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ABSTRACT 

UNILATERAL CONTACT AND DRY FRICTION 
IN FINITE FREEDOM DYNAMICS 

J.J. Moreau 
Universite des Sciences et Techniques du Languedoc 

Montpellier, France 

An approach to the dynamics of mechanical systems with a finite number of 
degrees of freedom, involving unilateral constraints, Is developed. In the 
n-dlmensional 11near spaces of forces and velocities, some classical con­
cepts of Convex Analysis are used, but no convexity assumption Is made 
concerning the constraint lnequaHtles. The velocity is not supposed to be a 
differentiable function of time, but only to have locally bounded variation, so 
the role of the acceleration is held by a n-dlmenslonal measure on the consi­
dered time Interval. Dynamics Is then governed by measure differential 
inclusions, which treat possible velocity jumps on the same footing as 
smooth motions. Possible collisions are described as soft, thus dissipative. 
Friction is taken into account under a recently proposed expression of 
Coulomb's law. These formulations have the advantage of generating 
numerical algorithms of time-discretization, able to handle, ·In particular, 
the nonsmooth effects arising from unl laterality and from dry friction. 
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1.1NTRODUCTION 
Usual mechanisms consist of parts which, at the first level of 

investigation, are treated as perfectly rigid bodies. The mechanism operation 

rests on the fact that some of these parts may come into contact or get 

loose from each other, but none of them can overlap. Simllarly, the parts may 

touch the external bodies which support the mechanism, but can never 

encroach upon the region of space they occupy. 

In terms of the parameters q1 , ... , qn, making an element of IRn denoted tn 

the sequel by q, which are used to locate every position of the considered 

system, the above impenetrability properties may as a rule be expressed by a 

set of Inequalities, say f<X(q),O, <XE{l, ... ,~}. Each of these inequalities 

corresponds to what is tradltiona1ly ca1led a unilateral constraint 

Naturally, the description of a constraint in Mechanics does not reduce to the 

geometric restriction It Imposes to the system possible positions. Pre­

dicting the system behaviour always requires some additional information 

about the forces of constraint or reactions needed by the system dyna­

'mlcs, for the geometric conditions to be satisfied at every Instant. 

Constraints whose geometric effect is expressed by equaJttles are, In 

contrast, said bilateral. They are commonly reaJized by the conjunction of 

several unilateral constraints and, In practice, this may leave a residual 

looseness whose investigation has primary importance in some applications. 

However omnipresent un11ateral constraints are In machines, the place 

they receive in the books on Classical Mechanics is very modest Here is the 

traditional approach of the situation. 

Starting with a position of the system In which some of the contacts 

are effective (I.e. the corresponding Inequalities hold as equal1tles> and 
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with velocit1es compatible w1th the persistence of these contacts, the 

subsequent motion Is calculated under the tentatfve assumption that a11 the 

said contacts do persist. The calculation is identical to what is more 

famiHarly done in the case of bilateral constraints, with friction possibly 

taken into account. At every Instant of the calculated motion, the respective 

contact forces are evaluated. As long as the direction of each of these 

vectors is found compatible with the untlaterality of the corresponding 

contact, the calculated solution is accepted (rigorously, this t:ioes not 

dispense from investigating also the poss1b11ty of contact break1ng, s1nce 

the uniqueness of solution to an 1n1t1al value problem of Dynamics 1s not 

granted 1n genera 1 ). 

But tf the above calculation yfelds, after an Instant 1:, a non feasible 

value for some of the contact forces, the tentative assumption has to be 

rejected from this instant onward, and other types of motions, in which 

some of the contacts initially present get loose, are to be tested In the same 

way. The number of combinations to be tried may be high, If many uniJateral 

contacts are Involved. In practical situations, such Instants as 1: make a 

flnite set, but this cannot be asserted In general. 

It was not before the first quarter of this century that E. Delassus 

(cf.{ 1] for the frictionless case) observed that, contrary to what had been 

formerly bel1eved, the contacts which get loose at time 1: are not 

necessar1ly those for which the calculation, performed at t>l:, yields 

contact forces of non feasible direction. Delassus' papers seem today rather 

intricate; a clearer account of his . arguments may be found in [2] . More 

recently [3][4], the same question has been rev1s1ted, by the means of 

elementary Convex Analysts and Quadratic Programming. 
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The present lectures develop a novel approach to the dynamics of 

systems tnvolv1ng unllateral constraints. Here are the domtnent features. 

1 o The function t~q(t>EIR0 describing the investigated motion on a time 

interval I, wtth inltlal instant t0, Is not a priori assumed differentiable 

everywhere. Instead, one supposes that q equals the time integral of a 

velocity function t~u(t)EIR0 wtth locally bounded variation on the interval; 

notation: uElbv(I,IR0
). Classically, such a function u may have discon­

tinuities but, for every t in the Interior of 1 , the existence of the 

rig!Jt-limlt u+(t) and of the left-limit u-(t) Is secured (see Sec.2 below 

for a convention concerning the case t=t0). These limits equal the respective 

one-side derivatives of the function q: 1~1R0 at point t. 

2° In view of these discontinuities, the existence of the acceleration Q"=u· 

cannot be expected everywhere. But, with every uElbv(I,IR0
), one classically 

associates an IR0-valued measure [5][6] on the interval I, called 1n the 

sequel the differential measure [7] of u and denoted by du. 

The function u is locally absolutely continuous if and only if the vector 

measure du possesses a density function, say UiE£ 1 1~0, dt; IRn), relative 

to the Lebesgue measure on the interval I. We denote the latter measure by 

dt ; this 1s in fact the differential measure of the real function t--.t, which 

evidently belongs to lbv(I,IR). A function u of this sort may const1tute a 

solution to a differential equation, in the classical sense of Caratheodory. 

Here is another special case: suppose that, for some tE 1nt I, one has 

u-(t);i u+Ct). Then, the IRn -valued measure du possesses at point t an 

atom w1th value u\t)-U-(t). This value is an element of IRn that we shall 
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call the }Ufl7fJ of u at instant -c . 

In general, a function uElbv(I,IRn) may be a solution to some measure 

differential equation, a notion about which the reader could find some 

information in [8]. 

3° Velocity functions with locally bounded variation make the setting in 

which we develop the Non!:>lrJOot!J Dynam1ts of mechanical systems wtth a 

finite number of degrees of freedom. This is governed by an extenston of 

Lagrange equations that we introduce in Sec.7. It includes as a special case 

the tradltlonal equations of the Dynamics of Percussions. Concerning tr1e 

connection of this general formulation with the class1cal prtnctples of 

Dynamics, some details may be found in [9]. 

4° The set of inequalities fcx"O <with fcxEC 1and \7fcx~O) defines in IRn the 

feasible region, denoted by 4> and assumed in the seque I independent of time 

If a motion t~q(t) is described in the above terms and if q(t)E4> for every t, 

one elementarily finds (see Sec.2) that u+(t) belongs to a certain polyhedral 

conic convex subset of IRn, denoted by V(q(t)). This is the tangent cone to the 

region <I> at point q(t), equal in particular to the whole of IRn when q(t) is 

interior to <1>. Actua11y, a cone denoted by V(q), and its polar cone N(q) in 

the sense of the standard scalar product of IRn, wtll in the sequel be defined 

even for qt¢. When qE.P, the cone N(q) is nothing but the <outward) normal 

cone to 4> at this point <reduced to {0} if q is interior to 4>). 

so The mechanical formulation of unilateral constraints has to encompass 

the geometric condition VtEI : q(t)E¢, together wlth some 1nfomation about 
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the associated forces of constra;nt In the framework of traditional 

(smooth) Analytical Dynamics, this system of forces Is represented, for 

every t, by its covariant components, say r 1 ,. .. , r n , relative to the 

generalized coordinates in use. This makes an element of IRn that we shall 

denote by r 

The simplest case is that of frictionless contact. This classically 

means that the force of constraint at every possible point of contact is 

normal to the concerned bodies, with direction agreeing with unilaterality. 

One elementarily finds Csee Sec.S below) that, if all the considered unlla­

teral constraints are of this sort, the whole information about them lets 

ltse lf be summarized into the writing 

'v'tEI : q(t)E4> and -r(t)EN(q(t)). ( 1 ' 1 ) 

(About the concept of a frictionless contact in the case of a Jess regular 

feasible region than above, see [ 10].) 

Starting from ( 1. I), a decisive observation is made In Sec.S, namely 

that, for smooth motions, It implies the stronger assertion 
+ -r(t) E aiPV(q(t))(U (t)). ( 1.2) 

According to the usual notations of Convex Analysis, the right-hand member 

equals the normal cone at point u+(t) to the convex subset V(q(t)) of IRn. 

In addition, it is established that, if the initial data satisfy q(t0)E4>, 

then ( 1.2), assumed to hold for (dt -almost) every t, secures t/Jat q(t) will 

ren7ain in 4>. 

The advantage of < 1.2) over< 1.1) 1 ies in the following. First, as we shall 

develop in Sec.S, this writing directly suggests some algorithms of time­

discretization for computing the solutions to initial value problems. 

Secondly, by entering the velocity Into the contact Jaw, it paves the way to 
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the conslderat Jon of frlct I on. Furthermore, It Is easl ly general I zed to 

Nonsmooth Dynamics. 

6° The function t-+r(t)EIRn which, in the traditional Lagrange equations, 

represents the forces of constraints has, in Nonsmooth Dynamics, to be re­

placed by an IR0 -valued measure on the time-interval I, called the contact 

lmpvlslon and denoted by dR. For smooth motions, this measure admits the 

above function as its density relative to Lebesgue measure. A priori, there 

exists an Infinity of representations of a vector measure, such as dR, in the 

form dR=R~ d~ , where d~ is a nonnegative real measure and Rv a vector­

valued locally dv-integrable density function. We shall adm1t, as the Jaw of 

frictionless contact in Nonsmooth Dynamics, the following generalfzation of 

( 1.2), to be satisfied for every t in I, 

-R~(t) E Olfly(q(t))(u+(t)). ( 1.3) 

Because the right-hand side Is a cone, one shows that t!Jis condition Is 

indifferent to t!Je c!Joice of t!Je base measvre d~. Furthermore, the existence 

of a function R~ verifying< 1.3) implies that u+(t) belongs to V(q(t)). Through 

Prop.2.4 below, this ensures q(t)E«P for every t, provided the initial data 

satisfy q<t0>E<P, . 

Assertion ( 1.3) about the contact impulsion makes the definition of the 

class of unilateral constraints that we can frictionless and soft. When 

transported into the equality of IR0 -valued measures, which governs 

Nonsmooth Dynamics, 1t generates a measvre differential lnclvslon. The 

existence of solutions to the resulting initial value problems has so far been 

established only in some special cases [ 11 ][ 12][ 13] and is currently under 

investigation. The velocity jumps possibly occurtng In such solutions are of 

the sort the author has previously called "standard Inelastic shocks" [ 14] 
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[ 15]. These are dissipative, so the corresponding evolution problems are 

essentla11y different from those one meets when the possible bounces are 

assumed "elastic" [16][17][18][19]. A synthetic view may be gained from the 

energy balance drawn in Sec.lO below. The replacement of u+ In ( 1.2) by 

some weighted mean of u+ and u- results in the introduction of a 

"dissipation Index" 5, w1th zero value in an elastic bounce, while the 

softness case corresponds to 5= 1. 

7° Dry friction at a point of contact will be described by some extension of 

Coulomb's law to possibly anisotropic surfaces. The tradit1onal formulation 

of this law rests on the decomposition of a contact force into Its normal and 

tangential components; the formulation then consists of two separate state­

ments respectively pertaining to zero and nonzero sliding velocity. In some 

of the ·author's early papers [20][21 ][22], It has been observed that, as soon 

as the normal component Is treated as known, these pair of statements Jets 

Itself be synthetically expressed as a law of resistance deriving from a 

"pseudopotential". This In turn may be transcribed into a variational 

inequa11ty [23L reflecting a "principle of maximal dissipation". 

By a Jaw of resistance, we mean a relation (in the present case, 

nonsmooth and not expressible through a single-valued function) between the 

contact force and the sliding velocity. Recall that significant mathematical 

and numerical papers have, In recent years, been devoted to problems which 

Instead Involve a "pseudo-friction" Jaw. These problems are developed tn the 

framework of smatl deviations and the sliding velocity vector is replaced by 

the tangential relative displacement of the contacting bodies. The status of 

such a pseudo-friction, compared to proper friction, is similar to that of 

Hencky plasticity with respect to proper plastic flow rules. 
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The present lectures rest on a newer formulation of the possibly 

anisotropic Coulomb Jaw) avoiding the decomposition of the contact force 

[24)[25]. Similarly to what has been shown for the frictionless case, these 

formulations suggest numerical algorithms of time discretization. Further­

more) the resulting relation being conic with regard to the contact force, it 

admits an extension to Nonsmooth Dynamics, independent, as before, of the 

choice of a base measure d~1. 

8° Here again, the possible nonsmooth motions are found to be governed by 

some measure differential Inclusions. These differential Inclusions are 

applied in Sec. IS to the dynamics of velocity jumps. 

Singularities in the dynamics of systems involving Coulomb friction 

used to be a matter of controversy during the first quarter of this century. It 

was observed that some Initial value problems could admtt several solutions 

or no solution and also that the behaviour of the Investigated system 

depended on its constants on a discontinuous way. At the time, these 

findings were considered by such authors as P.Patnleve as contradicting the 

very bases of Physics. In modern views, nothing looks paradoxical in that, so 

there only remains of all these discussions the assertion, first made by 

L.Lecornu [26], that, in the presence of dry friction, velocity jumps are not 

necessarily the consequences of co 11 is ions. 

It is shown by an example that the numerical techniques we propose can 

handle these frictitmal catastrophes without difficulty. 

go These lectures are restricted, for brevity, to time-independent cons­

traints. However, by changing the reference frame and introducing adequate 

fictitious forces, one is able to apply the proposed methods to the motion of 
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a small object lying on a vibrating table or, in the course of an earthquake, 

on the ground surface. An example is displayed, exhibiting some unexpected 

features. 

1 oo For better agreement with the behaviour of real systems, one is 

commonly led to apply the traditional law of Coulomb with different values 

of the friction coefficient, depending on whether the sliding velocity 

vanishes or not. This distinction made between the "static" an "dynamic" 

friction coefficients seems, at first glance, to destroy the unity brought into 

the formulations by the use of Convex Analysis. Actually, it Is shown in 

Sec.17 that, far from beeing a mere empirical alteration of these formu­

lations, such a distinction is inherently involved in the consequent deve­

lopments. The numerical techniques proposed in these lectures are able to 

handle it without causing any computing problem. In fact, whether the 

sllding velocity exactly vanishes or not at the end of a time-step Js 

expl1citely determined by the algorithms; so the friction coefficient for the 

next step may be adjusted accordingly. 

Let us close this Introduction by aknowledging that Coulomb's law can 

provide only a rather crude approximation of the reality of dry friction (a 

recent review of the subject may be found in [27]). Also, the collisions 

affecting parts in real machines cannot be expected to fall exactly under one 

of the categories respectively described as "soft" or "elastic". And it is 

unlikely that any def1n1te value of the "dissipation index" could be identified 

on a clear basis. But a fact of life is that, in most engineering situations, the 

higher order information needed for more accurate description IS not 

available. So one has to be content with some moderately precise 
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calculation, accounting at least for the main features of phenomena. In three 

years of experiments, the approach we propose has proved to be very 

workable. Because of their theoretical consistency and numerical stability, 

the described algorithms seem to be "robust" enough for accepting in the 

future various empirical alterations, aimed at improving their power of 

predict ion. 

No allusion is made in these lectures to the contact between deforma-

ble bodies, currently a very active domain of research. The reader wUl find 

references to this subject in other parts of this volume. In what concerns 

computation, since the spatial discretization of a continuous medium, using 

for instance a finite element scheme, generates a finite-dimensional space 

of positions, the design of numerical procedures may take an inspiration 

from the methods presented here <see e.g. [28) ). But some fundamental 

differences between continuum dynamics and finite freedom dynamics have 

to be kept in mind. Because, in continuous media, every contact particle has 

zero mass, the concept of a soft contact, as opposed to an elastic contact, 

becomes unsignlflcant (it only stays as an option in constructing numerical 

algorithms). Possible dissipation reenters the scene through the constitutive 

laws which govern the behaviour of the concerned bodies. In elastic bodies, 

shock waves are expected to originate from boundary impacts. It Is only 

when the time taken by these waves to travel the whole system is short, 

with respect to some other typical time values, that the treatment of 

deformable systems may be strictly conducted in the lines of flntte freedom 

dynamics. Actually, most papers on continuous systems so far are restricted 

to quaslstatlc evolution problems, I.e. the terms Involving Inertia are 

neglected. 
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2.DIFFERENTIAL PROPERTIES 
Let a mechanical system have a finite number n of degrees of freedom; 

every possible position of It may be located through the value it imparts to 

Q=(Q 1, ... ,Qn ), an element of some open subset 0 of IRn . This holds at least 
1 n locally; In other words, q , ... ,Q are local coordinates ln the manifold of the 

system possible poslttons. 

One defines a motion by making q depend on time. If the derivatives q· 1 

of the n functions t-+Q1 exist at an instant 1, we shall refer to the element 

q'=(q' 1, ... ,q'n) of IRn as the velocity of the system at this instant. 

Motions will be studied on some time interval I, containing its origin t.0 

but nonnecessarny closed nor bounded from the right We shall not suppose 

the function Q:I-+IR0 derivable everywhere. Instead, we assume the existence 

of a velocity tunc! /t.?n u: I-+IR0 such that 

VtEI : q(t)=q(t0 ) + Jio u(-c) d't. {2.1) 

This makes sense as soon as u Is locally Lebesgue-integrable on 1. More 

specially, we shall suppose that the functton u has locally bounded 

variation on I, I.e. It has bounded variation on every compact subinterval of 

I; notation: uElbv(I,IRn). This secures that, at every 1 In the Interior of I, the 

rig!Jt-limit u+('L) and the lett-limit u-(1) exist. 

By convention, for the Initial Instant t0 , the left-limit u-<t0> is 

understood as equal to u<t0>. This Is more than a notational trick; such a 

writing actually reflects the significance we generally mean to give to 

the initial condition u<t0>=u0 of an evolution problem. It Is intimated that 

Investigation begins at t0, but that the mechanical system was already In 
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existence before. By u0 is 1mparted some abridged Information about the 

system history, precisely the left-llmit u-<t0 ). 

Symmetrically, if I possesses a right end, say tr, and contains 1t, the 

writing u+<tr) = u<tr) wi II prove convenient. 

From (2. 1) 1t results that the function q possesses at every T.>t0 a 

left-derivative q'-(t), equal to u- (t) and, at every t different from the 

possible right end of I, a right -derivat/ve q· +(t) , equal to u+(1). 

In addition to the constraints which have permitted the q parametr1-

zat ion, we assume that the system is submitted to some unilateral 

constraints whose geometric effect is expressed by a flnlte set of 

inequa 1 it ies 

f (QhtO, (X CXE( 1 ,2, ... ,y}. (2.2) 

The functions f(X :0-+IR are supposed c1 wfth respective gradients \7f(X = 
<af (X ;aq 1 

, ... ,af (X ;aq0 
) different from zero, at least in a neighbourhood of the 

corresponding hypersurface f (X =0. 

Inequalities (2.2) define the feasible region «P of 0 ~·for brevitx we 

assun1e that the functions f(X do not depend on time,, thereby leaving aside 

the possibility of moving constraints. 

Through the chain rule, the existence of one-side derivatives for the 

functions t-+q1<U implies the same fort-+ f(X(q(t)). Consequently, if a motion 

verifies f(X(q(t))~O for every t, then at any Instant t such that f(X(Q(t))=O, 

one readily finds u+(1).\7f (X (q(t))~O and u -(t).\7f (X (Q(t));eO (the dot refers to 

the usual scalar product of IRn ). 
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Generally, let us put: 

NOTATION 2.1 Forever;v QEO define 

J(q) := {cxE{ 1, ... ,~}: f<X(q)~O} 

and 

V(q) := (vEIRn: 'v'cxEJ(q), v.'Vf<X(q)~O} 

(observe t!Jat V(q) equals t!Je w!Jole of IRn ;/ J(q)=0 ) 

Using as above the one-side derivatives, one obtains: 

(2.3) 

(2.4) 

PROPOSITION 2.2 If a n7otion t-.q(t) agrees wit!J tile set af constraint 

inequalities (2.3), I. e. q( UE4> for every t, t!Jen 

'v'tEintl : u +(t)EV(q(t)) and u -(t)E- V(q( t)). 

REMARK 2.3 In existential studies as well as in numerical algorithms, the 

definition (2.4) of V(q) will commonly be invoked with qt<fl. Then, the 

following is useful: 

PROPOSITION 2.4 Let t!Je function t~q(t) be associated with some 

uEL 1 loc(I,IRn) t!Jroug!J (2.1 ). Suppose t!Jat q(t0>eP and that, for Lebesgue­

almost every tEl , one !Jas u(t)EV(q(t)). Then q(t)E«P for every t. 

PROOF. Let us suppose the existence of some tEl , with q(t)~<t> and look for 

contradiction. There exists cxE( 1 , ... ,~}such that fo:(q(t))>O. The set {tEl: t~t 

and f<X(Q(1:))"0} is nonempty (It contains t0>; Jet a denote its l.u.b .. Due to the 

continuity of fo:, one has fo:(q(a))=O. Since fo: lsC1, the function t-+ fo:(q(t)) 

1s absolutely continuous on [a,1:] ; after expressing its derivative by the 

chain rule, one may write 

fo:(q(1:)) = J~ uU).'Vfo:(q(t)) dt. 
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In view of the definition (2.4) of V, the integrand should be ~0 for 

Lebesgue-almost every t, hence fcx(q('r))~O, which is a contradiction. • 

If u has locally bounded variation, it belongs to£ \~<I,IR0) and the set of 

its discontinuity points is countable, hence Lebesgue-negligible. Thus, in 

using the above Proposition, one may replace u in the assumption 

u(t)EV(q(t)) by u+ or u- or any weighted mean of them. 

REMARK 2.5 The subset V(q) of IRn is a closed convex cone. In case qE<t>, this 

coincides with what ts usually called the tangent cone to the region 4> at 

point q (equal, in particular, to the whole of IR0 if qEint 4>). On the contrary, 

if q~¢, one commonly agrees to say that the tangent cone to 4> at this point 

is empty; sa is not V(q). 

Some caution is needed when Interpreting the concept of a tangent cone. 

Let q0Ec:t> and vEIR0
; in view of Prop.2.2, for the existence of a mapping q:l-+4> 

such that q<t0>=q0 and q'+<to>=v, 1t 1s necessary that veV<q0>; a 

counter-example may be found in [ 15], show1ng that this is not sufficient. 

However, if In addition one assumes tnt VCq0 );z:0, then existence is secured 

[29]. Through classical Convex Analysts, the latter assumption ts equivalent 

to the polar cone of V(q0> having a compact basts; thts is the convex cone 

generated in IRn by the elements \7f ex Cq0>, with cx.EJ(q0>, so the assumption 

amounts to assert the existence of a hyperplane in R0 
, not containing the 

origin, which intersects a11 the half -11nes generated by these elements. We 

shall meet this cone again in Sec.S. 

REMARK 2.6 A deeper insight into the situation could be gained __ by 
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considering the differential manifold P of the system positions, without 

preference to any peculiar system of local coordinates. A motlon is the 

conceived as a mapping p:I-+P. The (possibly one-side) velocity of the system 

at some instant 1: equals, by definition, the (possibly one-side) derivative of 

this mapping, an e 1ement, say p'(l:), of the tangent space :Pp('t) to :P at point 

p(l:). The real numbers q'1 (t) considered in the foregoing equal the 

components of p'(t), relative to the base induced tn :Pp('t) by the local 

coordinate system in use. Inequalities (2.2) are imparted a coordinate-free 

meaning provided one understands the functions f rx as C 1 mappings of P to IR, 

without reference to any choice of local coordinates. Then, by the gradient 

'Vfc.:(p) is meant an element of p·; , the cotangent space. to P at point p. 

Also in this linear space, the local coordinate system induces a base; the 

partial derivatives precedingly invoked equal the components of 'Vf()'_(p) 

relative to this base. In Definition (2.4), the Euclidean scalar product of IRn 

should then be replaced by the bilinear form <.,.> which puts the linear 

spaces P'P and p·; in duality. Thereby, for every position p, a pair of mutually 

polar convex cones is defined in these dual linear spaces, without reference 

to any choice of local coordinates. 

The concept of a convex cone in Ppor in p·; is meanigful, in view of the 

linear structure of these tangent spaces. Concerning, on the contrary, the 

feasible region, the differentiable manifold P cannot in general support any 

convexity assumption. If such an assumption is made, it only refers to some 

pecullar coordinate system. However, let us mention the following special 

case. 

For the treatment of dynamical problems concerning a scleronomic 
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system, the expression ~A ij(q) q'iq.j of the kinetic energy has to be 

introduced. This is a positive definite quadratic form in q' and, classicaJJy, 

by putting ds2= Alj(q) dqidqJ, one equips the differential manifold P with a 

Riemannian metric independent of the coordinates in use. So this metric is 

intrinsically associated with the dynamical structure of the mechanical 

system. Now, it may happen that some local coordinates exist, such that the 

coefficients Aij(q) are constant in q; so is the case, for instance, 1f the 

system consists of a single rigid body performing only motions paraJJel to a 

fixed plane. Under such circumstances, the curvature of P is zero; 1n other 

words, this manifold is locally Euclidean. Then, at least in sufficiently small 

regions, the concept of the convexity of a subset of P becomes mechanically 

meaningful. The mathematical paper [ 16] was precisely based on the 

convexity of the feasible region. 

Anyway, the writing in (2.1) makes sense only as far as the functions 

t-+q and t-+U take their values in a fixed linear space, namely IR.n for the 

present. On the contrary, in the differential geometric setting, the velocity 

at timet would be an element of the tangent space 1'p(t), which depends on t 

through the unknown mapping p: 1-+P. 

3.KINEMATICS 
In all the sequel, each of the inequalities f(X"O will be understood as 

characterizing the system positions agreeing with the mutual impenetrabi­

lity of a certain pair of rigid bodies. For instance, let us drop the subscript 

ex and assume that condition f ~0 expresses that some rigid part :B1 of the 

system does not overlap a given external obstacle :B0, fixed relative to the 
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reference frame in use. The impenetrability of two rigid bodies :B 1 and :B2, 

which both are constituents of the system, would finally result in the same 

formalism (see [30], where the case of an external obstacle with prescribed 

motion is also considered). 

Equality f(q)=O means that, In the positlon q of the system, the part :B 1 

touches :B0 . We shall always assume that contact takes place through a 

sing/epartic'le of :B 1 , which in general depends on q, say ::M"1Cq). The res­

pective boundaries of contacting bodies will be supposed to permit the defi­

nition of a common tangent plane at )(1 (q) to these boundaries. This does not 

preclude edges or vertices; one of the bodies may even reduce to a single 

particle, provided the boundary of the other is a smooth surface. 

Let 1{q denote the unit vecto0 normal to this tan._qent plane and di­

rected toward :B 1 . 

As usual, the primitive constraints of the system, i.e. the constraints 

which have permitted the parametrization through (Q 
1 
, ... ,Qn ), are assumed 

smooth enough for the following to hold. Let a motion be described by giving 

q as a function oft. For every t such that the (possibly one-side) derivatives 

q·1 
, ... ,q'0 exist, every particle, say ::M", of the system possesses a (possibly 

one-side) velocity vector, relative to the reference frame in use. Calculating 

this vector yields an expression V(:M, q, q'), affine with regard to q'. 

For brevity, we shaJJ restrict the sequel to the scleronomic case, Le. 

the primitive constraints do not depend on time; then the above expression is 

linear in q'. Let us apply this to the contact particle ::M"1(q) and put the 

notat1on 

Gqq' := V{){l (q), Q, q'). (3.1) 
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For every q such that f(q)=O, this introduces the mapping q'-+ Gqq·, 1 inear of 

IRn to the Euclidean linear space !'3 of the vectors of physical space. 

In the case of a pair of bodies which both are parts of the system, a 

linear mapping similar to Gq would express from q' the relative velocity, at 

a possible contact point, of one of this part with respect to the other. 

The writing in (3.1) ts not restricted to motions agreeing with the im­

penetrabi 1 ity constraint. We now are to take this constraint into account. Let 

a value of q correspond to contact, i.e. f(q)=O, and let vEIRn. Let a motion 

start from this position q at some time 1, with right-velocity q·• equal to v 

at this instant. Evaluating f at all subsequent positions, one obtains a 

function of time whose right-derivative at 1 may be expressed through the 

chain rule, namely v.Vf(q). Assume v.Vf(q)<O; then instant 1 1s followed by a 

nonzero time interval over which f <0, i.e. :B 1 and :B0 break contact. This 

implies that, at 1 , the right-velocity Gqv of the contact particle ){1(q) of 

1l 1 veri fie 1{q. Gqv ~0; otherwise the motion of this particle would require 

of :B 1 to overlap :B0 , so making f~O. 

This shows that, for vEIRn and for any fixed q satisfying f(q)=O, one has 

the implication 

v.Vf(q)<O :::> 1{Q. Gqv ~0. (3.2) 

Let us introduce now the 1 inear mapping G; : !'3 -+ IRn, the transpose of 

Gq in the sense of the Euclldean autoduallties of !'3 and IRn ; then 1(q· Gqv = 

v. c;;1{q· Recall that we have assumed \lf ;t! 0; through a unilateral version 

of the Lagrange multipller theorem, implication (3.2) yields: 

PROPOSITION 3.1 For everr q ver!/)1ing f(q)=O , there e.Kists A~O such 

t!Jat 
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G; 1(q = - t.. \7f( q). (3.3) 

REMARK 3.2 We shall later need t~1at the element G;1fq of IRn differ from 

zero, i.e. "A>O. It is a general fact that the kernel of G; equals the subspace 

of I'3 orthogonal to the range Gq<IRn) of Gq . In parttcular, when Gq(IRn) is 

the whole of I'3 , the kernel of G; reduces to {0} and this secures G;1(Q;z0. 

But, in some usual applications, Gq<IRn) will be a strict subspace of T3 ; for 

instance, if the primitive constraints allow LJ 1 to perform only mot ions 

parallel to some fixed plane, then dim Gq<IRn) =2. What precedes shows that 

c;;1(q =0 1f and only if Gq<IRn) 1s contained in the two-dimensional subspace 

of I'3 consisting of the vectors parallel to the common tangent plane to 

contacting bodies. 

REMARK 3.3 So far, Gq has been defined only for such q that f(q)=O. In 

computation, as well as in existential studies, it will prove useful to extend 

the definitions of Gq and 1(Q' in a smooth arbitrary way, to the whole range 0 

of the local coordinates In use, or at least to some neighbourhood of the 

hypersurface f=O. This extension may add1tiona1ly be required to preserve 

the property (3.3). 

REMARK 3.4 Let a motion comply with condition f~O at every time. Consider 

an Instant of contact, I.e. at which f(Q)=O, and suppose that the two-sided 

derivatlve q· exists at this instant. Since the latter equals the common value 

of q·+ and q·-, the observations made in Sec.2 imply q'.\7f(Q)=0. In view of 

Proposition 3.1, this yields 1(Q.GQQ'=0, expressing that the velocity of the 

particle 1tf1(q) of ~ 1 through which this body touches the fixed obstacle j30 is 

a vector parallel to the common tangent plane. 
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Similar reasoning would apply to a pair of moving parts of the system: tf 

contact holds at some instant and if, at this Instant, the time-derivative q' 

exists, in the ordinary two-side sense, then the relative velocity of one of 

these bodies with respect to the other, at the contact point, is a vector 

parallel to the common tangent plane. The same fact Is classically 

established in elementary Kinematics, under the stronger assumption of 

permanent contact. One refers to this relative velocity as the sliding 

velocity of the first body upon the second. 

4. LAGRANGE EQUATIONS 
Let a motion of the system be described under the form (2.1 ). It will be 

said smooth if the velocity function u is locally absolutely continuous, i.e. 

absolutely continuous on every compact subinterval of I. This implies the 

existence of the derivative u'(t)=q"(t) for Lebesgue-almost every t. We shall 

refer to the element q" of IRn as the acceleration of the system. 

Such a motion agrees with Dynamics if and only If the function t-+q(t) 

verifies the Lagrange differential equation 

~<oL'c/oq' 1 ) - oL'/oq1 = c1. (4.1) 

Here L'c(q,q') denotes the expression of the kinetic energy; since we assume 

the system scleronomlc, this is 

L'c(q,q') = ~ Alj(q) q· 1q' j , (4.2) 

a positive definite quadratic form In q'. 

By c1 are denoted the covariant components of the totality of the 

forces acting on the system. These possibly comprise some given forces, 

whose covariant components F1 are known functions of time, position and 
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velocity, and also comprise the a priori unknown reactions or constraint 

forces, involved in the constraints that the system experiences. As usual, 

when Lagrange equations are applied, we shall assume that the primitive 

constraints, i.e. those which have permitted the q parametrization, are 

perfect, in the sense that the corresponding reactions have zero covariant 

components. But we shall have to take into account the reactions of the 

superimposed unilateral constraints. 

The left-hand side of (4.1) may be developed into 

A .. j (A 1 A ) .j .k. .. q + 'j ... - -2 . ._ . q q ' 
1) 1 ,II. ) II. J 1 

(4.3) 

where A11 ,k denotes the partial derivative of A11 with regard to qk. Therefore, 

(4.1) takes on the form A1jq .. j = K1 + r1 ; here the term r1 refers to the 

totality of the reactions of superimposed constraints, while K1 is a known 

function of t, q, q·, equal to F1 minus all the terms in (4.3) which involve 

q'jq.k. Since the matrix A is invertible, we may finally write this down as 

q" = A -l K + A- 1 r. ( 4.4) 

It has been assumed that each inequality f<X(Q)=O expresses the contact 

between some pair of rigid bodies. Let us denote by r 1 tx , ... ,r~ the covariant 

components of the corresponding reaction, making an element of IRn denoted 

by r<X. Formally, this term will be introduced also when the said contact is 

not in effect, so we shall state 

(4.5) 

To fix the ideas, suppose, as in Sec.3, that the contact expressed by 

f<X(q) =0 takes place between some part, say ~o:) of the system and an 

unmoving external obstacle. Suppose that the contact action on ~o: results in 
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a single force 'Rex, applied to a particle of this body denoted by 1lrx(q). By 

definition, the covariant components of this force make the element rrx of IRn 

such that 

(4.6) 

On the left -hand side, the dot refers to the Euc I ide an sea Jar product of :t3 , 

on the right-hand side to the standard scalar product of IRn. As before, due 

to scleronomy, V(1vfrx(q), q, v) is a linear expression in v, say G~v. Then, by 

introducing the transpose mapping G~*: 1:3 -. IRn , one equivalently writes 

down (4.6) as 

(4.7) 

5 .SI"100TH FRI CTI llNLESS MOTIONS 
In this Section, we shall assume that the possible unilateral contacts 

are frictionless Under the preceding notations, this means that, for every o:: 

such that f (q) =0, rx 
ex ex 3pEIR : 1{ = p T{q , (5. 1 ) 

where 1{~ denotes the common normal unit at 1lrfex(q) to the contacting 

bodies, directed toward :Bcx . 

We shall assume In addftion that the contact is unilateral wit!Jout 

ad!Jesive effect, I.e. p ~0. 

Through Prop.3.l, conditions (4.7) and (5.1) imply 

(5.2) 

Note t!Jat t!Je repetition of a Greek index Will never be understood as 

implying summation. 

Provided that G~·'J{~ ~ 0 (see Remark 3.2), it may more precisely be 
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checked that (5.2) is equivalent to the existence of 1{cx agreeing with the 

above assumptions. AndJ in view of the convention made in (4.5), this 

equivalence remains valid for every qE<P if one stipulates that Vex: =0 when 

fcx:(Q)<O. Furthermore, in formulating our evolution problem under the 

geometric condition QE<ll , it is immaterial to state that (5.2) also holds for 

non feasible q. 

Therefore, a value of the total reaction term r = L, rtX is compatible 

with the stated laws of contact if and only if it satisfies 

r E - N(q), (5.3) 

where N(q) denotes tne convex cone generated In IRn by tne elements 9f o:(q), 

<XEJ(q) (see Notation 2.1 ). According to an usual convention, if J(Q)=0 this 

cone consists of the zero of IRn. In all cases V(q)J as defined in (2.4), and N(q) 

make a pair of n7utual!y· pc7/ar or con}u ... qate cones. When q belongs to the 

feasible regton, N(q) Is nothing else than the <outward) normal cone to 4> at 

point QJ but what we are denoting here by N(Q) also makes sense and is 

nonempty for Q!<ll. 

Elfm1nattng r between (5.3) and the Lagrange equations, as they are 

displayed in Sec.4, one obtains that a smooth motion of the system agrees 

w1th all the mechanical conditions stated, tf and only If the differential 

inclusion 

-A(q) q" + K(t,qJq') E N(q) (5.4) 

is satisfied Lebesgue-a.e. in I, together with the geometric condition of the 

un1lateral constraints, 

VtEI : q(t) E 4>. (5.5) 

The Proposition below marks a turning point, regarding all our subject 
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matter. For every (closed, convex) subset of IR0
, say C, we denote by 'lllc Its 

Indicator function, i.e. ~Pc(X)=O If xEC and +oo otherwise. The subdi!feren­

tJal a~Pc<x> is known to equal the normal cone to Cat point x <empty lf xtC). 

PROPOSITION 5.1 A smoot/7 mot1on_, with initial data q<t0) belonging to 4>, 

is a solution of (5.4), (5.5) If and only 1! the velocity function u asso­

Ciated with q throuph (2.1) satisfies Lebesgue-a e. in I the differential 

Inc I us ion 

-A(q) u' + K(t,q,u) E a~V(q)(u). (5.6) 

PROOF. For every t such that (5.6) holds, the right-hand side is nonempty, 

r1ence u(t)EV(q(t)). Since, by assumption, u is a (locally absolutely) conti­

nuous function, (2. 1) entails that u(t) equals, for every tEint I, the <two­

sided) derivative of t~q(t) Through Proposition 2.4, one concludes that, if 

(5.6) is verified Lebesgue-a.e., then (5.5) holds. Furthermore, (5.6) implies 

(5.4) because a~V(q)(u) is essentially a subset of N(q), the polar cone of V(q). 

Conversely .. suppose that the function t~q(t) satisfies (5.5). Since u ls 

continuous, Proposition 2.2 shows that u(t), for every tEint.l, belongs to 

V(q(t))n-V(q(t)) wt1ich is the linear subspace of IRn orthogonal to N(q(t)). 

Therefore, if (5.4) holds Lebesgue-a.e., then for Lebesgue-almost every t, the 

values of u and -Au'+ K are orthogonal and respectively belong to the pair of 

mutually polar cones V(q(t)) and N(q(t)); (onsequently they are COf?./ll..qate 

pamts relative to this pair, i.e. (5.6) holds. • 

REMARK 5.2 At the present stage, where the motion smoothness, i.e. the 

local absolute continuity of u, is a priori assumed, the same symmetry 

between past and future is observed as in the classical case of bilaterally 
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constrained frictionless systems. In particularJ for the differential inclusion 

(5.6) to take care automattcal1y of condition qE4', It Is enough that q(t) 

belongs to <I> at some l:EI, nonnecessarlly the initial instant. Also an 

equivalence similar to what Is stated tn the above Proposition may 

symmetrically be established, with (5.6) replaced by 

-A(q) u' + K(t,q,u) E- a~-V(q)(u). (5.7) 

Stm1larly to (5.6), this implies the orthogonality of the elements u and 

-Au'+K of IRn. From such an orthogonality, the same power equation may be 

derived as tn the traditional case of frictionless time-independent bi1ateral 

constraInts: 
d 
dt~c = F.u. (5.8) 

REMARK 5.3 As an introduction to forthcoming Sections, let us indicate how 

the formulation (5.6) directly suggests a procedure of time discretization 

for computing approximately the motion consequent to some initial data 

q(t0> = q0. given in <1> (5.9) 

(5. 1 0) 

Let <t1,tF) be a time-step (here I is understood as referring to "initial" 

and F to "final"), with length h=tF-t1 and midpoint tM=t 1 +~ h . From the 

approximate values q1, u1 of the functions q and u at t1, one has to compute qF 

and uF, corresponding to tF. 

Using <uF-u1)/h as an approximant of u', one discretlzes the differential 

inclusion (5.6) into 

(5. 11) 

Here QM = q1 + ~ hu1 Is a midpoint approximant of q; by 'I'M is denoted the 
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indicator function of V(qM). Inserting uF as an approximant of u tn the 

right-hand side tends to qualify this discretization scheme as "imp11cit". 

However, the smoothness of the given function K allows one to replace tn it u 

by u1, so the procedure may be said "semi-implicit". 

We shall come back later to more general algorithms of the same sort; 

let us only show here how (5.11) uniquely determines Ur· Suppose, for 

simplicity. that A(qM) reduces to the unit matrix. This actually entails no 

Joss of generality: in the line of Remark 2.6, it amounts to make of the 

tangent space, at the point qM of the position manifold, a Euclidean linear 

space, with scalar product defined through A(qM), and to take an orthonormal 

base in this space <more detail on the practical use of this trick may be 

found in [ 15]). Then (5.11) becomes 

-(UF-ul) + hK E at;M(UF). 

The multiplication of both members of (5.11) by the positive number h has 

not altered the right-hand side, because at;M(uF) is a cone. In view of the 

classical characterization of the pro.Nirnal point to u1+ hK in the closed 

convex subset V(qM) of the Euclidean linear space, this is equivalent to 

UF = prox ( u
1 
+ hK, V(qM)). (5.12) 

Observe that u1+ hK is nothing but the value that uF would take in the case 

J(qM)=0, Le. the value that the discretization of Lagrange equations would 

yield in the absence of superimposed unllateral constraints. 

After determining uF, one finishes the computation step by calculating 

QF= QM+!h UF. 
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6. PERCUSSIONS AND FRICTIONLESS SHOCKS 
The preceding Section was restricted to motions a priori assumed 

smooth. For such a motion, there may exist in particular a time interval 

during which one or more of the contacts persist, say the contact expressed 

by fiX=O. Call tc the end of this Interval and suppose that a nonzero interval 

fo I lows, over which fIX< 0. ln other words, as soon as t exceeds tc, the set 

J(q(t)) ceases to contain <X; thus the cone V(q(t)) suddenly Increases. Thls 

Involves no contradiction with the assumed (locally absolute) continuity of 

u, nor with the inclusion uEVn-v, resulting from Prop.2.2. Certain motions 

of a unnateral pendulum provide fam111ar examples of this. 

Computationally, there is no difficulty in approximating a motion 

showing such a smooth contact break, through the algorlthm of Remark. 5.3. It 

only happens that, from a certain time-step to the next, the dimension of 

V(QM) suddenly increases, w1thout producing any notable irregularity in the 

sequence of the calculated values of u. 

Imagine, on the contrary, that an interval of smooth motion ends at some 

Instant t5 wlt!J t!Je occurence of new contacts, t.e. J(q) suddenly Increases. 

In view of Prop.2.2, the continuity of u at t5 would require of the left-limit 

u-(t
5

), an element of -V(q(t
5

)), to belong also to V(q(ts)). This would mean 

that the new contacts are attained tangentially, an event which cannot be 

expected In general. So, a discontinuity of u at t5 has to be contemplated. 

This is called a shock and., to deal with it, Classical Mechanics provides the 

concept of percussion, that we are to review in a few words. 

Assume that t5 is fo11owed by another interval of smooth motion. It will 

be understood that, because of sl1ght deformabll1ty in the system parts, the 
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velocity change is not rigorously instantaneous, but takes place on a "very 

short" time interval, say (t5,t5+8), over which the differential equations of 

smooth dynamics supposedly hold. In view of the steep velocity change, these 

equations are expected to involve "very large" values of the contact forces. 

By equalling the integrals on Ct
5
,t

5
+8) of both members of the differential 

equations, one obtains the momentum c!Jange formula. This ts a balance 

equation, through which the net velocity change is related to the time 

integral, say n, of the function t-.r(UEIR0 which, in tt"le notations of Sec.4, 

represents the contact forces. Compared to tt, the term K yields a negligible 

integral, because e is "very small"; for the same reason, the variations of q 

on the interval are neglected. Once obtained, the balance formula ts inserted 

into the former setting of instantaneous shock; the element n of IR0 is then 

said to make t!Je con7panents of t!Je contact percu~--sions . This procedure may 

be seen as an early example of a n7ultiple scaling; it permits to calculate 

t~e after-shock velocity u +( t
5
), as far as sufficient Information is available 

about contact percussions. 

Usually, the above reasoning is applied under the assumption of 

frictionless contacts. Then it seems natural to admit, slmllarly to (5.2), 

that, for every <XEJ(q
5
), the contribution to n of the corresponding contact, 

say n(X J has the following form 

3M ~0 : TI.x = - M \lf (q (t
5

)). (6.1) 
(X (X (X 

The argument commonly proposed in support to this assertion about fl'X is 

that, in (5.2), the vector 'Vf lX (q(t)) should remain nearly constant during the 

very short time interval (t5,t5
+8), because the variations of q are very small; 

thus M.x would simply equal the integral of the nonnegative real function 
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t-.vcxcu. In the author's opinion, this conclusion cannot be accepted without 

further discussion, though physical situations certainly exist in which (6.1) 

accurately agrees with reality. In fact, the use of the equations of regular 

Dynamics rests on the smoothing effect of a certain amount of de format ion 

in the system parts. The very meaning of the parametrization q may then be 

questioned. Furthermore, the resulting alterations of the functions ret.' 

however small in amplitude and possibly concentrated in the vicinity of the 

point q(t
5
), are prone to generate nonnegl igib le variatIons of the vectors 

\7fcx(q(t)) in the course of the interval (ts,t
5
+8). A similar discussion could 

also be conducted on equations (4.7) and (5.1 ): the deformation of the contac­

ting bodies, however small, may appreciably alter the vector 1{~ in !'3 as 

well as the mapping G~*: !'3-.IR0
. 

At all events, (6.1> does not bring enough information about n to 

determine u+(t5) completely, even in the simplest case where ... J(q(ts)) 

consists of a single element. Classically, a shock (ln a scleronomic system) 

is said elastic if it preserves the total kinetic energy; this additional 

assertion permlts, in the case of a single contact, to determine u+(t,J ,, 
unambiguously. This may be given a geometric form by using in IRn the kinetic 

metric, i.e. the Euclldean metric deflned by the matrix A(q(t
5
)). Then, if 

J(Q(t
5
))={cx}, one finds that u\t5) equals tt1e mirror image of u-0.5) relative 

to the tangent plane at the hypersurface fIX. =0. 

But one can hardly justtfy energy conservat1on by any physical argument. 

In fact the de format ion induced by the impact is expected to propagate 

dynam1cally all through the various parts of the system and possibly also 

through the external connected bodies. Even 1f the <very slightly) deformable 
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materials of which the system is bui It may be asserted perfectly elastic, 

the various parts usually remain, after a bounce, in a state of vibration 

which, in the energy balance drawn at macroscopic level, amounts to 

dissipation. 

In short, predicting accurately the outcome of a shock requires some 

higher order information, unavailable in usual situations. The pertinence of 

the model of an elastic shock has to be discussed In each particular 

application. The same is true for the other sort of shocr. we shall present in 

Sec.B, which however offers the advantage of better formal consistency and 

easier numerical handling. 

7. NONSMOOTH DYNAMICS 
We now intend to insert the description of shocks into a generalized 

formulation of the dynamics of the Investigated system, which does not 

require -the local absolute continuity of the velocity function u:I~IRn. This 

function will only be assumed to have locally bounded variatio"' i.e. to have 

bounded variation on every compact subinterval of I ; notation: uE lbv(I,IRn). 

Classically, with such a function, an 1Rn-va1ued measure on the interval I is 

associated, that we shal I ca11 the differential measure of u and denote by du. 

A characteristic property of this measure is that, for every compact sub­

interval [a,1] c tnt I, one has 

her ,1:] du = u\1)- u-(o). (7.1) 

In fact, the bounded variation assumption secures the existence of the 

one-sided limits of u at any point of tnt I . Equal tty (7.1) remains valid for 

a=to provided that, as already proposed In Sec.2, we agree on the convention 
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u-<t0>=u<t0). The symmetrical convent1on may also be used for u+ at the 

possible right end of I. 

By making O=l:, one sees in particular that, if u is discontinuous at 

point 1: , then the measure du is expected to possess an atom at this point, 

with value equal to the total jump of u. 

It is clear on (7.1) that du depends on the function u only through u+ 

and u-. Tfle values !flat u mar take at its discontinui~ypoints are irnn7ate­

rial Neitfler nave tflese values anr effect on tfle expression <2. 1) ol q 

since tfle set of tfle discontinuity points of u is countable,, nence. 

L ebes._que-negl igible. 

The reader may refer to [7] as a monograph on the lbv functions of a real 

interval and their differential measures, with values in a Banach space X. For 

a vast class of Banach spaces, in particular for X= IR0
, there comes out that, 

if u is locally absolutely continuous, the measure du possesses, relatlvely 

to the Lebesgue measure on I, here denoted by dt, a densttr tunctk"~n, say 

u·t E L 11oc<l, dt; IRn). Of course, the latter is defined up to the addition or a 

dt-negligible function. This is commonly expressed by saying that the 

IRn-valued measure du equals tfle product of t!Je real measure dt by the 

IRn- valuea locally dt- integrabl~ function u·t; notation du = ut dt. Also du 

1s said locally dt- continuous. Conversely, if du has such a form, the 

function uElbv<I,IRn), possibly after correcting the unessential values it 

takes on a countable set, is locally absolutely continuous. Furthermore, for 

Lebesgue-almost every t , the value ui<U of the denstty function makes the 

<two-sfded) derivative of u. 

Throughout these lectures, we shall comply with the widespread usage 
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of affecting the character L to non-Hausdorff spaces consisting of functions 

defined everywhere, while L will refer to the corresponding Hausdorff 

spaces of equivalence classes. 

In this setting, let us come back to Lagrange equations. If u is locally 

absolutely continuous, with q related to it through (2.1 ), the notation used 

in Sec.4 becomes 

) ' j ( ( 1 ( )) j k A .. (q ut + .A..~, q)- 2- A.~, . q u u =c .. 
I J 1 J ,11. J .._,I I 

(7.2) 

The right-hand side refers to the covariant components of the totality of the 

t'orces acting on the system, including the reactions of possible contacts. For 

these differential equations to make sense, then functions t-. ci have to be 

elements of L 11oc<l, dt; IR); so each of then equations (7.2) may equivalently 

be expressed as an equality of measures on the interval I, 
. . k 

A .. (q) duJ +(A .. k(q)- -2
1 A.k 

1
(q)) UJ u dt =c. dt. (7.3) 

I J I J , J , I 

One readily checks that the functions of t, by which the measures duj or dt, 

on the left-hand side, are multiplied, have the local integrability properties 

required in order that the products make sense. 

Now, this new writing keeps meaningful for general uElbv(l ,IR0
), and 

allows one to replace the terms c1 dt, on the right-hand side by some real 

measures dCi , said to be the covariant components of the total in7pulsion 

dC experienced by the system. These will equal the sum of the dt-continuous 

measures F1<t,q,u) dt, describing given forces, and of the covariant 

components dR1 of the contact linpulsion dR, an IR.n -valued measure on I. For 

instance, in the case of an isolated colllsion occuring at instant t
5 

, as 
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investigated 1n Sec.6, the measure dR would involve an atom with mass n , 
placed at point t5 ; this should be added to the dt-continuous measurer dt, 

expressing the contact actions in the course of possible episodes of smooth 

motion w1th persistent contact 

As before, we shall denote by K the known IRn -valued function with 

components 

K.(t,Q,U) = F.(t,q,u)- (A .. k(Q)- -2
1 A.k .(q)) uj uk. 

1 1 l) J ) ,1 

T!Jen t!Je following equali~Y of IRn- valued n7easures on t!Je iflterval 1 

will be adopted as governing t!Je dynamics of possibf.V non~IJ7oot/J nwttons: 

A(q) du - K(t,q,u) dt = dR. (7.4) 

The connect1on between such an extension of Lagrange equations and the 

principles of Classical Dynamics is discussed with more precision in [9]. 

8. CONTACT SOFTNESS 
Let us consider again the differential inclusion (5.6), which has been 

found to govern the assumedly smooth mot1ons of the system. This inclusion 

equivalently means that the expression t.-.r(OEIRn of the covariant 

components of the contact forces makes an element of£ 11oc<l, dt ,IRn) which 

verifies, for Lebesgue-almost every t, 

(8.1) 

In the context of Sec.S, q(t) belongs to <P for every t; therefore, due to Prop. 

2.2 and to the continuity of u, one has u(UEV(q(t)) for every t. Hence, the 

right-hand side of (8.1) is nonempty for every t (it contains at least the 
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zero of !Rn). This enables one, by altering the function r on a Lebesgue­

negligible subset of I , to make (8.1) hold ever,vw!Jere in I . 

In the language of Sec.7, the IRn -valued measure dR = r dt constitutes, 

for the above case, tr1e total contact irnpulsicm. We now propose to adapt 

(8.1) to the more general setting of Nonsmooth Dynamics. 

The Lebesque measure thus I oses its preeminence and we sha II 

definitely give up using the expression "almost everywhere". As observed in 

Sec.7, if u is discontinuous, only u+ and u- have relevance to the motion; 

so. one has to make a choice about what ls to replace u In the right-hand 

s1de of (8. 1 ). 

DEFINITION 8.1 The set of superimposed constraints Is said frictionless and 

soft 1f t!Je total contact Impulsion admits a representation dR=R'vd~, w!Jere 

d~ denotes a nonnegative real rneasure on I and R'IJ an elen7ent of 

£ 
1
1cw} l,di);IRn) SUl.YJ t!Ja(. lor every t in I .. 

(8.2) 

This first impl1es that the right-hand side is nonempty, hence 

u+<t>EV(q(t)) for every t Therefore, if the initial data satisfy q(t0 )E4>, (8.2) 

wi 11 secure, thanks to Prop.2.4, that q(UE4> for every tEl . 

The following Proposition shows that the concept introduced by 

DeflnHion 8.1 does not actually depend on the peculiar choice of d~. 

PROPOSITION 8.2 Inclusion (8.2) holds for every tEl If and only Jf the same 

is true after replacinp d~ by another nonnepative real measure relative to 

w!Jich dR possesses a density function. 
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PROOF Suppose that (8.2) holds for every t in I and denote by dv another 

nonnegative real measure such that R'\) exists. If we put do=d~+dv, the 

Radon-Nikodym theorem ensures the existence of the density functlons v·a 
and v'0 , nonnegative elements of £00(1, do; IR). Then dR=R'~v·0 do=R'vv'0 do; 
so the 1Rn-valued functions R'vV'a and R'v v'0 are equal, except possibly in 

some do-negllgible (hence dv-negligible) subset S of I. The subset N={tEI : 

v'0(0=0} is dv-negligible. Outside the union SUN , the above implles R'v= 

R'v~'0/v'0 , with ~'0/v'0~0; then the expected inclusion holds, since the right­

hand member of (8.2) is a cone. For tESUN , this (closed, convex) cone, being 

nonempty, contains at least the zero of IRn. After replacing by zero the 

values that the function R'\) , as formerly defined, may take in SUN, one 

obtains the asserted conclusion, with dV and dv playing symmetric roles. • 

If the superimposed constraints agree with Definition 8.1, the 

elimination of dR between (8.2) and the equation (7.4) of Nonsmooth 

Dynamics yields the following characterizat1on of the possible motions 

- A(q) u'v + K(t,q,u) t'v E ali'v(q(t))(u+(t)), (8.3) 

required to hold for every tEl . Here dbJ may equivalently be replaced by any 

nonnegative real measure, relative to which du and dt possess density 

functions. The existence of such measures is a priori secured by the 

Radon-Nikodym theorem; one may take, for mstance, dV = ldul + dt , where 

ldul denotes the nonnegative real measure modulus (or variation tneasure) 

[6](7] of the vector measure du. Since K is continuous and since the 

discontinuity set of u is dt-negligible, it does no matter to replace u, on the 
+ -left-hand side, by u or u . 
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The indifference of (8.3) regarding the choice of dV (this could be 

checked directly, through the same reasoning as in the proof of Prop. 8.2), 

suggests to strip down the writing into 
+ - A(q) du + KCt,Q,U) dt E d~V(q(t))(U (t)). (8.4) 

This may be called a measure differential inclusion. The existence of 

solutions to initial value problems governed by conditions of this sort and 

their possible uniqueness have so far been studied only in some special cases 

[11][12][13][31]. 

As before, one observes that, provided that q<t0)E<P, inclusion (8.3) 

entails q(t)E<P for every tEl . 

REMARK 8.3 Simi Jarly to what precedes, the simple assumption of 

no-friction, without reference to "softness", as It has been expressed for the 

case of smooth mot ions in (5.3), may be adapted to Nonsmooth Dynamics. It 

will merely consist in stating that the contact impulsion dR possesses, 

relative to some d~J ?-0, a density function which satisfies for every tEl 

- R'V(t) E N(Q(t)). (8.5) 

Here again, the fact that the right -hand member is a cone ental ls that such 

an assumption does not actually depend on the peculiar choice of dbJ. 

Since the right-hand member of (8.2) is contained In N(q(t)), (8.5) 

constitutes a weaker assumption than what expresses Def1n1t1on 8.1, Le. the 

set of the superimposed constraints may be frictionless without being soft. 

REMARK 8.4 Classically, a subdifferential relation such as (8.2) admits 

some alternative formulations. Here, since the polar cone of V(q) equals N(q), 

(8.2) is found equivalent to asserting, for every t, 
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(8.6) 

9. SOFT COLLISIONS 
In the setting of the above Sect\on, the following characterizes the 

possible velocity jumps 

PROPOSITION 9.1 Let tEl ~ different from t!Je possible ng!Jt end oft/us 

interval. For any motion satisfying (8.3), one !las 

U+(T) = prox (U-(1:), V(Q(1:)), (9. 1) 

w!Jere the proximation is understood In t!Je sense of the kinetic 1netr/c, 

ie. t!Je Euclidean metric defined In IRn by the matrix A(q(t)) 

PROOF In vtew of (7.1 ), 

u+(t)- u-(1:) =J{ }du = J{ }u' diJ = ~ u' (1:), 
't t lJ - t v 

where blt~O denotes the integral of dbJ over the singleton {t}. If motion 

agrees with (8.3), one has 

- A(q(!)) u'._/1:) + K(t,Q(t),U(t)) t'~(t) E aljiV{q(t))(U+(!))_ 

Now Vtt't~(t)=O, since the Lebesgue measure dt has no atom. Then, after 

mu1t1ply1ng both members of the above by ~1:' one obtains 

- A(q(T))(U+(T)- U-(t)) E OljiV(Q(t))(U+(T)). 

If one uses in IRn a base orthonormal relatlvely to the metric in v1ew, A(Q(T)) 

becomes the unit matrix, reducing this to the classical characteristic 

property of proximal points. • 

This Proposition, which, under the convention u-<t0>=u<t0>, also holds 
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for t=t0, shows that u exhibits a nonzero jump at point 1: if and only if 

u -(t)!tV(q(t)), Le. a nontanqentlal impact occurs at this instant. 

Assume in addition that t >To , so u-(l:)E-V(q(t)) in view of Prop.2.2. 

Then, the condition for nonzero velocity jump becomes 

u-(t)E V(Q(t))n- V(Q("'C)). 

The right-hand member is a linear subspace of IRn. If J(Q(t))=0, Le. 

q(t)Eint¢, this is the whole of IRn. If J(Q(t)) conststs of a s1ngleton, say {ex}, 

the subspace is the vector hyperplane tangent at q(t) to hypersurface 

f ex =const.. For larger J(q(t)), the point q(t) lies on what may be called, in the 

wide sense, an edpe and the said subspace (possibly reduced to {0}) is 

declared tangent to this edge. 

Also for r > r 0, one observes that u -(t), being an element. of - V(q(t)), 

cannot belong to the interior of V(q(t)); thus (9.1) yields that u+ actuaJJy 

1 ies on the boundary of this polyhedral cone. 

REMARK 9.2 Here Is another consequence of Prop.9. I. Suppose that, on some 

open subinterval I' of I , the motion evolves In such a way that the set-valued 

function t-+J(q(t)) never increases. In other words, during this time interval, 

some of the contacts may get loose, but no collision occurs. Let 1EI' and let 

cx.EJ(q(t)). Then, for every tEl' such that t,"'C, one has fcx(q(t))=O, an equallty 

which, through the chain rule, entails 

u -(t).\7f (X (Q(t)) = 0. 

Hence u-(l:)EV(q(l:)), so Prop.9.1 shows that no velocity jump occurs at 

Instant 1:. 

In the traditional treatment of uniJateral constraints, the latter 1s 

taken for granted: one accepts to enter percussions into the analysis only at 

39



instants where geometry makes them unavoidable. This agrees wittl the 

heuristic maxim of the "minimal singularity"~ but does not result from any 

explicit mechanical assumption. Here is a familiar example demonstrating 

this method deficiency. 

Suppose an object performing a sliding motion in the contact of a table 

(or simply at rest on It>. If an operator hits the table with a hammer} the 

object is commonly observed to jump. So the table has imparted an Impulse 

to the contacting object, without itself exhibiting any motion at the 

macroscopic observation scale. In contrast, the assumption that unilateral 

constraints are frictionless and soft rules out such an active behaviour of 

boundaries. 

Incidentally, the replacement of softness} In frictionless unilateral 

constraints, by the quite different assumption of energy conservation 

would also permit a deductive treatment of the above situation. It will be 

shown in Sec. I 0 that energy loss, in velocity jumps, should on the contrary 

be expected when frictionless soft constraints are present. 

REMARK 9.3 Equation (9.1) expresses that} in the considered motion) all 

velocity jumps are of the sort that the author has previoulsy called stan-

dard inelastic s/Jocks [14][15]. These were proposed as a generalization of 

the shocks which) in the case of a system involving a single constraint 

1nequa11ty, say f(qhtO, are traditionally called "inelastic" or also "soft". In 

fact, if f(q(t))=O, the tangent cone to the feasible region <P of IRn at point 

Q
5
=Q(t

5
) is simply the half-space V(q

5
) = {vEIRn: v.'Vf(q 5)~0}. Since the 

left-side velocity u-(t
5

) must belong to -V(q
5

) (at least if one supposes 

t
5
> t0), equ.(9.1) yields In this special case that u+(t

5
) equals tne ortnogo-
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nal projection of u -ct5) to t!Je vector !Jyperplane tangent at q5 to hyper­

surface f=O. More information on general standard Inelastic shocks may be 

found in [ 15] ; incidentally, the contact percussion receives an extremal 

characterization, dual to (9.1 ). 

10. ENERGY BALANCE 
PROPOSITION 10.1 For every motion satisfying (8.3) t!Je function t__..!'c 

belongs to lbv(I,IR). In t!Je sense of the ordering of real measures on I , 

one !Jas 

d!'c ~ F. dq, ( 10. 1) 

w!t!J equaiJly if and only if u has no jump /n I. 

PROOF For the traditional case of smooth motions w1th fr1ct1onless 

(time-independent) superimposed constraints, the power equation 
d j 
dt !'c = Fi(t,q,u) u 

is easily derived from Lagrange equations, with left-hand side developed in 

the form (4.3). For a motion governed by (7.4), with the contact 1mpuls1on 

dR=R'~d~ satisfying (8.2), there is only to retrace the same calculation, 

under the replacement of some steps, based on the rules of usual Differential 

Calculus, by what follows. 

1° If ui and uj belong to lbv(I,IR), the same holds for the product u1uj and 

its dlfferential measure is given [7] [32] by 

dCu1uj) = ul+ duj + u1- du1. 

The products of measures by functions, which appear on the right-hand side, 

make sense because the functions t__.. ui+(t) and t__.. uj- belong to lbv(I)R); so 

they are locally integrable relative to any real measure. Hence, in view of 

the symmetry of A, 
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A
1
{q) d(u1uj) = Aij (q)( u1+ + ui-) duJ _ 

Furthermore, since t-.q(t) is locally absolutely continuous, with t-ucn as 

derivative, the differential measure of t-A1j(q(t)) equals 
k 

d Aij = Aij.k u dt 

and one has 
i j i j j j 

d(Aiju u) = u u dAq + Aij d(u u· ). 

2° The real measure Aij(q)(ui+- u1
-) duj is nonnegative; it vanishes iF and 

only if u is continuous on L In fact, this measure cons1sts of a countable 

and locally summab Je co llectlon of point measures located at the Jump 

instants of u . Let ts denote one of these instants; under tt1e notations 

u\t5)=u;, u-Ct
5
)=u;, q(t5)=Q5 , the mass of the corresponding pomt measure 

equals 
J+ i- j+ j­

Ai{qs)(Us - us ) <us - us ). 

Since A1j(q) is, for every q, a positive definite matrix, th1s real number 1s 

nonnegative; it vanishes if and only if u;- u; =0. 

3° Equality u.r=O, a consequence of the no-friction assumption in the case 

of smooth motions, is replaced at present by u+ R'~:~=O, a fact observed in 

(8.6). • 

REMARK I 0.2 A more general concept than frictlonless soft constraints is 

obtained by Insert lng Into the right -hand sIde of (8.2), instead of u +. some 

weighted mean 

(I 02) 

where o is a chosen real number, here supposed independent of t, for 

simpllcity. Since u8<U=u(t), except at the jump points of u. which make a 
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Lebesgue-negligible subset of I, the law of constraint 

- R'b1(t) E a~V(q(t))(u8(t)) ( 1 0.3) 

imp 1 ies, exactly 1 ike (8.2), that condition q(t)E<I> is satisfied for every t as 

soon as it holds for t=t0. 

For 5>0 (even larger than I), the law of constraint ( 1 0.3) ental Is the 

same as what has been stated in Prop.! 0. I. Choosing 5<0 would yield the 

reverse mequality, physically unacceptable (unless the possible bounces are 

artificially enhanced, as in some electric billiard games). 

If 5=0, i.e. u8 equals the nndpoint of u- and u+, one f1nds equali(Y 

d!'c=F.dq , expressing the same ener,_q.v conservation as in smooth motions. 

In that sense, the constraint law ( 1 0.3) with 5=0 may be said "elastic". 

We suggest to call 5 the dt~-sipation inde.>rof the constraint law ( 1 0.3). 

11. TIME DISCRETIZATION ALGORITHM 
The principle of such an algorithm has been introduced, for smooth 

motions, in Remark 5.3. The main observation we now have to make is that 

the same numerical technique applies in the framework of Nonsmooth 

Dynamics, provided that the superimposed friction less unllateral constraints 

are assumed soft. 

The expression in (7.4) of the system dynamics, in term of measures, 

directly suggests time discretization: the rule will be to equal some appro­

ximants of the respective integrals of both members over each subinterval 

of I determined by the discretization nodes. 

Let <t1,tF) be one of these intervals (here I refers to "initial" an F to 

"final"), with length h=tr-t1 possibly variable from one step to another. From 

the approximants q1 and u1 of q and u at the beginning of the Interval, one has 
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to compute some approximants qF and uF , assigned to instant tF and which, 

ln turn, w111 be used as inltlal values ln the next step. 

Then 
-1 

UL =u1 + hAM KM 

is the value that the discretized equations of Dynamics would yield for ur in 

the absence of contact force (here one may read the subscript L as referring 

to "loose"). 

If QME inttP (i.e. all fiX(QM) are strictly negative) or uLEV(qM), one consi­

ders that contact forces have no effect on the calculated step; so one makes 

uF=uL and goes to Stage 3 (this decis1on is actually a trivial case of Stage 2 

below). 

Stage 2 On the left-hand side of (8.4), let us replace ACq) and K(t,q,u) by Ar-t 

and KM . Then, an approximant of the integral of this left-hand side over 

<t1,tF) is -~(uF-uL) . Concerning the right-hand side, it will be considered 

that the set V(q(t)) keeps, throughout the interval, the constant value V(qM), 

whose indicator function will be denoted by 'PM· Furthermore, let us take uF 

as an approximant -one may rather say a simulatt£m- of u+. This yields as a 

simulation of (8.4) on the said interval 

-AM(UF-ul) E aq,M(UF) 

If the matrix AM is used in order to define a Euclldean metric on IRn, this 

characterizes uF as the proximal point to ul in the closed convex set V(qM). 

Therefore, computing uF is a Quadratic Programming problem: to n7inin7L7 e 

44



on V(QM) tl7e real function x,...(x-ul).AM(x-ul). Recall that V(qM) is a 

polyhedral cone, the intersection of a collection of half -spaces determined 

by the index set J(qM). These correspond to the values of ex such that, in the 

test position QM, the inequality ftx'o holds as an equal1ty or is violated. 

If their number is not too large, the proximal point will be constructed 

algebraically; otherwise some of the classical algorithms of Quadratic 

Programming will have to be applied. 

Stage 3 One terminates the computation step by 

QF = QM + ~ h UF · 

REMARK 11.1 In [24] are reported some computer experiments with methods 

of the above sort. These methods prove to be stable. The finer the time 

discretization is, the better the computed motion complies with the Inequa­

lities f(X,o. In that respect, some improvement may be achieved by 

evaluat!ng, in Stage 2, the cone V(q) at another point than QM. A good choice 

appears to be the point q1 + hu1. 

If these methods are applied to the calculation of mechanisms, which in 

reality always involve some imperfectly known friction, no great precision 

can anyway be expected in predicting the motion. From that viewpoint, a 

moderately fine time discretization will be enough. In contrast, the violation 

of the constraint Inequalities must sharply be kept In check. A very effective 

way of doing it consists in completing each time step by a stage of linear 

correction of tl7e possible violation. Let us explain it In the simple case 

where the position qF, calculated In Stage 3, violates only one of the cons­

traint inequalities. In other words, the real number tp=f(QF) is found strictly 

positive, with f denoting one of the functions f(X. A plausible correction of 
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this violation (naturally assumed "small") would be to replace qF by its 

proximal point, say qc , in the region f~O. Proximity here should be 

understood in the sense of some Euclidean metric on IRn ; the most justified 

choice is to rely on the kinetic metric, defined by H1e matrix A(q). To save 

computation, the latter will be evaluated at a pomt where 1t has already 

been calculated in the current step. Using an affine approximation of U1e 

function f, one obtains 0=f<qc)=tp+(qc-qF).\7f+ ... Here H1e gr·adient Vf 

should be evaluated at some neighbour point. This precisely must have been 

done at the Stage 2 of the current step, where also tr1e vector A- 1vf has 

been needed. Defining Qc as the proximal point to QF in the region f ~ o, 
relative to the metric in view, means that the vector qc-qF is parallel to 

A -l \7f(qc)· Since the latter is estimated to be close to H1e calculated value 

of A- 1\7f, this finally yields the approximate formula 
-1 -1 -1 Qc = QF- tp (\7f.A \70 A \7f + 

The same techniques of violation control applies to the numerical 

methods presented in the sequel, for unilateral constraints with friction. 

REMARK 11.2 Also in [24L a numerical procedure is developed for a system 

with a frictionless unilateral constraint expressed by a single inequality 

f,O, assuming that the dissipation index, as we have defined it in Sec.lO, 

equals t. In other words, the possible collisions are elastic bounces . In 

contrast with the exce I lent stab11 ity of the preceding method, a careful 

check of the energy balance of each time-step here is needed, in order to 

prevent divergent oscillations wt1en the algorithm is applied to the 

computation of a motion with assumedly persistent contact. 
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12. COULOMB FRICTION 
This lectures are meant to provide only an Introduction to the treatment 

of friction. So we shall restrict ourselves to a system Involving a single 

unilateral constr~~int with geometric condition f(q)~O (there is presented 

in [30] a rather usual case, where a system with multiple possible contacts 

may be reduced, through decompos1ti~r\ to tt11s simple setting). 

For every q such that f(q)~O, the cone V(q) equals the half-space {vEIRn: 

v \?f(q)~O}, with boundary 

T(q) = {vEIRn: v.\7f(Q)=0}; 

the latter is the vector hyperplane tangent at point q to the hypersurface 

f =const. drawn through this point. 

Let a motion satisfy f(q(t))~O for every tEL If the velocity function u 

is continuous at some 1>t0, then, in view of Prop.2.2, u("t) belongs to 

V(q('r))n-V(q(T)); this set equals T(q(l:)) if f(q(l:))~O and otherwise the 

whole of IRn. The same is true for 1=t0, as far as the initial data have the 

meaning we agreed to give them in Sect.2, namely u0 equals the left-limit 

u-<t0) in a motion taking place before t0, with the unilateral constraint 

already in effect. 

To fix the ideas, suppose, as In Sec.3, that equality f(q)=O expresses 

that in the position q, some part ~ 1 of the system touches the unmoving 

external obstacle il0. Then, under the previous notations, 

U = 'V()f1 (q),q,u) = Gqu 

is the velocity of il 1 relative to il0 at the contact point. 

Denoting again by 1{q the common normal unit vector to the contacting 

bodies, directed toward 13 1, we assume G;~ ~ 0 <see Remark 3.2). Then the 

assertion uET(q) Is equivalent to U belonging to T(q), the Hnear subspace of 

47



:r3 orthogonal to 1{q , i.e. the common tangent vector plane at the contact 

point. 

The above is the situation in which, traditionally, Coulomb's law of liry 

friction is formulated. This law is a relation between the s/idinq ttt'/(lc/tv ... ,• 

l.iET(q) and the contact force 1{E:r3 experienced by ~ 1 
For brevity, let us write 1{ for 'J{Q and Tfor T(q). T~1e famillar formu­

lation rests on the decompositwn of 1{ into 

1{ = 1{1 + P 1{, with 1{TET and p;?O, ( 12.1) 

and consists of two well known separate assertions concerning the res­

pective cases U=O and U70 in T. 

In some of the author's early papers [20] [21 ], it has been observed that, 

as far as the normal component p is treated as known, this pair of 

assertions is equivalent to a relation, between tr1e elements Rr and U of 

the linear space T, which derives from a "pseudo-potential". Furthermore, 

this formulation readily extends to the description of poss1bly an1~--:otropic 

friction, as a relation of the form 

-l.i E a1Jf1)(1{ T ), ( 12.2) 

with 1l=p1l1. By 1l1 is denoted a given closed convex subset ofT, containing 

the origin; in the traditional case of isotropic friction, 1l1 equals the disk 

centered at the origin, with radius equal to the lrtt:twn coe.!lftJent, say t 
We snail restriti ourselves in tnese lectures to tne r.."'ii/se ol bounded 

friction, ie. tne. set 1> 1 is bounded. To take 1> 1 unbounded would provide a 

way of including in our approach the situation traditionally called a 

nonnolonomic constraint. But this would cause some complications in 

further statements. 

Through the standard calculation rules of Convex Analysis, ( 12.2) may 
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equivalently be written as 

( 12.3) 

where the dissipation function 4> equals the support function of the set 

-1) 1; in particular, for isotropic friction 4> = y 11.11. 

Elementary app I icat 10ns, where p in fact is known, may be found ln 

(22}. Furthermore, having to treat p as known does not prevent uslng this 

pseudo-potential formulation <or an equivalent variational inequality which 

expresses a "principle of maximal dissipation") in the proof of existence of 

solutions to dynamical problems. See [33], where the normal components of 

the contact forces become the primary unknowns in some functional analytic 

arguments 

In the present lectures, we choose to formulate the same Jaw under a 

conical equ1valent form [24], avoiding the decomposition ( 12. I). The lric­

tion cone C at the contact point is introduced, a closed convex conical 

subset of the linear space !'3 <recall that, speaking of a cone in a linear 

space, one understands that it has vertex at the oriqin). In traditional iso­

tropic friction, this is a cone of revolution about 1(; general~v. C equals 

t!Je cone ~qenerated in ::£3 b..v t!Je set 1J 1 + 1(. So C contains 1( and 1 ies 

entirely on the corresponding side ofT. 

PROPOSITION 12.1 T!Je pair of relations< 12.1 ), ( 12.2) is equivalent to 

- u E projT a~Vc<R>. < 12.4) 

PROOF Assume that ( 12.4) holds; hence -'UET. Denoting by [1(] the ltnear 

subspace generated in 1:3 by 1{, one has 

3VEa1Vc(1{), 3WE[1{) : -U=V+W. ( 12.5) 

Let us decompose 1{ in the form ( 12.1 ); necessarily p ~0, since ( 12.4) implies 
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that a,c<:R) is nonempty, thus :REC. By construction, R belongs to the affine 

plane .:4=T+p1{. Therefore a,.:4(1{)=[1{] and (12.5) means that 

-u E a~ ~av + a~cCR-> c a* ~ncOO. < 12.6) 

In view of the definition of D, one has ~nC=1l+p1(, thus, using a 

translation in the evaluation of subdiffentials, 

d$ .11n&RJ = a~DCR - p 1{)= oiJI1lCR T )_ 

Then ( 12.6) entalls that ( 12.2) holds in the sense of' the Euclidean autoduality 

of ~3 . Since 1J. and :R1 are elements of the linear subspace T, the same is 

true relatively to the Euclidean autoduality or this subspace. 

Conversely, Jet us assume that 'UETand that< 12.2) holds in the sense of 

the Euclidean autoduality ofT, with :RT defined by ( 12.1) (observe that p~O 

is stated at this place). Then ( t 2.2) Is true also in the sense of the auto­

duality of :r3 and, using translations as above, one concludes 

-11 E OIJI ~ncO\>. 

Here we need to know whether the inclusion on the right side of ( 12.6) 

actually holds as an equality of sets. If p>O, this equality results from a 

known calculation rule for the subdlfferent1al of a sum of l.s.c. proper convex 

functions in finite-dimensional spaces: in fact there exists a point in the 

relative Interior of C=dom~C where ~~takes a finite value (see [34], 

Theorem 23.8). In that case, by going from ( 12.6) backward to < 12.5), one 

establishes ( 12.4). 

It is only for p=O that the assumption of bounded friction, made once 

for all 1n the preceding, has to be used. If p=O, the set 1l reduces to {0}, so 

( 12.2) simply consists in the assertion:" 'U arbitrary in Tand :Rr = o "; one has 
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to establish that such is also the meaning of ( 12.5) in this special situation. 

For :R = 0, the subd1fferential oljJC(.R) consists of the polar cone co of c. 

Because the section of C by the plane Jl <constructed for instance with P= l) 

is compact. co contains the vector -1{ in its interior (see e.g.{35], parag.8.7). 

Consequently, the proJection of co toT equals the whole of this subspace; 

tt)iS completes tt1e proof . • 
In turn ( 12.4) may be transformed as follows [25]: 

PROPOSITION 12.2 Deline In 1:3 t!Je extended real function 6 

11~ 8(U) = ~IIUII 2 + 1¥rC11). ( 12.7) 

T!Jen< 12.4) Is equivalent to 

( 12.8) 

PROOF Since ~11.112 is a smooth function, with gradient mapping equal to 

identity, one has for every U in 1:3 

aS(U) = U + olpT(U). 

Now, oqtT('U) equals [1'{] if 'UETand, otherwise, is empty. Therefore, ( 12.8) is 

equivalent to 

11ET and OE oljJC(1{)+U + [1{], 

which is precisely ( 12.4). • 

Incidentally, observe that resistance laws involving a pair of subdif­

fential mappings, as in ( 12.8), have a wider interest than describing contact 

friction in three-dimensional space. For instance, in Plasticity, this form 

may be used in formulating constltutive laws for which the flow rule is not 
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"associated" with the yield criterion. 

Recall that T and C, in what precedes, depend on the position q of the 

system, under the assumption f(Q)=O. Let us make the same writing 

meaningful also for positions wnicn do not Involve contact. 

To th1s end, we shall agree that, when f(Q)<O, the cone C(Q) reduces to 

{0} and that T(Q)=~3 . Then the relations ( 12.4) or ( 12.8) simply express that 

1{=0, with 11 arbitrary in IR0
. 

Furthermore, 1n what concerns evolution problems under condition f~O. 

1t Js Immaterial to choose any (adequately smooth) extension of the mul­

tifunction Q-+C(q)c~3 to the case f(Q)>O. Similarly, the linear mapping 

Gq: IR0 
... ~3 will be extended to such Q, as well as the normal unit 1(w with 

attention to preserving (3.2). The reason for such extensions lies in 

numerical methods, where a certain amount of violation of the desired 

i nequa 1 i ty f ~ 0 has naturally to be faced. 

The set of the values of 1{ E ~3 that ( 12.4) or ( 12.8) make correspond 

wtth each UE~3 <actually the empty set 1f UiT) is a cone, since the mul­

tipllcation of 1{ by any strictly positive number leaves d1j1C(1{) invariant. 

Like In preceding Sections, this fact wi 11 now prove essential. as we come to 

formulating Nonsmooth Dynamics in terms of measure differential 

inclusions. 

In the course of a smooth motion, the contact force 1{ is a function of 

time that we may denote by Pf. This 1n fact Is the density, relative to the 

Lebesgue measure dt, of the local contact Impulsion <!P, an ~3 -valued 

measure on the time interval I. For nonsmooth motions, crP can no more be 
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expected to possess a density relative to dt, but in any case this measure 

may be represented in the form 'P~d~, where d~ is a nonnegative real measure 

on I and 'Pv E L 11oc( I, dp; ~3 ) . The IRn -valued contact impulsion dR, as 

introduced in Sect.7 for insertion into the measure equation of Nonsmooth 

Dynamics (74), has the form dR=R~d~, and, similarly to (4.7), 

Rv C U = G; < 0 'P ~ (t) < 1 2. 9 > 

rwlcls for every t. 

As far as Coulomb's law is accepted for the description of dry friction, 

one naturally admits that, in possible nonsmooth motions, the density :Pv(t) 

of the local contact impulsion will be related, for every t, to the sliding 

velocity 1l through the same relation as 1{ is in ( 12.4), or equivalently in 

( 12.8). This, at least, raises no discussion when t-.'U is continuous. At ins­

tants of velocity jumps, we decide t!Jat t!Je same relation will !Jold wi!IJ 1l 

replaced by itsrig!Jt-limlt, namely 'Lt=Gqu+, since the linear mapping 

Gq: IR0 -+1:3 continuously depends on q. This assumption entails that ll+(t) 

belongs to T(q(t)) for every t (an immaterial assertion when f(q(t))<O, since 

it has been agreed that T(q(t)) = I 3 in this event). In view of Propos it ion 3.1, 

this is equivalent to u+(t)ET(q(t)), a property which, 1n the frictionless case 

of Sect.9, has been identified as characterizing the "softness" of unilateral 

constraints. We thus are induced to put the following definition. 

DEFINITION 12.3 T!Je unilateral constraint investigated a/Jove is :,-aid soft 

with Coulomb friction 11: in any motion wit/7 lb. v velocitv !unction. t!Je . .• ., . 

contact irnpulsion !Jas t!Je forn7 d1'='Pvd~, wit/7 :Pv E£ \oc<l, d~ ;I3) veri­

lying lor every t 

(12.10) 

(recall t!Jat T(q)=I3 and C(Q)={O} w!Jen f(Q)<O) or t!Je equivalent form 
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given to a relation of t!Jis sort by Prop./22 

Because this relation is conical with regard to the element Pv (t), t11e 

reasoning already used in the proof of Prop.8.2 shows that the choice of the 

nonnegative real measure dV is immaterial, as long as cfPpossesses, relative 

to it, a density function. 

REMARK 12.4 Since we have agreed to extend the definitions of T(q) and C(q) 

to positions such that f(Q)>O, ( 12.1 0) makes sense also in that case. But, as 

previously observed, this relation implies that u+(t) belongs to T(q(t)), hence 

to V(q(t)). In view of Prop.2.4, this secures that, provided the initi~:."~l ctata 

satJs~~vf(q(t0 ))~0, inequali(,v f(q(t))~O will hold t!Jroup!Jout I. 

REMARK 12.5 The val id!ty of ( 12. I 0) for t=to calls for some comments. In 

beginning this section, we recalled the meaning given to the initial condition 

u<t0>=u0 of an evolution problem. It is understood that u0 equals the 

left-limit u-<t0) In some anterior mot lon, during which the unilateral 

constraint was already in effect. In particular, one may have f(q0)=0 and u0 
interior to the half -space - V<q0); this imp I ies that a coil is ion takes place at 

instant t0. Then softness, as expressed by C 12.1 0), makes that u•ct0) belongs 

to the Hnear space TCq0)=V<q0)n-V(q0). But the case r<q0)=0 with u0 

interior to V<q0), l.e. Initial velocity implying contact break, Is excluded 

from the present study. This will cause no great inconvenience in practice. 

REMARK 12.6 Put the notation Gq<V(q))='V(q); this is the closed half -space 

of f'3 lying on the same side as 1tq with respect to T(Q). The set a~ccP~1) is 

contained in co, the polar cone of C, which in turn is contained in the half­

space -V(q). Then, In < 12.1 0), the operation projT(q) might equivalently be 
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r-ep laced by Hle pr-oximat ion mapping to V(q). This would be numerically 

inconvenient, but is llable to improve the consistency of some further 

developments. 

REt-1ARK 12.7 In applications, describing dry friction through Coulomb's law 

can only provide a rather crude approximation. However, as this law retains 

tt1e essential features of the phenomenon, its use at the stage of a first 

study is extremely valuable in numerous situations. As soon as this law has 

been adopted, under its traditional form, there is little doubt that its 

generalization (12.10) can also be accepted for every motion in which the 

velocity function is continuous, even in the absence of local absolute 

continuity. We shall discuss later its use in the case of a ve/ocl~VjUn7p. 

13. TWO-DIMENSIONAL CONTACT 
In the same setting as in the above Section, we now make the following 

additional assumption. However three-dimensional the contact may physi­

cally be, we sr,all suppose that, for every q such tt1at f(Q)=O <and also for 

f(q);J:O, after the extension we have agreed to make) the range Gq<IR0
) ot Gq 

n.?t.tuct)s to a two-dirnensianal sub::ipace W q at x3. Such is the case, for 

instance, if the part ~ 1 of the system is astrained, by the primitive 

constraints, to only perform motions parallel to a fixed plane. The condition 

found in Remark 3.2, in order that G; 1tq;r0 wi 11 be supposed fullfil led, i.e. 

W q and the tangent pl.:me Tq are distinct: let us denote by I a unit vector of 

their intersect ion. 

Due to the expr,esslon ( 4. 7) of the covariant components of the contact 

forceR <or, in Nonsmooth Dynamics, the covariant components of the density 

P~(t) of contact impulsion), the dynamically significant information 
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concerning this vector is entirely conveyed through its equiva !ence c. lass 

modulo ker G;. This kernel equals the subspace of L3 orthogonal to ··ww 
consequently, we may in the sequel replace 1{ by its orthogonal proJection to 

WQ, also called 1{, by abuse of notation. 

We shall come back, in Sec.17, to a dJscussJon of what tn general 

becomes the three-dimensional law of friction under such a geometric 

two-dimensional reduction. Let us restrict ourselves at present to the usual 

case where the result is simply the fam i I iar two-dimensional version of 

Coulomb's law. The considerations of the preceding section might readily be 

adapted to this case. Here we shall rather choose to express the two­

dimensional Coulomb law in the following alternative form. For more readl­

bllity, the subscript q will momentarily be omitted. 

T/Jere exist in t/Je vector plane 'W twa !Jail-lines 1> and D , 
+ -

emanating lron7 t/Je origin and lying, with respect to T, on the :;.'dnle s1de 

as 1{. The convex cone C now equals their convex hull In smootr1 mot ions, 

the sliding velocity is essentially an element of rnw, say U= sf with sEIR 

Coulomb's law consists of the three irnplications 

S>O =* :RE 'D+ 

S<O ~ 1{E 'D 

s=O ~ 1{E C 

( 13. 1 ) 

( 13.2) 

( 13.3) 

The angles that 1> +and 1> _make wlth I have respective tangent equal to 

-1 /y +and 1 /y _,where the positive real numbers y +andy_ respectively are 

the familiar friction coefficients correspondmg to positive and negative 

sliding . 

All these elements are defined for such q that f(q)=O; as before. we 

shall imagine an extension of them to every q such that f(q)~O (at least in 
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a neighborhood of hypersurface f =0). 

The vector plane14/depends on q; it will prove convenient to send it 
'") 

onto a fixed copy of IRL, called the calculation pl.=tne, equipped with the 

usual base consisting of vectors I = ( 1 ,0) and j = (0, 1 ). To this end, a 

regular 1 inear mapping 1"q : 'W q~IR2 wIll be constructed, in such a way that 

Tqf is a positive vector of the first axis. Denote by Gq: IRn _.IR2 the product 

mapping TqGq · Assume that the real function f is at least c2
; then it will be 

possible to choose 1Q in order that Gq depend on q in a c1 way. 

Let us mean by rq* the transpose of rq , in the sense of the natural 
~ 

scalar products of IR L and W, and denote by D +and D _ the Images of 1l +and 
otc-1 1l _ under Tq 

There would remain enough arbitrariness in the choice of 1'q for making 

these images equal two fixed half-lines of IR2
, e.g. the half-lines generated 

by < -1 , 1) and < 1,1) . The drawback is that the two friction coefficients f + 

and f _ would then J)ave to depend smootl)ly on q . So we shall not use this 

trick in the sequel and only assume that t!Je convex !Jul~ sar C, of D + and 

D _ contains J 1!7 Its !llterlor. 

Under these notations, the friction law ( 13.1) to ( 13.3) may equivalently 

be formulated as a relation of the same form between R= rq•-l'R. and U = 

rqU = Gqu = cri. Due to the assumptions made, o is a real number of the same 

sign as s or vanishmg with it. Henceforth, there only is to replace s , 1l +' 

1l_, C respectively by a, D+, D_, C. 

In order to express the dynamics of the considered system, one has to 

bring together the above react ion law and the Lagrange equations. The 

covariant components of the contact force make the element r of IRn, related 

toR through 
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* * <'!:"* "' r = Gq ~ = Gq s q R = G q R . ( 13.4) 

After having so restated the two-dimensional law of Coulomb, we now 

propose to extend it to Nonsmooth Dynamics} in the same I ine as in Sec. 12. 

Recall that, in such a context, velocity functions are significant only through 

their one-sided limits. Instead of u, 11 and U, the rig!Jt-lin71ts u+, u+ = Gqu+ 

and u+ = Gqu + are introduced into the above writing. The contact force 1{ is 

replaced, for every t, by the value P~(t) of the density function of the 

three-d1mensiona1 contact impulsion, or equivalently by the orthogonal 

projection of Pv(t) to W (q(t)). When coming to the use of the calculation 

plane, the function Pb. = 'Tq•-lpv is considered. 

The dynamics of the system is now expressed by the Lagrange equation 

1n IRn 

to be joined with 

A(q) u~ - K(t,q,u) tv = R~ , 

R' = G* P' 
1:' Q 1:' 

3 CJEIR: U+ = CJ 1 

CJ>O '* PVE D+ 

CJ<O '* PVE D_ 

0=0 '* P~E C, 

for every t such that f(q(t))~O. 

On the contrary, when f(q(t))<O, then R~=O. 

14. VELOCITY JUMPS IN FRICTIONAL DYNAMICS 

( 13.5) 

( 13.6) 

( 13.7) 

( 13.8) 

(J3.9) 

( 13.1 0) 

The formulation given above, for the Nonsmooth Dynamics of a system 

with single possible contact and two-dimensional Coulomb friction, will 
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now be used in discussing the event of a veloc!~Jijunw. 

This means that, at some instant t5, the IRn -valued measure du 

possesses an atom, the mass of which equals 

u\t5)- u-(ts) = u~(t5) ~s· 

Here, the positive number b.'s is the mass of the atom that the measure dbJ 

should possess at point t
5

. 

Recalling that the Lebesgue measure dt has no atom, one derives from 

( 13.5) that, at t=t
5 

, 

+ - A-l G"'P' (141) u - u = Q Q lJ ~s . 
If f(q(t

5
))<0, i.e. no contact, one has Pv<t

5
)=0, so no jump of u can occur. 

We therefore shall assume f(q(t5))~0 (equivalently f(q(t
5
))=0) and denote 

simply by G the value of Gq at Q=Q(t5). Then, for t=t5 , one has Rv=G"'Pv. Put 

P~ (t5)~5=P and apply the linear mapping G: IRn -+IR2 to both members of 

( 14. 1 ); this yields 

u+- u- = HP, < 14.2) 

where H denotes t!Je s,yn7metric 2x2 positive definite matrix·GA -l G"'. 

This has to be joined with two-dimensional Coulomb law, expressed as 

in Sec. 13 by 

3 OEIR : u+ =a 1 ( 14.3) 

a>O ::::> P E D + ( 14.4) 

0<0 ::::> P E D ( 14.5) -
a=O ::::> P E C. ( 14.6) 

We are to discuss how, starting with given u-, the system of conditions 

( 14. 1) to ( 14.6) allows one to determine u +. 

Combining ( 14.2) and ( 14.3), one obtains 
-1 - -1 P = -H U + aH I, (14.7) 
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which expresses that P belongs to the line 6 of IR2 drawn through the 

point -H-Iu-, with H- 11 as directing vector. Easy calculation (for instance 

by observing that 6 is orthogonal to Hj) yields that this line intersects 

the second axis at point 

S = -(j.U-)j/(j.Hj). (14.8) 

Due to the way we have chosen the mapping T, the real number 

j. u-=r* j.'U- has the same sign as 1(. 'U- = c;;;1(. u- or vanishes with it. 

Through Prop.3.1, one concludes that the coordinate of S on the j axis is 

pos1tive, negative or zero if and only if the same is true for u-.\lf(q(ts)). 

First case: impact. 

This ls the event where f(q(t
5
))=0, with u-<t

5
).\7f(q(t

5
))>0. Consequently 

f(q(t))<O on some left-neighborood of t
5
, i.e. t

5 
is an instant of nontangen-

tial collision. The point S 1 ies in the interior of C , so the I ine 6 inter­

sects C and does not pass through the origin. Observe that i.H- 1 i>O, i.e. the 

vector H- 1 t directs 6 from left to right Therefore, the point P, as expres­

sed In ( 14.7), 1 les on the right of H- 1 u- if O>O and on the left In the 

reverse case. By comparison with ( 14.4) to < 146), one concludes that the 

formulated set of conditions is satisfied if and only if P equals the nearest 

point to H-I u- in the intersect ion 6nc. 
So the problem of determining u+ possesses a unique solution in that 

case. 

Second case: sliding. 

We now assume that f(q(ts))=O, with u-(t
5
).\7f(q(t

5
))=0 (equivalently 

u-(t5).\7f(q(t5))~0, since the anterior motion Is assumed to agree with f~O). 
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Then 5=0 . i.e. the I ine 6 passes .through the origin . 

• If 6nc consists only of the origin) the formu1ated set of condition admits 

P=OJ hence u+ = u-, as unique solution: no velocity jump occurs. 

• If 6 intersects also the interior of Clone has to determine whether 1t is 

possible for P to lie in this interior. In view of conditi.ons (14.4) to (14.6) 1 

this requires u+ =0. It is in fact a solution if -H- 1 u-Eint C: then the sliding 

suddenly sticks. Concurrently P=O, with u+ = u-~ i.e. no velocity jumpl is also 

a solution in this case. 

• If 6 contains one of the half -11nes D + or D _ ) a value of P on this 

half -llne meets the requirements provided the resulting value of u+ = 

u-+ HP= o1 agrees with conditions ( 14.4) to ( 14.6). For instance I imagine 

D+c6: these conditions require o~O. This can happen only if -H-lU-ED+and 

then every· value of P belonging to the line segn1ent [-H-lu-~ 0] is a 

solution. The corresponding values of u+ cover the line segment [01 u-]. 

REMARK 14.1 The latter is the most interesting item of the discussion. It 

shows thatl contrary to the frictionless case, an episode of smooth motion 

with persistent contact may end with a velocity jump without anr collision 

occurring This is a dynamical analogue to the locking effect~ well known in 

the statics of mechanisms with dry friction. 

The earliest reference we know of, where such a possibility is asserted, 

is a note by L. Lecornu [26]. At the time, a controversy has been opened by P. 

Painleve [36], with the observation thatl in systems involving Coulomb 

friction~ some initial value problems could have no solution, or also several 

solutions. In addition~ the behaviour of the system depended on 1ts constants 

in a discontinuous way. To Palnleve) and later to E. Delassus [37][38], these 

findings seemed in contradiction with the very bases of Physics. In the 
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subsequent years, different opinions were sustained by such authors as F. 

Klein [39], Rv.Mises [40], G. Hamel [41] or L. Prandtl [42]. Even after H. 

Beghin [43][44] had clearly demonstrated that the incriminated findings 

actua11y agreed with common observation, some suspicion remained in the 

scientific community that Coulomb's law could be intrinsically illogical. 

Today, one is accustomed to meet multiple solutions or the absence of 

solution to physical problems, usually ascribing these facts to t11e nature of 

the treated information, without opening any discussion about determinism 

in Physics. One is also fami 1 iar with discontinuous behaviour. 

Dynamic locking, that we propose to call a frictional catastrophe, ls 

commonly observed in practice. The example of the chattering motion of a 

piece of chalk driven at an angle against a blackboard, so that a dotted line 

is drawn, was already put forward by E. Delassus [37]. A model of this 

phenomenon is presented in [30L with some drawings generated by a 

computer using the time discretization procedure of Sect. IS below. This 

displays an instance of a "stick-slip" motion. Depending on the system 

constants, frictional catastrophes and intermittent contact breaking may 

occur or not. No attempt so far has been made at comparing thts model, 

quantitatively, with experimental measurements. 

A very simple example of frictional catastrophe is presented in Sect. IS, 

as a demonstration of the ability of our numerical technique to handle 

nonsmooth solutions. 

REMARK 14.2 From the mathematical standpoint, we think that little has to 

be retained of the early discussions on the subject. At the time, differential 

equations were impllcltely understood in the sense of the elementary theory: 
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so Jut ions should possess some requlated tunct ions. as their derivatives of 

the highest order involved. In other words) It was admitted that the 

acceleration q" possessed a right-limit and a left-limit at every t. Certain 

of these I imits played an essential role in the discussions by Painleve and 

hls followers Unfortunately) in usual instances where an interval of smooth 

motion precedes the catastrophic instant t
5

) one finds that the norm of q" 

actually tends to infinity when t tends to ts from the left The concept of a 

measure differential inclusion) on which the present lectures are based) 

provides a more synthetic view) since it allows one to express Dynamics on 

the whole interval I ) Including t
5 

) and does not rely on the existence of 

one-side accelerations. 

REMARK 14.3 There remains to discuss whether the velocity jumps agreeing 

with the constraint law ( 12.1 0) are physically reallstic. We have already 

stressed that, even in the absence of friction, predicting safely the outcome 

of a shock would require some high order of information, actually una­

vailable in engineering situations. Things naturally become worse if friction 

1s entered into account. What do we know about the Physics of high pressure 

friction~ during the "very short" interval of time on which the velocity 

change takes place? Already for the frictionless case, we have in Sect.6 been 

reluctant in accepting the invariance of the direction of \7f(q) during this 

interval. The latter invariance, if admitted, makes of the no-friction 

assumption a time- independent linear condition imposed on the contact 

force at every instant; therefrom, the normality of the contact percussion is 

inferred, by integration on the interval. On the contrary, Coulomb law 

imposes on contact force a nonlinear condition. Even if one assumes this 

condition independent of time; it cannot be expected in general to commute 
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with integration. The contact percussion can safely be asserted to verify 

< 12.1 0) only as far as the sliding velocity is sure to remain zero or to keep a 

constant direction for the short duration of the investigated shock. It is of 

course in the case of two-dimensional friction that the latter event proves 

the easiest to discuss. 

The reader may f1nd in [2] an attempt at analysing frictional impact, in 

the line formerly suggested by G. Darboux. This consists in investigating the 

variation of the velocity as a function of some "micro-time", relatively to 

which the system position remains a constant. Even so, the conclusion is 

subject to some assumption about the shock end which seems difficult to 

justify. 

In conclusion, the concept of a frictional and soft contact, as involved in 

Definition 12.3, only generates a special model of frictional shock, with the 

advantage of good theoretical consistency. As we shall see in the next 

Section, the corresponding motions are also very tractable numerically. 

Physical situations to which this model Is relevant very probably exist, but 

experimentation Is still needed to safely identify them in practice. 

15. ALGORITHM FOR TWO-DIMENSIONAL FRICTION 
We now present a time-discretization procedure for computing a motion 

under the conditions of Sec.13. The notations are the same as in the 

frictionless case, exposed In Sec. II. 

Stage I. Calculate tM=t 1 +~h , the midpoint approximants 

QM=Q 1 +~hu 1 EIR
0

, AM=A(qM) EIRnxn, KM=K(tM,QM,u1) EIR
0 

and the "I oose ve I oc I ty" 
-1 

ul =u1 + h AM KM . 
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As in Sec.13, a single constraint inequality, say f~O .. is taken into account. 

If f(qM) < 0 or uL.\7f(qM) ~ 0, then make uF = ul and go to Stage 3. 

Stage 2 If, on the contrary, f(qM) ;;>- 0 and uL.\7f(qM > 0 , contact Is 

estimated to have effect on the considered time-step. One constructs a 

discrete analog to the measure differential inclusion of Dynamics 

du = A- 1(q) K(Cq,u) ut + A- 1(q) dR 

by equalling some approximate values of the integrals on <t1JF) of the 

respective members) namely 
-1 -1 ( 5 ) UF - u1 = hAM KM + AM R . 1 . 1 

Let GM denote the value tak.en at q=qM by the linear mapping GQ: IRn -.IR
2 

deft ned in Sec. 13. Then an approximate version of < 13.7) reads 
,.. 

R = GM P, 

where P, an element of the calculation plane, is an approximant of the total 

contact impulsion on tt1e interval (t1, tF ). Putting u1 = GMul and Ur = GMuF ,one 

derives from ( 15. 1) that 
-1 

UF - U1 = hGMAM KM + HMP. ( 15.2) 

Here, similarly to what has been done in Sec.13) one denotes by HM the 

symmetric positive definite 2x2 matrix GMAr1 1 G~. 
According to the decision made in Sec. 11, of considering uF as a 

simulation of u +, the softness condition ( 13. 7) wi II, in the present discre­

tization procedure, be transcribed as 

30EIR : ( 15.3) 

Discretizing the two-dimensional Coulomb law consists in relating P to UF 

by the system of implications 

0>0 * PED+ 

0<0 * PED 
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<J=O ~ PEC. 

In the case where the friction coefficients depend on Q, the elements D+, D_ 

and C will be evaluated at q = QM. 

The determination of P and uF from this set of conditions is similar to 

what has been done in one of the cases of shock investigated in Sec. !4. 1 f one 

puts UL =GMuL, ( 15.2) becomes 

UF = UL + HMP. ( 15.4) 

By combination with ( 15.3), this yields 
-1 -1 

3<JEIR : P = -HM UL + <JHM 1. 

This expresses that P belongs to the line!:::. of IR2, drawn through the known 

point -Ht1 1 UL , with known directing vector Ht1 11 . This 1 ine intersects the 

second axis of IR2 at point 

SM = -(j.UL)j/(j.HMj). 

A similar expression was discussed in ( 14.8). Since the present computation 

stage is developed under the assumption uL.\7f(qM)>OJ one finds in the same 

way as in Sec.14 that j. UL <0, so SM is sure to be interior to C. Observe in 

addition that P 11es In !:::. on the right or on the left of -Hf1 1 UL according to 

the sign of a. One concludes to the existence of a unique solution PJ charac­

terized as the nearest point to -Hf1 1 UL in the intersection t::.nc. 

• 
• 

For computation it is more convenient to formulate the same as follows: 
-1 -1 

If -HM UL E C ) then P = -HM UL . 

Otherwise -HM 1 uL. i < o ~ P = t::.no + 

-1 n -HMUL.i>O ~ P=f:::. D_. 

After P is calculated, one derives uF from ( 15.1 ), namely 
-1 "' UF = ul + AM GM P. 
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Stage 3'. The computation step finishes with QF = QM +~huF. 

REMARK 15.1 A more intuitive description of the above discretization 

procedure may be found in [24]. Instead of relying on the calculation plane, it 

uses the image of c under G;- 1
, a two-dimensional cone In IRn. This makes 

the comparison with the frictionless case clearer, but numerically 1s less 

effective. The calculation plane is also useful at the stage of deriving the 

inequalities n'eeded in the study of existence and regularity of solutions. 

REMARK 15.2 The case -H~ 1 UL EC yields UF=O, i.e. zero sliding velocity <the 

discussion here is simpler than that of the similar geometric construction 

made in Sec.14, because SM is certainly interior to C). 

In that connection, the algorithm works very well to compute a motion 

involving the event which, in Remark 14.1, we have call~Q a frictional 

catastrophe. Now, we have just seen that each computatIon step is deter­

ministic, i.e. it yields a unique pair qF, uF. This contrasts with the conclu­

sions of Sec.14, showing multiple possible outcomes for such a cata­

strophe: all the points of a I ine segment are solutions in what concerns the 

contact percussion P and similarly in what concerns u+<ts> or U+(ts) (the 

latter may take any value between zero and u-(t
5

)). 

In fact, the algorithm is able to approximate any of these solutions. As 

soon as the successive discretization intervals are chosen, a sequence of 

values of uF is unambiguously generated. This sequence is smooth. except for 

a jump in one of the intervals, said catastrophic. Before this jump, the 

computation of the motion, from· given initial data q(t0), u<t0), yields 

consistent results, for arbitrarily fine discret izations. But the value of the 

jump obtained in a catastrophic interval depends on the ratio in which the 
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exact instant divides this interval. So, calculations made with different 

discretization meshes may yield different results after the catastrophe. 

EXAMPLE t 5.3 A round-tipped rigid body :B 1 performs motions parallel to a 

vertical plane. It Is submitted to gravity and confined by a horizontal fixed 

boundary :B0, w1th fr1ct1on coefftctent equal to 0.5. lnlttal conditions are 

those of contact, with negative angular velocity and sliding velocity directed 

to the right. 

On Figure 15.1, the computer has drawn the profile of :B 1 for every third 

step of the time-discretization (numbers refer to these steps). After an epi-

FIXED BOUNDARY 

Figure 15.1 

sode of persistent contact wlth sl1ding of constant direction, a catastrophe 

occurs. The horizontal component of the veloclty of the lowest particle of ~ 1 
<this equals the sliding veloclty in the case of contact) presents a sudden 
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drop. At the same instant, contact is broken, with zero normal velocity. In 

the process, a percussion is imparted to :B 1 from :B0 , making the negative 

angular velocity increase in magnitude. 

Though discretization is rather rough, the corrective procedure of the 

possible constraint violation, described in Remark 11 .1, has not been used. 

Drawing is however found to comply very well with the unilateral constraint. 

On Figure 15.2, the horizontal component of the velocity of the lowest 

particle is plotted versus time. All curves correspond to the same initial 

conditions as above, but are computed with finer discretization. In order to 

display the multiple possible outcomes of the catastrophe, computation has 

HORIZ. VELOCITY OF LOWEST POINT 

TIME 

Figure 15.2 

been repeated, each time with uniform time-mesh, but successively using 

different values of the step- length, namely 
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h = 0.00046 - 0.0001 *RND. 

Here RND denotes the built-in random sequence of the computer, with values 

in [0, 1 [. The maximal catastrop/Je, i.e. sliding velocity dropping to zero, is 

repeatedly obtained, more than two times out of three on an average, and 

followed with a well defined contact-free motion. The other curves show 

various sliding velocity drops of smaller ampHtudes. More extensive expe­

rimentation has confirmed that each value of the sliding velocity drop 

corresponds to a well defined consequent motion. Statistically, the values of 

the drop are not uniformly distributed: frequency is found maximal in the 

vicinity of zero drop. 

As expected, consistent results are obtained regarding the motion prior 

to the catastrophe. It is apparent that the rate of change of the sliding velo­

city tends to -oo on the left of the catastrophic instant. The acceleration 

q": I-+IRn thus beeing unbounded, cannot possess a left-limit at the cata­

strophic Instant. 

16. AN EXAMPLE OF THREE-DIMENSIONAL FRICTION 
We suppose in thls section that the system consists of a single particle 

of unit mass, confined in a region <t> of physical space by an unmoving 

boundary L This is a model of a small object which, in the case of contact 

with the boundary, Is assumed to slide on It, without rolling nor tumbling. 

Then q 1, q2, q3 may be Identified with the particle coordinates, relative to 

some inertial orthonormal Cartesian frame and A(q) consists, for every q, in 

the unit matrix. 

In addition to the possible frictional reaction of the boundary, the 
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particle is submitted to a force given as a smooth function F of t, q, u. The 

case of a boundary with prescribed motion may be reduced to this one, 

through changing the reference frame; there only is to include in F the 

fictitious forces, thanks to which the new reference frame may be treated 

as inertia I. 

The particle dynamics is expressed by this equality of :r3-valued 

measures on the time-interval I 

( 16. 1 ) 

Le. after representing vector measures by density functions relative to some 

nonnegative real measured~, 

u~(t) = R~(t) + f(t, q, U) tV(t), 

an equality to be satisfled for every tEl. 

In the present case, the mapping Gq reduces to identity for every q. Then, 

using the law of frictional contact in the form ( 12.8), one obtains the 

measure differential inclusion 

o E aljlcCq)<u~- f(t, q, u> t~) + aeq<u+>. < 16.2) 

The feasible region cp of 1R3 is defined as before by a single inequality f(qh;;O. 

For f(q)=O, C(q) denotes the friction cone at the point q of the boundary. 

Again, let us agree to extend its definition, in a smooth arbitrary way, to the 

values of q such that f(q)~O. In addition, C(q) is interpreted as reducing to 

the zero of 1R3 when f(Q)<O. With every q such that f(q)~O, the vector plane 

T(q) also is associated, orthogonal to \7f(q). For f(q)~O, we agree ~ 

understand T(q) as consisting of the whole of 1R3
. The extended-real function 

eq, as defined in (12.7), equals !11.112
+ 'i'Hq)· 

In particular, at every t such that f(q(t))<O, one has aeq<u<x> = {x} for 

every xEIR3, while the value of a'i'C(q(t))(x) equals 1R3 for x=O · anfJ. 0 
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otherwise. Therefore ( 16.2) reduces in that case to the differential equation 

ut- f(t,q,u) = 0 of contact-free motion. 

Recall that a condition such as ( 16.2) implies that. q(t)E<P for every t, as 

soon as this is assumed to hold for t=t0. 

Some cases of existence, for the solutions to the coresponding initial 

value problem, are investigated in [ 13]. 

Here we shall only present a time-discretization metr\Od for their 

approximate computation [25]. With the same notations as in previous 

sections, each time-step runs as follows. 

Stage I. Calculate tM=t 1 +~h , the midpoint approximant QM=Q 1 +~hu 1, the 

force estimation FM= F<tM,qM,u1) and the "loose velocity" ul =u1 + h FM. 

Stage2. 

• I f f ( qM) < 0 or Ul. V' f ( qM) ~ 0 , then UF = UL . 

• Otherwise, uF is determined by a semi-implicit discretization of ( 16.2). 

In vtew of the positive homogeneity of the multifunction a~c· this is 

o E a~c<uF- uL) + ae<uF), 

whith the cone C and the function e evaluated at point qM Using the 

definition of a, one gives to this inclusion the form 0Eotp0<uF)+ uF, where D 

denotes the set T(qM>n<e<qM)+uL). Through elementary Convex Analysis, this 

means that uF equals the proximal point to the origin in this set, with regard 

to the usual Euclidean metric of 1R3
. For the traditional, isotropic, Coulomb 

law, Dis a disk, so the proximal point is specially easy to calculate. 

REMARK 16. 1 Even if one assumes isotropic friction, computing the mot ion 
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of systems involvmg three-dimensional fr iction is not in general as simple 

as above, due to the role of the mapping Gq· The determination of uf, at each 

t1me-step, usually is a non convex problem, which may possess several 

solutions. 

EXAMPLE 16.2 The numer1cal technique presented here has been applied [24] 

to the motion of a particle P submitted to gravity and confined by a plane 

boundary with prescribed mot ion. This particle represents an object which, 

in the case of contact, may s l1de on the boundary, without rolling nor 

tumb I ing. The plane boundary may be the ground surface, in the course of an 

earthquake, or also a vil)r~atlng table. Motions of the following sort are 

common in industrial conveyors. 

z z 

p 
0 ____ .___ 

-----
---.. .... -n 

Figure 16.1 

The vibrating table 1s assumed to have the motion of the shaft in a 

crank and shaft mechanism. Let orthonormal axes Oxyz be attached to the 

table, with Oxy in Its surface. Axes Oy anctoz move in fixed plane OYZ. The 

point 0 is guided along a segment of the line OY. The point A (0, a, 0) of the 

table is astrained, by an eccentric, to describe, at constant velocity, a circle 

in the plane OYZ, centered on OY. Therefore, the plane OXY is the mean 

position of the vibrating table. 
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In order to produce a clear pattern of trajectories, the whole machine is 

set at a slant: the plane OZX is vertical, but oz is not in line with gravity. 

Hence, OX is the direction of steepest descent in the plane OXY and 

determines the general trend of the mot ion of P. 

A computer program, using the numerical technique described above, 

draws the projections to Oxy an to Oyz of the traJectories of P relative to 

t!Je table . No experiment has so far been conducted for comparison with 

reality. 

At the initial instant, P Is left on the table with zero relative velocity. 

Subsequent trajectories are drawn for several choices of this initial 

position, at various distances of Ox. Motions taking place sufficiently tar 

from Ox involve intermittent contact break; the loops then observed on the 

Oyz projection correspond to the parabolic motlon that P have, when referred 

to fixed axes. 

Here are the values of the system constants, understood as referring to 

c.g.s. units. Gravity equals 981; OZ makes an angle of 13° with the upward 

vertical direction. The eccentric has radius 0.5 and rotation speed 10 rps. The 

length OA equals so. Friction coefficient is taken equal to 0.4. 

Wlth this values, it turns out that the table shake is strong enough for 

leaving no place where P could rest without sliding. The whole pattern of 

trajectories admits Ox as an axis of symmetry. Depending on the direct ion in 

which the eccentric rotates, this line is a locus of attraction or of repulsion, 

a fact which could be asserted from qualitative reasoning. More inexpected 

is the existence of other lines of attract ion or of repulsion (they exchange 

their roles when rotation is reversed), parallel to this one. such a "quantic" 

effect appears to be connected with the number of flappings that the table 
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performs while the particle runs through each episode of contact-free 

motion. Actually, the farther they lie from ox, the more confuse these 

attraction loci appear, due to the chaotic behaviour that trajectories then 

have. 

Figure 16 2 shows the trajectories of P, consequent to 15 initial 

positions equally spaced from y=S to y=320; the eccentric rotates in the 

reverse direction to that indicated on Fig. 16.1. 

z 

0 A 

/ 

X 

Figure 16.2 

Fig.16.3 displays a larger scale drawing, corresponding to the same 

direct ion of rotat fon as on Ffg. 16. 1. The trajectories correspond to 7 fnftfal 

positions equally spaced from y=S toy= 150. 
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.. , .. 
0 A 

X 

Figure 16.3 

17 . STATIC AND DYNAMIC' FRICTIONS 
In many famlliar srtuations, friction appears h1gher when U1e contacting 

bodies are to be set in motion from rest than during an episode of 

established sliding. Such an effect of "tangent sticking" is traditionally 

accounted for by introducing a larger vafue for the static friction coeff i ­

cient, i .e. relative to zero sliding velocity, than for U1e dynanncone. 

The numerical techniques proposed in the foregoing sections handle this 

refinement without difficulty. There only 1s, in each step of t1me 

discretization, to make the cone C depend on the sliding status in the 

antecedent step. For instance, in the algorithm described m Sec.15, U1is 
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antecedent step Involves sliding or no sliding, according to -Ht11
UL belonging 

to cor not This precisely makes one of the branching conditions one anyway 

had to consider. 

At the stage of the analytical formulation, one has to make the cone C 

depend not only on q, but also on 'U or, if the posslbtllty of a velocity jump Is 

considered, on 'rr . At first glance, this seems to reduce the advantage of the 

formulatiOns of friction presented in the foregoing. But the example below 

tends to demonstrate that, far from being an heterogeneous addition to the 

previous theorization, such a refinement actually proves Inherent In the 

subject matter. In fact, this example shows that even if one starts from a 

law of friction with single coefficient It may happen that the logical 

derivation of consequences eventually makes some contact force appear to 

obey a Coulomb law with coefficient depending on sliding velocity. 

Le1 us consider again the situation of Sec.13, namely, In a position Q of 

the system, with f(Q)=O, the range Gq<IRn) is assumed to reduce to a 

two-dimensional subspace W of x3, different from the common tangent 

planeT to the contacting bodies. In a motion with continuous velocity, it is 

assumed that the contact force~EX3 Is related to U through Coulomb's law, 

expressed as before in the form 

( 17. I ) 

As already observed, ~ pertains to the equations of mechanics only through 

its equivalence class modulo ker G~, a natural representative of which Is 

~· = pro}w~· 

Furthermore, since 'U essentially belongs to the tangent vector planer: 1t 

has the form U =sf, where I denotes a unit vector of the line TnW , and 

s E IR. We are going to show that the result lng relation between sand ~· may 
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have a more general form than it has been assumed in Sect.13. 

Let us consider only} for simplicity} the traditional case where cis a 

cone of revolution about 1{. Clearly, for all S>O, the set of the values of :R 

that relation (17.1) associates with 'U=sfconsists of a certain boundary 

half-line} say 1(+} of the cone. With all S<O is associated the half-line 1f-. 

symmetric to 1( +relative to the cone axis. Finally} to s=OJ correspond all the 

points of C. The orthogonal projections of 1f+and 1(-to Ware two i)alf-lines, 

say 1>+ and 1>-, lying on the same side of rnw. The expected relation 

between sand 1t is then expressed by the three implications 

S>O => 1{* E 1)+ 

S<O => 1t E 1)-

S=O => 1tE projw c. 
1{-

Figure 17. 1 

Depending on the span of the cone C and on the angle that W makes wltt\ 

1(, the orthogonal projection of C to W may equal the whole of W or some 
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angular region c• of this two-dimensional space. 

In the latter case, c• contains 1>+ and 1>- but has no reason 1n general to 

possess them as its edges: this means that the relation found between U and 

~· is equivalent to a two-dimensional Coulomb law witll static coefficient 

larger tnan t!Je dynamic one. The equality of these coefficients, namely the 

simple case studied In Sec.13, is however achieved If W Is orthogonal toT. 

If proJwC=W, every value of~· in 'W Is associated with 'U=O, possibly 

making with 1{ an angle larger than n/2. In statical problems, thts could be 

described as a wedging effect. 

The above discussion provides an example of the interaction between the 

constraints of the system and the frictional effects at possible contact 

pomts. The treatment of systems involving several contacts wltll Coulomb 

friction, a question left aside in these lectures, leads In general to similar 

situations . 

. 
REFERENCES 
1. De Jassus, E.: Memo Ire sur Ia theorte des liaisons ftntes unnaterales, Ann. 

Sci. Ecole Norm. Sup., 34 < 1917), 95-179. 
2. Peres, J.: Mecanlque Generale, Masson, Parts 1953. 
3. Moreau, J.J.: Les liaisons unllaterales et le prlnctpe de Gauss, C.R. Acad. 

ScL Paris, 256 ( 1963), 871-874. 
4. Moreau, J.J.: Quadratic programming In mechanics: dynamics of one-sided 

constraints, SIAM J. Control, 4 ( 1966), 153-158. 
5. Dunford, N. and J.T. Schwartz: Linear Operators, Part 1: General Theory, 

lnterscience Pub. Inc., New York 1957. 
6. Dinculeanu, N.: Vector Measures, Pergamon, London, New York 1967. 
7. ~1oreau, J.J.: B,ounded variation in ttme, in: Topics in Nonsmooth Mechanics 

(Ed. J.J. Moreau, P.D. Panagtotopoulos and G. Strang>, Blrkhauser, to 
appear. 

8. Pandtt, S.G. and S.G. Deo: Differential Systems Involving Impulses, 

79



Lecture Notes In Math., vol. 954, Springer-Verlag, Berlin, Heidelberg, New 
York 1982. 

9. Moreau, J.J.: Une formulation de Ia dynamique classique, C.R. Acad. Sci. 
Paris, Ser.ll, 304(1987>, 191-194. 

10. Panagiotopoulos, P.O.: Inequality Problems in Mechanics and Applications, 
Birkhauser, Boston, Basel, Stuttgart 1985. 

11. Monteiro Marques, M.D.P.: Chocs lnelast iques standards: un resultat 
d'exlstence, Travaux du Seminalre d'Analyse Convexe, Univ. des Sci. et 
Techniques du Languedoc, vol.15, expose n· 4, Montpell ier, 1985. 

12. Monteiro Marques, M.D.P.: Rafle par un convexe semi-continu 
inferieurement, d'lnterieur non vide, en dimension finie, C.R. Acad. Sci. 
Parts, Ser.l, 299 < 1984), 307-31 o. 

13. Monteiro Marques, M.D.P.: lnclusoes Diferenciais e Choques lnelasticos, 
Doctoral Dissertation, Faculty of Sciences, University of Lisbon, 1988. 

14. Moreau, J.J.: Liaisons un1laterales sans frottement et chocs inelastiques, 
C.R. Acad. Sci. Paris, Ser.ll,296 < 1983), 1473-1476. 

15. Moreau, J.J.: Standard inelastic shocks and the dynamics of unilateral 
constraints, In: Un1lateral Problems in Structural Analysis <Ed. G. Del 
Piero and F. Macer!), CISM Courses and Lectures No.288, Springer-Verlag, 
Wlen, New York 1985. 

16. Schatzman, M.: A class of nonlinear differential equations of second 
order in time, J. Nonlinear Analysis, Theory, f1ethods and Appl.,2 
( 1978),355-373. 

17. Buttazzo, G. and D. Percivale: On the approximation of the elastic bounce 
problem on Riemannian manifolds, J. Dlff. Equations, 47 ( 1983), 227-245. 

18. Carriero, M. and E. Pascali: Uniqueness of the one-dimensional bounce 
problem as a generic property In L 1 ([0, T];R), Bollet ino U.M.I.(6) 1-A 
( 1982), 87-9 J. 

19. Percivale, D.: Uniqueness In the elastic bounce problem, J. Diff. Equations, 
56( J 985), 206-215. 

20. Moreau, J.J.: Surles lois de frottement, de plastlclte et de viscosite, C.R. 
Acad. Scl. Parts, Ser.A, 271 < 1970), 608-611. 

21. Moreau, J.J.: On un1lateral constraints, friction and plasticity, In: New 
Variational Techniques in Mathematical Physics (Ed. G. Capriz and G. 
Stampacchia), CIME 2· ciclo 1973, Edizionl Cremonese, Roma, 1974., 
173-322. 

22. Moreau, J.J.: App11cat1on of convex analysis to some problems of dry 
friction, In: Trends In Applications of Pure Mathematics to Mechanics, 

80



vol.2 CEd. H. ZorskD, Pitman Pub. Ltd., London 1979, 263-280. 
23. Duvaut, G. and J.L. Lions: Les lnequations en Mecanique et en Physique, 

Dunod, Paris 1972. 
24. Moreau, J.J.: Dynamlque de systemes a liaisons unilaterales avec 

frottement sec eventuel; essais numeriques, Note Technique 85-1, Lab. 
de Mecanique Generale des Milieux Contlnus, Univ. des Sci. et Techniques 
du Languedoc, Montpel I ier, 1985. 

25. Moreau, J.J.: Une formulation du contact a frottement sec; application au 
calcul numerique, C.R. Acad. Sci. Paris, Ser.ll,302 < 1986), 799-801. 

26. Lecornu, L.: Sur Ia loi de Coulomb, C.R. Acad. Sci. Paris, 140 ( 1905), 
847-848. 

27. Oden, J.T. and J.AC. Martins: Models and computational methods for 
dynamic friction phenomena, Computer Methods in Appl. Mech. and Engng., 
52 ( 1985), 527-634. 

28. Jean, M. and G. Touzot: Implementation of unilateral contact and dry 
friction In computer codes dealing with large deformations problems, to 
appear in: Numerical Methods in Mechanics of Contacts Involving Friction, 
J. de Mecanique theor. et appl., Special issue, 1988. 

29. Abadie, J.: On the Kuhn-Tucker theorem, in: Nonlinear Programming (Ed. 
J.Abadie), North-Holland Pub. Co., Amsterdam 1967, 19-36. 

30. Jean, M. and J.J. Moreau: Dynamics In the presence of unilateral contacts 
and dry friction; a numerical approach, in: Unilateral Problems In 
Structural Analysis 2" CEd. G. Del Piero and F. MacerO, CISM Courses and 
Lectures No 304, Springer-Verlag, Wien 1987, 151-196. 

31. Moreau, J.J.: Evolution problem associated with a moving convex set in a 
Hilbert space, J. Diff. Equations, 26 ( 1977), 347-374. 

32. Moreau, J.J.: Surles mesures differentielles de fonctions vectorielles et 
certains problemes d'evolution, C.R. Acad. Sci. Paris, Ser.A, 282 ( 1976), 
837-840. 

33. Jean, M. and E. Pratt: A system of rigid bodies with dry friction, Int. J. 
Engng. Sci., 23 ( 1985), 497-513. 

34. Rockafe1lar, R.T.: Convex Analysis, Princeton Univ. Press, Princeton 1970. 
35. Moreau, J.J.: Fonctlonnelles Convexes, Lecture Notes, Seminaire sur les 

Equations aux Derivees Parttelles, College de France, Paris 1967. 
36. Painleve, P.: Sur les lois du frottement de glissement, C.R. Acad. Sci. 

Paris, 121 ( 1895), 112-115. Same title, ibid. 141 ( 1905), 401-405 and 
141 ( 1905), 546-552. 

37. Delassus, E.: Considerations sur le frottement de glissement, Nouv. Ann. 

81



de Math. (4eme serie), 20 < 1920), 485-496. 
38. Delassus, E.: Sur Jes lois du frottement de gJ issement, Bull. Soc. Math. 

~ 

France, 51 ( 1923), 22-33. 
39. Klein, F.: Zu Palnleves Kritik des Coulombschen Reibungsgesetze, Zeitsch. 

Math. Phys., 58< 191 0), 186-191. 
40. Mlses, R.v.: Zur Kritlk der Relbungsgesetze, ibid., 191-195. 
41. Hamel, G.: Bemerkungen zu den vorstehenden Aufsatzen der Herren F. Klein 

und R. v. Mises, Ibid., 195-196. 
42. Prandtl, L.: Bemerkungen zu den Aufsatzen der Herren F. Klein, R. v. Mises 

und G. Hamel, Ibid., 196-197. 
43. Beghln, H.: Sur certains problemes de frottement, Nouv. Ann. de Math., 2 

( 1923-24), 305-312. 
44. Beghln, H.: Sur l'lndeterm1natton de certains problemes de frottement, 

Nouv. Ann. de Math., 3 ( 1924-25), 343-347. 

82




