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UNILATERAL CONTACT AND DRY FRICTION IN FINITE FREEDOM DYNAMICS

An approach to the dynamics of mechanical systems with a finite number of degrees of freedom, involving unilateral constraints, Is developed. In the n-dlmensional 11near spaces of forces and velocities, some classical concepts of Convex Analysis are used, but no convexity assumption Is made concerning the constraint lnequaHtles. The velocity is not supposed to be a differentiable function of time, but only to have locally bounded variation, so the role of the acceleration is held by a n-dlmenslonal measure on the considered time Interval. Dynamics Is then governed by measure differential inclusions, which treat possible velocity jumps on the same footing as smooth motions. Possible collisions are described as soft, thus dissipative. Friction is taken into account under a recently proposed expression of Coulomb's law. These formulations have the advantage of generating numerical algorithms of time-discretization, able to handle, • In particular, the nonsmooth effects arising from unl laterality and from dry friction.

1.1NTRODUCTION

Usual mechanisms consist of parts which, at the first level of investigation, are treated as perfectly rigid bodies. The mechanism operation rests on the fact that some of these parts may come into contact or get loose from each other, but none of them can overlap. Simllarly, the parts may touch the external bodies which support the mechanism, but can never encroach upon the region of space they occupy.

In terms of the parameters q 1 , ... , qn, making an element of IRn denoted tn the sequel by q, which are used to locate every position of the considered system, the above impenetrability properties may as a rule be expressed by a set of Inequalities, say f<X(q),O, <XE{l, ... ,~}. Each of these inequalities corresponds to what is tradltiona1ly ca1led a unilateral constraint Naturally, the description of a constraint in Mechanics does not reduce to the geometric restriction It Imposes to the system possible positions. Predicting the system behaviour always requires some additional information about the forces of constraint or reactions needed by the system dyna-'mlcs, for the geometric conditions to be satisfied at every Instant.

Constraints whose geometric effect is expressed by equaJttles are, In contrast, said bilateral. They are commonly reaJized by the conjunction of several unilateral constraints and, In practice, this may leave a residual looseness whose investigation has primary importance in some applications.

However omnipresent un11ateral constraints are In machines, the place they receive in the books on Classical Mechanics is very modest Here is the traditional approach of the situation.

Starting with a position of the system In which some of the contacts are effective (I.e. the corresponding Inequalities hold as equal1tles> and with velocit1es compatible w1th the persistence of these contacts, the subsequent motion Is calculated under the tentatfve assumption that a11 the said contacts do persist. The calculation is identical to what is more famiHarly done in the case of bilateral constraints, with friction possibly taken into account. At every Instant of the calculated motion, the respective contact forces are evaluated. As long as the direction of each of these vectors is found compatible with the untlaterality of the corresponding contact, the calculated solution is accepted (rigorously, this t:ioes not dispense from investigating also the poss1b11ty of contact break1ng, s1nce the uniqueness of solution to an 1n1t1al value problem of Dynamics 1s not granted 1n genera 1 ). But tf the above calculation yfelds, after an Instant 1:, a non feasible value for some of the contact forces, the tentative assumption has to be rejected from this instant onward, and other types of motions, in which some of the contacts initially present get loose, are to be tested In the same way. The number of combinations to be tried may be high, If many uniJateral contacts are Involved. In practical situations, such Instants as 1: make a flnite set, but this cannot be asserted In general.

It was not before the first quarter of this century that E. Delassus (cf.{ 1] for the frictionless case) observed that, contrary to what had been formerly bel1eved, the contacts which get loose at time 1: are not necessar1ly those for which the calculation, performed at t>l:, yields contact forces of non feasible direction. Delassus' papers seem today rather intricate; a clearer account of his . arguments may be found in [START_REF] Peres | Mecanlque Generale[END_REF] . More recently [START_REF] Moreau | Les liaisons unllaterales et le prlnctpe de Gauss[END_REF] [START_REF] Moreau | Quadratic programming In mechanics: dynamics of one-sided constraints[END_REF], the same question has been rev1s1ted, by the means of elementary Convex Analysts and Quadratic Programming.

The present lectures develop a novel approach to the dynamics of systems tnvolv1ng unllateral constraints. Here are the domtnent features.

1 o The function t~q(t>EIR 0 describing the investigated motion on a time interval I, wtth inltlal instant t 0 , Is not a priori assumed differentiable everywhere. Instead, one supposes that q equals the time integral of a velocity function t~u(t)EIR 0 wtth locally bounded variation on the interval; notation: uElbv(I,IR 0

). Classically, such a function u may have discontinuities but, for every t in the Interior of 1 , the existence of the rig!Jt-limlt u+(t) and of the left-limit u-(t) Is secured (see Sec.2 below for a convention concerning the case t=t 0 ). These limits equal the respective one-side derivatives of the function q: 1~1R 0 at point t.

2° In view of these discontinuities, the existence of the acceleration Q"=u• cannot be expected everywhere. But, with every uElbv(I,IR 0 ), one classically associates an IR 0 -valued measure [START_REF] Dunford | Linear Operators, Part 1: General Theory[END_REF][6] on the interval I, called 1n the sequel the differential measure [START_REF]B,ounded variation in ttme[END_REF] of u and denoted by du.

The function u is locally absolutely continuous if and only if the vector measure du possesses a density function, say UiE£ 1 1 ~0, dt; IRn), relative to the Lebesgue measure on the interval I. We denote the latter measure by dt ; this 1s in fact the differential measure of the real function t--.t, which evidently belongs to lbv(I,IR). A function u of this sort may const1tute a solution to a differential equation, in the classical sense of Caratheodory.

Here is another special case: suppose that, for some tE 1nt I, one has u-(t);i u+Ct). Then, the IRn -valued measure du possesses at point t an atom w1th value u\t)-U-(t). This value is an element of IRn that we shall call the }Ufl7fJ of u at instant -c .

In general, a function uElbv(I,IRn) may be a solution to some measure differential equation, a notion about which the reader could find some information in [START_REF] Pandtt | Differential Systems Involving Impulses[END_REF].

3° Velocity functions with locally bounded variation make the setting in which we develop the Non!:>lrJOot!J Dynam1ts of mechanical systems wtth a finite number of degrees of freedom. This is governed by an extenston of Lagrange equations that we introduce in Sec.7. It includes as a special case the tradltlonal equations of the Dynamics of Percussions. Concerning tr1e connection of this general formulation with the class1cal prtnctples of Dynamics, some details may be found in [START_REF] Moreau | Une formulation de Ia dynamique classique[END_REF].

4° The set of inequalities fcx"O <with fcxEC 1 and \7fcx~O) defines in IRn the feasible region, denoted by 4> and assumed in the seque I independent of time If a motion t~q(t) is described in the above terms and if q(t)E4> for every t, one elementarily finds (see Sec.2) that u+(t) belongs to a certain polyhedral conic convex subset of IRn, denoted by V(q(t)). This is the tangent cone to the region <I> at point q(t), equal in particular to the whole of IRn when q(t) is interior to <1>. Actua11y, a cone denoted by V(q), and its polar cone N(q) in the sense of the standard scalar product of IRn, wtll in the sequel be defined even for qt¢. When qE.P, the cone N(q) is nothing but the <outward) normal cone to 4> at this point <reduced to {0} if q is interior to 4>).

so The mechanical formulation of unilateral constraints has to encompass the geometric condition VtEI : q(t)E¢, together wlth some 1nfomation about the associated forces of constra;nt In the framework of traditional (smooth) Analytical Dynamics, this system of forces Is represented, for every t, by its covariant components, say r 1 ,. .. , r n , relative to the generalized coordinates in use. This makes an element of IRn that we shall denote by r

The simplest case is that of frictionless contact. This classically means that the force of constraint at every possible point of contact is normal to the concerned bodies, with direction agreeing with unilaterality.

One elementarily finds Csee Sec.S below) that, if all the considered unllateral constraints are of this sort, the whole information about them lets ltse lf be summarized into the writing 'v'tEI : q(t)E4> and -r(t)EN(q(t)).

(

(About the concept of a frictionless contact in the case of a Jess regular feasible region than above, see [START_REF] Panagiotopoulos | Inequality Problems in Mechanics and Applications[END_REF].)

Starting from ( 1. I), a decisive observation is made In Sec.S, namely that, for smooth motions, It implies the stronger assertion + -r(t) E aiPV(q(t))(U (t)).

( 1.2)

According to the usual notations of Convex Analysis, the right-hand member equals the normal cone at point u+(t) to the convex subset V(q(t)) of IRn.

In addition, it is established that, if the initial data satisfy q(t 0 )E4>, then ( 1.2), assumed to hold for (dt -almost) every t, secures t/Jat q(t) will ren7ain in 4>.

The advantage of < 1.2) over< 1.1) 1 ies in the following. First, as we shall develop in Sec.S, this writing directly suggests some algorithms of timediscretization for computing the solutions to initial value problems.

Secondly, by entering the velocity Into the contact Jaw, it paves the way to the conslderat Jon of frlct I on. Furthermore, It Is easl ly general I zed to Nonsmooth Dynamics.

6° The function t-+r(t)EIRn which, in the traditional Lagrange equations, represents the forces of constraints has, in Nonsmooth Dynamics, to be replaced by an IR 0 -valued measure on the time-interval I, called the contact lmpvlslon and denoted by dR. For smooth motions, this measure admits the above function as its density relative to Lebesgue measure. A priori, there exists an Infinity of representations of a vector measure, such as dR, in the form dR=R~ d~ , where d~ is a nonnegative real measure and Rv a vectorvalued locally dv-integrable density function. We shall adm1t, as the Jaw of frictionless contact in Nonsmooth Dynamics, the following generalfzation of ( 1.2), to be satisfied for every t in I, -R~(t) E Olfly(q(t))(u+(t)).

(

Because the right-hand side Is a cone, one shows that t!Jis condition Is indifferent to t!Je c!Joice of t!Je base measvre d~. Furthermore, the existence of a function R~ verifying< 1.3) implies that u+(t) belongs to V(q(t)). Through Prop.2.4 below, this ensures q(t)E«P for every t, provided the initial data satisfy q<t 0 >E<P, .

Assertion ( 1.3) about the contact impulsion makes the definition of the class of unilateral constraints that we can frictionless and soft. When transported into the equality of IR 0 -valued measures, which governs Nonsmooth Dynamics, 1t generates a measvre differential lnclvslon. The existence of solutions to the resulting initial value problems has so far been established only in some special cases [START_REF] Monteiro Marques | Chocs lnelast iques standards: un resultat d'exlstence[END_REF][ 12] [START_REF] Monteiro Marques | lnclusoes Diferenciais e Choques lnelasticos[END_REF] and is currently under investigation. The velocity jumps possibly occurtng In such solutions are of the sort the author has previously called "standard Inelastic shocks" [START_REF] Moreau | Liaisons un1laterales sans frottement et chocs inelastiques[END_REF] [ 15]. These are dissipative, so the corresponding evolution problems are essentla11y different from those one meets when the possible bounces are assumed "elastic" [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF][17] [18][19]. A synthetic view may be gained from the energy balance drawn in Sec.lO below. The replacement of u+ In ( 1.2) by some weighted mean of u+ and u-results in the introduction of a "dissipation Index" 5, w1th zero value in an elastic bounce, while the softness case corresponds to 5= 1.

7° Dry friction at a point of contact will be described by some extension of Coulomb's law to possibly anisotropic surfaces. The tradit1onal formulation of this law rests on the decomposition of a contact force into Its normal and tangential components; the formulation then consists of two separate statements respectively pertaining to zero and nonzero sliding velocity. In some of the •author's early papers [START_REF] Moreau | Surles lois de frottement, de plastlclte et de viscosite[END_REF][21 ] [START_REF] Moreau | App11cat1on of convex analysis to some problems of dry friction[END_REF], It has been observed that, as soon as the normal component Is treated as known, these pair of statements Jets Itself be synthetically expressed as a law of resistance deriving from a "pseudopotential". This In turn may be transcribed into a variational inequa11ty [23L reflecting a "principle of maximal dissipation".

By a Jaw of resistance, we mean a relation (in the present case, nonsmooth and not expressible through a single-valued function) between the contact force and the sliding velocity. Recall that significant mathematical and numerical papers have, In recent years, been devoted to problems which Instead Involve a "pseudo-friction" Jaw. These problems are developed tn the framework of smatl deviations and the sliding velocity vector is replaced by the tangential relative displacement of the contacting bodies. The status of such a pseudo-friction, compared to proper friction, is similar to that of Hencky plasticity with respect to proper plastic flow rules.

The present lectures rest on a newer formulation of the possibly anisotropic Coulomb Jaw) avoiding the decomposition of the contact force [START_REF] Moreau | Dynamlque de systemes a liaisons unilaterales avec frottement sec eventuel; essais numeriques[END_REF] [START_REF] Moreau | Une formulation du contact a frottement sec; application au calcul numerique[END_REF]. Similarly to what has been shown for the frictionless case, these formulations suggest numerical algorithms of time discretization. Furthermore) the resulting relation being conic with regard to the contact force, it admits an extension to Nonsmooth Dynamics, independent, as before, of the choice of a base measure d~1.

8° Here again, the possible nonsmooth motions are found to be governed by some measure differential Inclusions. These differential Inclusions are applied in Sec. IS to the dynamics of velocity jumps.

Singularities in the dynamics of systems involving Coulomb friction used to be a matter of controversy during the first quarter of this century. It was observed that some Initial value problems could admtt several solutions or no solution and also that the behaviour of the Investigated system depended on its constants on a discontinuous way. At the time, these findings were considered by such authors as P.Patnleve as contradicting the very bases of Physics. In modern views, nothing looks paradoxical in that, so there only remains of all these discussions the assertion, first made by L.Lecornu [START_REF] Lecornu | Sur Ia loi de Coulomb[END_REF], that, in the presence of dry friction, velocity jumps are not necessarily the consequences of co 11 is ions.

It is shown by an example that the numerical techniques we propose can handle these frictitmal catastrophes without difficulty.

go These lectures are restricted, for brevity, to time-independent cons- traints. However, by changing the reference frame and introducing adequate fictitious forces, one is able to apply the proposed methods to the motion of a small object lying on a vibrating table or, in the course of an earthquake, on the ground surface. An example is displayed, exhibiting some unexpected features.

1 oo For better agreement with the behaviour of real systems, one is commonly led to apply the traditional law of Coulomb with different values of the friction coefficient, depending on whether the sliding velocity vanishes or not. This distinction made between the "static" an "dynamic" friction coefficients seems, at first glance, to destroy the unity brought into the formulations by the use of Convex Analysis. Actually, it Is shown in Sec.17 that, far from beeing a mere empirical alteration of these formulations, such a distinction is inherently involved in the consequent developments. The numerical techniques proposed in these lectures are able to handle it without causing any computing problem. In fact, whether the sllding velocity exactly vanishes or not at the end of a time-step Js expl1citely determined by the algorithms; so the friction coefficient for the next step may be adjusted accordingly.

Let us close this Introduction by aknowledging that Coulomb's law can provide only a rather crude approximation of the reality of dry friction (a recent review of the subject may be found in [START_REF] Oden | Models and computational methods for dynamic friction phenomena[END_REF]). Also, the collisions affecting parts in real machines cannot be expected to fall exactly under one of the categories respectively described as "soft" or "elastic". And it is unlikely that any def1n1te value of the "dissipation index" could be identified on a clear basis. But a fact of life is that, in most engineering situations, the higher order information needed for more accurate description IS not available. So one has to be content with some moderately precise calculation, accounting at least for the main features of phenomena. In three years of experiments, the approach we propose has proved to be very workable. Because of their theoretical consistency and numerical stability, the described algorithms seem to be "robust" enough for accepting in the future various empirical alterations, aimed at improving their power of predict ion.

No allusion is made in these lectures to the contact between deforma- ble bodies, currently a very active domain of research. The reader wUl find references to this subject in other parts of this volume. In what concerns computation, since the spatial discretization of a continuous medium, using for instance a finite element scheme, generates a finite-dimensional space of positions, the design of numerical procedures may take an inspiration from the methods presented here <see e.g. [START_REF] Jean | Implementation of unilateral contact and dry friction In computer codes dealing with large deformations problems[END_REF] ). But some fundamental differences between continuum dynamics and finite freedom dynamics have to be kept in mind. Because, in continuous media, every contact particle has zero mass, the concept of a soft contact, as opposed to an elastic contact, becomes unsignlflcant (it only stays as an option in constructing numerical algorithms). Possible dissipation reenters the scene through the constitutive laws which govern the behaviour of the concerned bodies. In elastic bodies, shock waves are expected to originate from boundary impacts. It Is only when the time taken by these waves to travel the whole system is short, with respect to some other typical time values, that the treatment of deformable systems may be strictly conducted in the lines of flntte freedom dynamics. Actually, most papers on continuous systems so far are restricted to quaslstatlc evolution problems, I.e. the terms Involving Inertia are neglected.

2.DIFFERENTIAL PROPERTIES

Let a mechanical system have a finite number n of degrees of freedom; every possible position of It may be located through the value it imparts to Q=(Q 1 , ... ,Qn ), an element of some open subset 0 of IRn . This holds at least 1 n locally; In other words, q , ... ,Q are local coordinates ln the manifold of the system possible poslttons.

One defines a motion by making q depend on time. If the derivatives q• 1 of the n functions t-+Q 1 exist at an instant 1, we shall refer to the element q'=(q' 1 , ... ,q'n) of IRn as the velocity of the system at this instant.

Motions will be studied on some time interval I, containing its origin t. 0 but nonnecessarny closed nor bounded from the right We shall not suppose the function Q:I-+IR 0 derivable everywhere. Instead, we assume the existence of a velocity tunc! /t.?n u: I-+IR 0 such that VtEI : q(t)=q(t 0 ) + Jio u(-c) d't.

{2.1)

This makes sense as soon as u Is locally Lebesgue-integrable on 1. More specially, we shall suppose that the functton u has locally bounded variation on I, I.e. It has bounded variation on every compact subinterval of I; notation: uElbv(I,IRn). This secures that, at every 1 In the Interior of I, the rig!Jt-limit u+('L) and the lett-limit u-(1) exist.

By convention, for the Initial Instant t 0 , the left-limit u-<t 0 > is understood as equal to u<t 0 >. This Is more than a notational trick; such a writing actually reflects the significance we generally mean to give to the initial condition u<t 0 >=u 0 of an evolution problem. It Is intimated that Investigation begins at t 0 , but that the mechanical system was already In existence before. By u 0 is 1mparted some abridged Information about the system history, precisely the left-llmit u-<t 0 ).

Symmetrically, if I possesses a right end, say tr, and contains 1t, the writing u+<tr) = u<tr) wi II prove convenient.

From (2. 1) 1t results that the function q possesses at every T.>t 0 a left-derivative q'-(t), equal to u-(t) and, at every t different from the possible right end of I, a right -derivat/ve q• +(t) , equal to u+ [START_REF] De Jassus | Memo Ire sur Ia theorte des liaisons ftntes unnaterales[END_REF].

In addition to the constraints which have permitted the q parametr1zat ion, we assume that the system is submitted to some unilateral constraints whose geometric effect is expressed by a flnlte set of inequa 1 it ies f (QhtO, (X CXE( 1 ,2, ... ,y}.

(

The functions f(X :0-+IR are supposed c 1 wfth respective gradients \7f(X = <af (X ;aq 1 , ... ,af (X ;aq 0 ) different from zero, at least in a neighbourhood of the corresponding hypersurface f (X =0.

Inequalities (2.2) define the feasible region «P of 0 ~•for brevitx we assun1e that the functions f(X do not depend on time,, thereby leaving aside the possibility of moving constraints.

Through the chain rule, the existence of one-side derivatives for the functions t-+q 1 <U implies the same fort-+ f(X(q(t)). Consequently, if a motion verifies f(X(q(t))~O for every t, then at any Instant t such that f(X(Q(t))=O, one readily finds u+(1).\7f (X (q(t))~O and u -(t).\7f (X (Q(t));eO (the dot refers to the usual scalar product of IRn ).

Generally, let us put: NOTATION 2.1 Forever;v QEO define J(q) := {cxE{ 1, ... ,~}: f<X(q)~O} and V(q) := (vEIRn: 'v'cxEJ(q), v.'Vf<X(q)~O} (observe t!Jat V(q) equals t!Je w!Jole of IRn ;/ J(q)=0 )

Using as above the one-side derivatives, one obtains:

(2.3) (2.4) PROPOSITION 2.
2 If a n7otion t-.q(t) agrees wit!J tile set af constraint inequalities (2.3), I. e. q( UE4> for every t, t!Jen 'v'tEintl : u +(t)EV(q(t)) and u -(t)E-V(q( t)).

REMARK 2.3 In existential studies as well as in numerical algorithms, the definition (2.4) of V(q) will commonly be invoked with qt<fl. Then, the following is useful: PROPOSITION 2.4 Let t!Je function t~q(t) be associated with some uEL 1 loc(I,IRn) t!Jroug!J (2.1 ). Suppose t!Jat q(t 0 >eP and that, for Lebesgue- almost every tEl , one !Jas u(t)EV(q(t)). Then q(t)E«P for every t.

PROOF. Let us suppose the existence of some tEl , with q(t)~<t> and look for contradiction. There exists cxE( 1 , ... ,~}such that fo:(q(t))>O. The set {tEl: t~t and f<X(Q(1:))"0} is nonempty (It contains t 0 >; Jet a denote its l.u.b .. Due to the continuity of fo:, one has fo:(q(a))=O. Since fo: lsC 1 , the function t-+ fo:(q(t))

1s absolutely continuous on [a,1:] ; after expressing its derivative by the chain rule, one may write fo:(q(1:)) = J~ uU).'Vfo:(q(t)) dt.

In view of the definition (2.4) of V, the integrand should be ~0 for Lebesgue-almost every t, hence fcx(q('r))~O, which is a contradiction.

• If u has locally bounded variation, it belongs to£ \~<I,IR 0 ) and the set of its discontinuity points is countable, hence Lebesgue-negligible. Thus, in using the above Proposition, one may replace u in the assumption u(t)EV(q(t)) by u+ or uor any weighted mean of them.

REMARK 2.5 The subset V(q) of IRn is a closed convex cone. In case qE<t>, this coincides with what ts usually called the tangent cone to the region 4> at point q (equal, in particular, to the whole of IR 0 if qEint 4>). On the contrary, if q~¢, one commonly agrees to say that the tangent cone to 4> at this point is empty; sa is not V(q). Some caution is needed when Interpreting the concept of a tangent cone.

Let q 0 Ec:t> and vEIR 0 ; in view of Prop.2.2, for the existence of a mapping q:l-+4> such that q<t 0 >=q 0 and q'+<to>=v, 1t 1s necessary that veV<q 0 >; a counter-example may be found in [START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints, In: Un1lateral Problems in Structural Analysis[END_REF], show1ng that this is not sufficient.

However, if In addition one assumes tnt VCq 0 );z:0, then existence is secured [START_REF] Abadie | On the Kuhn-Tucker theorem[END_REF]. Through classical Convex Analysts, the latter assumption ts equivalent to the polar cone of V(q 0 > having a compact basts; thts is the convex cone generated in IRn by the elements \7f ex Cq 0 >, with cx.EJ(q 0 >, so the assumption amounts to assert the existence of a hyperplane in R 0

, not containing the origin, which intersects a11 the half -11nes generated by these elements. We shall meet this cone again in Sec.S. REMARK 2.6 A deeper insight into the situation could be gained _ _ by considering the differential manifold P of the system positions, without preference to any peculiar system of local coordinates. A motlon is the conceived as a mapping p:I-+P. The (possibly one-side) velocity of the system at some instant 1: equals, by definition, the (possibly one-side) derivative of this mapping, an e 1ement, say p'(l:), of the tangent space :Pp('t) to :P at point p(l:). The real numbers q' For the treatment of dynamical problems concerning a scleronomic system, the expression ~A ij(q) q'iq.j of the kinetic energy has to be introduced. This is a positive definite quadratic form in q' and, classicaJJy, by putting ds 2 = Alj(q) dqidqJ, one equips the differential manifold P with a Riemannian metric independent of the coordinates in use. So this metric is intrinsically associated with the dynamical structure of the mechanical system. Now, it may happen that some local coordinates exist, such that the coefficients Aij(q) are constant in q; so is the case, for instance, 1f the system consists of a single rigid body performing only motions paraJJel to a fixed plane. Under such circumstances, the curvature of P is zero; 1n other words, this manifold is locally Euclidean. Then, at least in sufficiently small regions, the concept of the convexity of a subset of P becomes mechanically meaningful. The mathematical paper [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF] was precisely based on the convexity of the feasible region.

Anyway, the writing in (2.1) makes sense only as far as the functions t-+q and t-+U take their values in a fixed linear space, namely IR.n for the present. On the contrary, in the differential geometric setting, the velocity at timet would be an element of the tangent space 1'p(t), which depends on t through the unknown mapping p: 1-+P.

3.KINEMATICS

In all the sequel, each of the inequalities f(X"O will be understood as characterizing the system positions agreeing with the mutual impenetrability of a certain pair of rigid bodies. For instance, let us drop the subscript ex and assume that condition f ~0 expresses that some rigid part :B 1 of the system does not overlap a given external obstacle :B 0 , fixed relative to the reference frame in use. The impenetrability of two rigid bodies :B 1 and :B 2 , which both are constituents of the system, would finally result in the same formalism (see [START_REF] Jean | Dynamics In the presence of unilateral contacts and dry friction; a numerical approach[END_REF], where the case of an external obstacle with prescribed motion is also considered).

Equality f(q)=O means that, In the positlon q of the system, the part :B 1 touches :B 0 . We shall always assume that contact takes place through a sing/epartic'le of :B 1 , which in general depends on q, say ::M" 1 Cq). The respective boundaries of contacting bodies will be supposed to permit the definition of a common tangent plane at )( 1 (q) to these boundaries. This does not preclude edges or vertices; one of the bodies may even reduce to a single particle, provided the boundary of the other is a smooth surface.

Let 1{q denote the unit vecto0 normal to this tan._qent plane and directed toward :B 1 .

As usual, the primitive constraints of the system, i.e. the constraints which have permitted the parametrization through (Q 1 , ... ,Qn ), are assumed smooth enough for the following to hold. Let a motion be described by giving q as a function oft. For every t such that the (possibly one-side) derivatives q• 1 , ... ,q' 0 exist, every particle, say ::M", of the system possesses a (possibly one-side) velocity vector, relative to the reference frame in use. Calculating this vector yields an expression V(:M, q, q'), affine with regard to q'.

For brevity, we shaJJ restrict the sequel to the scleronomic case, Le.

the primitive constraints do not depend on time; then the above expression is linear in q'. Let us apply this to the contact particle ::M" 1 (q) and put the notat1on

Gqq' := V{){l (q), Q, q').

(3.1)

For every q such that f(q)=O, this introduces the mapping q'-+ Gqq•, 1 inear of IRn to the Euclidean linear space !' 3 of the vectors of physical space.

In the case of a pair of bodies which both are parts of the system, a linear mapping similar to Gq would express from q' the relative velocity, at a possible contact point, of one of this part with respect to the other.

The writing in (3.1) ts not restricted to motions agreeing with the impenetrabi 1 ity constraint. We now are to take this constraint into account. Let a value of q correspond to contact, i.e. f(q)=O, and let vEIRn. Let a motion start from this position q at some time 1, with right-velocity q•• equal to v at this instant. Evaluating f at all subsequent positions, one obtains a function of time whose right-derivative at 1 may be expressed through the chain rule, namely v.Vf(q). Assume v.Vf(q)<O; then instant 1 1s followed by a nonzero time interval over which f <0, i.e. :B 1 and :B 0 break contact. This implies that, at 1 , the right-velocity Gqv of the contact particle ){ 1 (q) of 1l 1 veri fie 1{q. Gqv ~0; otherwise the motion of this particle would require of :B 1 to overlap :B 0 , so making f~O.

This shows that, for vEIRn and for any fixed q satisfying f(q)=O, one has the implication v.Vf(q)<O :::> 1{Q. Gqv ~0.

(3.2)

Let us introduce now the 1 inear mapping G; : !' 3 -+ IRn, the transpose of Gq in the sense of the Euclldean autoduallties of !' 3 and IRn ; then 1(q• Gqv = v. c;;1{q• Recall that we have assumed \lf ;t! 0; through a unilateral version of the Lagrange multipller theorem, implication (3.2) yields: PROPOSITION 3.1 For everr q ver!/)1ing f(q)=O , there e.Kists A~O such t!Jat G; 1(q =t.. \7f( q).

(3.3) REMARK 3.2 We shall later need t~1at the element G;1fq of IRn differ from zero, i.e. "A>O. It is a general fact that the kernel of G; equals the subspace of I' 3 orthogonal to the range Gq<IRn) of Gq . In parttcular, when Gq(IRn) is the whole of I' 3 , the kernel of G; reduces to {0} and this secures G;1(Q;z0.

But, in some usual applications, Gq<IRn) will be a strict subspace of T 3 ; for instance, if the primitive constraints allow LJ 1 to perform only mot ions parallel to some fixed plane, then dim Gq<IRn) =2. What precedes shows that c;;1(q =0 1f and only if Gq<IRn) 1s contained in the two-dimensional subspace of I' 3 consisting of the vectors parallel to the common tangent plane to contacting bodies. REMARK 3.3 So far, Gq has been defined only for such q that f(q)=O. In computation, as well as in existential studies, it will prove useful to extend the definitions of Gq and 1(Q' in a smooth arbitrary way, to the whole range 0 of the local coordinates In use, or at least to some neighbourhood of the hypersurface f=O. This extension may add1tiona1ly be required to preserve the property (3.3).

REMARK 3.4 Let a motion comply with condition f~O at every time. Consider an Instant of contact, I.e. at which f(Q)=O, and suppose that the two-sided derivatlve q• exists at this instant. Since the latter equals the common value of q•+ and q•-, the observations made in Sec.2 imply q'.\7f(Q)=0. In view of Proposition 3.1, this yields 1(Q.GQQ'=0, expressing that the velocity of the particle 1tf 1 (q) of ~1 through which this body touches the fixed obstacle j3 0 is a vector parallel to the common tangent plane.

Similar reasoning would apply to a pair of moving parts of the system: tf contact holds at some instant and if, at this Instant, the time-derivative q' exists, in the ordinary two-side sense, then the relative velocity of one of these bodies with respect to the other, at the contact point, is a vector parallel to the common tangent plane. The same fact Is classically established in elementary Kinematics, under the stronger assumption of permanent contact. One refers to this relative velocity as the sliding velocity of the first body upon the second.

LAGRANGE EQUATIONS

Let a motion of the system be described under the form (2.1 ). It will be said smooth if the velocity function u is locally absolutely continuous, i.e.

absolutely continuous on every compact subinterval of I. This implies the existence of the derivative u'(t)=q"(t) for Lebesgue-almost every t. We shall refer to the element q" of IRn as the acceleration of the system.

Such a motion agrees with Dynamics if and only If the function t-+q(t)

verifies the Lagrange differential equation ~<oL'c/oq' 1 ) -oL'/oq 1 = c 1 .

(4.1)

Here L'c(q,q') denotes the expression of the kinetic energy; since we assume the system scleronomlc, this is

L'c(q,q') = ~ Alj(q) q• 1 q' j , (4.2) 
a positive definite quadratic form In q'. By c 1 are denoted the covariant components of the totality of the forces acting on the system. These possibly comprise some given forces, whose covariant components F 1 are known functions of time, position and velocity, and also comprise the a priori unknown reactions or constraint forces, involved in the constraints that the system experiences. As usual, when Lagrange equations are applied, we shall assume that the primitive constraints, i.e. those which have permitted the q parametrization, are perfect, in the sense that the corresponding reactions have zero covariant components. But we shall have to take into account the reactions of the superimposed unilateral constraints.

The left-hand side of (4.1) may be developed into

A .. j (A 1 A ) .j .k. .. q + 'j ... --2 . . _ . q q ' 1) 1 ,II. ) II. J 1 (4.3)
where A 11 ,k denotes the partial derivative of A 11 with regard to qk. Therefore, (4.1) takes on the form A 1 jq .. j = K 1 + r 1 ; here the term r 1 refers to the totality of the reactions of superimposed constraints, while K 1 is a known function of t, q, q•, equal to F 1 minus all the terms in (4.3) which involve q'jq.k. Since the matrix A is invertible, we may finally write this down as q" = A -l K + A-1 r.

( 4.4)

It has been assumed that each inequality f<X(Q)=O expresses the contact between some pair of rigid bodies. Let us denote by r 1 tx , ... ,r~ the covariant components of the corresponding reaction, making an element of IRn denoted by r<X. Formally, this term will be introduced also when the said contact is not in effect, so we shall state

(4.5)
To fix the ideas, suppose, as in Sec.3, that the contact expressed by f<X(q) =0 takes place between some part, say ~o:) of the system and an unmoving external obstacle. Suppose that the contact action on ~o: results in a single force 'Rex, applied to a particle of this body denoted by 1lrx(q). By definition, the covariant components of this force make the element rrx of IRn such that (4.6)

On the left -hand side, the dot refers to the Euc I ide an sea Jar product of :t 3 , on the right-hand side to the standard scalar product of IRn. As before, due to scleronomy, V(1vfrx(q), q, v) is a linear expression in v, say G~v. Then, by introducing the transpose mapping G~*: 1: 3 -. IRn , one equivalently writes down (4.6) as (4.7)

.SI"100TH FRI CTI llNLESS MOTIONS

In this Section, we shall assume that the possible unilateral contacts are frictionless Under the preceding notations, this means that, for every o::

such that f (q) =0, rx ex ex 3pEIR : 1{ = p T{q , (5. 1 ) 
where 1{~ denotes the common normal unit at 1lrfex(q) to the contacting bodies, directed toward :Bcx .

We shall assume In addftion that the contact is unilateral wit!Jout ad!Jesive effect, I.e. p ~0.

Through Prop.3.l, conditions (4.7) and (5.1) imply

(5.2)

Note t!Jat t!Je repetition of a Greek index Will never be understood as implying summation.

Provided that G~•'J{~ ~ 0 (see Remark 3.2), it may more precisely be checked that (5.2) is equivalent to the existence of 1{cx agreeing with the above assumptions. AndJ in view of the convention made in (4.5), this equivalence remains valid for every qE<P if one stipulates that Vex: =0 when fcx:(Q)<O. Furthermore, in formulating our evolution problem under the geometric condition QE<ll , it is immaterial to state that (5.2) also holds for non feasible q.

Therefore, a value of the total reaction term r = L, rtX is compatible with the stated laws of contact if and only if it satisfies r E -N(q), (

where N(q) denotes tne convex cone generated In IRn by tne elements 9f o:(q), <XEJ(q) (see Notation 2.1 ). According to an usual convention, if J(Q)=0 this cone consists of the zero of IRn. In all cases V(q)J as defined in (2.4), and N(q) make a pair of n7utual!y• pc7/ar or con}u . . . qate cones. When q belongs to the feasible regton, N(q) Is nothing else than the <outward) normal cone to 4> at point QJ but what we are denoting here by N(Q) also makes sense and is nonempty for Q!<ll.

Elfm1nattng r between (5.3) and the Lagrange equations, as they are displayed in Sec.4, one obtains that a smooth motion of the system agrees w1th all the mechanical conditions stated, tf and only If the differential inclusion

-A(q) q" + K(t,qJq') E N(q) (5.4)
is satisfied Lebesgue-a.e. in I, together with the geometric condition of the un1lateral constraints, VtEI : q(t) E 4>.

(5.5)

The Proposition below marks a turning point, regarding all our subject matter. For every (closed, convex) subset of IR -A(q) u' + K(t,q,u) E a~V(q)(u).

(5.6) PROOF. For every t such that (5.6) holds, the right-hand side is nonempty, r1ence u(t)EV(q(t)). Since, by assumption, u is a (locally absolutely) continuous function, (2. 1) entails that u(t) equals, for every tEint I, the <twosided) derivative of t~q(t) Through Proposition 2.4, one concludes that, if

(5.6) is verified Lebesgue-a.e., then (5.5) holds. Furthermore, (5.6) implies

(5.4) because a~V(q)(u) is essentially a subset of N(q), the polar cone of V(q).

Conversely . . suppose that the function t~q(t) satisfies (5.5). Since u ls continuous, Proposition 2.2 shows that u(t), for every tEint.l, belongs to V(q(t))n-V(q(t)) wt1ich is the linear subspace of IRn orthogonal to N(q(t)).

Therefore, if (5.4) holds Lebesgue-a.e., then for Lebesgue-almost every t, the values of u and -Au'+ K are orthogonal and respectively belong to the pair of mutually polar cones V(q(t)) and N(q(t)); (onsequently they are COf?./ll..qate pamts relative to this pair, i.e. (5.6) holds.

• REMARK 5.2 At the present stage, where the motion smoothness, i.e. the local absolute continuity of u, is a priori assumed, the same symmetry between past and future is observed as in the classical case of bilaterally constrained frictionless systems. In particularJ for the differential inclusion (5.6) to take care automattcal1y of condition qE4', It Is enough that q(t)

belongs to <I> at some l:EI, nonnecessarlly the initial instant. Also an equivalence similar to what Is stated tn the above Proposition may symmetrically be established, with (5.6) replaced by -A(q) u' + K(t,q,u) E-a~-V(q)(u).

(5.7)

Stm1larly to (5.6), this implies the orthogonality of the elements u and -Au'+K of IRn. From such an orthogonality, the same power equation may be derived as tn the traditional case of frictionless time-independent bi1ateral constraInts: for computing approximately the motion consequent to some initial data q(t 0 > = q 0 . given in <1> (5.9)

d dt~c = F.u.
(5. 1 0)

Let <t 1 ,tF) be a time-step (here I is understood as referring to "initial" and F to "final"), with length h=tF-t 1 and midpoint tM=t 1 +~ h . From the approximate values q 1 , u 1 of the functions q and u at t 1 , one has to compute qF and uF, corresponding to tF.

Using <uF-u 1 )/h as an approximant of u', one discretlzes the differential inclusion (5.6) into (5. 11) Here QM = q 1 + ~ hu 1 Is a midpoint approximant of q; by 'I'M is denoted the indicator function of V(qM). Inserting uF as an approximant of u tn the right-hand side tends to qualify this discretization scheme as "imp11cit".

However, the smoothness of the given function K allows one to replace tn it u by u 1 , so the procedure may be said "semi-implicit".

We shall come back later to more general algorithms of the same sort;

let us only show here how (5.11) uniquely determines Ur• Suppose, for simplicity. that A(qM) reduces to the unit matrix. This actually entails no Joss of generality: in the line of Remark 2.6, it amounts to make of the tangent space, at the point qM of the position manifold, a Euclidean linear space, with scalar product defined through A(qM), and to take an orthonormal base in this space <more detail on the practical use of this trick may be found in [START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints, In: Un1lateral Problems in Structural Analysis[END_REF]). Then (5.11) becomes

-(UF-ul) + hK E at;M(UF).
The multiplication of both members of (5.11) by the positive number h has not altered the right-hand side, because at;M(uF) is a cone. In view of the classical characterization of the pro.Nirnal point to u 1 + hK in the closed convex subset V(qM) of the Euclidean linear space, this is equivalent to UF = prox ( u 1 + hK, V(qM)).

(5.12)

Observe that u 1 + hK is nothing but the value that uF would take in the case J(qM)=0, Le. the value that the discretization of Lagrange equations would yield in the absence of superimposed unllateral constraints.

After determining uF, one finishes the computation step by calculating QF= QM+!h UF.

PERCUSSIONS AND FRICTIONLESS SHOCKS

The preceding Section was restricted to motions a priori assumed smooth. For such a motion, there may exist in particular a time interval during which one or more of the contacts persist, say the contact expressed by fiX=O. Call tc the end of this Interval and suppose that a nonzero interval fo I lows, over which fIX< 0. ln other words, as soon as t exceeds tc, the set J(q(t)) ceases to contain <X; thus the cone V(q(t)) suddenly Increases. Imagine, on the contrary, that an interval of smooth motion ends at some Instant t 5 wlt!J t!Je occurence of new contacts, t.e. J(q) suddenly Increases.

In view of Prop.2.2, the continuity of u at t 5 would require of the left-limit u-(t 5 ), an element of -V(q(t 5 )), to belong also to V(q(ts)). This would mean that the new contacts are attained tangentially, an event which cannot be expected In general. So, a discontinuity of u at t 5 has to be contemplated. This is called a shock and., to deal with it, Classical Mechanics provides the concept of percussion, that we are to review in a few words.

Assume that t 5 is fo11owed by another interval of smooth motion. It will be understood that, because of sl1ght deformabll1ty in the system parts, the velocity change is not rigorously instantaneous, but takes place on a "very short" time interval, say (t 5 ,t 5 +8), over which the differential equations of smooth dynamics supposedly hold. In view of the steep velocity change, these equations are expected to involve "very large" values of the contact forces.

By equalling the integrals on Ct 5 ,t 5 +8) of both members of the differential equations, one obtains the momentum c!Jange formula. This ts a balance equation, through which the net velocity change is related to the time integral, say n, of the function t-.r(UEIR 0 which, in tt"le notations of Sec.4, represents the contact forces. Compared to tt, the term K yields a negligible integral, because e is "very small"; for the same reason, the variations of q on the interval are neglected. Once obtained, the balance formula ts inserted into the former setting of instantaneous shock; the element n of IR 0 is then said to make t!Je con7panents of t!Je contact percu~--sions . This procedure may be seen as an early example of a n7ultiple scaling; it permits to calculate t~e after-shock velocity u +( t 5 ), as far as sufficient Information is available about contact percussions.

Usually, the above reasoning is applied under the assumption of frictionless contacts. Then it seems natural to admit, slmllarly to (5.2), that, for every <XEJ(q 5 ), the contribution to n of the corresponding contact, say n(X J has the following form

3M ~0 : TI.x = -M \lf (q (t 5 )). (6.1) (X (X (X
The argument commonly proposed in support to this assertion about fl' X is that, in (5.2), the vector 'Vf lX (q(t)) should remain nearly constant during the very short time interval (t 5 ,t 5 +8), because the variations of q are very small; thus M.x would simply equal the integral of the nonnegative real function t-.vcxcu. In the author's opinion, this conclusion cannot be accepted without further discussion, though physical situations certainly exist in which (6.1)

accurately agrees with reality. In fact, the use of the equations of regular Dynamics rests on the smoothing effect of a certain amount of de format ion in the system parts. The very meaning of the parametrization q may then be questioned. Furthermore, the resulting alterations of the functions ret.' however small in amplitude and possibly concentrated in the vicinity of the point q(t 5 ), are prone to generate nonnegl igib le variatIons of the vectors \7fcx(q(t)) in the course of the interval (ts,t 5 +8). A similar discussion could also be conducted on equations (4.7) and (5.1 ): the deformation of the contacting bodies, however small, may appreciably alter the vector 1{~ in !' 3 as well as the mapping G~*: !' 3 -.IR 0 .

At all events, (6.1> does not bring enough information about n to determine u+(t 5 ) completely, even in the simplest case where . . . J(q(ts))

consists of a single element. Classically, a shock (ln a scleronomic system) is said elastic if it preserves the total kinetic energy; this additional assertion permlts, in the case of a single contact, to determine u+(t,J , , unambiguously. This may be given a geometric form by using in IRn the kinetic metric, i.e. the Euclldean metric deflned by the matrix A(q(t 5 )). Then, if J(Q(t 5 ))={cx}, one finds that u\t 5 ) equals tt1e mirror image of u-0. 5 ) relative to the tangent plane at the hypersurface fIX. =0.

But one can hardly justtfy energy conservat1on by any physical argument.

In fact the de format ion induced by the impact is expected to propagate dynam1cally all through the various parts of the system and possibly also through the external connected bodies. Even 1f the <very slightly) deformable materials of which the system is bui It may be asserted perfectly elastic, the various parts usually remain, after a bounce, in a state of vibration which, in the energy balance drawn at macroscopic level, amounts to dissipation.

In short, predicting accurately the outcome of a shock requires some higher order information, unavailable in usual situations. The pertinence of the model of an elastic shock has to be discussed In each particular application. The same is true for the other sort of shocr. we shall present in Sec.B, which however offers the advantage of better formal consistency and easier numerical handling.

NONSMOOTH DYNAMICS

We now intend to insert the description of shocks into a generalized formulation of the dynamics of the Investigated system, which does not require -the local absolute continuity of the velocity function u:I~IRn. This function will only be assumed to have locally bounded variatio"' i.e. to have bounded variation on every compact subinterval of I ; notation: uE lbv(I,IRn).

Classically, with such a function, an 1Rn-va1ued measure on the interval I is associated, that we shal I ca11 the differential measure of u and denote by du.

A characteristic property of this measure is that, for every compact subinterval [a,1] c tnt I, one has her ,1:] du = u\1)-u-(o).

(7.1)

In fact, the bounded variation assumption secures the existence of the one-sided limits of u at any point of tnt I . Equal tty (7.1) remains valid for a=to provided that, as already proposed In Sec.2, we agree on the convention u-<t 0 >=u<t 0 ). The symmetrical convent1on may also be used for u+ at the possible right end of I.

By making O=l:, one sees in particular that, if u is discontinuous at point 1: , then the measure du is expected to possess an atom at this point, with value equal to the total jump of u.

It is clear on (7.1) that du depends on the function u only through u+ and u-. Tfle values !flat u mar take at its discontinui~ypoints are irnn7ate- rial Neitfler nave tflese values anr effect on tfle expression <2. 1) ol q since tfle set of tfle discontinuity points of u is countable,, nence.

L ebes._que-negl igible.

The reader may refer to [START_REF]B,ounded variation in ttme[END_REF] as a monograph on the lbv functions of a real interval and their differential measures, with values in a Banach space X. For a vast class of Banach spaces, in particular for X= IR 0 , there comes out that, if u is locally absolutely continuous, the measure du possesses, relatlvely to the Lebesgue measure on I, here denoted by dt, a densttr tunctk"~n, say u•t E L 1 1 oc<l, dt; IRn). Of course, the latter is defined up to the addition or a dt-negligible function. This is commonly expressed by saying that the IRn-valued measure du equals tfle product of t!Je real measure dt by the IRn-valuea locally dt-integrabl~ function u•t; notation du = ut dt. Also du 1s said locally dtcontinuous. Conversely, if du has such a form, the function uElbv<I,IRn), possibly after correcting the unessential values it takes on a countable set, is locally absolutely continuous. Furthermore, for Lebesgue-almost every t , the value ui<U of the denstty function makes the <two-sfded) derivative of u.

Throughout these lectures, we shall comply with the widespread usage of affecting the character L to non-Hausdorff spaces consisting of functions defined everywhere, while L will refer to the corresponding Hausdorff spaces of equivalence classes.

In this setting, let us come back to Lagrange equations. If u is locally absolutely continuous, with q related to it through (2.1 ), the notation used in Sec.4 becomes

) ' j ( ( 1 ( 
)) j k A .. (q ut + .A..~, q)-2 -A.~, . q u u =c ..

I J 1 J ,11. J .._,I I (7.2)
The right-hand side refers to the covariant components of the totality of the t'orces acting on the system, including the reactions of possible contacts. For these differential equations to make sense, then functions t-. ci have to be elements of L 1 1 oc<l, dt; IR); so each of then equations (7.2) may equivalently be expressed as an equality of measures on the interval I, .

. k

A .. (q) duJ +(A .. k(q)-- 2

1 A.k 1 (q)) UJ u dt =c. dt. (7.3) I J I J , J ,

I

One readily checks that the functions of t, by which the measures duj or dt, on the left-hand side, are multiplied, have the local integrability properties required in order that the products make sense. Now, this new writing keeps meaningful for general uElbv(l ,IR 0 ), and allows one to replace the terms c 1 dt, on the right-hand side by some real measures dCi , said to be the covariant components of the total in7pulsion dC experienced by the system. These will equal the sum of the dt-continuous measures F 1 <t,q,u) dt, describing given forces, and of the covariant components dR 1 of the contact linpulsion dR, an IR.n -valued measure on I. For instance, in the case of an isolated colllsion occuring at instant t 5 , as investigated 1n Sec.6, the measure dR would involve an atom with mass n , placed at point t 5 ; this should be added to the dt-continuous measurer dt, expressing the contact actions in the course of possible episodes of smooth motion w1th persistent contact As before, we shall denote by K the known IRn -valued function with components

K.(t,Q,U) = F.(t,q,u)-(A .. k(Q)-- 2 1 A.k .(q)) uj uk. 1 1 l) J ) ,1
T!Jen t!Je following equali~Y of IRn-valued n7easures on t!Je iflterval 1 will be adopted as governing t!Je dynamics of possibf.V non~IJ7oot/J nwttons:

A(q) du -K(t,q,u) dt = dR. (7.4) The connect1on between such an extension of Lagrange equations and the principles of Classical Dynamics is discussed with more precision in [START_REF] Moreau | Une formulation de Ia dynamique classique[END_REF].

CONTACT SOFTNESS

Let us consider again the differential inclusion (5.6), which has been found to govern the assumedly smooth mot1ons of the system. This inclusion equivalently means that the expression t.-.r(OEIRn of the covariant components of the contact forces makes an element of£ 1 1 oc<l, dt ,IRn) which verifies, for Lebesgue-almost every t, (8.1) In the context of Sec.S, q(t) belongs to <P for every t; therefore, due to Prop.

2.2 and to the continuity of u, one has u(UEV(q(t)) for every t. Hence, the right-hand side of (8.1) is nonempty for every t (it contains at least the zero of !Rn). This enables one, by altering the function r on a Lebesguenegligible subset of I , to make (8.1) hold ever,vw!Jere in I .

In the language of Sec.7, the IRn -valued measure dR = r dt constitutes, for the above case, tr1e total contact irnpulsicm. We now propose to adapt This first impl1es that the right-hand side is nonempty, hence u+<t>EV(q(t)) for every t Therefore, if the initial data satisfy q(t 0 )E4>, (

wi 11 secure, thanks to Prop.2.4, that q(UE4> for every tEl .

The following Proposition shows that the concept introduced by so the 1Rn-valued functions R'vV'a and R'v v' 0 are equal, except possibly in some do-negllgible (hence dv-negligible) subset S of I. The subset N={tEI : v' 0 (0=0} is dv-negligible. Outside the union SUN , the above implles R'v= R'v~' 0 /v' 0 , with ~'0 /v' 0 ~0; then the expected inclusion holds, since the right- hand member of (8.2) is a cone. For tESUN , this (closed, convex) cone, being nonempty, contains at least the zero of IRn. After replacing by zero the values that the function R'\) , as formerly defined, may take in SUN, one obtains the asserted conclusion, with dV and dv playing symmetric roles. •

If the superimposed constraints agree with Definition 8.1, the elimination of dR between (8.2) and the equation (7.4) of Nonsmooth Dynamics yields the following characterizat1on of the possible motions -A(q) u'v + K(t,q,u) t'v E ali'v(q(t))(u+(t)), (8.3) required to hold for every tEl . Here dbJ may equivalently be replaced by any nonnegative real measure, relative to which du and dt possess density functions. The existence of such measures is a priori secured by the Radon-Nikodym theorem; one may take, for mstance, dV = ldul + dt , where ldul denotes the nonnegative real measure modulus (or variation tneasure) [START_REF] Dinculeanu | Vector Measures[END_REF](7] of the vector measure du. Since K is continuous and since the discontinuity set of u is dt-negligible, it does no matter to replace u, on the + left-hand side, by u or u .

The indifference of (8.3) regarding the choice of dV (this could be checked directly, through the same reasoning as in the proof of Prop. 8.2), suggests to strip down the writing into + -A(q) du + KCt,Q,U) dt E d~V(q(t))(U (t)). (8.4) This may be called a measure differential inclusion. The existence of solutions to initial value problems governed by conditions of this sort and their possible uniqueness have so far been studied only in some special cases [START_REF] Monteiro Marques | Chocs lnelast iques standards: un resultat d'exlstence[END_REF][12][13] [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF].

As before, one observes that, provided that q<t 0 )E<P, inclusion (8.3) entails q(t)E<P for every tEl .

REMARK 8.3

Simi Jarly to what precedes, the simple assumption of no-friction, without reference to "softness", as It has been expressed for the case of smooth mot ions in (5.3), may be adapted to Nonsmooth Dynamics. It will merely consist in stating that the contact impulsion dR possesses, relative to some d~J ?-0, a density function which satisfies for every tEl -R'V(t) E N(Q(t)). (8.5)

Here again, the fact that the right -hand member is a cone ental ls that such an assumption does not actually depend on the peculiar choice of dbJ.

Since the right-hand member of (8.2) is contained In N(q(t)), ( PROOF In vtew of (7.1 ),

u+(t)-u-(1:) =J{ }du = J{ }u' diJ = ~ u' (1:), 't t lJ - t v
where blt~O denotes the integral of dbJ over the singleton {t}. If motion agrees with (8.3), one has -A(q(!)) u'._/1:

) + K(t,Q(t),U(t)) t'~(t) E aljiV{q(t))(U+(!))_
Now Vtt't~(t)=O, since the Lebesgue measure dt has no atom. Then, after mu1t1ply1ng both members of the above by ~1:' one obtains

-A(q(T))(U+(T)-U-(t)) E OljiV(Q(t))(U+(T)).
If one uses in IRn a base orthonormal relatlvely to the metric in v1ew, A(Q(T))

becomes the unit matrix, reducing this to the classical characteristic property of proximal points. • This Proposition, which, under the convention u-<t 0 >=u<t 0 >, also holds for t=t 0 , shows that u exhibits a nonzero jump at point 1: if and only if u -(t)!tV(q(t)), Le. a nontanqentlal impact occurs at this instant.

Assume in addition that t >To , so u-(l:)E-V(q(t)) in view of Prop.2.2.

Then, the condition for nonzero velocity jump becomes

u-(t)E V(Q(t))n-V(Q("'C)).
The right-hand member is a linear subspace of IRn. If J(Q(t))=0, Le. q(t)Eint¢, this is the whole of IRn. If J(Q(t)) conststs of a s1ngleton, say {ex}, the subspace is the vector hyperplane tangent at q(t) to hypersurface f ex =const.. For larger J(q(t)), the point q(t) lies on what may be called, in the wide sense, an edpe and the said subspace (possibly reduced to {0}) is declared tangent to this edge.

Also for r > r 0 , one observes that u -(t), being an element. of -V(q(t)), cannot belong to the interior of V(q(t)); thus (9.1) yields that u+ actuaJJy 1 ies on the boundary of this polyhedral cone.

REMARK 9.2 Here Is another consequence of Prop.9. I. Suppose that, on some open subinterval I' of I , the motion evolves In such a way that the set-valued function t-+J(q(t)) never increases. In other words, during this time interval, some of the contacts may get loose, but no collision occurs. Let 1EI' and let cx.EJ(q(t)). Then, for every tEl' such that t,"'C, one has fcx(q(t))=O, an equallty which, through the chain rule, entails u -(t).\7f (X (Q(t)) = 0.

Hence u-(l:)EV(q(l:)), so Prop.9.1 shows that no velocity jump occurs at Instant 1:.

In the traditional treatment of uniJateral constraints, the latter 1s taken for granted: one accepts to enter percussions into the analysis only at instants where geometry makes them unavoidable. This agrees wittl the heuristic maxim of the "minimal singularity"~ but does not result from any explicit mechanical assumption. Here is a familiar example demonstrating this method deficiency.

Suppose an object performing a sliding motion in the contact of a table

(or simply at rest on It>. If an operator hits the table with a hammer} the object is commonly observed to jump. So the table has imparted an Impulse to the contacting object, without itself exhibiting any motion at the macroscopic observation scale. In contrast, the assumption that unilateral constraints are frictionless and soft rules out such an active behaviour of boundaries.

Incidentally, the replacement of softness} In frictionless unilateral constraints, by the quite different assumption of energy conservation would also permit a deductive treatment of the above situation. It will be shown in Sec. I 0 that energy loss, in velocity jumps, should on the contrary be expected when frictionless soft constraints are present.

REMARK 9.3 Equation (9.1) expresses that} in the considered motion) all velocity jumps are of the sort that the author has previoulsy called standard inelastic s/Jocks [14][15]. These were proposed as a generalization of the shocks which) in the case of a system involving a single constraint 1nequa11ty, say f(qhtO, are traditionally called "inelastic" or also "soft". In fact, if f(q(t))=O, the tangent cone to the feasible region <P of IRn at point Q 5 =Q(t 5 ) is simply the half-space V(q 5 ) = {vEIRn: v.'Vf(q 5 )~0}. Since the left-side velocity u-(t 5 ) must belong to -V(q 5 ) (at least if one supposes t 5 > t 0 ), equ.(9.1) yields In this special case that u+(t 5 ) equals tne ortnogo-nal projection of u -ct 5 ) to t!Je vector !Jyperplane tangent at q 5 to hyper- surface f=O. More information on general standard Inelastic shocks may be found in [START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints, In: Un1lateral Problems in Structural Analysis[END_REF] ; incidentally, the contact percussion receives an extremal characterization, dual to (9.1 ).

10. ENERGY BALANCE PROPOSITION PROOF For the traditional case of smooth motions w1th fr1ct1onless (time-independent) superimposed constraints, the power equation 1° If ui and uj belong to lbv(I,IR), the same holds for the product u 1 uj and its dlfferential measure is given [START_REF]B,ounded variation in ttme[END_REF] [32] by

dCu 1 uj) = ul+ duj + u 1 -du 1 .
The products of measures by functions, which appear on the right-hand side, make sense because the functions t__.. ui+(t) and t__.. ujbelong to lbv(I)R); so they are locally integrable relative to any real measure. Hence, in view of the symmetry of A, A 1 {q) d(u 1 uj) = Aij (q)( u 1 + + ui-) duJ _ Furthermore, since t-.q(t) is locally absolutely continuous, with t-ucn as derivative, the differential measure of t-A 1 j(q(t)) equals

k d Aij = Aij.k u dt
and one has

i j i j j j d(Aiju u) = u u dAq + Aij d(u u• ).
2° The real measure Aij(q)(ui+-u 1 -) duj is nonnegative; it vanishes iF and only if u is continuous on L In fact, this measure cons1sts of a countable and locally summab Je co llectlon of point measures located at the Jump instants of u . Let ts denote one of these instants; under tt1e notations u\t 5 )=u;, u-Ct 5 )=u;, q(t 5 )=Q 5 , the mass of the corresponding pomt measure equals J+ i-j+ j-

Ai{qs)(Us -us ) <us -us ).

Since A 1 j(q) is, for every q, a positive definite matrix, th1s real number 1s nonnegative; it vanishes if and only if u;-u; =0.

3° Equality u.r=O, a consequence of the no-friction assumption in the case of smooth motions, is replaced at present by u+ R'~:~=O, a fact observed in (8.6).

• REMARK I 0.2 A more general concept than frictlonless soft constraints is obtained by Insert lng Into the right -hand sIde of (8.2), instead of u +. some weighted mean

(I 02)
where o is a chosen real number, here supposed independent of t, for simpllcity. Since u 8 <U=u(t), except at the jump points of u. which make a Lebesgue-negligible subset of I, the law of constraint -R'b 1 (t) E a~V(q(t))(u 8 (t))

( 1 0.3) imp 1 ies, exactly 1 ike (8.2), that condition q(t)E<I> is satisfied for every t as soon as it holds for t=t 0 .

For 5>0 (even larger than I), the law of constraint ( 1 0. In that sense, the constraint law ( 1 0.3) with 5=0 may be said "elastic".

We suggest to call 5 the dt~-sipation inde.>rof the constraint law ( 1 0.3).

TIME DISCRETIZATION ALGORITHM

The principle of such an algorithm has been introduced, for smooth motions, in Remark 5.3. The main observation we now have to make is that the same numerical technique applies in the framework of Nonsmooth Dynamics, provided that the superimposed friction less unllateral constraints are assumed soft.

The expression in (7.4) of the system dynamics, in term of measures, directly suggests time discretization: the rule will be to equal some approximants of the respective integrals of both members over each subinterval of I determined by the discretization nodes.

Let <t 1 ,tF) be one of these intervals (here I refers to "initial" an F to "final"), with length h=tr-t 1 possibly variable from one step to another. From the approximants q 1 and u 1 of q and u at the beginning of the Interval, one has to compute some approximants qF and uF , assigned to instant tF and which, ln turn, w111 be used as inltlal values ln the next step.

Then -1

UL =u 1 + hAM KM is the value that the discretized equations of Dynamics would yield for ur in the absence of contact force (here one may read the subscript L as referring to "loose").

If QME inttP (i.e. all fiX(QM) are strictly negative) or uLEV(qM), one considers that contact forces have no effect on the calculated step; so one makes uF=uL and goes to Stage 3 (this decis1on is actually a trivial case of Stage 2 below).

Stage 2 On the left-hand side of (8.4), let us replace ACq) and K(t,q,u) by Ar-t and KM . Then, an approximant of the integral of this left-hand side over <t 1 ,tF) is -~(uF-uL) . Concerning the right-hand side, it will be considered that the set V(q(t)) keeps, throughout the interval, the constant value V(qM), whose indicator function will be denoted by 'PM• Furthermore, let us take uF as an approximant -one may rather say a simulatt£mof u+. This yields as a simulation of (8.4) on the said interval -AM(UF-ul) E aq,M(UF)

If the matrix AM is used in order to define a Euclldean metric on IRn, this characterizes uF as the proximal point to ul in the closed convex set V(qM).

Therefore, computing uF is a Quadratic Programming problem: to n7inin7L 7 e on V(QM) tl7e real function x,...(x-ul).AM(x-ul). Recall that V(qM) is a polyhedral cone, the intersection of a collection of half -spaces determined by the index set J(qM). These correspond to the values of ex such that, in the test position QM, the inequality ftx'o holds as an equal1ty or is violated.

If their number is not too large, the proximal point will be constructed algebraically; otherwise some of the classical algorithms of Quadratic

Programming will have to be applied.

Stage 3 One terminates the computation step by

QF = QM + ~ h UF • REMARK 11.1
In [START_REF] Moreau | Dynamlque de systemes a liaisons unilaterales avec frottement sec eventuel; essais numeriques[END_REF] are reported some computer experiments with methods of the above sort. These methods prove to be stable. The finer the time discretization is, the better the computed motion complies with the Inequalities f(X,o. In that respect, some improvement may be achieved by evaluat!ng, in Stage 2, the cone V(q) at another point than QM. A good choice appears to be the point q 1 + hu 1 .

If these methods are applied to the calculation of mechanisms, which in reality always involve some imperfectly known friction, no great precision can anyway be expected in predicting the motion. From that viewpoint, a moderately fine time discretization will be enough. In contrast, the violation of the constraint Inequalities must sharply be kept In check. A very effective way of doing it consists in completing each time step by a stage of linear correction of tl7e possible violation. Let us explain it In the simple case where the position qF, calculated In Stage 3, violates only one of the constraint inequalities. In other words, the real number tp=f(QF) is found strictly positive, with f denoting one of the functions f(X. A plausible correction of this violation (naturally assumed "small") would be to replace qF by its proximal point, say qc , in the region f~O. Proximity here should be understood in the sense of some Euclidean metric on IRn ; the most justified choice is to rely on the kinetic metric, defined by H1e matrix A(q). To save computation, the latter will be evaluated at a pomt where 1t has already been calculated in the current step. Using an affine approximation of U1e function f, one obtains 0=f<qc)=tp+(qc-qF).\7f+ ... Here H1e gr•adient Vf should be evaluated at some neighbour point. This precisely must have been done at the Stage 2 of the current step, where also tr1e vector A- REMARK 11.2 Also in [24L a numerical procedure is developed for a system with a frictionless unilateral constraint expressed by a single inequality f,O, assuming that the dissipation index, as we have defined it in Sec.lO, equals t. In other words, the possible collisions are elastic bounces . In contrast with the exce I lent stab11 ity of the preceding method, a careful check of the energy balance of each time-step here is needed, in order to prevent divergent oscillations wt1en the algorithm is applied to the computation of a motion with assumedly persistent contact.

COULOMB FRICTION

This lectures are meant to provide only an Introduction to the treatment of friction. So we shall restrict ourselves to a system Involving a single unilateral constr~~int with geometric condition f(q)~O (there is presented in [START_REF] Jean | Dynamics In the presence of unilateral contacts and dry friction; a numerical approach[END_REF] a rather usual case, where a system with multiple possible contacts may be reduced, through decompos1ti~r\ to tt11s simple setting).

For every q such that f(q)~O, the cone V(q) equals the half-space {vEIRn: v \?f(q)~O}, with boundary

T(q) = {vEIRn: v.\7f(Q)=0};
the latter is the vector hyperplane tangent at point q to the hypersurface f =const. drawn through this point.

Let a motion satisfy f(q(t))~O for every tEL If the velocity function u is continuous at some 1>t 0 , then, in view of Prop.2.2, u("t) belongs to V(q('r))n-V(q(T)); this set equals T(q(l:)) if f(q(l:))~O and otherwise the whole of IRn. The same is true for 1=t 0 , as far as the initial data have the meaning we agreed to give them in Sect.2, namely u 0 equals the left-limit u-<t 0 ) in a motion taking place before t 0 , with the unilateral constraint already in effect.

To fix the ideas, suppose, as In Sec.3, that equality f(q)=O expresses that in the position q, some part ~1 of the system touches the unmoving external obstacle il 0 . Then, under the previous notations,

U = 'V()f 1 (q),q,u) = Gqu
is the velocity of il 1 relative to il 0 at the contact point.

Denoting again by 1{q the common normal unit vector to the contacting bodies, directed toward 13 1 , we assume G;~ ~ 0 <see Remark 3.2). Then the assertion uET(q) Is equivalent to U belonging to T(q), the Hnear subspace of :r 3 orthogonal to 1{q , i.e. the common tangent vector plane at the contact point.

The above is the situation in which, traditionally, Coulomb's law of liry friction is formulated. This law is a relation between the s/idinq ttt'/(lc/tv ... ,• l.iET(q) and the contact force 1{E:r 3 experienced by ~ 1

For brevity, let us write 1{ for 'J{Q and Tfor T(q). T~1e famillar formulation rests on the decompositwn of 1{ into 1{ = 1{ 1 + P 1{, with 1{TET and p;?O, (

and consists of two well known separate assertions concerning the respective cases U=O and U70 in T.

In some of the author's early papers [20] [21 ], it has been observed that, as far as the normal component p is treated as known, this pair of assertions is equivalent to a relation, between tr1e elements Rr and U of the linear space T, which derives from a "pseudo-potential". Furthermore, this formulation readily extends to the description of poss1bly an1~--:otropic friction, as a relation of the form

-l.i E a1Jf1)(1{ T ), ( 12.2) 
with 1l=p1l 1 . By 1l 1 is denoted a given closed convex subset ofT, containing the origin; in the traditional case of isotropic friction, 1l 1 equals the disk centered at the origin, with radius equal to the lrtt:twn coe.!lftJent, say t

We snail restriti ourselves in tnese lectures to tne r.."' ii/se ol bounded friction, ie. tne. set 1> 1 is bounded. To take 1> 1 unbounded would provide a way of including in our approach the situation traditionally called a nonnolonomic constraint. But this would cause some complications in further statements.

Through the standard calculation rules of Convex Analysis, ( 12.2) may equivalently be written as ( 12.3) where the dissipation function 4> equals the support function of the set -1) 1 ; in particular, for isotropic friction 4> = y 11.11.

Elementary app I icat 10ns, where p in fact is known, may be found ln (22}. Furthermore, having to treat p as known does not prevent uslng this pseudo-potential formulation <or an equivalent variational inequality which expresses a "principle of maximal dissipation") in the proof of existence of solutions to dynamical problems. See [START_REF] Jean | A system of rigid bodies with dry friction[END_REF], where the normal components of the contact forces become the primary unknowns in some functional analytic arguments

In the present lectures, we choose to formulate the same Jaw under a conical equ1valent form [START_REF] Moreau | Dynamlque de systemes a liaisons unilaterales avec frottement sec eventuel; essais numeriques[END_REF], avoiding the decomposition ( 12. I). The lriction cone C at the contact point is introduced, a closed convex conical subset of the linear space !' 3 <recall that, speaking of a cone in a linear space, one understands that it has vertex at the oriqin). In traditional isotropic friction, this is a cone of revolution about -u E a~ ~av + a~cCR-> c a* ~ncOO.

< 12.6)
In view of the definition of D, one has ~nC=1l+p1(, thus, using a translation in the evaluation of subdiffentials,

d$ .11n&RJ = a~DCR -p 1{)= oiJI1lCR T )_
Then ( 12.6) entalls that ( 12.2) holds in the sense of' the Euclidean autoduality of ~3 . Since 1J. and :R 1 are elements of the linear subspace T, the same is true relatively to the Euclidean autoduality or this subspace.

Conversely, Jet us assume that 'UETand that< 12.2) holds in the sense of the Euclidean autoduality ofT, with :RT defined by ( 12.1) (observe that p~O is stated at this place). Then ( t 2.2) Is true also in the sense of the autoduality of :r 3 and, using translations as above, one concludes

-11 E OIJI ~ncO\>.
Here we need to know whether the inclusion on the right side of ( 12.6) actually holds as an equality of sets. If p>O, this equality results from a known calculation rule for the subdlfferent1al of a sum of l.s.c. proper convex functions in finite-dimensional spaces: in fact there exists a point in the relative Interior of C=dom~C where ~~takes a finite value (see [START_REF] Rockafe1lar | Convex Analysis[END_REF],

Theorem 23.8). In that case, by going from ( 12.6) backward to < 12.5), one establishes ( 12.4).

It is only for p=O that the assumption of bounded friction, made once for all 1n the preceding, has to be used. If p=O, the set 1l reduces to {0}, so ( 12.2) simply consists in the assertion:" 'U arbitrary in Tand :Rr = o "; one has to establish that such is also the meaning of ( 12.5) in this special situation.

For :R = 0, the subd1fferential oljJC(.R) consists of the polar cone co of c.

Because the section of C by the plane Jl <constructed for instance with P= l) is compact. co contains the vector -1{ in its interior (see e.g.{35], parag.8.7).

Consequently, the proJection of co toT equals the whole of this subspace;

tt)iS completes tt1e proof .

•

In turn ( 12.4) may be transformed as follows [START_REF] Moreau | Une formulation du contact a frottement sec; application au calcul numerique[END_REF]: which is precisely ( 12.4).

PROPOSITION

•

Incidentally, observe that resistance laws involving a pair of subdiffential mappings, as in ( 12.8), have a wider interest than describing contact friction in three-dimensional space. For instance, in Plasticity, this form may be used in formulating constltutive laws for which the flow rule is not "associated" with the yield criterion.

Recall that T and C, in what precedes, depend on the position q of the system, under the assumption f(Q)=O. Let us make the same writing meaningful also for positions wnicn do not Involve contact.

To th1s end, we shall agree that, when f(Q)<O, the cone C(Q) reduces to {0} and that T(Q)=~3 . Then the relations ( 12.4) or ( 12.8) simply express that 1{=0, with 11 arbitrary in IR 0 .

Furthermore, 1n what concerns evolution problems under condition f~O.

1t Js Immaterial to choose any (adequately smooth) extension of the multifunction Q-+C(q)c~3 to the case f(Q)>O. Similarly, the linear mapping Gq: IR 0 ... ~3 will be extended to such Q, as well as the normal unit 1(w with attention to preserving (3.2). The reason for such extensions lies in numerical methods, where a certain amount of violation of the desired i nequa 1 i ty f ~ 0 has naturally to be faced.

The set of the values of 1{ E ~3 that ( 12.4) or ( 12.8) make correspond wtth each UE~3 <actually the empty set 1f UiT) is a cone, since the multipllcation of 1{ by any strictly positive number leaves d1j1C(1{) invariant.

Like In preceding Sections, this fact wi 11 now prove essential. as we come to formulating Nonsmooth Dynamics in terms of measure differential inclusions.

In the course of a smooth motion, the contact force 1{ is a function of time that we may denote by Pf. This 1n fact Is the density, relative to the Lebesgue measure dt, of the local contact Impulsion <!P, an ~3 -valued measure on the time interval I. For nonsmooth motions, crP can no more be expected to possess a density relative to dt, but in any case this measure may be represented in the form 'P~d~, where d~ is a nonnegative real measure on I and 'Pv E L 1 1 oc( I, dp; ~3 ). The IRn -valued contact impulsion dR, as introduced in Sect.7 for insertion into the measure equation of Nonsmooth Dynamics (74), has the form dR=R~d~, and, similarly to (4.7), Rv C U = G; < 0 'P ~ (t) < 1 2. 9 > rwlcls for every t.

As far as Coulomb's law is accepted for the description of dry friction, one naturally admits that, in possible nonsmooth motions, the density :Pv(t) of the local contact impulsion will be related, for every t, to the sliding velocity 1l through the same relation as 1{ is in ( 12.4), or equivalently in ( 12.8). This, at least, raises no discussion when t-.'U is continuous. At instants of velocity jumps, we decide t!Jat t!Je same relation will !Jold wi!IJ 1l replaced by itsrig!Jt-limlt, namely 'Lt=Gqu+, since the linear mapping Gq: IR 0 -+1: 3 continuously depends on q. This assumption entails that ll+(t) belongs to T(q(t)) for every t (an immaterial assertion when f(q(t))<O, since it has been agreed that T(q(t)) = I 3 in this event). In view of Propos it ion 3.1, this is equivalent to u+(t)ET(q(t)), a property which, 1n the frictionless case of Sect.9, has been identified as characterizing the "softness" of unilateral constraints. We thus are induced to put the following definition. . contact irnpulsion !Jas t!Je forn7 d1'='Pvd~, wit/7 :Pv E£ \oc<l, d~ ;I 3 ) veri- lying lor every t (12. 10) (recall t!Jat T(q)=I 3 and C(Q)={O} w!Jen f(Q)<O) or t!Je equivalent form r-ep laced by Hle pr-oximat ion mapping to V(q). This would be numerically inconvenient, but is llable to improve the consistency of some further developments.

REt-1ARK 12.7 In applications, describing dry friction through Coulomb's law can only provide a rather crude approximation. However, as this law retains tt1e essential features of the phenomenon, its use at the stage of a first study is extremely valuable in numerous situations. As soon as this law has been adopted, under its traditional form, there is little doubt that its generalization (12.10) can also be accepted for every motion in which the velocity function is continuous, even in the absence of local absolute continuity. We shall discuss later its use in the case of a ve/ocl~VjUn7p.

TWO-DIMENSIONAL CONTACT

In the same setting as in the above Section, we now make the following additional assumption. However three-dimensional the contact may physically be, we sr,all suppose that, for every q such tt1at f(Q)=O <and also for f(q);J:O, after the extension we have agreed to make) the range Gq<IR 0 ) ot Gq n.?t.tuct)s to a two-dirnensianal sub::ipace W q at x 3 . Such is the case, for instance, if the part ~1 of the system is astrained, by the primitive constraints, to only perform motions parallel to a fixed plane. The condition found in Remark 3.2, in order that G; 1tq;r0 wi 11 be supposed fullfil led, i.e.

W q and the tangent pl.:me Tq are distinct: let us denote by I a unit vector of their intersect ion.

Due to the expr,esslon ( 4. 7) of the covariant components of the contact forceR <or, in Nonsmooth Dynamics, the covariant components of the density P~(t) of contact impulsion), the dynamically significant information a neighborhood of hypersurface f =0).

The vector plane14/depends on q; it will prove convenient to send it '") onto a fixed copy of IRL, called the calculation pl.=tne, equipped with the usual base consisting of vectors I = ( 1 ,0) and j = (0, 1 ). To this end, a regular 1 inear mapping 1"q : 'W q~IR 2 wIll be constructed, in such a way that Tqf is a positive vector of the first axis. Denote by Gq: IRn _.IR 2 the product mapping TqGq • Assume that the real function f is at least c 2 ; then it will be possible to choose 1Q in order that Gq depend on q in a c 1 way.

Let us mean by rq* the transpose of rq , in the sense of the natural 1l _ under Tq

There would remain enough arbitrariness in the choice of 1'q for making these images equal two fixed half-lines of IR 2 , e.g. the half-lines generated by < -1 , 1) and < 1,1) . The drawback is that the two friction coefficients f + and f _ would then J)ave to depend smootl)ly on q . So we shall not use this trick in the sequel and only assume that t!Je convex !Jul~ sar C, of D + and D _ contains J 1!7 Its !llterlor.

Under these notations, the friction law ( 13.1) to ( 13.3) may equivalently be formulated as a relation of the same form between R= rq•-l'R. and U = rqU = Gqu = cri. Due to the assumptions made, o is a real number of the same sign as s or vanishmg with it. Henceforth, there only is to replace s , 1l +' 1l_, C respectively by a, D+, D_, C.

In order to express the dynamics of the considered system, one has to bring together the above react ion law and the Lagrange equations. The covariant components of the contact force make the element r of IRn, related toR through now be used in discussing the event of a veloc!~Jijunw.

This means that, at some instant t 5 , the IRn -valued measure du possesses an atom, the mass of which equals u\t 5 )-u-(ts) = u~(t 5 ) ~s•

Here, the positive number b.' s is the mass of the atom that the measure dbJ should possess at point t 5 .

Recalling that the Lebesgue measure dt has no atom, one derives from ( 13.5) that, at t=t 5 ,

+ - A-l G"'P' (141) 
uu = Q Q lJ ~s . If f(q(t 5 ))<0, i.e. no contact, one has Pv<t 5 )=0, so no jump of u can occur.

We therefore shall assume f(q(t 5 ))~0 (equivalently f(q(t 5 ))=0) and denote simply by G the value of Gq at Q=Q(t 5 ). Then, for t=t 5 , one has Rv=G"'Pv. Put P~ (t 5 )~5=P and apply the linear mapping G: IRn -+IR 2 to both members of We are to discuss how, starting with given u-, the system of conditions ( 14. 1) to ( 14.6) allows one to determine u +.

Combining ( 14.2) and ( 14.3), one obtains -1 --1 P = -H U + aH I, (14.7) Then 5=0 . i.e. the I ine 6 passes .through the origin .

• If 6nc consists only of the origin) the formu1ated set of condition admits P=OJ hence u+ = u-, as unique solution: no velocity jump occurs.

• If 6 intersects also the interior of Clone has to determine whether 1t is possible for P to lie in this interior. In view of conditi.ons (14.4) to (14.6 The earliest reference we know of, where such a possibility is asserted, is a note by L. Lecornu [START_REF] Lecornu | Sur Ia loi de Coulomb[END_REF]. At the time, a controversy has been opened by P.

Painleve [START_REF] Painleve | Sur les lois du frottement de glissement[END_REF], with the observation thatl in systems involving Coulomb friction~ some initial value problems could have no solution, or also several solutions. In addition~ the behaviour of the system depended on 1ts constants in a discontinuous way. To Palnleve) and later to E. Delassus [START_REF] Delassus | Considerations sur le frottement de glissement[END_REF][38], these findings seemed in contradiction with the very bases of Physics. In the subsequent years, different opinions were sustained by such authors as F.

Klein [START_REF] Klein | Zu Palnleves Kritik des Coulombschen Reibungsgesetze[END_REF], Rv.Mises [START_REF] Mlses | Zur Kritlk der Relbungsgesetze[END_REF], G. Hamel [START_REF] Hamel | Bemerkungen zu den vorstehenden Aufsatzen der Herren F[END_REF] or L. Prandtl [START_REF] Prandtl | Bemerkungen zu den Aufsatzen der[END_REF]. Even after H.

Beghin [START_REF] Beghln | Sur certains problemes de frottement[END_REF][44] had clearly demonstrated that the incriminated findings actua11y agreed with common observation, some suspicion remained in the scientific community that Coulomb's law could be intrinsically illogical.

Today, one is accustomed to meet multiple solutions or the absence of solution to physical problems, usually ascribing these facts to t11e nature of the treated information, without opening any discussion about determinism in Physics. One is also fami 1 iar with discontinuous behaviour.

Dynamic locking, that we propose to call a frictional catastrophe, ls commonly observed in practice. The example of the chattering motion of a piece of chalk driven at an angle against a blackboard, so that a dotted line is drawn, was already put forward by E. Delassus [START_REF] Delassus | Considerations sur le frottement de glissement[END_REF]. A model of this phenomenon is presented in [30L with some drawings generated by a computer using the time discretization procedure of Sect. IS below. This displays an instance of a "stick-slip" motion. Depending on the system constants, frictional catastrophes and intermittent contact breaking may occur or not. No attempt so far has been made at comparing thts model, quantitatively, with experimental measurements.

A very simple example of frictional catastrophe is presented in Sect. IS, as a demonstration of the ability of our numerical technique to handle nonsmooth solutions. REMARK 14.2 From the mathematical standpoint, we think that little has to be retained of the early discussions on the subject. At the time, differential equations were impllcltely understood in the sense of the elementary theory:

so Jut ions should possess some requlated tunct ions. as their derivatives of the highest order involved. In other words) It was admitted that the acceleration q" possessed a right-limit and a left-limit at every t. Certain of these I imits played an essential role in the discussions by Painleve and hls followers Unfortunately) in usual instances where an interval of smooth motion precedes the catastrophic instant t 5 ) one finds that the norm of q" actually tends to infinity when t tends to ts from the left The concept of a measure differential inclusion) on which the present lectures are based) provides a more synthetic view) since it allows one to express Dynamics on the whole interval I ) Including t 5 ) and does not rely on the existence of one-side accelerations.

REMARK 14.3 There remains to discuss whether the velocity jumps agreeing with the constraint law ( 12.1 0) are physically reallstic. We have already stressed that, even in the absence of friction, predicting safely the outcome of a shock would require some high order of information, actually unavailable in engineering situations. Things naturally become worse if friction 1s entered into account. What do we know about the Physics of high pressure friction~ during the "very short" interval of time on which the velocity change takes place? Already for the frictionless case, we have in Sect.6 been reluctant in accepting the invariance of the direction of \7f(q) during this interval. The latter invariance, if admitted, makes of the no-friction assumption a timeindependent linear condition imposed on the contact force at every instant; therefrom, the normality of the contact percussion is inferred, by integration on the interval. On the contrary, Coulomb law imposes on contact force a nonlinear condition. Even if one assumes this condition independent of time; it cannot be expected in general to commute with integration. The contact percussion can safely be asserted to verify < 12.1 0) only as far as the sliding velocity is sure to remain zero or to keep a constant direction for the short duration of the investigated shock. It is of course in the case of two-dimensional friction that the latter event proves the easiest to discuss.

The reader may f1nd in [START_REF] Peres | Mecanlque Generale[END_REF] an attempt at analysing frictional impact, in the line formerly suggested by G. Darboux. This consists in investigating the variation of the velocity as a function of some "micro-time", relatively to which the system position remains a constant. Even so, the conclusion is subject to some assumption about the shock end which seems difficult to justify.

In conclusion, the concept of a frictional and soft contact, as involved in As in Sec.13, a single constraint inequality, say f~O . . is taken into account.

If f(qM) < 0 or uL.\7f(qM) ~ 0, then make uF = ul and go to Stage 3.

Stage 2 If, on the contrary, f(qM) ;;>-0 and uL.\7f(qM > 0 , contact Is estimated to have effect on the considered time-step. One constructs a discrete analog to the measure differential inclusion of Dynamics du = A-1 (q) K(Cq,u) ut + A-1 (q) dR by equalling some approximate values of the integrals on <t 1 JF) of the respective members) namely -1 -1

( 5 ) UF -u 1 = hAM KM + AM R .

1 . 1

Let GM denote the value tak.en at q=qM by the linear mapping GQ: IRn -.IR 2 deft ned in Sec. 13. Then an approximate version of < 13.7) reads ,..

R = GM P,

where P, an element of the calculation plane, is an approximant of the total contact impulsion on tt1e interval (t 1 , tF ). Putting u 1 = GMul and Ur = GMuF ,one derives from ( Here, similarly to what has been done in Sec.13) one denotes by HM the symmetric positive definite 2x2 matrix GMAr1 1 G~.

According to the decision made in Sec. 11, of considering uF as a simulation of u +, the softness condition ( 13. 7) wi II, in the present discretization procedure, be transcribed as 30EIR : In the case where the friction coefficients depend on Q, the elements D+, D_ and C will be evaluated at q = QM. 

= -HM UL + <JHM 1.
This expresses that P belongs to the line!:::. of IR 2 , drawn through the known point -Ht1 1 UL , with known directing vector Ht1 1 1 . This 1 ine intersects the second axis of IR 2 at point SM = -(j.UL)j/(j.HMj).

A similar expression was discussed in ( 14.8). Since the present computation stage is developed under the assumption uL.\7f(qM)>OJ one finds in the same way as in Sec.14 that j. UL <0, so SM is sure to be interior to C. Observe in addition that P 11es In !:::. on the right or on the left of -Hf1 1 UL according to the sign of a. One concludes to the existence of a unique solution PJ characterized as the nearest point to -Hf1 1 UL in the intersection t::.nc.

•

• For computation it is more convenient to formulate the same as follows:

-1 -1

If -HM UL E C ) then P = -HM UL .

Otherwise -HM 1 uL. i < o ~ P = t::.no + -1 n -HMUL.i>O ~ P=f:::. D_.

After P is calculated, one derives uF from ( 15.1 ), namely <this equals the sliding veloclty in the case of contact) presents a sudden drop. At the same instant, contact is broken, with zero normal velocity. In the process, a percussion is imparted to :B 1 from :B 0 , making the negative angular velocity increase in magnitude.

Though discretization is rather rough, the corrective procedure of the possible constraint violation, described in Remark 11 .1, has not been used.

Drawing is however found to comply very well with the unilateral constraint.

On As expected, consistent results are obtained regarding the motion prior to the catastrophe. It is apparent that the rate of change of the sliding velocity tends to -oo on the left of the catastrophic instant. The acceleration q": I-+IRn thus beeing unbounded, cannot possess a left-limit at the catastrophic Instant.

AN EXAMPLE OF THREE-DIMENSIONAL FRICTION

We suppose in thls section that the system consists of a single particle of unit mass, confined in a region <t> of physical space by an unmoving boundary L This is a model of a small object which, in the case of contact with the boundary, Is assumed to slide on It, without rolling nor tumbling.

Then q 1 , q 2 , q 3 may be Identified with the particle coordinates, relative to some inertial orthonormal Cartesian frame and A(q) consists, for every q, in the unit matrix.

In addition to the possible frictional reaction of the boundary, the otherwise. Therefore ( 16.2) reduces in that case to the differential equation ut-f(t,q,u) = 0 of contact-free motion.

Recall that a condition such as ( 16.2) implies that. q(t)E<P for every t, as soon as this is assumed to hold for t=t 0 .

Some cases of existence, for the solutions to the coresponding initial value problem, are investigated in [START_REF] Monteiro Marques | lnclusoes Diferenciais e Choques lnelasticos[END_REF].

Here we shall only present a time-discretization metr\Od for their approximate computation [START_REF] Moreau | Une formulation du contact a frottement sec; application au calcul numerique[END_REF]. With the same notations as in previous sections, each time-step runs as follows.

Stage I. Calculate tM=t 1 +~h , the midpoint approximant QM=Q 1 +~hu 1 , the force estimation FM= F<tM,qM,u 1 ) and the "loose velocity" ul =u 1 + h FM.

Stage2.

• I f f ( qM) < 0 or Ul. V' f ( qM) ~ 0 , then UF = UL .

• Otherwise, uF is determined by a semi-implicit discretization of ( 16.2).

In vtew of the positive homogeneity of the multifunction a~c• this is o E a~c<uF-uL) + ae<uF), whith the cone C and the function e evaluated at point qM Using the definition of a, one gives to this inclusion the form 0Eotp 0 <uF)+ uF, where D denotes the set T(qM>n<e<qM)+uL). Through elementary Convex Analysis, this means that uF equals the proximal point to the origin in this set, with regard to the usual Euclidean metric of 1R 3 . For the traditional, isotropic, Coulomb law, Dis a disk, so the proximal point is specially easy to calculate. REMARK 16. 1 Even if one assumes isotropic friction, computing the mot ion of systems involvmg three-dimensional fr iction is not in general as simple as above, due to the role of the mapping Gq• The determination of uf, at each t1me-step, usually is a non convex problem, which may possess several solutions.

EXAMPLE 16.2 The numer1cal technique presented here has been applied [START_REF] Moreau | Dynamlque de systemes a liaisons unilaterales avec frottement sec eventuel; essais numeriques[END_REF] to the motion of a particle P submitted to gravity and confined by a plane boundary with prescribed mot ion. This particle represents an object which, in the case of contact, may s l1de on the boundary, without rolling nor tumb I ing. The plane boundary may be the ground surface, in the course of an earthquake, or also a vil)r~atlng table. Motions of the following sort are common in industrial conveyors. The vibrating table 1s assumed to have the motion of the shaft in a crank and shaft mechanism. Let orthonormal axes Oxyz be attached to the table, with Oxy in Its surface. Axes Oy anctoz move in fixed plane OYZ. The point 0 is guided along a segment of the line OY. The point A (0, a, 0) of the table is astrained, by an eccentric, to describe, at constant velocity, a circle in the plane OYZ, centered on OY. Therefore, the plane OXY is the mean position of the vibrating table.

In order to produce a clear pattern of trajectories, the whole machine is set at a slant: the plane OZX is vertical, but oz is not in line with gravity.

Hence, OX is the direction of steepest descent in the plane OXY and determines the general trend of the mot ion of P.

A computer program, using the numerical technique described above, draws the projections to Oxy an to Oyz of the traJectories of P relative to t!Je table . No experiment has so far been conducted for comparison with reality.

At the initial instant, P Is left on the table with zero relative velocity.

Subsequent trajectories are drawn for several choices of this initial position, at various distances of Ox. Motions taking place sufficiently tar from Ox involve intermittent contact break; the loops then observed on the Oyz projection correspond to the parabolic motlon that P have, when referred to fixed axes.

Here are the values of the system constants, understood as referring to c.g.s. units. Gravity equals 981; OZ makes an angle of 13° with the upward vertical direction. The eccentric has radius 0.5 and rotation speed 10 rps. The length OA equals so. Friction coefficient is taken equal to 0.4.

Wlth this values, it turns out that the table shake is strong enough for leaving no place where P could rest without sliding. The whole pattern of trajectories admits Ox as an axis of symmetry. Depending on the direct ion in which the eccentric rotates, this line is a locus of attraction or of repulsion, a fact which could be asserted from qualitative reasoning. More inexpected is the existence of other lines of attract ion or of repulsion (they exchange their roles when rotation is reversed), parallel to this one. such a "quantic" effect appears to be connected with the number of flappings that the table performs while the particle runs through each episode of contact-free motion. Actually, the farther they lie from ox, the more confuse these attraction loci appear, due to the chaotic behaviour that trajectories then have. At the stage of the analytical formulation, one has to make the cone C

depend not only on q, but also on 'U or, if the posslbtllty of a velocity jump Is considered, on 'rr . At first glance, this seems to reduce the advantage of the formulatiOns of friction presented in the foregoing. But the example below tends to demonstrate that, far from being an heterogeneous addition to the previous theorization, such a refinement actually proves Inherent In the subject matter. In fact, this example shows that even if one starts from a law of friction with single coefficient It may happen that the logical derivation of consequences eventually makes some contact force appear to obey a Coulomb law with coefficient depending on sliding velocity.

Le1 us consider again the situation of Sec.13, namely, In a position Q of the system, with f(Q)=O, the range Gq<IRn) is assumed to reduce to a two-dimensional subspace W of x 3 , different from the common tangent planeT to the contacting bodies. In a motion with continuous velocity, it is assumed that the contact force~EX 3 Is related to U through Coulomb's law, expressed as before in the form Depending on the span of the cone C and on the angle that W makes wltt\ 1(, the orthogonal projection of C to W may equal the whole of W or some angular region c• of this two-dimensional space.

In the latter case, c• contains 1>+ and 1>-but has no reason 1n general to possess them as its edges: this means that the relation found between U and ~• is equivalent to a two-dimensional Coulomb law witll static coefficient larger tnan t!Je dynamic one. The equality of these coefficients, namely the simple case studied In Sec.13, is however achieved If W Is orthogonal toT.

If proJwC=W, every value of~• in 'W Is associated with 'U=O, possibly making with 1{ an angle larger than n/2. In statical problems, thts could be described as a wedging effect.

The above discussion provides an example of the interaction between the constraints of the system and the frictional effects at possible contact pomts. The treatment of systems involving several contacts wltll Coulomb friction, a question left aside in these lectures, leads In general to similar situations .

.

(5. 8 )REMARK 5 . 3

 853 As an introduction to forthcoming Sections, let us indicate how the formulation (5.6) directly suggests a procedure of time discretization

( 8 . 1 ) 1 1

 811 to the more general setting of Nonsmooth Dynamics.The Lebesque measure thus I oses its preeminence and we sha II definitely give up using the expression "almost everywhere". As observed in Sec.7, if u is discontinuous, only u+ and u-have relevance to the motion; so. one has to make a choice about what ls to replace u In the right-hand s1de of (8. 1 ). DEFINITION 8.1 The set of superimposed constraints Is said frictionless and soft 1f t!Je total contact Impulsion admits a representation dR=R'vd~, w!Jere d~ denotes a nonnegative real rneasure on I and R'IJ an elen7ent of £ cw} l,di);IRn) SUl.YJ t!Ja(. lor every t in I . .

  c = Fi(t,q,u) u is easily derived from Lagrange equations, with left-hand side developed in the form (4.3). For a motion governed by(7.4), with the contact 1mpuls1on dR=R'~d~ satisfying (8.2), there is only to retrace the same calculation, under the replacement of some steps, based on the rules of usual Differential Calculus, by what follows.

  needed. Defining Qc as the proximal point to QF in the region f ~ o, relative to the metric in view, means that the vector qc-qF is parallel to A -l \7f(qc)• Since the latter is estimated to be close to H1e calculated value tp (\7f.A \70 A \7f + The same techniques of violation control applies to the numerical methods presented in the sequel, for unilateral constraints with friction.

DEFINITION 12 . 3 T

 123 !Je unilateral constraint investigated a/Jove is :,-aid soft with Coulomb friction 11: in any motion wit/7 lb. v velocitv !unction. t!Je .

~

  scalar products of IR L and W, and denote by D +and D _ the Images of 1l +and otc-1

( 14 . 1 ) 1 (

 1411 ; this yields u+-u-= HP,< 14.2)where H denotes t!Je s,yn7metric 2x2 positive definite matrix•GA -l G"'. This has to be joined with two-dimensional Coulomb law, expressed as in Sec. 13 by 3 OEIR : u+ =a

) 1 this

 1 requires u+ =0. It is in fact a solution if -H-1 u-Eint C: then the sliding suddenly sticks. Concurrently P=O, with u+ = u-~ i.e. no velocity jumpl is also a solution in this case. • If 6 contains one of the half -11nes D + or D _ ) a value of P on this half -llne meets the requirements provided the resulting value of u+ = u-+ HP= o1 agrees with conditions ( 14.4) to ( 14.6). For instance I imagine D+c6: these conditions require o~O. This can happen only if -H-lU-ED+and then every• value of P belonging to the line segn1ent [-H-lu-~ 0] is a solution. The corresponding values of u+ cover the line segment [0 1 u-]. REMARK 14.1 The latter is the most interesting item of the discussion. It shows thatl contrary to the frictionless case, an episode of smooth motion with persistent contact may end with a velocity jump without anr collision occurring This is a dynamical analogue to the locking effect~ well known in the statics of mechanisms with dry friction.

( 15. 3 )

 3 Discretizing the two-dimensional Coulomb law consists in relating P to UF by the system of implications

- 1 "Figure 15 . 1 sode

 1151 Figure 15.1 sode of persistent contact wlth sl1ding of constant direction, a catastrophe occurs. The horizontal component of the veloclty of the lowest particle of ~1

Figure 15 . 2 ,Figure 15 . 2 been

 152152 Figure 15.2 been repeated, each time with uniform time-mesh, but successively using different values of the step-length, namely

  Figure16.1 

Figure 16 2Figure 16 . 2 Fig. 16 .

 1616216 Figure 16 2 shows the trajectories of P, consequent to 15 initial positions equally spaced from y=S to y=320; the eccentric rotates in the reverse direction to that indicated on Fig. 16.1.z

(Figure 17 . 1

 171 Figure 17. 1

0 ,

 0 say C, we denote by 'lllc Its Indicator function, i.e. ~Pc(X)=O If xEC and +oo otherwise. The subdi!feren-tJal a~Pc<x> is known to equal the normal cone to Cat point x <empty lf xtC).

	PROPOSITION 5.1 A smoot/7 mot1on_, with initial data q<t 0 ) belonging to 4>,
	is a solution of (5.4), (5.5) If and only 1! the velocity function u asso-
	Ciated with q throuph (2.1) satisfies Lebesgue-a e. in I the differential
	Inc I us ion

  DeflnHion 8.1 does not actually depend on the peculiar choice of d~.PROOF Suppose that (8.2) holds for every t in I and denote by dv another nonnegative real measure such that R'\) exists. If we put do=d~+dv, the Radon-Nikodym theorem ensures the existence of the density functlons v•a

	and v' 0 , nonnegative elements of £	00 (1, do; IR). Then dR=R'~v• 0 do=R'vv' 0 do;

PROPOSITION 8.2 Inclusion (8.2) holds for every tEl If and only Jf the same is true after replacinp d~ by another nonnepative real measure relative to w!Jich dR possesses a density function.

  10.1 For every motion satisfying (8.3) t!Je function t__..!'c belongs to lbv(I,IR). In t!Je sense of the ordering of real measures on I ,

	one !Jas	
	d!'c ~ F. dq,	( 10. 1)

w!t!J equaiJly if and only if u has no jump /n I.

  PROPOSITION 12.1 T!Je pair of relations< 12.1 ),( 12.2) is equivalent to -u E projT a~Vc<R>.Let us decompose 1{ in the form ( 12.1 ); necessarily p ~0, since ( 12.4) implies that a,c<:R) is nonempty, thus :REC. By construction, R belongs to the affine plane .:4=T+p1{. Therefore a,.:4(1{)=[1{] and (12.5) means that

		< 12.4)
	PROOF Assume that ( 12.4) holds; hence -'UET. Denoting by [1(] the ltnear
	subspace generated in 1: 3 by 1{, one has	
	3VEa1Vc(1{), 3WE[1{) : -U=V+W.	( 12.5)

1(; general~v. C equals t!Je cone ~qenerated in ::£ 3 b..v t!Je set 1J 1 + 1(. So C contains 1( and 1 ies entirely on the corresponding side ofT.

  12.2 Deline In 1: 3 t!Je extended real function 6

	11~ 8(U) = ~IIUII 2	+ 1¥rC11).	( 12.7)
	T!Jen< 12.4) Is equivalent to		
			( 12.8)
	PROOF Since ~11.11 2 is a smooth function, with gradient mapping equal to
	identity, one has for every U in 1: 3		
	aS(U)		

= U + olpT(U). Now, oqtT('U) equals [1'{] if 'UETand, otherwise, is empty. Therefore, ( 12.8) is equivalent to 11ET and OE oljJC(1{)+U + [1{],

given to a relation of t!Jis sort by Prop. /22 Because this relation is conical with regard to the element Pv (t), t11e reasoning already used in the proof of Prop.8.2 shows that the choice of the nonnegative real measure dV is immaterial, as long as cfPpossesses, relative to it, a density function. REMARK 12.4 Since we have agreed to extend the definitions of T(q) and C(q) to positions such that f(Q)>O, ( 12.1 0) makes sense also in that case. But, as previously observed, this relation implies that u+(t) belongs to T(q(t)), hence to V(q(t)). In view of Prop.2.4, this secures that, provided the initi~:."~l ctata satJs~~vf(q(t 0 ))~0, inequali(,v f(q(t))~O will hold t!Jroup!Jout I. REMARK 12.5 The val id!ty of ( 12. I 0) for t=to calls for some comments. In beginning this section, we recalled the meaning given to the initial condition u<t 0 >=u 0 of an evolution problem. It is understood that u 0 equals the left-limit u-<t 0 ) In some anterior mot lon, during which the unilateral constraint was already in effect. In particular, one may have f(q 0 )=0 and u 0 interior to the half -space -V<q 0 ); this imp I ies that a coil is ion takes place at instant t 0 . Then softness, as expressed by C 12.1 0), makes that u•ct 0 ) belongs to the Hnear space TCq 0 )=V<q 0 )n-V(q 0 ). But the case r<q 0 )=0 with u 0 interior to V<q 0 ), l.e. Initial velocity implying contact break, Is excluded from the present study. This will cause no great inconvenience in practice. REMARK 12.6 Put the notation Gq<V(q))='V(q); this is the closed half -space of f' 3 lying on the same side as 1tq with respect to T(Q). The set a~ccP~1) is contained in co, the polar cone of C, which in turn is contained in the half- space -V(q). Then, In < 12.1 0), the operation projT(q) might equivalently be concerning this vector is entirely conveyed through its equiva !ence c. lass modulo ker G;. This kernel equals the subspace of L 3 orthogonal to ••ww consequently, we may in the sequel replace 1{ by its orthogonal proJection to WQ, also called 1{, by abuse of notation.

We shall come back, in Sec.17, to a dJscussJon of what tn general becomes the three-dimensional law of friction under such a geometric two-dimensional reduction. Let us restrict ourselves at present to the usual case where the result is simply the fam i I iar two-dimensional version of Coulomb's law. The considerations of the preceding section might readily be adapted to this case. Here we shall rather choose to express the twodimensional Coulomb law in the following alternative form. For more readlbllity, the subscript q will momentarily be omitted.

T/Jere exist in t/Je vector plane 'W twa !Jail-lines 1> and D , + emanating lron7 t/Je origin and lying, with respect to T, on the :;.'dnle s1de as 1{. The convex cone C now equals their convex hull In smootr1 mot ions, the sliding velocity is essentially an element of rnw, say U= sf with sEIR

Coulomb's law consists of the three irnplications

3)

The angles that 1> +and 1> _make wlth I have respective tangent equal to -1 /y +and 1 /y _,where the positive real numbers y +andy_ respectively are the familiar friction coefficients correspondmg to positive and negative sliding .

All these elements are defined for such q that f(q)=O; as before. we shall imagine an extension of them to every q such that f(q)~O (at least in

After having so restated the two-dimensional law of Coulomb, we now propose to extend it to Nonsmooth Dynamics} in the same I ine as in Sec. 12.

Recall that, in such a context, velocity functions are significant only through their one-sided limits. Instead of u, 11 and U, the rig!Jt-lin71ts u+, u+ = Gqu+ and u+ = Gqu + are introduced into the above writing. The contact force 1{ is replaced, for every t, by the value P~(t) of the density function of the three-d1mensiona1 contact impulsion, or equivalently by the orthogonal projection of Pv(t) to W (q(t)). When coming to the use of the calculation plane, the function Pb. = 'Tq•-lpv is considered.

The dynamics of the system is now expressed by the Lagrange equation 1n IRn to be joined with A(q) u~ -K(t,q,u) tv = R~ , R' = G* P'

for every t such that f(q(t))~O.

On the contrary, when f(q(t))<O, then R~=O. Through Prop.3.1, one concludes that the coordinate of S on the j axis is pos1tive, negative or zero if and only if the same is true for u-.\lf(q(ts)).

First case: impact.

This ls the event where f(q(t 5 ))=0, with u-<t 5 ).\7f(q(t 5 ))>0. Consequently f(q(t))<O on some left-neighborood of t So the problem of determining u+ possesses a unique solution in that case.

Second case: sliding.

We now assume that f(q(ts))=O, with u-(t 5 ).\7f(q(t 5 ))=0 (equivalently u-(t 5 ).\7f(q(t 5 ))~0, since the anterior motion Is assumed to agree with f~O).

Stage 3'. The computation step finishes with QF = QM +~huF.

REMARK 15.1 A more intuitive description of the above discretization procedure may be found in [START_REF] Moreau | Dynamlque de systemes a liaisons unilaterales avec frottement sec eventuel; essais numeriques[END_REF]. Instead of relying on the calculation plane, it uses the image of c under G;-1 , a two-dimensional cone In IRn. This makes the comparison with the frictionless case clearer, but numerically 1s less effective. The calculation plane is also useful at the stage of deriving the inequalities n'eeded in the study of existence and regularity of solutions. REMARK 15.2 The case -H~1 UL EC yields UF=O, i.e. zero sliding velocity <the discussion here is simpler than that of the similar geometric construction made in Sec.14, because SM is certainly interior to C).

In that connection, the algorithm works very well to compute a motion involving the event which, in Remark 14.1, we have call~Q a frictional catastrophe. Now, we have just seen that each computatIon step is deterministic, i.e. it yields a unique pair qF, uF. This contrasts with the conclusions of Sec.14, showing multiple possible outcomes for such a catastrophe: all the points of a I ine segment are solutions in what concerns the contact percussion P and similarly in what concerns u+<ts> or U+(ts) (the latter may take any value between zero and u-(t 5 )).

In fact, the algorithm is able to approximate any of these solutions. As soon as the successive discretization intervals are chosen, a sequence of values of uF is unambiguously generated. This sequence is smooth. except for a jump in one of the intervals, said catastrophic. Before this jump, the computation of the motion, from • given initial data q(t 0 ), u<t 0 ), yields consistent results, for arbitrarily fine discret izations. But the value of the jump obtained in a catastrophic interval depends on the ratio in which the particle is submitted to a force given as a smooth function F of t, q, u. The case of a boundary with prescribed motion may be reduced to this one, through changing the reference frame; there only is to include in F the fictitious forces, thanks to which the new reference frame may be treated as inertia I.

The particle dynamics is expressed by this equality of :r 3 -valued measures on the time-interval I ( 16. 1 ) Le. after representing vector measures by density functions relative to some nonnegative real measured~, u~(t) = R~(t) + f(t, q, U) tV(t), an equality to be satisfled for every tEl.

In the present case, the mapping Gq reduces to identity for every q. Then, using the law of frictional contact in the form ( 12.8), one obtains the measure differential inclusion o E aljlcCq)<u~f(t, q, u> t~) + aeq<u+>.

< 16.2)

The feasible region cp of 1R

3 is defined as before by a single inequality f(qh;;O.

For f(q)=O, C(q) denotes the friction cone at the point q of the boundary.

Again, let us agree to extend its definition, in a smooth arbitrary way, to the values of q such that f(q)~O. In addition, C(q) is interpreted as reducing to the zero of 1R

3 when f(Q)<O. With every q such that f(q)~O, the vector plane T(q) also is associated, orthogonal to \7f(q). For f(q)~O, we agree ~ understand T(q) as consisting of the whole of 1R In particular, at every t such that f(q(t))<O, one has aeq<u<x> = {x} for every xEIR 3 , while the value of a'i'C(q(t))(x) equals 1R 3 for x=O • anfJ. 0 .. , .. 

. STATIC AND DYNAMIC' FRICTIONS

In many famlliar srtuations, friction appears h1gher when U1e contacting bodies are to be set in motion from rest than during an episode of established sliding. Such an effect of "tangent sticking" is traditionally accounted for by introducing a larger vafue for the static friction coeff i - cient, i .e. relative to zero sliding velocity, than for U1e dynanncone.

The numerical techniques proposed in the foregoing sections handle this refinement without difficulty. There only 1s, in each step of t1me discretization, to make the cone C depend on the sliding status in the antecedent step. For instance, in the algorithm described m Sec.15, U1is