : : ;M.1/

`
/; : : : ; .M.p/

1 ; : : : ;M.p/

`
/. Applying

transformation (13) to each of the M.j /
1 and defining QM.1/

1 D

M.1/
1 CK�1ii Kib yields

ˆimD

�h
QM.1/
1 M.1/

2 : : : M.1/

`

i
: : :
h
QM.p/
1 M.p/

2 : : : M.p/

`

i�
(15)

which, inserted in the CB form (6), provides the reduction matrix R
of the Rational Craig–Hale reduction method. The assembly of the
reduction basis ˆim is summarized in Algorithm 1. The dimension
ofˆim is i �m wherem D bp.`C1/ is the product of the number
of boundary degrees of freedom b, the order of expansion plus
one `C 1 and the number of expansion points p. For numerical
reasons, it is recommended to perform either a Gram–Schmidt
orthogonalization on the columns of ˆim or the use of the left-
singular vectors stemming from a SVD of ˆim (see next section).

In the following, all expansion points are chosen as real num-
bers as proposed in [13, §6.2.2], corresponding to frequencies,
providing a real reduction matrix and thus faster computations, as
well as lower memory requirements.

2.4 Coupled thermomechanical reduction
We now construct the reduction of the full model (1) by combining
the previous developments with the standard CB reduction for the
mechanical system. Rearranging Œu ��> into Œub �b ui � i�

> leads
to the reduction basis

R D

2664
Iuubb 0 0 0
0 I��bb 0 0
‰uuib 0 ˆuuim 0

0 ‰��ib 0 ˆ��im

3775 (16)

Data: Vector of expansion points s0; Expansion order `
for n 1 to p do

A0ii  .Ciis0.n/CKii/

H0
ib  .A0ii/

�1.Cibs0.n/CKib/

M.n/
1  �H0

ib CK�1ii Kib
if ` � 1 then

H1
ib  .A0ii/

�1.CiiH0
ib � Cib/

M.n/
2  �H`

ib
if ` � 2 then

H2
ii  .A0ii/

�1Cii
for k  2 to ` do

M.n/

k
 .H2

ii/
k�1H1

ib
end

end
end

end
ˆim  ŒM.1/

1 M.1/
2 : : :M.1/

`
: : : QM.p/

1 M.p/
2 : : :M.p/

`
�

Result: Dynamic reduction basis ˆim

ALGORITHM 1: Computation of the RCH basis ˆim.

where ˆuuim stacks the chosen internal modes of vibration
(eigenvectors of Muu

ii
�1Kuu

ii ), ˆ��im is obtained from eq. (15),
‰uuib D �Kuu

ii
�1Kuu

ib and ‰��ib D �K��
ii
�1K��

ib are the static con-
straint modes. The variables Qum; Q�m of the reduced-order model
are defined as follows:2664

ub
�b
ui
� i

3775 � R

2664
ub
�b
Qum
Q�m

3775 : (17)

This substitution is introduced in the governing equations which
are then left-multiplied by R>, as in eq. (3), yielding the reduced
system of order 4b Cmu Cm� with m� D bp.`C 1/.

3 SIMPLIFIED MODEL RESULTS
The CB method is efficient for reducing mechanics with unilateral
constraints, but fails in thermal analyses due to the fast thermal
excitations stemming from frictional heating, as explained in sec-
tion 2.1. To overcome this limitation, the Rational Craig–Hale
(RCH) method was proposed in section 2.4 to accurately reduce
the dimension of the thermal problem. A validation analysis is now
conducted through comparison with other existing methods. Unless
stated otherwise, results are presented for a time step h D 10�5 s
as in the companion paper [17] and mu D 10.

3.1 Validation of the sole thermal model reduction
We first consider a thermal model alone, with no mechanics and no
contact, to validate the ability of the reduced model to capture rapid
variations of heat fluxes. Since all computed transfer functions
were found to follow the same trends, results are only shown for
the boundary node 1 (see fig. 1). The input is chosen as a unitary
thermal load on the boundary nodes.

The influence of the number of expansion points is depicted
in terms of frequency response function in fig. 3. The expansion
points are logarithmically spaced in the expected frequency range
Œ10�2 Hz; 105 Hz� of the thermomechanical model.Each expansion
is performed at order 0, that is ` D 0 in eq. (14). As the test model
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FIGURE 3: RCH ROM transfer function convergence with order
` D 0 and p expansion points. Full model [ ], p D 1 [ ], 3 [ ]
and 7 [ ].

possesses b D 7 boundary nodes, the size of the RCH models is
7.p C 1/.

Figure 3 shows that increasing the amount of expansion points
leads to a global and fast reduction of the transfer function error
between RCH and full models. With p D 7, the RCH model
comprises 56 thermal DOFs and its frequency response functions
displays a peak error of 1:4 %. Similarly, fig. 4 depicts the con-
vergence for one expansion point (p D 1) and multiple expansion
orders `. As ` increases, the error decreases quickly. In both cases,
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FIGURE 4: RCH ROM transfer function convergence with p D 3
expansion points and a `-th order expansion. Full model [ ],
` D 0 [ ], 1 [ ], 2 [ ] and 3 [ ].

the convergence of the reduction method is fast, with maximum
errors of less than 1 % with less than 100 DOFs. It is also possible
to select multiple expansion points with multiple orders. For ex-
ample, the peak error with p D ` D 3 is 0:4 %, for a RCH model
of 70 DOFs—to be compared to the 2028 DOFs of the full model.
Though it might not hold true for other models, the convergence
is faster when increasing the amount of expansion points rather
than the truncation order. Accordingly, we select ` D 0 in the
following. Optimizing the frequencies of the expansion points in
order to minimize the error is not discussed here but could increase
the efficiency of RCH reduction even further.

Figure 5 offers a comparison of the frequency response func-
tions between CB, CH and three RCH models, all with m D 70.
CB and CH models have been computed using the conventional

Craig–Bampton and Craig–Hale methods. The three RCH mod-
els have been created using respectively a single Gram-Schmidt
orthogonalization (sGS), the left-singular vectors obtained from
a SVD performed on the complete ˆim matrix of eq. (15) (SVD),
or multiple Gram-Schmidt orthogonalizations (mGS)—one every
time a new vector is appended to ˆim.
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FIGURE 5: Comparison of CB [ ], CH [ ], RCH-mGS [ ],
RCH-SVD [ ] and RCH-sGS [ ] ROMs transfer functions with
70 modes; full model [ ].

As observed before, the CB model is very inaccurate for mod-
erate to high frequencies. Although better, the CH model displays
smaller but still large errors at high frequencies, despite a ninth-
order truncation. The RCH-mGS model is much better but still
shows significant error (� 5 %) at high frequencies. In contrast,
both RCH-sGS and RCH-SVD feature negligible errors, with a
peak at 0:06 %. This shows that the RCH method works best with
a single orthogonalization onˆim or a SVD. The RCH-sGS is used
in the remaining.

3.2 Thermomechanical contact simulations
Attention is now paid to the performance of the thermomechan-
ical reduced models in practical use, that is simulations of time
evolutions. Again, the numerical method employed to enforce the
contact conditions are detailed in [17]. Results are provided for
boundary node 3. Figure 6 depicts the impact of thermoelastic
coupling on the radial displacement ur, temperature � and contact
force �N. The only difference between the two simulations is that
Ku� D 0 when the formulation is uncoupled.

The model is clearly able to capture thermomechanical cou-
pling and contact occurrences. It is worth noting that for the
chosen node, coupling tends to increase the normal force because
of local heat expansion effects. In practice, abradable coatings
dissipate energy during contacts and limit the growth of the con-
tact forces through material removal. During the time interval
Œ0:9 sI 1 s� shown in fig. 7, the contact force begins to decrease,
leading to a temperature drop. This load transfer from the con-
sidered node to another one may be a specificity of the studied
configuration. With multiple nodes in contact, some may show
more or less expansion under thermal stresses depending on their
position on the blade tip and the behaviour could even be unstable.

The purpose of the present work is to demonstrate the rele-
vance of the reduction and simulation methodologies, which should

5



�4
�2

0

u
r

[�
10

�5
m

]

0
1

2
3

�
[�

10
3

ı C
]

0 0:2 0:4 0:6 0:8 1

0
1
0

2
0

Time [s]

�
N

[d
aN

]

FIGURE 6: Thermomechanical model responses at node 3. Uncou-
pled [ ] and coupled [ ] models.
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FIGURE 7: Close-up of fig. 6.

be able to address larger-scale models. Here, the simulated tem-
peratures of thousands of degrees go far beyond the material ca-
pabilities: that is an obvious shortcoming of the simple chosen
model, which does not include nonlinear effects (other than con-
tact) nor damage, but is sufficient for the present discussion. A
more realistic model is presented in section 4.

Figure 8 offers a comparison between the full coupled model
and two RCH reduced-order models (p D 3 and p D 5). For
p D 5, the curves cannot be distinguished. The RCH model
calculated with 3 expansion points shows large errors2 on the
nodal displacement (11 %), temperature (28 %) and contact force
(30 %). Since the temperature field is wrongly approximated, the
temperature induced displacements are badly predicted, resulting
in inaccurate contact forces. Due to the two-way coupling, the
displacement error tends to grow during the simulation.

This can also be seen in the close-up view fig. 9: with p D 3,
the contact phases are shorter, the temperature and the normal force

2The error for x is computed as

R 1
0 jxROM � xFULLjdtR 1

0 jxFULLjdt
.
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FIGURE 8: RCH ROM convergence in contact simulation. Full
model [ ], RCH ROM with ` D 0, p D 3 [ ] and 5 [ ].
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FIGURE 9: Close-up view of fig. 8.

are underestimated.

The previous results have shown that the RCH model com-
puted using reduction parameters (` D 0, p D 5) displays a
relative error of 0:84 %, 1:86 % and 1:46 % in terms of nodal dis-
placements, temperature and contact force. Similar errors are
observed with the other nodes. Figure 11 compares the full model,
the RCH ROM with ` D 0 and p D 5 and a CB ROM comprising
the same amount of DOFs (m� D p � b D 35 and mu D 10).
The radial displacements and contact forces are all similar. The
CB ROM however displays significant errors in terms of nodal
temperatures. The temperature plot shows that it fails to describe
the entire temperature variations. This is consistent with the fre-
quency response functions discussed in section 2.1. Interestingly,
the error in temperature does not generate large errors in ur and
�N during the first second, presumably because the average of the
temperature is reasonably estimated. However the errors slowly
increases with time, which could become problematic for longer
simulations. The relative errors are of 2:1 %, 19 %, and 5:6 % for
the nodal displacement, temperature and contact force.
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FIGURE 11: Close-up view of fig. 11.

4 INDUSTRIAL APPLICATION

Now that the convergence of the reduced models has been shown
on a low order model, we focus on the reduction of a more realistic
model, shown in fig. 12. This model comprises 5686 nodes and a

node 1

FIGURE 12: Finite element model of simplified industrial com-
pressor sector. Boundary nodes [ ] and constrained nodes [ ].

total of 18768 DOF (4692 thermal), including 9 boundary nodes
located on the middle plane of the blade tip.

To assess the convergence of RCH ROMs on this model, trans-
fer functions were again computed. CB ROMs were also computed
to serve as references. Figures 13 and 14 display the gain of node 1
and the maximal gain error measured over all boundary nodes, for
the CB and RCH ROMs, respectively. The number of modes corre-
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FIGURE 13: CB ROM transfer function convergence: full
model [ ],m�D27 [ ], 45 [ ], 54 [ ], 63 [ ], 81 [ ], 90 [ ],
126 [ ].
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FIGURE 14: RCH ROM transfer function convergence. Full
model [ ],m�D27 [ ], 45 [ ], 54 [ ], 63 [ ], 81 [ ], 90 [ ]
and 126 [ ].

sponds to b D 9 boundary nodes and the following number p of
expansion points of order `, in the form .p; `/: .3; 1/, .5; 1/, .3; 2/,
.7; 1/, .9; 1/, .5; 2/, .7; 2/. As with the simplified blade model,
errors with CB ROMs are large even with high order models. In
contrast, the worst RCH model shows a maximum error of 18 %
for a very small model order (m� D 27). For greater orders, the ac-
curacy of RCH-reduced models is such that their transfer functions
cannot be distinguished from the RCH-full models (fig. 14).

To verify all previous observations in the case of contact events,
an actual contact simulation was performed on the full model
and on one RCH and one CB ROMs of equal order (mu D 10,
m� D 126). During this simulation, the blade is excited on its first
bending mode frequency (507 Hz) and modeshape. Simulation
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results for node 1 are gathered in fig. 15. The RCH ROM is
shown to be very accurate in terms of displacement, temperature
and contact force, during the studied time range. The CB ROM
shows a significant error in the temperature forecast: too low at
the beginning and too high at the end of the simulation. Even
though the contact forces do not show large differences with the
full order computation, there is a growing error in the displacement
amplitude. Such behaviour could lead to large response differences
for longer simulations.

Timings for the computation of the thermal dynamic reduc-
tion matrix ˆ��im are indicated in fig. 16. All computations were

27 45 54 63 81 90 126
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[s
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FIGURE 16: Computation times for various thermal reduction
orders: CB [ ] and RCH [ ].

performed on identical hardware using MATLAB R
 software. The
computational effort required to form the reduction basis is of the
same order for both CB and RCH reduction method, and negligible
compared to the simulation time of an industrial model.

Computation times required to perform the contact simulation
shown in fig. 15 are given in table 1. The full order model com-
putation was performed on 18 processors with clock frequency of
2:8 GHz, while the reduced model simulations were performed on
4 processors of 3:3 GHz clock frequency. The advantages of the
proposed RCH ROM is clear: it is both fast and accurate.

CONCLUSION
A reduction method for thermomechanical finite element models
with contact conditions was proposed. It advantageously combines

Model Full CB ROM RCH ROM

Computation Time 37 236 s 14:431 s 13:969 s

Computation Speed �1 �2580 �2665

Error on ur 0 % 6:16 % 1:43 %

Error on � 0 % 8:40 % 0:45 %

TABLE 1: Computation times for 1 s of simulation. Full and re-
duced models with mu D 10 and m� D 126 modes. Error term
defined in footnote 2, page 6.

the Craig–Bampton technique, which preserves contacting nodes,
and Krylov modes, which can be tuned to cover the appropriate
range of frequencies. The mechanical problem is solved using
Craig–Bampton reduction, while the thermal part is reduced with
a modification of Craig–Hale method relying on the expansion
of the frequency response functions of the system around multi-
ple frequencies. The choice of these frequencies offers a large
flexibility and can be adjusted to increase the accuracy in some
targeted frequency ranges. In this work, the expansion points were
equally spaced in a log scale. It was shown that the proposed
method is much more accurate than existing reduction techniques
for an equivalent reduced order, both on a simple model and on an
industrial model with nearly 20000 DOFs.

Further developments include optimizing the choice of the ex-
pansion frequencies for a more accurate approximation. Full scale
thermomechanical rotor-stator interaction simulations, with a full
rotor and stator model, are planned in a near future. Considering
more realistic thermal boundary conditions and nonlinear thermal
behavior would also be relevant. Fortunately, Krylov methods are
still well suited since any convection load or imposed temperature
constraint of known shape can be described easily with very few
vectors. Moreover, nonlinear models can also be reduced using
Krylov methods [35].
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NOMENCLATURE
Muu, Cuu, Kuu Mass, damping and stiffness matrices
C�� , K�� Heat capacity and heat conductivity matrices
Ku� Thermoelastic coupling matrix
I, 0 Identity matrix, zero matrix
‰uuib Matrix of mechanical static constraint modes
‰��ib Matrix of thermal static constraint modes
ˆuuim Mechanical modeshapes matrix
ˆ��im Thermal modeshapes matrix
u Vector of nodal displacements
� Vector of nodal temperatures
f, q Vectors of nodal forces and nodal heat flows
h Transfer function
�b, �i Boundary and Internal DOF
�m Modal DOF
ur Radial displacement
� Nodal temperature
�N, �T Normal and tangential contact forces
gN, gT Relative normal and tangential displacements
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� Coulomb friction coefficient
s Laplace variable
s0 Expansion point
` Taylor series order of truncation
p Number of expansion points
mu Number of mechanical dynamic modeshapes
m� Number of thermal dynamic modeshapes
CB Craig–Bampton
CH Craig–Hale
RCH Rational Craig–Hale
ROM Reduced-Order Model
DOF Degree Of Freedom
SVD Singular Value Decomposition
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