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UNILATERAL CONTACT AND DRY FRICTION
IN FINITE FREEDOM DYNAMICS

J.J. Moreau
Université des Sciences et Techniques du Languedoc
Montpellier, France

ABSTRACT

An approach to the dynamics of mechanical systems with a finite number of
degrees of freedom, involving unflateral constraints, is developed. In the
n-dimensional linear spaces of forces and velocities, some classical con-
cepts of Convex Analysis are used, but no convexity assumption is made
concerning the constraint inequalities. The velocity is not supposed to be a
differentiabie function of time, but only to have locally bounded variation, so
the role of the acceleration is held by a n-dimensional measure on the consi-
dered time interval. Dynamics is then governed by measure differential
inclusions, which treat possible velocity jumps on the same footing as
smooth motions. Possible collisions are described as soft, thus dissipative.
Friction is taken into account under a recently proposed expression of
Coulomb’s law. These formulations have the advantage of generating
numerical algorithms of time-discretization, able to handle, in particular,
the nonsmooth effects arising from unilaterality and from dry friction.



1.INTRODUCTION

Usual mechanisms consist of parts which, at the first level of
investigation, are treated as perfectly rigid bodies. The mechanism operation
rests on the fact that some of these parts may come into contact or get
loose from each other, but none of them can overiap. Similarly, the parts may
touch the external bodies which support the mechanism, but can never
encroach upon the region of space they occupy.

In terms of the parameters q',..., q, making an element of R" denoted in
the sequel by g, which are used to locate every position of the considered
system, the above impenetrability properties may as arule be expressed by a
set of inequalities, say f (q)<0, oe{l,.,y}. Each of these inequalities
corresponds to what is traditionally called a wr//ateral constraint
Naturally, the description of a constraint in Mechanics does not reduce to the
geometric restriction it imposes to the system possible positions. Pre-
dicting the system behaviour always requires some additional information
about the forces of consiraint or reactions needed by the system dyna-
‘mics, for the geometric conditions to be satisfied at every instant.

Constraints whose geometric effect is expressed by equalities are, in
contrast, sald b//atera/ They are commonly realized by the conjunction of
several unilateral constraints and, in practice, this may leave a residual
Jooseness whose investigation has primary importance in some applications.

However omnipresent unilateral constraints are in machines, the place
they receive in the books on Classicai Mechanics is very modest. Here is the
traditional approach of the situation.

Starting with a position of the system in which some of the contacts
are effective (i.e. the corresponding inequalities hold as equalities) and



with velocities compatible with the persistence of these contacts, the
subsequent motion is calculated under the tentative assumption that all the
said contacts do persist. The calculation is identical to what is more
familiarly done in the case of bilateral constraints, with friction possibly
taken into account. At every instant of the calculated motion, the respective
contact forces are evaluated. As long as the direction of each of these
vectors is found compatible with the unilaterality of the corresponding
contact, the calculated solution is accepted (rigorously, this does not
dispense from investigating also the possiblity of contact breaking, since
the uniqueness of solution to an initial value problem of Dynamics is not
granted in general).

But if the above calculation yields, after an instant T, a non feasible
value for some of the contact forces, the tentative assumption has to be
rejected from this instant onward, and other types of motions, in which
some of the contacts initially present get loose, are to be tested in the same
way. The number of combinations to be tried may be high, if many unflateral
contacts are involved. In practical situations, such instants as t make a
finite set, but this cannot be asserted in general.

It was not before the first quarter of this century that E. Delassus
(cf.[1] for the frictionless case) observed that, contrary to what had been
formerly believed, the contacts which get loose at time T are not
necessarily those for which the calculation, performed at t>t, yields
contact forces of non feasible direction. Delassus' papers seem today rather
intricate; a clearer account of his arguments may be found in [2] . More
recently [3][4], the same question has been revisited, by the means of
elementary Convex Analysis and Quadratic Programming.



The present lectures develop a novel approach to the dynamics of
systems involving unilateral constraints. Here are the dominent features.

1° The function t-»q(t)eR" describing the investigated motion on a time
interval |, with Initial instant t,, is not a priori assumed differentiable
everywhere. instead, one supposes that g equals the time integral of a
velocity runction t->u(t)eR" with locally bounded variation on the interval;
notation: uelbv(l,R™. Classically, such a function u may have discon-
tinuities but, for every t in the interior of | , the existence of the
right-limit G*(t) and of the /ert-/imit u(t) is secured (see Sec.2 below
for a convention concerning the case t=t,). These limits equal the respective
one-side derivatives of the function q: I-R" at point t .

2° Inview of these discontinuities, the existence of the acceleration ¢'=u’
cannot be expected everywhere. But, with every uelbv( l,lR"), one classically
associates an R"-valued measure [5][6] on the interval |, called in the
sequel the aifTerential measure (7] of u and denoted by du.

The function u is Jacally abso/utely continvous it and only if the vector
measure du possesses a aensity runction, say uieL‘,m(l, dt; RM, relative
to the Lebesgue measure on the interval |. We denote the latter measure by
dt ; this is in fact the differential measure of the real function t—t, which
evidently belongs to 1bv(l,R). A function u of this sort may constitute a
solution to a differential equation, in the classical sense of Caratheodory.

Here is another special case: suppose that, for some teint |, one has
U (T)=u*(T). Then, the R"-valued measure du possesses at point T an
atom with value u'(T)-u™(T). This value is an element of R" that we shall



call the jump of u at instant T.

In general, a function uelbv(l,[R”) may be a solution to some measure
difrerential equation, a notion about which the reader could find some
information in [8].

3° Velocity functions with locally bounded variation make the setting in
which we develop the Aonsmooth Dynamics of mechanical systems with a
finite number of degrees of freedom. This is governed by an extension of
Lagrange equations that we introduce in Sec.7. It includes as a special case
the traditional equations of the Dynamics of Percussions. Concerning the
connection of this general formulation with the classical principles of
Dynamics, some details may be found in [9].

4° The set of inequalities f, <0 (with fuecland Vi,=0) defines in R" the
reasible region, denoted by ¢ and assumed in the sequel /naepenaent of time
If amotion t—q(t) is described in the above terms and if q(t)ed for every t,
one elementarily finds (see Sec.2) that u*(t) belongs to a certain polyhedral
conic convex subset of R". denoted by V(q(t)). This is the tangent cone to the
region ¢ at point q(t), equal in particular to the whole of R" when qt) is
interior to . Actually, a cone denoted by V(q), and its po/ar cone N(qQ) in
the sense of the standard scalar product of R", will in the sequel be defined
even for q¢$. when ged, the bone N(q} is nothing but the (outward) norma/
cone to ® at this point (reduced to {0} if q is interior to ).

9° The mechanical formulation of unilateral constraints has to encompass
the geometric condition Vtel: q(t)e®, together with some infomation about



the associated forces of constraint. In the framework of traditional
(smooth) Analytical Dynamics, this system of forces is represented, for
every t, by its covariant components, say ry,., r, , relative to the
generalized coordinates in use. This makes an element of R" that we shall
denote by r

The simplest case is that of /riction/ess contact. This classically
means that the force of constraint at every possible point of contact is
normal to the concerned bodies, with direction agreeing with unilaterality.
One elementarily finds (see Sec.5 below) that, if all the considered unila-
teral constraints are of this sort, the whole information about them lets
itself be summarized into the writing

Vtel qt)ed and  -r(t)eN(g(t)). (1.1)
(About the concept of a frictionless contact in the case of a less regular
feasible region than above, see {10].)

Starting from (1.1), a decisive observation is made in Sec.5, namely

that, for smooth motions, it implies the séronger assertion

~P(1) € Byy(q(pyy U (). (1.2)
According to the usual notations of Convex Analysis, the right-hand member
equals the normal cone at point u’(t) to the convex subset V(g(t)) of R"

In addition, it is established that, if the initial data satisfy q(tyled,
then (1.2), assumed to hold for (dt-almost) every t, secures that olt) will
remain in ®.

The advantage of (1.2) over (1.1) lies in the following. First, as we shall
develop in Sec.5, this writing directly suggests some algorithms of time-
discretization for computing the solutions to initial value problems.
Secondly, by entering the velocity into the contact law, it paves the way to



the consideration of friction. Furthermore, it is easily generalized to
Nonsmooth Dynamics.

6° The function t-r(t)eR" which, in the traditional Lagrange equations,
represents the forces of constraints has, in Nonsmooth Dynamics, to be re-
placed by an R"-valued measure on the time-interval 1, called the contact
Impuision and denoted by dR. For smooth motions, this measure admits the
above function as its density relative to Lebesgue measure. A priori, there
exists an infinity of representations of a vector measure, such as dR, in the
form dR:RL'J dy , where dy is a nonnegative real measure and Rl‘J a vector-
valued locally dy-integrable density function. We shall admit, as the law of
frictionless contact in Nonsmooth Dynamics, the following generalization of
(1.2), to be satisfied for every t in |,

~R£J(t) € a\pv(q(t))(u*(t)), (1.3
Because the right-hand side is a cone, one shows that 24/s condition /s
inairrerent to the choice of the base measure dy. Furthermore, the existence
of a function Ri! verifying (1.3) implies that u’(t) belongs to V(q(t)). Through
Prop.2.4 below, this ensures q(t)e$ for every t, provided the initial data
satisfy q(tgled, .

Assertion (1.3) about the contact impulsion makes the definition of the
class of unilateral constraints that we call 7r/ictioniess and sort. When
transported into the equality of R"-valued measures, which governs
Nonsmooth Dynamics, it generates a measure differential inciusion. The
existence of solutions to the resulting initial value problems has so far been
established only in some special cases [11][12][13] and is currently under
investigation. The velocity jumps possibly occuring in such solutions are of
the sort the author has previously called “standard inelastic shocks"[14]



[15]. These are d/ssjpative, so the corresponding evolution problems are
essentially different from those one meets when the possible bounces are
assumed “elastic” [16]}{17][18]{19]. A synthetic view may be gained from the
énerqy balance drawn in Sec.10 below. The replacement of utin (1.2) by
some weighted mean of u* and u”™ results in the introduction of a
“dissipation index" 6, with zero value in an elastic bounce, while the
softness case corresponds to 6=1.

7° Dry friction at a point of contact will be described by some extension of
Coulomb's law to possibly anisotropic surfaces. The traditional formulation
of this law rests on the decomposition of a contact force into its normal and
tangential components; the formulation then consists of two separate state-
ments respectively pertaining to zero and nonzero sliding velocity. In some
of the author’s early papers [20]{21][22], it has been observed that, as soon
as the normal component is treated as known, these pair of statements lets
itself be synthetically expressed as a law of resistance deriving from a
“pseudopotential”. This in turn may be transcribed into a variational
inequality [23], reflecting a "principle of maximal dissipation”.

By a law of resistance, we mean a relation (in the present case,
nonsmooth and not expressible through a single-valued function) between the
contact force and the s/iding velocity. Recall that significant mathematical
and numerical papers have, in recent years, been devoted to problems which
instead fnvolvé a "pseudo-friction” law. These problems are developed in the
framework of small deviations and the sliding velocity vector is replaced by
the tangential relative a/sp/acement of the contacting bodies. The status of
such a pseudo-friction, compared to proper friction, is similar to that of
Hencky plasticity with respect to proper plastic flow rules.



The present lectures rest on a newer formulatfon of the possibly
anisotropic Coulomb law, avoiding the decomposition of the contact force
[24][25]. Similarly to what has been shown for the frictionless case, these
formulations suggest numerical algorithms of time discretization. Further-
more, the resulting relation being conic with regard to the contact force, it
admits an extension to Nonsmooth Dynamics, independent, as before, of the
choice of a base measure dy.

8° Here again, the possible nonsmooth motions are found to be governed by
some measure differential inclustons. These differential inclusions are
applied in Sec.15 to the dynamics of velocity jumps.

Singularities in the dynamics of systems involving Coulomb friction
used to be a matter of controversy during the first quarter of this century. It
was observed that some initial value problems could admit several solutions
or no solution and aiso that the behaviour of the investigated system
depended on its constants on a discontinuous way. At the time, these
findings were considered by such authors as P.Painievé as contradicting the
very bases of Physics. In modern views, nothing looks paradoxical in that, so
there only remains of all these discussions the assertion, first made by
L.Lecornu [26], that, in the presence of dry friction, velocity jumps are not
necessarily the consequences of collisions.

It 15 shown by an exampie that the numerical tethniques we propose can
handie these 7rictional catastrophes without difficulty.

9° These lectures are restricted, for brevity, to time-independent cons-
traints. However, by changing the reference frame and introducing adequate
fictitious forces, one is able to apply the proposed methods to the motion of



a small object lying on a vibrating table or, in the course of an earthquake,
on the ground surface. An example is displayed, exhibiting some unexpected

features.

10°  For better agreement with the behaviour of real systems, one is
commonly led to apply the traditional law of Coulomb with different values
of the friction coefficient, depending on whether the sliding velocity
vanishes or not. This distinction made between the "static” an "dynamic”
frictton coefficients seems, at first glance, to destroy the unity brought into
the formulations by the use of Convex Analysis. Actually, it is shown in
Sec.17 that, far from beeing a mere empirical alteration of these formu-
lations, such a distinction is inherently involved in the consequent deve-
lopments. The numerical techniques proposed in these lectures are able to
handle it without causing any computing problem. In fact, whether the
sliding velocity exactly vanishes or not at the end of a time-step 1s
explicitely determined by the algorithms; so the friction coefficient for the

next step may be adjusted accordingly.

Let us close this Introduction by aknowledging that Coulomb’'s law can
provide only a rather crude approximation of the reality of dry friction (a
recent review of the subject may be found in [27]). Also, the collisions
affecting parts in real machines cannot be expected to fall exactly under one
of the categories respectively described as "soft” or “"elastic”. And it is
unlikely that any definite value of the "dissipation index" could be identified
on a clear basis. But a fact of life is that, in most engineering situations, the
higher order information needed for more accurate description 15 not
available. S0 one has to be content with some moderately precise

10



calculation, accounting at least for the main features of phenomena. in three
years of experiments, the approach we propose has proved to be very
workable. Because of their theoretical consistency and numerical stability,
the described algorithms seem to be “robust™ enough for accepting in the
future various empirical alterations, aimed at improving their power of
prediction.

No allusion is made in these lectures to the contact between oe/forma-
ble bodjes, currently a very active domain of research. The reader will find
references to this subject in other parts of this volume. In what concerns
computation, since the spatial discretization of a continuous medium, using
for instance a finite element scheme, generates a finite-dimensional space
of positions, the design of numerical procedures may take an inspiration
from the methods presented here (see e.g. [28]). But some fundamental
differences between continuum dynamics and finite freedom dynamics have
to be kept in mind. Because, in continuous media, every contact particle has
zero mass, the concept of a soft contact, as opposed to an elastic contact,
becomes unsignificant (it only stays as an option in constructing numerical
algorithms). Possible dissipation reenters the scene through the constitutive
laws which govern the behaviour of the concerned bodies. In elastic bodies,
shock waves are expected to originate from boundary impacts. It is only
when the time taken by these waves to travel the whole system is short,
with respect to some other typical time values, that the treatment of
deformable systems may be strictly conducted in the lines of finite freedom
dynamics. Actually, most papers on continuous systems so far are restricted
to quasistatic evolution problems, ie. the terms involving inertia are
neglected.

11



2 DIFFERENTIAL PROPERTIES

Let a mechanical system have a finite number n of degrees of freedom;
every possible position of it may be located through the value it imparts to
q=(q‘,...,qn ), an element of some open subset Q of R" . This holds at least
locally; in other words, q',...,qn are local coordinates in the manifold of the
system possible positions.

One defines a motion by making g depend on time. If the derivatives ¢ !
of the n functions t—»qi exist at an instant T, we shall refer to the element
a=(q’,..,.a" of R" as the velocity of the system at this instant.

Motions will be studied on some time interval I, containing its origin t,
but nonnecessarily closed nor bounded from the right. We shall not suppose
the function q—-R" derivable everywhere. Instead, we assume the existence
of a velocity function ul-R" such that

Viel:  a(b=alty)+ fi umdt 2.1
This makes sense as soon as u is locally Lebesgue-integrable on I. More
specially, we shall suppose that the function u has Joca/ly bounded
variation on |, i.e. it has bounded variation on every compact subinterval of
I; notation: uelbv(l,R"™). This secures that, at every T in the interfor of 1, the
right-limit U'(1) and the /Jeft-/imit u (1) exist,

By conventfon, for the initial instant t, , the left-limit u(ty) is
understood as equal to u(to). This 1s more than a notational trick; such a
writing actually reflects the significance we generally mean to give to
the /nitial condition u(ty)=uy of an evolution problem. It is intimated that
investigation begins at t,, but that the mechanical system was already in

12



existence before. By u, is imparted some abridged information about the
system history, precisely the left-limit u‘(t0 ).

Symmetrically, if | possesses a right end, say t., and contains it, the
writing u(t.) = u(t.) will prove convenient.

From (2.1) 1t results that the function g possesses at every T>t, a
lert-cderivative q (1), equal to u (T) and, at every T different from the
possible right end of |, a right-derivative q (1), equal to u*(T).

In addition to the constraints which have permitted the g parametri-
zation, we assume that the system is submitted to some wnilateral
constraints whose geometric effect is expressed by a finite set of
inequalities

fa(q)so. xe(1.2,..,y]) . (2.2)

The functions f, :Q—R are supposed c' with respective gradients Vf, =
(afa/aq‘,...,afa/aq“ ) different from zero, at least in a neighbourhood of the
corresponding hypersurface f, =0.

Inequalities (2.2) aefine the feasible region ¢ o/ Q , rforbrevity, we
assume that the runctions f, do not aepend on time, thereby leaving aside

the possibility of moving constraints.

Through the chain rule, the existence of one-side derivatives for the
functions t—»qi(t) implies the same for t—» fa(q(t)). Consequently, if a motion
verifies f  (q(t))<0 for every t, then at any instant T such that f_(q(1))=0,
one readily finds u*(t).Vfa(q(t))sO and u (1).Vf(a(T)20 (the dot refers to

the usual scalar product of R™).
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Generally, let us put:
NOTATION 2.1 For every qeQ oefine
J(Q) ;= {xe{1,..,y) : T (020} (2.3)
and
V(@) := {veR" : Yoxed(a), v.9f (a)<0) (2.4)
(observe that N(q) equals the whole of R" Q)= )

Using as above the one-side derivatives, one obtains:

PROPOSITION 2.2 /7 a motion t->(t) dagrees with the set or constraini
inequalities(2.3), re alt)ed rorevery t, then
Vteintl:  uT(teVia(t)  ang  uT(De-V(at)),

REMARK 2.3 In existential studies as well as in numerical algorithms, the
definition (2.4) of V(q) will commonly be invoked with g¢®. Then, the

following is useful:

PROPOSITION 2.4 Let the function t—q(t) De associaled with some
ueL']m(!,lR") through (2.1). Suppose that aLyed and that, rfor Lebesgue-

almost every tel, one has Ut)eVla(t)). 7nen oft)ed rorevery t.

PROOF. Let us suppose the existence of some tel , with q(T)¢¢ and look for
contradiction. There exists xe{1,..,y} such that f_(q(T))>0. The set {tel: tgt
and fu(q(t)KO} fs nonempty (it contains ty); let o denote its 1.ub.. Due to the
continuity of f, one has fu(q(o))zo. Since f s C', the function t— fu(q(t))
is absolutely continuous on [0,T] ; after expressing its derfvative by the
chain rule, one may write

(a0 = [5 u(b).Vf (qlt) dt.

14



In view of the definition (2.4) of V, the integrand should be <0 for

Lebesgue-almost every t , hence f, (q(T))<0, which is a contradiction. "

If u has locally bounded variation, it belongs to L']m(l,R") and the set of
1ts discontinuity points is countable, hence Lebesgue-negligible. Thus, in
using the above Proposition, one may replace u in the assumption

u(t)eV(qa(t)) by u” or u” or any weighted mean of them.

REMARK 2.5 The subset V(q) of R is a closed convex cone. In case qed, this
coincides with what s usually called the Zangent cone to the region ¢ at
point g (equal, in particular, to the whole of R" if geint ¢). On the contrary,
if g¢d, one commonly agrees to say that the tangent cone to ¢ at this point
is empty; s¢ 75 not V(q).

Some caution is needed when interpreting the concept of a tangent cone.
Let qoecb and veR" ; inview of Prop.2.2, for the existence of a mapping q:|-¢
such that q(tg)=qy and q"’(to):v, it 1s necessary that vev(g,); a
counter-example may be found in [15], showing that this is not sufficient.
However, if in addition one assumes int V(qy )=, then existence is secured
[29]. Through classical Convex Analysis, the latter assumption is equivalent
to the polar cone of V(qo) having a compact basis; this is the convex cone
generated in R" by the elements Vfu(qo), with aed(gq), so the assumption
amounts to assert the existence of a hyperplane in R", not containing the
origin, which intersects all the half-lines generated by these elements. We

shall meet this cone again in Sec.5.

REMARK 2.6 A deeper insight into the situation could be gained by

15



considering the dif7erential manitold P of the system positions, without
preference to any peculiar system of local coordinates. A motion is the
conceived as a mapping p:l-2. The (possibly one-side) velocity of the system
at some instant T equals, by definition, the (possibly one-side) derivative of
this mapping, an element, say p(T), of the tangent space ?b(t) to P at point
p(t). The real numbers g’ (T) considered in the foregoing equal the

components of p(t), relative to the base induced in ?b(t) by the local

coordinate system in use. Inequalities (2.2) are imparted a coordinate-free
meaning provided one understands the functions fo( as Cl mappings of P to R,
without reference to any choice of local coordinates. Then, by the gradient
Vfa(p) is meant an element of ?’; , the cotangent space to P at point p.
Also in this linear space, the local coordinate system induces a base; the
partial derivatives precedingly invoked equal the components of Vf(x(p)
relative to this base. In Definition (2.4), the Euclidean scalar product of R"
should then be replaced by the bilinear form <.,.> which puts the linear
spaces T‘p and P‘; in duality. Thereby, for every position p, a pair of mutually
polar convex cones is defined in these dual linear spaces, without reference
to any choice of local coordinates.

The concept of a convex cone in ?bor in ?’; is meanigful, in view of the
linear structure of these tangent spaces. Concerning, on the contrary, the
feasible region, the differentiable manifold P cannot in general support any
convexity assumption. If such an assumption is made, it only refers to some
peculiar coordinate system. However, let us mention the following special
case.

For the treatment of dynamical problems concerning a scleronomic

16



system, the expression %Aij(q)q‘iq'j of the kinetic energy has to be
introduced. This is a positive definite quadratic form in g and, classically,
by putting d52= A”(q) dqidqj, one equips the differential manifold P with a
Riemannian metric independent of the coordinates in use. So this metric is
intrinsically associated with the dynamical structure of the mechanical
system. Now, it may happen that some Jocal coordinates exist, such that the
coefficients Aij(q) are constant in q; so is the case, for instance, if the
system consists of a singie rigid body performing only motions parallel to a
fixed plane. Under such circumstances, the curvature of P is zero; in other
words, this manifold is locally Euclidean. Then, at least in sufficiently small
regions, the concept of the convexity of a subset of P becomes mechanically
meaningful. The mathematical paper [16] was precisely based on the
convexity of the feasible region.

Anyway, the writing in (2.1) makes sense only as far as the functions
t->q and t—u take their values in a fixed linear space, namely R" for the
present. On the contrary, in the differential geometric setting, the velocity
at time t would be an element of the tangent space ?b(t)' which depends on t
through the unknown mapping p: | 2.

S KINEMATICS

In all the sequel, each of the inequalities f <0 will be understood as
characterizing the system positions agreeing with the mutual impenetrabi-
lity of a certain pair of rigid bodies. For instance, let us drop the subscript
& and assume that condition f<O expresses that some rigid part B, of the

system does not overlap a given external obstacle By, fixed relative to the
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reference frame in use. The impenetrability of two rigid bodies B, and B,,
which both are constituents of the system, would finally result in the same
formalism (see [30], where the case of an external obstacle with prescribed
motion is also considered).

Equality f(q)=0 means that, in the position g of the system, the part B,
touches B, . We shall always assume that contact takes place rough a

single particle of B, , which in general depends on q, say M,(q). The res-
pective boundaries of contacting bodies will be supposed to permit the defi-
nition of a common tangent plane at M () to these boundaries. This does not
preclude edges or vertices; one of the bodies may even reduce to a single
particle, provided the boundary of the other is a smooth surface.

Let N q aenote the unit vector, normal to this tangent plane and di-
rected toward B .

As usual, the primitive constraints of the system, i.e. the constraints
which have permitted the parametrization through (q‘,...,qn ), are assumed
smooth enough for the folliowing to hold. Let a motion be described by giving
g as a function of t. For every t such that the (possibly one-side) derivatives
q",...,q‘n exist, every particle, say M , of the system possesses a (possibly
one-side) velocity vector, relative to the reference frame in use. Calculating
this vector yields an expression ¥, q, q) , affine with regard to q.

For brevity, we shall restrict the sequel to the sc/eronomic case, i.e.
the primitive constraints do not depend on time; then the above expression is
/inear in q. Let us apply this to the contact particle M,(q) and put the
notation

G = VM, (a), q, 0). 3.1

18



For every g such that f(g)=0, this introduces the mapping g— qu‘, linear of
R" to the Euclidean linear space I3 of the vectors of physical space.

In the case of a pair of bodies which both are parts of the system, a
linear mapping similar to Gq would express from ¢ the re/ative velocity, at
a possible contact point, of one of this part with respect to the other.

The writing in (3.1) Is not restricted to motions agreeing with the im-
penetrability constraint. We now are to take this constraint into account. Let
a value of g correspond to contact, i.e. f(g)=0, and let veR". Let a motion
start from this position g at some time T, with right-velocity q* equal tov
at this instant. Evaluating f at all subsequent positions, one obtains a
function of time whose right-derivative at T may be expressed through the
chain rule, namely v.Vf(q). Assume v.Vf(q)<0; then instant T is followed by a
nonzero time interval over which f<0, ie. B, and B, break contact. This
implies that, at t, the right-velocity Gyv of the contact particle M, (a) of
B, verifie J\(q.gqv 20; otherwise the motion of this particle would require
of ﬁ, to overlap SBO, so making f20.

This shows that, for veR" and for any fixed q satisfying f(q)=0, one has
the implication

v.Vf(Q)<0 = T(q.qu >0. (3.2)
Let us introduce now the linear mapping Gq" \ 53 - !R“, the franspose of
Gq in the sense of the Euclidean autodualities of £ and R"; then ‘Nq.gqv =
V. Cj; Nq. Recall that we have assumed Vf = O ; through a uniflateral version

of the Lagrange multiplier theorem, implication (3.2) yields:

PROPOSITION 3.1 Forevery q verifving f(Q)=0, there exists \x0 such
that
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g;;a\{q = -\ Vf(q). (3.3)

REMARK 3.2 We shall later need that the element G; N q of R" differ from
zero, i.e. A>0. It is a general fact that the kernel of G; equals the subspace
of E; orthogonal to the range Gq(an) of Gq In particular, when Gq(!R”) is
the whole of Ez , the kernel of G; reduces to {0} and this secures G; T{qzo.
But, in some usual applications, Gq(lR") will be a strict subspace of 23 ; for
instance, if the primitive constraints allow B, to perform only motions
parallel to some fixed plane, then dim Gq(lR”) =2. What precedes shows that
G;T{q =0 if and only if GQ(IR") is contained in the two-dimensional subspace
of Ez consisting of the vectors parallel to the common tangent piane to

contacting bodies.

REMARK 3.3 So far, Gq has been defined only for such q that f(g)=0. In
computation, as well as in existential studies, it will prove useful to extend
the definitions of Gq and Nq, in a smooth arbitrary way, to the whole range Q
of the local coordinates in use, or at least to some neighbourhood of the
hypersurface f=0. This extension may additionally be required to preserve

the property (3.3).

REMARK 3.4 Let a motion comply with condition f<0 at every time. Consider
an instant of contact, i.e. at which f(q)=0, and suppose that the {wo-sioed
derivative g exists at this instant. Since the latter equals the common value

of q’+ and g, the observations made in Sec.2 imply q.Vf(g)=0. In view of

Proposition 3.1, this yields Nq,qu‘zo, expressing that the velocity of the
particle M,(q) of B, through which this body touches the fixed obstacle B, is

a vector parallel to the common tangent plane.
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Similar reasoning would apply to a pair of moving parts of the system: if
contact holds at some instant and if, at this instant, the time-derivative ¢
exists, in the ordinary two-side sense, then the relative velocity of one of
these bodies with respect to the other, at the contact point, is a vector
parallel to the common tangent plane. The same fact is classically
established in elementary Kinematics, under the stronger assumption of
permanent contact. One refers to this relative velocity as the s//ding

velocily of the first body upon the second.

4. LAGRANGE EQUATIONS

Let a motion of the system be described under the form (2.1). It will be
sald smooth if the velocity function uis Jocally absolutely continuous , i.e.
absolutely continuous on every compact subinterval of I. This implies the
existence of the derivative u(t)=q"(t) for Lebesgue-almost every t. We shall
refer to the element g” of R" as the acce/eration of the system.

Such a motion agrees with Dynamics if and only if the function t—q(t)
verifies the Lagrange differential equation

d(E, /80" - 9 /0q' = ¢, (41)
Here E.(q,q) denotes the expression of the kinetic energy; since we assume
the system scleronomic, this is
£d =4 A@aly) (42)
apositive definite quadratic form in ¢.
By ¢; are denoted the covariant components of the totality of the

forces acting on the system. These possibly comprise some given forces,

whose covariant components Fi are known functions of time, position and
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velocity, and also comprise the a priori unknown réact/ons or consiraint
forces, involved in the constraints that the system experiences. As usual,
when Lagrange equations are applied, we shall assume that the primitive
constraints, i.e. those which have permitted the g parametrization, are
perfect, in the sense that the corresponding reactions have zero covariant
components. But we shall have to take into account the reactions of the
superimposed unilateral constraints.
The left-hand side of (4.1) may be developed into

) _1 3K
Aijq +(A”lk 5 Ajk,i)q q, (4.3)

where A”,k denotes the partial derivative of A” with regard to g,. Therefore,
(4.1) takes on the form Aijq”j = K; + ry; here the term r; refers to the
totality of the reactions of superimposed constraints, while K, is a known
function of t, g, @, equal to Fy minus all the terms in (4.3) which involve
q‘jq‘k. Since the matrix A is invertible, we may finally write this down as
¢=A"K -+, (4.4)
It has been assumed that each inequality f(q)=0 expresses the contact
between some pair of rigid bodies. Let us denote by r]“,..‘,rz‘ the covariant
components of the corresponding reaction, making an element of R" denoted
by %, Formally, this term will be introduced also when the said contact is
not fn effect, so we shall state
fe(@ <0 = r*=0. (45)
To fix the ideas, suppose, as in Sec.3, that the contact expressed by

fo (@) =0 takes place between some part, say B, of the system and an

(xJ
unmoving external obstacle. Suppose that the contact action on B, results in
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a single force R*, applied to a particle of this body denoted by M, (@) . By
definition, the covariant components of this force make the element r* of R"
such that

wveR"  REUM (), o, v)=r%v . (4.6)
On the left-hand side, the dot refers to the Euclidean scalar product of fE3 ,
on the right-hand side to the standard scalar product of R" . As before, due
to scleronomy, Y(M,(q), q, v) is a linear expression in v, say Gg‘v. Then, by
introducing the transpose mapping Gg‘*: E; > R" , one equivalently writes

down (4.6) as
=Gyt R (47)

0.SMOOTHFRICTIONLESS MOTIONS

In this Section, we shall assume that the possible unilateral contacts
are /riction/ess Under the preceding notations, this means that, for every «
such that f[x(q) =0,

JeR: R'= p Ny, (S.1)
where T{g‘ denotes the common normal unit at M,(q) to the contacting
bodies, airected toward By .

we shall assume in addition that the contact is wni/ateral without
aonesive errect, 1.e. p 20,
Through Prop.3.1, conditions (4.7) and (3.1) imply
Juy 20 1% = - U VT (). (5.2)

Note that the repetition of @ Greek index will never be undeérstood 3s
Implying summation.

Provided that gg‘*fﬁ{g‘ z 0 (see Remark 3.2), it may more precisely be
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checked that (5.2) is equivalent to the existence of R agreeing with the
above assumptions. And, in view of the convention made in (45), this
equivalence remains valid for every qed if one stipulates that y, =0 when
fo(@<0. Furthermore, in formulating our evolution problem under the
geometric condition ged , it is immaterial to state that (5.2) also holds for
non feasible q.

Therefore, a value of the total reaction term r = r* is compatible

with the stated laws of contact if and only if it satisfies

r€ - N(@), (5.3)
where N(q) denotes {he convex cone generated in R" oy the elements Vf (q),
oe(q) (see Notation 2.1). According to an usual convention, if J(qQ)=@ this
cone consists of the zero of R”. In all cases V(Q), as defined in (2.4), and N(q)
make a pair of mutually polar or conjugate cones. When g belongs to the
feasible regfon, N(q) 1s nothing else than the (outward) normal cone to ¢ at
point q, but what we are denoting here by N(g) aiso makes sense and is
nonempty for q¢9.

Eliminating r between (5.3) and the Lagrange equations, as they are
displayed in Sec.4, one obtains that a smooth motion of the system agrees
with all the mechanical conditions stated, if and only If the da//ferential
nclusion

-A(Q) q" + K(t,q,9") € N(q) (5.4)
is satisfied Lebesgue-ae. in |, together with the geometric condition of the
unilateral constraints,

Vtel: at)ed. (5.5)

The Proposition below marks a turning point, regarding all our subject

24



matter. For every (closed, convex) subset of R", say C, we denote by y, its
Indicator runction, 1.e. yp(x)=0 1T xeC and +co otherwise. The swpadirreren-
tial dy(x) is known to equal the normal cone to C at point x (empty if xgC).

PROPOSITION 5.1 A smooth motion, with initial data oty) belonging to @,
/s @ solution or (3.4), (3.3) I and only It the velocily function u asso-
ciatea with q through (2.1) satisries Lebesque-ae. in | the dirrerential
mnciusion

-AQ) U+ K(t,q,u) € anpv(q)(u). (5.6)

PROOF. For every t such that (5.6) holds, the right-hand side is nonempty,
hence u(t)eV(q(t)). Since, by assumption, u is a (locally absolutely) conti-
nuous function, (2.1) entails that u(t) equals, for every teinti, the (two-
sided) derivative of t—q(t) Through Proposition 2.4, one concludes that, if
(5.6) is verified Lebesgue-a.e., then (5.5) holds. Furthermore, (5.6) implies
(5.4) because a»pv(q)(u) is essentially a subset of N(q), the polar cone of V(q).

Conversely, suppose that the function t—q(t) satisfies (5.5). Since u is
continuous, Proposition 2.2 shows that u(t), for every teintl, belongs to
V(q(t)N-v(q(t)) which is the linear subspace of R" orthogonal to N(q(t)).
Therefore, if (5.4) holds Lebesgue-a.e., then for Lebesgue-aimost every t, the
values of u and -A u'+ K are orthogonal and respectively belong to the pair of
mutually polar cones V(q(t)) and N(q(t)); consequently they are conjugate

Loints relative to this pair, i.e. (5.6) holds. .

REMARK 5.2 At the present stage, where the motion smoothness, i.e. the
local absolute continuity of u, is a priori assumed, the same symmetry

between past and future is observed as in the classical case of bilaterally
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constrained frictionless systems. In particular, for the differential inclusion
(5.6) to take care automatically of condition ged, it is enough that g(T)
belongs to ¢ at some Tel, nonnecessarily the initial instant. Also an
equivalence similar to what is stated in the above Proposition may
symmetrically be established, with (5.6) replaced by
-A(Q) U+ K(t,q,u) €- aq:_v(q)(u). (5.7)
Similarly to (5.6), this implies the orthogonality of the elements u and
-Au+K of R”. From such an orthogonality, the same power equation may be
derived as in the traditional case of frictionless time-independent bilateral
constraints:
E =Fu. (5.8)

REMARK 5.3 As an introduction to forthcoming Sections, let us indicate how
the formulation (5.6) directly suggests a procedure of time discretization
for computing approximately the motion consequent to some initial data
q(ty) =qp  givenin & (5.9)
ulty) = ug,  given in V(q,). (5.10)
Let (t,tp) be a time-step (here | is understood as referring to "initial”
and F to "final"), with length h=t.-t, and midpoint tM=t|+%h . From the
approximate values q, u, of the functions g and u at {;, one has to compute Q¢
and ug , corresponding to tr.
Using (u,,—-u,)/h as an approximant of u, one discretizes the differential
inclusion (3.6) into

—A(qm) (ul_.-u')/h + K(t u') € aqjm(uF). (5.11)

MJqMJ
Here qmzq,+32-hu, fs a midpoint approximant of q; by yy is denoted the
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indicator function of V(q,,,). Inserting ug as an approximant of u in the
right-hand side tends to qualify this discretization scheme as "implicit”.
However, the smoothness of the given function K allows one to replace in it u
by u; , s0 the procedure may be said "semi-implicit”,

We shall come back later to more general algorithms of the same sort;
let us only show here how (5.11) uniquely determines uc. Suppose, for
simplicity, that Algy) reduces to the unit matrix. This actually entails no
loss of generality: in the line of Remark 2.6, it amounts to make of the
tangent space, at the point g, of the position manifold, a Euclidean linear
space, with scalar product defined through A(qy), and to take an orthonormal
base in this space (more detail on the practical use of this trick may be
found in [15)). Then (5.11) becomes

—(uF—ul) +hK € awm(uF).
The multiplication of both members of (5.11) by the positive number h has

not altered the right-hand side, because dypm(Ug) is a cone. In view of the

classical characterization of the proximal point to up+hK in the closed
convex subset V(qy) of the Euclidean linear space, this is equivalent to
U = Prox ( u* hK, V(qm)). (5.12)

Observe that u+ hK is nothing but the value that uc would take in the case
J(qm)zef, i.e. the value that the discretization of Lagrange equations would
yield in the absence of superimposed unilateral constraints.

After determining u, one finishes the computation step by caiculating

_ i
Qe = qM+§h Ur.

27



6. PERCUSSIONS AND FRICTIONLESS SHOCKS

The preceding Section was restricted to motions a priort assumed
smooth. For such a motion, there may exist in particular a time interval
during which one or more of the contacts persist, say the contact expressed
by f, =0. Call t, the end of this interval and suppose that a nonzero interval
follows, over which f_ < 0. In other words, as soon as t exceeds t., the set
J(q(t)) ceases to contain o thus the cone V(q(t)) suddenly increases. This
involves no contradiction with the assumed (locally absolute) continuity of
U, hor with the inclusion uevVN-V, resulting from Prop.2.2. Certain motions
of a unilateral pendulum provide familiar examples of this.

Computationally, there is no difficulty in approximating a motion
showing such a smooth contact break, through the algorithm of Remark 3.3. It
only happens that, from a certain time-step to the next, the dimension of
V(qy) suddenly increases, without producing any notable irregularity in the
sequence of the calculated values of u.

Imagine, on the contrary, that an interval of smooth motion ends at some
instant t, with the occurence or new contacts, t.e. J(q) suddenly inCreases.
In view of Prop.2.2, the continuity of u at t would require of the left-1imit
u (ty), an element of -V(a(ty), to belong also to V(g(ty). This would mean
that the new contacts are attained tangentially, an event which cannot be
expected In general. So, a discontinuity of u at t, has to be contemplated.
This is called a shock and, to deal with it, Classical Mechanics provides the
concept of percussion, that we are to review in a few words.

Assume that tg is followed by another interval of smooth motion. It will

be understood that, because of slight deformability in the system parts, the
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velocity change is not rigorously instantaneous, but takes place on a "very
short” time interval, say (t.t.+6), over which the differential equations of
smooth dynamics supposedly hold. In view of the steep velocity change, these
equations are expected to involve "very large” values of the contact forces.
By equalling the integrals on (ts,ts+9) of both members of the differential
equations, one obtains the momentum change rformu/a. This is a balance
equation, through which the net velocity change is related to the time
integral, say T, of the function t-r(t)eR” which, in the notations of Sec.4,
represents the contact forces. Compared to it, the term K yields a negligible
integral, because 6 is "very small”; for thé same reason, the variations of q
on the interval are neglected. Once obtained, the balance formula is inserted
into the former setting of instantaneous shock; the element TT of R" is then
said to make he components of the contact percussions. This procedure may
be seen as an early example of a mu/tiple scaling ; it permits to calculate
the after-shock velocity u*(ts)_, as far as sufficient information is available
about contact percussions.

Usually, the above reasoning is applied under the assumption of
frictionless contacts. Then it seems natural to admit, similarly to (5.2),
that, Tor every xeJ(q,), the contribution to TT of the corresponding contact,

say T1%, has the following form
.
3!‘10(?0 T = Manu(q (t)). _ (6.1)

The argument commonly proposed in support to this assertion about ™ is
that, 1n (3.2), the vector Vf (q(t)) should remain nearly constant during the
very short time interval (ts,ts+e), because the variations of q are very small;

thus M, would simply equal the integral of the nonnegative real function
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t—»uo((t). [n the author’s opinion, this conclusion cannot be accepted without
further discussion, though physicatl situations certainly exist in which (6.1)
accurately agrees with reality. In fact, the use of the equations of reqular
Dynamics rests on the smoothing effect of a certain amount of deformation
in the system parts. The very meaning of the parametrization g may then be
questioned. Furthermore, the resulting ailterations of the functions frx_,
however small in amplitude and possibly concentrated in the vicinity of the
point g(t.), are prone to generate nonnegligible variations of the vectors
Vix{at)) in the course of the interval (t,t.+6). A similar discussion could
also be conducted on equations (4.7) and (5.1): the deformation of the contac-
ting bodies, however small, may appreciably aiter the vector Ng" n E; as
well as the mapping Gy ™+ Ex»R"

At all events, (6.1) does not bring enough information about TI to
determine u+(ts) completely, even in the simplest case where J(q(t,))
consists of a single element. Classically, a shock (in a scleronomic system)
is said e/ast/c if it preserves the total kinetic energy; this additional
assertion permits, in the case of a single contact, to determine u*(ts‘)
unambiguously. This rmay be given a geometric form by using in R" the kinetic
metric, i.e. the Euclidean metric defined by the matrix A(q(t,)). Then, if
J(q(ts)):{a}, one finds that u"(ts) equals the mirror image of u (t.) relative
to the tangent plane at the hypersurface T =0.

But one can hardly justify energy conservation by any physical argument.
In fact the deformation induced by the impact is expected to propagate
dynamically all through the various parts of the system and possibly also

through the external connected bodies. Even if the (very slightly) deformable

30



materials of which the system is built may be asserted perfectly elastic,
the various parts usually remain, after a bounce, in a state of vibration
which, in the energy balance drawn at macroscopic level, amounts to
dissipation.

In short, predicting accurately the outcome of a shock requires some
higher order information, unavailable in usual situations. The pertinence of
the model of an elastic shock has to be discussed in each particular
application. The same is true for the other sort of shoct. we shall present in
Sec.8, which however offers the advantage of better formal consistency and

easier numerical handling.

7. NONSMOOTH DYNAMICS

we now intend to insert the description of shocks into a generalized
formulation of the dynamics of the investigated system, which does not
require -the local absolute continuity of the velocity function ul->R". This
function will only be assumed to have /ocally bounded variation, i.e. to have
bounded variation on every compact subinterval of | ; notation: u€ Ibv (1,R™).
Classically, with such a function, an R"-valued measure on the interval | is
associated, that we shall call the a//7erential measure of u and denote by du.
A characteristic property of this measure fs that, for every compact sub-
interval [0,T] c int!, one has |
Jo.70u = U (V) - U7(0). (7.1)
In fact, the bounded variation assumption secures the existence of the
one-sided limits of u at any point of int| . Equality (7.1) remains valid for

0=ty provided that, as already proposed in Sec.2, we agree on the convention
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u (tg)=ulty). The symmetrical convention may also be used for u" at the
possible right end of |.

By making a=T, one sees in particular that, if u is discontinuous at
point T, then the measure du is expected to possess an afom at this point,
with value equal to the total jump of u.

It is clear on (7.1) that du depends on the function u only through u’
and u". 7he values that u may take at Its discontinuity points are immate-
rial. Neither have these values any errect on the expression (2.1) of
since the set or the daisconlinuity peints of u Is counlable, hence
Lebesque-negligible

The reader may refer to [7] as a monograph on the 1bv functions of a real
interval and their differential measures, with values in a Banach space X. For
a vast class of Banach spaces, in particular for X = lR", there comes out that,
if u is locally absolutely continuous, the measure du possesses, relatively
to the Lebesgue measure on |, here denoted by dt, a aensiiy runction, say
Uy € L],Oc(l, dt; R™). Of course, the latter is defined up to the addition of a
dt-negligible function. This is commonly expressed by saying that the
R"-valued measure du equals e product of the real measure dt by the
R"- valved locally dt- integrable, function Uy, notation du=u;dt. Also du
is said /Jocally dt- continveus . Conversely, if du has such a form, the
function uelbv(l,lR"), possibly after correcting the unessential values it
takes on a countable set, is locally absolutely continuous. Furthermore, for
Lebesque-almost every t, the value uy(t) of the density function makes the
(two-sided) derivative of u.

Throughout these lectures, we shall comply with the widespread usage
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of affecting the character L to non-Hausdorff spaces consisting of functions
defined everywhere, while L will refer to the corresponding Hausdorff

spaces of equivalence classes.

In this setting, let us come back to Lagrange equations. If u is locally
apbsolutely continuous, with g related to it through (2.1), the notation used
in Sec.4 becomes

Aya) u’tj (A (@ - : Ajg @) Wk = c, (7.2)
The right-hand side refers to the covariant components of the totality of the
forces acting on the system, including the reactions of possible contacts. For
these differential equations to make sense, the n functions t— c,have to be
elements of L',w(i, dt; R) ; so each of the n equations (7.2) may equivalently
be expressed as an equa/ity of measures on the interval i,
A au + (A (O - 5 Ay (@) Jufdt=c at (7.3
One readily checks that the functions of t, by which the measures a! or dt,
on the left-hand side, are multipiied, have the local integrability properties
required in order that the products make sense.

Now, this new writing keeps meaningful for general uelbv(l,R"), and

allows one to replace the terms c¢; dt, on the right-hand side by some real

measures dCi , said to be the covariant components of the Zfotal impulsion

dC experienced by the system. These will equal the sum of the dt-continuous
measures Fi(t,q,u)dt, describing given forces, and of the covariant

components dR; of the contact impu/sion dR, an R"-valued measure on . For

instance, in the case of an isolated collision occuring at instant tg, as
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investigated in Sec.6, the measure dR would involve an atom with mass 11,

placed at point Lo ; this should be added to the dt-continuous measure r dt,

expressing the contact actions in the course of possible episodes of smooth
motion with persistent contact.
As before, we shall denote by K the known R"-valued function with

components

_ _ _1 j Kk
Ki(t,q,u)_Fi(t,q,u) (Aij’k(q) 5 Ajk)i(q))u u.

Then the rollowing equality or R"- valued measures on the interval |
will be adopted as governing the vnamics or possibly nonsmooth mations:
A(Q) du - K(t,qu) dt = dR. (7.4)

The connection between such an extension of Lagrange equations and the

principles of Classical Dynamics is discussed with more precision in [9] .

8. CONTACT SOF TNESS

Let us consider again the differential inclusion (5.6), which has been
found to govern the assumedly smooth motions of the system. This inclusion
equivalently means that the expression t>r(t)eR" of the covariant
components of the contact forces makes an element of L],m( I, dt ,[R“ ) which
verifies, for Lebesgue-almost every t,

-r(t) € awv(q(t))(u(t)), (8.1)

In the context of Sec.S, q(t) belongs to & for every t; therefore, due to Prop.
2.2 and to the continuity of u, one has u(t)eV(q(t)) for every t. Hence, the

right-hand side of (8.1) is nonempty for every t (it contains at least the
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zero of R"). This enables one, by altering the function r on a Lebesgue-
negligible subset of | , to make (8.1) hold everywhere in | .

In the language of Sec./, the R"-valued measure dR = radt constitutes,
for the above case, the total contact impulsicn . We now propose to adapt
(8.1) to the more general setting of Nonsmooth Dynamics.

The Lebesgue measure thus loses its preeminence and we shall
definitely give up using the expression "almost everywhere”. As observed in
Sec.7, if u is discontinuous, only u® and u” have relevance to the motion;
S0, one has to make a choice about what is to replace u in the right-hand
side of (8.1).

DEFINITION 8.1 7he setl or superimposed constraints is said frictionless and
soft /7 the tolal contact impuision aomits g répresentation dR:R‘udu, where
dy denates a nonnegalive real measure on | and R'U an element or

L]]Oc(l,du;an) such that, ror every t |,

~R0) € Dy (D) (8.2)

This first implies that the right-hand side is nonempty, hence
uT(t)eVigt)) for every t. Therefore, if the initial data satisfy q(tyled, (8.2)
will secure, thanks to Prop.2.4, that q(t)e® for every tel.

The following Proposition shows that the concept introduced by

Definition 8.1 does not actually depend on the peculiar choice of dy .

PROPOSITION 8.2 /nclusion (8.2) holds ror every tel if and only If the same
IS true arter repiacing du by another nonnégative real measure réiative to

which dR possesses a aensity runction
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PROOF Suppose that (8.2) holds for every t in | and denote by dv another
nonnegative real measure such that R, exists. If we put do=dy+dv, the

Radon-Nikodym theorem ensures the existence of the density functions y;
and v/, , nonnegative elements of £°°(I, do; R). Then dR:R‘Up'UGO:R‘vv‘Udo ;

so the R"-valued functions R and R\,v; are equal, except possibly in

v
Ut o
some do-negligible (hence dv-negligible) subset S of |. The subset N={tel :
Vi((1)=0} is dv-negiigible. Outside the union SN , the above implies R’ =
R'up'alv’a, with i';/v;20 ; then the expected inclusion holds, since the right-
hand member of (8.2) is a cone. For teSUN , this (closed, convex) cone, being
nonempty, contains at least the zero of R". After replacing by zero the

values that the function R, as formerly defined, may take in SUN, one

obtains the asserted conclusion, with dy and dv playing symmetric roles. =

If the superimposed constraints agree with Definition 8.1, the
elimination of dR between (8.2) and the equation (7.4) of Nonsmooth
Dynamics yields the following characterization of the possible motions

- A(Q) u‘u + K(t,q,u) t‘u € a“'V(q(t))(U (t), (8.3)

required to hold for every tel . Here dy may equivalently be replaced by any
nonnegative real measure, relative to which du and dt possess density
functions. The existence of such measures is a priori secured by the
Radon-Nikodym theorem; one may take, for instance, dy = [duf + dt , where
ldul denotes the nonnegative real measure moau/us (or variation measure )
[6][7] of the vector measure du. Since K is continuous and since the
discontinuity set of u is dt-negligible, it does no matter to replace u, on the

left-hand side, by u*or u”.
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The indifference of (8.3) regarding the choice of dy (this could be
checked directly, through the same reasoning as in the proof of Prop. 8.2),
suggests to strip down the writing into

- A) du + K(t,,u) dt € By g(g)y(u (D). (8.4)
This may be called a measure dirrerential inclusion The existence of
solutions to initial value problems governed by conditions of this sort and
their possible unigueness have so far been studied only in some special cases
[ri)[12][13]{31].

As before, one observes that, provided that a(t,le®, inclusion (8.3)
entails g(t)ed for every tel .

REMARK 8.3  Similarly to what precedes, the simple assumption of
no-friction, without reference to "softness”, as it has been expressed for the
case of smooth motions in (5.3), may be adapted to Nonsmooth Dynamics. It
will merely consist in stating that the contact impulsion dR possesses,
relative to some dy =0, a density function which satisfies for every tel
- R'U(t) € N(g(t)). (8.5)

Here again, the fact that the right-hand member is a cone entails that such
an assumption does not actually depend on the peculiar choice of dy.

Since the right-hand member of (8.2) is contained in  N(q(t)), (8.3)
constitutes a weaker assumption than what expresses Definition 8.1, 1.e. the
set of the superimposed constraints may be frictionless without being soft.

REMARK 8.4 Classically, a subdifferential relation such as (8.2) admits
some alternative formulations. Here, since the polar cone of V(q) equals N(q),
(8.2) is found eguivalent to asserting, for every t,
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uev) , - R € N@ ut R,=0 (8.6)

9. SOFT COLLISIONS

n the setting of the above Section, the following characterizes the
possible velocity jumps.

PROPOSITION 9.1 Let Tel , difrerent from the possible right end of this
interval. For any motion satisrying (8.3}, one has

u(T) = prox (u™(T), V(a(T)), (9.1)
where the proximation is unaerstood in the sense of the xinetic metric,

i the Fuclidean metric defined in R" by the matriv AMa(t)

PROOF In view of (7.1),
+ - , _ ,
u(t) -u (1) -[{t}du = I{t}uudp =y, uu(t),
where p >0 denotes the integral of dy over the singleton {T}. If motion

agrees with (8.3), one has

- Alg(T)) u'u(t) + K(t,q(T),u(t) t’u(t) € aq;v(q(t))(u ().

Now UJ'U(U=0, since the Lebesgue measure dt has no atom. Then, after
multiplying both members of the above by y., one obtains

- AT -uT () € Mg t))(u“m).

If one uses in R" a base orthonormal relatively to the metric in view, A(q{T))
becomes the unit matrix, reducing this to the classical characteristic

property of proximal points. "

This Proposition, which, under the convention u'(to)zu(to), also holds
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for t=ty, shows that u exhibits a nonzero jump at point T if and only if
u (DEV(Q(T)), i.e. @ nontangential impact occurs at this instant.

Assume in addition that T>T,, S0 U (T)E-V(q(T)) in view of Prop.2.2.
Then, the condition for nonzero velocity jump becomes

u (e Vqlt)HN-vig(T)).

The right-hand member is a linear subspace of R". If J(q(T)=@, i.e.
q(T)eint @, this is the whole of R™ If J(q(T)) consists of a singleton, say {«},
the subspace is the vector hyperplane tangent at a(t) to hypersurface
f=const.. For larger J(q(T)), the point q(T) lies on what may be called, in the
wide sense, an edge and the said subspace (possibly reduced to {0} is
declared tangent to this edge.

Also for T>T,, one observes that u (1), being an element of -V(q(t)),
cannot belong to the interior of V(q(T)); thus (9.1) yields that u* actually
lies on the boundary of this polyhedral cone.

REMARK 9.2 Here fs another consequence of Prop.9.1. Suppose that, on some
open subinterval 1" of I, the motfon evolves in such a way that the set-valued
function t—=J(g(t)) never increases. In other words, during this time interval,
some of the contacts may get loose, but no collision occurs. Let Tel’ and let
xeJ(a(T)). Then, for every tel’ such that t<T, one has f,(q(t))=0, an equality
which, through the chain rule, entails
u (T).Vf, (gt = 0. _

Hence u (T)eV(q(T)), so Prop.9.1 shows that no velocity jump occurs at
instant T.

In the traditfonal treatment of unilateral constraints, the latter is

taken for granted: one accepts to enter percussions into the analysis only at

39



instants where geometry makes them unavoidable. This agrees with the
heuristic maxim of the "minimal singularity”, but does not result from any
explicit mechanical assumption. Here is a familiar example demonstrating
this method deficiency.

Suppose an object performing a sliding motion in the contact of a table
(or simply at rest on it). If an operator hits the table with a hammer, the
object is commonly observed to jump. So the table has imparted an impulse
to the contacting object, without itself exhibiting any motion at the
macroscopic observation scale. In contrast, the assumption that unilateral
constraints are frictionless and so/f rules out such an active behaviour of
boundaries.

Incidentally, the replacement of softness, in frictionless unilateral
constraints, by the quite different assumption of energy conservation
would also permit a deductive treatment of the above situation. It will be
shown in Sec.10 that energy loss, in velocity jumps, should on the contrary
be expected when frictionless soft constraints are present.

REMARK 9.3 Equation (9.1) expresses that, in the considered motion, all
velocity jumps are of the sort that the author has previoulsy called sfan-
dard inelastic shocks [14)[15] . These were proposed as a generalization of
the shocks which, in the case of a system involving a single constraint
inequality, say f(g)<O, are traditionally called "inelastic” or also “soft”. In
fact, if f(q(t,))=0, the tangent cone to the feasible region ¢ of R" at point
as=q(ty) is simply the half-space V(gg) = {veR™ v.9f(qy)<0). Since the
left-side velocity u'(ts) must belong to -V(q,) (at least if one supposes
ts>tg), equ.(9.1) ylelds in this special case that u*(ts) equals he orthogo-
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nal projection of u (t) to the vector hyperplane tangent at A L0 Nyper-
surface f=0.More information on general standard inelastic shocks may be
found in [15] ; incidentally, the contact percussion receives an extremal
characterization, dual to (9.1).

10.ENERGY BALANCE

PROPOSITION 10.1 For every motion satistying (8.3} the function t—E,
velongs to Vv ,R). /n the sense of the oraering of réal measures on |,
oné has

dE, < F.da, (10.1)
with equality if and only ir u  has no jump in .

PROOF  For the traditional case of smooth motions with frictionless
(time-independent) superimposed constraints, the power equation

SE,=Ftaw
is easily derived from Lagrange equations, with left-hand side developed in
the form (4.3). For a motion governed by (7.4), with the contact impulsion
dR:R‘Udu satisfying (8.2), there is only to retrace the same calculation,
under the replacement of some steps, based on the rules of usual Differential
Calculus, by what follows.
1o 1f u'and U belong to 1bv(l,R), the same holds for the product u'e! and
its differential measure is given [7] [3é] by

dw'yhy = o add + o

The products of measures by functions, which appear on the right-hand side,
make sense because the functions t— u“(t) and t—» uj' belong to 1bv(l,R); so
they are locally integrable relative to any real measure. Hence, in view of
the symmetry of A,
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Ay@ d'e) = A @™ s U)ol
Furthermore, since t—q(t) is tocally absolutely continuous, with t—u(t) as
derivative, the differential measure of t-»Aij(q(t)) equals
dA; = Ay dt
and one has
dagul) = U g Ay )

2° The real measure Aij(q)(u“— ¢ s nonnegative; it vanishes if and
only if u is continuous on I. In fact, this measure consists of a countable
and locally summable collection of point measures located at the jump
instants of u . Let t. denote one of these instants; under the notations
u+(t3)=u; , U (to=ug , a(t)=q , the mass of the corresponding point measure
equals
Aij(qs)(u;+— u;') (ui“— ué“).

Since A].j(q) is, for every ¢, a positive definite matrix, this real number 15
nonnegative; it vanishes if and only if ug— us‘=o,

3° Equality u.r=0, a consequence of the no-friction assumption in the case
of smooth motions, is replaced at present by u+.R'U:0, a fact observed in
(8.6). n

REMARK 10.2 A more general concept than frictionless soft constraints is
obtained by inserting into the right-hand side of (8.2), instead of u*, some
weighted mean
-] *Ylaceyu 2
uﬁ_ﬁ(hﬁ)u +2(l &u, (10.2)
where & is a chosen real number, here supposed independent of t, for

simplicity. Since ug(t)=u(t), except at the jump points of u, which make a
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Lebesque-negligible subset of |, the law of constraint

- R‘U(t) € awv(q(t))(us(t)) (10.3)
implies, exactly like (8.2), that condition q(t)ed is satisfied for every t as
soon as it holds for t=t,

For 6>0 (even larger than 1), the law of constraint (10.3) entails the
same as what has been stated in Prop.10.1. Choosing 6<0 would yield the
reverse Inequality, physically unacceptable (unless the possible bounces are
artificially enhanced, as in some electric billiard games).

If 6=0, i.e. ug equals the migpoint of u and u®, one finds eguality
dE.=F.dq, expressing the same energy conservation as in smooth motions,
In that sense, the constraint law (10.3) with 6=0 may be said "elastic”.

We suggest to call & the aissipation index of the constraint taw (10.3).

11, TIME DISCRETIZATION ALGORITHM

The principle of such an algorithm has been introduced, for smooth
motions, in Remark 3.3. The main observation we now have to make is that
the same numerical technigue applies in the framework of Nonsmooth
Dynamics, provided that the superimposed frictionless unilateral constraints
are assumed soft.

The expression in (7.4) of the system dynamics, in term of measures,
directly suggests time discretization: the rule will be to equal some appro-
ximants of the respective integrals of both members over each subinterval
of | determined by the discretization nodes.

Let (t,,tF) be one of these intervals (here | ref.ers to "initial” an F to
“final”), with length h=tc-t, possibly variable from one step to another. From
the approximants g, and y; of g and u at the beginning of the interval, one has
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to compute some approximants gc and ug , assigned to instant tc and which,
fn turn, will be used as initial values in the next step.

Stage /. Calculate tmzt,+1§h and some /miqpoint approximants
au=aphup eRY, A=A BT K=Kty €R"
Then
U = +h Ar',,'KM

is the value that the discretized equations of Dynamics would yield for ug in
the absence of contact force (here one may read the subscript L as referring
to "1oose").

If g€ int® (1.e. all fu(qm) are strictly negative) or uLEV(qM), one Consi-
ders that contact forces have no effect on the calculated step; so one makes
Ug=U and goes to Stage 3 (this decision is actually a trivial case of Stage 2

below).

Stage 2 On the left-hand side of (8.4), let us replace A(q) and K(t,q,u) by Ay
and KM . Then, an approximant of the integral of this left-hand side over
(t,tp) 1s -Ay(up-uy) . Concerning the right-hand side, it will be considered
that the set V(a(t)) keeps, throughout the interval, the constant value V(qgy),
whose indicator function will be denoted by . Furthermore, let us take up
as an approximant -one may rather say a swnmuilation- of u’. This yields as a
simulation of (8.4) on the said interval
= Ay (Up-U; ) € dypy(ug)

{f the matrix AM is used in order to define a Euclidean metric on IR", this

characterizes u as the proximal point 1o U in the closed convex set v(qm).

Therefore, computing u¢ is @ Quadratic Programming problem: fo minim/se
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on N(Qy) the real runction  x—>(x-U ).A4(x-u ). Recall that Vigy) is a
polyhedral cone, the intersection of a collection of half-spaces determined
by the index set J(gy). These correspond to the values of & such that, in the
test position Gy, the inequality f <O holds as an equality or is v/o/ated
If their number is not too large, the proximal point will be constructed
algebraically; otherwise some of the classical algorithms of Quadratic
Programming will have to be applied.

Stage 5 One terminates the computation step by
O = Oy * 1§huF.

REMARK 11.1 In{24] are reported some computer experiments with methods
of the above sort. These methods prove to be stable. The finer the time
discretization is, the better the computed motion complies with the inequa-
lities f,<0. In that respect, some improvement may be achieved by
evaluating, in Stage 2, the cone V(q) at another point than gy A good choice
appears‘to be the point g, +hu,.

If these methods are applied to the calculation of mechanisms, which in
reality always involve some imperfectly known friction, no great precision
can anyway be expected in predicting the motion. From that viewpoint, a
moderately fine time discretization will be enough. In contrast, the violation
of the constraint inequalities must sharply be kept in check. A very effective
way of doing it consists in completing each time step by a stage of /near
correction of the possible violation. Let us explain it in the simple case
where the position g, calculated in Stage 3, violates only one of the cons-
traint inequalities. In other words, the real number p=f(qg) is found strictly
positive, with f denoting one of the functions f,. A plausible correction of

45



this violation (naturally assumed "small”) would be to replace ¢ by its
proximal point, say g, , in the region f<0. Proximity here should be
understood in the sense of some Euclidean metric on R"; the most justified
choice is to rely on the kinetic metric, defined by the matrix A(g). To save
computation, the latter will be evaluated at a point where 1t has already
been calculated in the current step. Using an affine approximation of the
function f, one obtains O=f(qC)=Lp+(qC—qF)Vf+.. . Here the gradient Vf
should be evaluated at some neighbour point. This precisely must have been
done at the Stage 2 of the current step, where also the vector AT'9f nas
been needed. Defining dc as the proximal point to g in the region f<0,
relative to the metric in view, means that the vector Qc-9¢ 1s parallel 1o
A-'Vf(qc). Since the latter is estimated to be close to the calculated value
of A"Vf, this finally yields the approximate formula
6= G- 9 @rAT'oNT AL

The same techniques of violation control applies to the numerical

methods presented in the sequel, for unilateral constraints with friction,

REMARK 11.2 Also in [24], a numerical procedure is developed for a system
with a frictionless unilateral constraint expressed by a single inequality
f€0, assuming that the dissipation index, as we have defined it in Sec.10,
equals 1. In other words, the possible collisions are e/ast/c bounces. In
contrast with the excellent stability of the preceding method, a careful
check of the energy balance of each time-step here is needed, in order to
prevent divergent oscillations when the algorithm is applied to the

computation of a motion with assumedly persistent contact.
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12. COULOMB FRICTION

This lectures are meant to provide only an introduction to the treatment
of friction. S0 we shall restrict ourselves to a system involving g sing/e
uniiateral constraint with geometric condition f(q)<0 (there is presented
in [30] a rather usual case, where a system with multiple possible contacts
may be reduced, through decomposition, to this simple setting).

For every g such that f(g)>0, the cone V(q) equals the half-space {veR".
v.V(q)<0}, with boundary

T(Q) = {veR" v.¥1(q)=0};
the latter is the vector hyperplane tangent at point q to the hypersurface
f=const. drawn through this point.

Let a motion satisfy f(qg(t))<O for every tel. If the velocity function u
is continuous at some T>ty, then, in view of Prop.2.2, u(t) belongs to
Vig(T)N-V(a(T)); this set equals T(g(t)) if f(g(t))>0 and otherwise the
whole of R". The same is true for T=ty, as far as the initial data have the
meaning we agreed to give them in Sect.2, namely u, equals the left-limit
u (ty) in a motion taking place before ty, with the unilateral constraint
already in effect,

To fix the ideas, suppose, as in Sec.3, that equality f(q)=0 expresses
that in the position g, some part B, of the system touches the unmoving
external obstacle B,. Then, under the previous notations,

U=VM(9,qu) = un
is the velocity of B, relative to B, at the contact point.

Denoting again by T{q the common normal unit vector to the contacting
bodies, directed toward B, we assume G&‘ﬂ‘(q =z 0 (see Remark 3.2). Then the
assertion ueT(d) is equivalent to U belonging to T(q), the linear subspace of
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E; orthogonal to 7, , l.e. the common tangent vector plane at the contact

q°
point.

The above is the situation in which, traditionally, Coulomb’'s law of dry
friction is formulated. This law is a relation between the s/iding veiocrty
TUET () and the contact force ReE; experienced by B,

For brevity, let us write N for Nq and T for T(g). The familiar formu-
lation rests on the decomposition of R into

R=R;+pN, with R€T and pz0, (12.1)
and consists of two well known separate assertions concerning the res-
pective cases U=0and U=z0inT

In some of the author’s early papers [20] [21], it has been observed that,
as far as the normal component p is treated as known, this pair of
assertions is equivalent to a relation, between the elements Ry and U of
the linear space T, which derives from a "pseudo-potential®. Furthermore,
this formulation readily extends to the description of possibly anisofropic
Iriction, as a relation of the form
- UedypRy), (12.2)

with D= QD,. By Dl is denoted a given closed convex subset of T, containing
the origin; in the traditional case of isotropic friction, D‘ equals the disk
centered at the origin, with radius equal to the 7riction coerricient , say y.

We shall restrict ourselves in these lectures to the case of bounded
friction, Ze the set D, is bounded. To take D, unbounded would provide 4
way of including in our approach the situation traditionally called a
nonholonomic constraint . But this would cause some complications in
further statements.

Through the standard calculation rules of Convex Analysis, (12.2) may
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equivalently be written as

-R;edpw), (12.3)
where the aissipation function ¢ equals the support function of the set
-D,; in particular, for isotropic friction ¢=yi.1.

Elementary applications, where p in fact is known, may be found in
[22] Furthermore, having to treat p as known does not prevent using this
pseudo-potential formulation (or an equivalent variational inequality which
expresses a "principle of maximal dissipation®) in the proof of existence of
solutions to dynamical problems. See [33], where the normal components of
the contact forces become the primary unknowns in some functional analytic
arguments

In the present lectures, we choose to formulate the same law under a
conical equivalent form [24], avoiding the decomposition (12.1). The 7ric-
tion cone C at the contact point is introduced, a closed convex conical
subset of the linear space fs (recall that, speaking of a cone in a linear
space, one understands that it has vertex at the origin). in traditional iso-
tropic friction, this is a cone of revolution about N; generally, C equals
the cone generated in Ez by the set D+N So C contains N and lies

entirely on the corresponding side of T.

PROPOSITION (2.1 7he pair of relations (12.1), (12.2) 7s equivalent to
-U€DFO]T awc(‘R)‘ (12.4)

PROOF Assume that (12.4) holds; hence -TUET. Denoting by [I] the linear
subspace generated in £ by N, one has
Weaqxc(ﬂ), IWe[N] . -U=V+W. (12.5)

Let us decompose Rin the form (12.1); necessarily p 20, since (12.4) implies
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that awc(m is nonempty, thus ReC. By construction, R belongs to the affine
plane A=T+pN. Therefore dy :ACR) =[] and (12.5) means that
—1166¢2(3{)+6¢C(R)c awﬂﬂc(R), (126)

In view of the definition of D, one has ANC=D+pN, thus, using a
translation in the evaluation of subdiffentials,

% 4R =g R -0T0=dypRy).
Then (12.6) entails that (12.2) holds in the sense of the Euclidean autoduality
of £5. Since U and Ry are elements of the linear subspace T, the same is
true relatively to the Euclidean autoduality of this subspace.

Conversely, let us assume that UeT and that (12.2) holds in the sense of
the Euclidean autoduality of T, with ZRT defined by (12.1) (observe that pz0

is stated at this place). Then (12.2) is true also in the sense of the auto-
duality of 5 and, using translations as above, one concludes
-Uce awﬂﬂC(R),

Here we need to know whether the inclusion on the right side of (12.6)
actually holds as an equality of sets. If p>0, this equality results from a
known calculation rule for the subdifferential of a sum of 1.5.C. proper convex
functions in finite-dimensional spaces: in fact there exists a point in the
relative interior of C:domwc where wﬂtakes a finite value (see [34],

Theorem 23.8). In that case, by going from (12.6) backward to (12.3), one
establishes (12.4).

It is only for p=0 that the assumption of bownded rriction, made once
for all in the preceding, has to be used. If p=0, the set D reduces to {0}, so
(12.2) simply consists in the assertion.” Uarbitrary in Tand R; =0 “; one has
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to establish that such is also the meaning of (12.5) in this special situation.
For R=0, the subdifferential 6¢CCR) consists of the polar cone C° of C.

Because the section of Cby the piane A (constructed for instance with p=1)
is compact, C° contains the vector - in its interior (see e.g.[35], parag.8.7).
Consequently, the projection of C° to T equals the whole of this subspace;
this completes the proof. »

In turn (12.4) may be transformed as follows [25]:
PROPOSITION 122 Derine in Ez the extended real runction 6
U= 8T = LIUI® + y (W) (12.7)

Then{12.4) /s eguivalent to
Q€ aq:C(ZR) + 06(U). (12.8)

PROOF  Since J;lHI2 is a smooth function, with gradient mapping equal to
identity, one has for every U in Ex
(U= U+ awT('a).

Now, aq;.I.(U) equals [N] if UeTand, otherwise, is empty. Therefore, (12.8) is

equivalent to
UeT and  0€dy(R)+ U+ [N,

which is precisely (12.4). .

Incidentally, observe that resistance laws involving a pair of subdif-
fential mappings, as in (12.8), have a wider interest than describing contact
friction in three-dimensional space. For instance, in Plasticity, this form

may be used in formulating constitutive laws for which the flow rule is not
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"associated” with the yield criterion.

Recall that T and C, in what precedes, depend on the position ¢ of the
system, under the assumption f(g)=0. Let us make the same writing
meaningful @/so for positions which av not involve coniact.

To this end, we shall agree that, when f(g)<0, the cone C(qg) reduces to
{0} and that T(q)=E5. Then the relations (12.4) or (12.8) simply express that
R=0, with U arbitrary in R".

Furthermore, In what concerns evolution problems under condition f<0,
it 1s tmmaterial to choose any (adequately smooth) extension of the mul-
tifunction g—-»C(q)CE5 to the case f(g)>0. Similarly, the linear mapping
Gq: IR"—:»T:3 will be extended to such ¢, as well as the normal unit Nq, with
attention to preserving (3.2). The reason for such extensions lies in
numerical methods, where a certain amount of violation of the desired

inequality f<O has naturally to be faced.

The set of the values of R€Ez that (12.4) or (12.8) make correspond
with each TEE5 (actually the empty set if ULT) is a cone, since the mul-
tiplication of R by any strictly positive number leaves awC('R) invariant.

Like in preceding Sections, this fact will now prove essential, as we come to
formulating Nonsmooth Dynamics in terms of measure differential
inclusions.

In the course of a smooth motion, the contact force R is a function of
time that we may denote by P;. This in fact is the density, relative to the
Lebesgue measure dt, of the /Joca/ contact impu/sion dP, an Ez-valued

measure on the time interval |I. For nonsmooth motions, dP can no more be
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expected to possess a density relative to dt, but in any case this measure
may be represented in the form ?Ljdu, where dy is a nonnegative real measure

on | and ?L, e£1 (1, dy; Ez). The R"-valued contact impulsion dR, as

joc
introduced in Sect.7 for insertion into the measure equation of Nonsmooth
Dynamics (7.4), has the form dR:R‘Udp, and, similarly to (4.7),
Ry (1) =Gy gy P (V) (12.9)
holds for every t.
As far as Coulomb’s law is accepted for the description of dry friction,
one naturally admits that, in possible nonsmooth motions, the density ?L,(t)
of the local contact impuision will be related, for every t, to the sliding
velocity U through the same relation as R is in (12.4), or equivalently in
(12.8). This, at least, raises no discussion when t->U is continuous. At ins-
tants of velocity jumps, we decroe that the same relation will hold with U
replaced by Its right-/imit, namely u*:gqu*, since the linear mapping
Gq: [R”—>T.3 continuously depends on g This assumption entails that Ut
belongs to T(q(t)) for every t (an immaterial assertion when f(q(t))<0, since
it has been agreed that T(q(t)) = Ez in this event). In view of Proposition 3.1,
this is equivalent to u’(t)€T(q(t)), a property which, in the frictionless case
of Sect.9, has been identified as characterizing the "softness” of unilateral

constraints. We thus are induced to put the following definition.

DEFINITION 123 7he unilateral constraint Investigated above 1s said soft
with Coulomb friction 77, n any motion with 1ov. velacity runction, the
contact impulsion has the rorm d?:?'udp, with ?LJ ELI 1OC(I, dp ;3:'3) veri-
ving roreveryt

(recall that T(q)=E; and C(a)={0} when 1(a)<0 ) or the equivalent form
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given to arejation of this sort by Prop 122

Because this relation is conical with regard to the element ‘Pé,(t), the
reasoning already used in the proof of Prop.8.2 shows that the choice of the
nonnegative real measure dy is immaterial, as long as dP possesses, relative

to it, a density function.

REMARK12.4 Since we have agreed to extend the definitions of T(q) and C(g)
to positions such that f(q)>0, (12.10) makes sense also in that case. But, as
previously observed, this relation implies that u’(t) belongs to T(q(t)), hence
to V(q(t)). In view of Prop.2.4, this secures that, proviged the initial data
satisry 1(atg)<0, nequality Q<O will hold throughout |

REMARK 12,5 The validity of (12.10) for t=t, calls for some comments. In
beginning this section, we recalled the meaning given to the initial condition
Ultg)=uy of an evolution problem. It is understood that Uy equals the
left-Timit u™(ty) in some anterior motion, during which the unilateral
constraint was already in effect. In particular, one may have f(qo)zo and u,
interior to the half-space -V(q,); this implies that a collision takes place at
instant t,. Then softness, as expressed by (12.10), makes that u+(t0) belongs
to the linear space T(qy)=V(gy)-V(q,). But the case f(gy)=0 with u,
interior to V(qy), i.e. Initial velocity implying contact break, is excluded

from the present study. This will cause no great inconvenience in practice,

REMARK 126 Put the notation Gq(V(q)):’V(q); this is the closed half-space
of £z lying on the same side as T(q with respect to T(q). The set awc@@) is

contained in C°, the polar cone of C, which in turn is contained in the haif-
space -9(a). Then, in (12,10), the operation Projr 9 might equivalently be
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replaced by the proximation mapping to ¥(q). This would be numerically
inconvenient, but is hable to improve the consistency of some further
developments.

REMARK 127 In applications, describing dry friction through Coulomb’s law
can only provide a rather crude approximation. However, as this law retains
the essential features of the phenomenon, its use at the stage of a first
study is extremely valuable in numerous situations. As soon as this law has
been adopted, under its traditional form, there is little doubt that its
generalization (12.10) can also be accepted for every motion in which the
velocity function is continuous, even in the absence of local absolute

continuity. We shall discuss later its use in the case of a velocriy jump

15. TWO-DIMENSIONAL CONTACT

In the same setting as in the above Section, we now make the following
additional assumption. However three-dimensional the contact may physi-
cally be, we shall suppose that, for every q such that f(q)=0 (and also for
f(q)20, after the extension we have agreed to make) e range Gq(an) o Gq
rEquces Lo a two-qimenstanal subspace Wq o 23. Such is the case, for
instance, if the part B, of the system is astrained, by the primitive
constraints, to only perform motions parallel to a fixed plane. The condition
found in Remark 3.2, in order that G;T{qzo will be supposed fullfilled, 1.e.
Wq anda the tangent plane ‘Tq are Jistinct . let us denote by 7 a unit vector of
their intersection.

Due to the expression (4.7) of the covariant components of the contact
force R (or, in Nonsmooth Dynamics, the covariant components of the density

?‘u(t) of contact impulsion), the dynamically significant information
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concerning this vector is entirely conveyed through its equivalence class
modulo ker (};. This kernel equals the subspace of E- orthogonal to wq,
consequently, we may in the sequel replace R by its orthogonal projection to
Wq, also called R, by abuse of notation.

we shall come back, in Sec.17, to a discussion of what in general
becomes the three-dimensional law of friction under such a geometric
two-dimensional reduction. Let us restrict ourselves at present to the usual
case where the result is simply the familiar fwo-dimensional version or
Coulomb's /aw. The considerations of the preceding section might readily be
adapted to this case. Here we shall rather choose to express the two-
dimensional Coulomb law in the following alternative form. For more readi-
bility, the subscript q will momentarily be omitted.

There exist In the vector plane W twe half-/ines D, and D,
emanating rrom the origin and lving, with respect to T, on the same 51
as N. The convex cone C now equals their convex hull In smooth motions,
the sliding velocity is essentially an element of TMW, say U= s{with s€R.

Coulomb's law consists ar the three implications

5>0 = ReD, (13.1)
5<0 = ReD_ (13.2)
5=0 = ReC (13.3)

The angles that D, and D_ make with [ have respective tangent equal to
-1/y,and 1/y_, where the positive real numbers y andy_respectively are
the familiar 7riction coerficients corresponding to positive and negative
sliding .

All these etements are defined for such q that f(q)=0; as before, we
shall imagine an extension of them to every @ such that f(q)>0 (at least in
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a neighborhood of hypersurface f=0).

The vector plane W depends on q ; it will prove convenient to send it
onto a fixed copy of IRQ, called the ca/culation plane, equipped with the
usual base consisting of vectors 1 = (1,0) and j = (0,1). To this end, a
regular linear mapping %:'wq-»m? wiil be constructed, in such a way that
J-'q[ is a positive vector of the first axis. Denote by Gq:IR"—>IR2 the product
mapping }'qu, Assume that the real function f is at least C‘? . then it will be
possible to choose 1-'q in order that Gq dependon q ina C' way.

Let us mean by }'q* the transpose of F_, in the sense of the natural
scalar products of R® and W, and denote by D, and D_ the images of D, and
D_under Tq*"].

There would remain enough arbitrariness in the choice of Tq for making
these images equal two fixed half-lines of [Rz, e.g. the half-lines generated
by (-1,1) and (1,1) . The drawback is that the two friction coefficients f_
and f_ would then have to depend smoothly on g . S0 we shall not use this
trick in the sequel and only assume that e convex hull, say C, of D, and
O_ contains | inits interior.

Under these notations, the friction law (13.1) to (13.3) may equivalently
be formulated as a relation of the same form between R= }'q*""R and U =
'JEU = un = 01. Due to the assumptions made, ¢ is a real number of the same
sign as s or vanishing with it. Henceforth, there only is to replace s, D,
D_, C respectivelyby ¢,D,,0_,C.

In order to express the dynamics of the considered system, one has to
bring together the above reaction law and the Lagrange equations. The
covariant components of the contact force make the element r of R", related
to R through
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r= G;R = G;‘ T'q*R = G;R . (13.4)

After having so restated the two-dimensional law of Coulomb, we now
propose to extend it to Nonsmooth Dynamics, in the same line as in Sec. 12,
Recall that, in such a context, velocity functions are significant only through
their one-sided limits. Instead of u, U and U, the right-Zimits u*, U= gqu*
and U”= Gyu" are introduced Into the above writing. The contact force R 1s
replaced, for every t, by the value ?'U(t) of the density function of the
three-dimensional contact impulsion, or equivalently by the orthogonal
projection of T'u(t) to W(q(t)). when coming to the use of the calculation
plane, the function P'U: Tq*—]?é is considered.

The dynamics of the system is now expressed by the Lagrange equation
inR"

A(q) u‘LJ - K(t,q,u)t‘LJ = R‘LJ , (13.5)
to be joined with
Rb: Gq P'U (13.6)
I0eR: U'=0 i (13.7)
G>O=>P'U€ D, (13.8)
0<0=:>P'U€ D_ (13.9)
o:0=.->P‘UEC, (13.10)

for every t such that f(q(t))=0.
On the contrary, when f(q(t))<0 , then R'Uzo.

14, VELOCITY JUMPS IN FRICTIONAL DYNAMICS

The formulation given above, for the Nonsmooth Dynamics of a system
with single possible contact and two-dimensional Coulomb friction, will
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now be used in discussing the event of a velocity jump.
This means that, at some instant t,, the R"-valued measure du
possesses an atom, the mass of which equals
u'(ty) - uT(ty) = Uy(tg) v
Here, the positive number p. is the mass of the atom that the measure dy
should possess at point t.
Recalling that the Lebesgue measure dt has no atom, one derives from
(13.5) that, at t=t,,
u'- u’:A(;lG;P’UuS (14.1)
I f(a(t,))<0, i.e. no contact, one has P'u(ts)zo, S0 No jump of u can occur.
We therefore shall assume f(q(t,)>0 (equivalently f(q(t))=0) and denote
simply by G the value of Gq at q:q(ts). Then, for t=ty, one has RL,:G*P'U. Put
P'U(tS)US:P and apply the linear mapping G:(R"—»(R2 to both members of
(14.1); this yields
U*- U™ = HP, (14.2)
where H aenotes the symmetric 2x2 positive gerinite matrix GA™ '6*,

This has to be joined with two-dimensional Coulomb law, expressed as

in Sec.13 by
JoeR: U*=o01 (143)
0>0=>Pe€D, (14.9)
0<0=>P€eD._ (145)
0=0=>PeC (14.6)

We are to discuss how, starting with given u, the system of conditions
(14.1) to (14.6) allows one to determine u”.
Combining (14.2) and (14.3), o;\e obtains

p=-H U eony, (147)
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which expresses that P belongs to the line A of IR2 drawn through the
point -H"U', with H'1 as directing vector. Easy calculation (for instance
by observing that A is orthogonal to Hj) yields that this line intersects
the second axis at point
S=-(J.UDj/(j.H)). (148)
Due to the way we have chosen the mapping F, the real number
j.U=Fj.U has the same sign as N.'U‘:GJN.U' or vanishes with it.
Through Prop.3.1, one concludes that the coordinate of 5 on the j axis is
positive, negative or zero if and only if the same is true for u".Vf(q(tS)).

First case: impact.

This is the event where f(q(ts)):O, with u'(ts).Vf(q(ts))>O. Consequently
f(q(t))<0 on some left-neighborood of tg, i.e. ts is an instant of rontangen-
tial collision The point S lies in the interior of C, so the line A inter-
sects C and does not pass through the origin. Observe that i.H"i>O, i.e the
vector H']i directs A from left to right. Therefore, the point P, as expres-
sed in (14.7), lies on the right of H'u™ it 050 and on the left in the
reverse case. By comparison with (14.4) to (14.6), one concludes that the
formulated set of conditions is satisfied if and only if P equals #e nearest
point to H'U™ in the intersection ANC.

So the problem of determining u* possesses a wargue solution in that

case.

Sécond case . sliding.
We now assume that f(q(t)=0, with u (t)).Vf(g(t))=0 (equivalently
u (t).V1(q(ty))<0, since the anterior motion fs assumed to agree with f<0).
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Then S=0, i.e the line A passes through the origin.

s IT ANC consists only of the origin, the formulated set of condition admits
P=0, hence u’=u", as unique solution: n7o velocity jump occurs.

s If A intersects also the interior of C, one has to determine whether it is
possible for P to lie in this interior. In view of conditions (14.4) to (14.6),
this requires U’=0. It is in fact a solution if _H U eint C: then the sliding
suddenly sticks. Concurrently P=0, with ut=u", i.e.no velocity jump, /s a/so
a solutron in this case.

» If A contains one of the haif-lines D _or D_, a value of P on this
half-line meets the requirements provided the resulting value of U=
U +HP=01 agrees with conditions (14.4) to (146). For instance, imagine
D'cA: these conditions require 620. This can happen only if -H"U’GD+ and
then every value or P belonging to the line segment [-H 'y, 0] /isa

solution. The corresponding values of U* cover the line segment [0, U]

REMARK 14.1 The latter is the most interesting item of the discussion. it
shows that, contrary to the frictionless case, an episode of smooth motion
with persistent contact may end with a velocity jump without any collision
occurring. This 1s a dynamical analogue to the locking effect, well known in
the statics of mechanisms with dry friction.

The earliest reference we know of, where such a possibility is asserted,
is a note by L. Lecornu [26]. At the time, a controversy has been opened by P.
Painlevé [36], with the observation that, in systems ihvolving Coulomb
friction, some initial value problems could have no solution, or also several
solutions. In addition, the behaviour of the system depended on its constants
in a discontinuous way. To Painlevé, and later to E. Delassus [37][38], these
findings seemed in contradiction with the very bases of Physics. In the
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subsequent years, different opinions were sustained by such authors as F.
Klein [39], RvMises [40], G. Hame! [41} or L. Prandt] [42]. Even after H.
Beghin [43]{44] had clearly demonstrated that the incriminated findings
actually agreed with common observation, some suspicion remained in the
scientific community that Coulomb's law could be intrinsicatly illogical.

Today, one is accustomed to meet multiple solutions or the absence of
solution to physical problems, usually ascribing these facts to the nature of
the treated information, without opening any discussion about determinism
in Physics. One is also familiar with discontinuous behaviour.

Dynamic locking, that we propose to call a /rictional catastrophe, 1
commonly observed in practice. The example of the chattering motion of a
piece of chalk driven at an angle against a blackboard, so that a dotted line
is drawn, was already put forward by E. Delassus [37]). A model of this
phenomenon is presented in [30], with some drawings generated by a
computer using the time discretization procedure of Sect.15 below. This
displays an instance of a "stick-slip” motion. Depending on the system
constants, frictional catastrophes and intermittent contact breaking may
occur or not. No attempt so far has been made at comparing this model,
guantitatively, with experimental measurements.

A very simple example of frictional catastrophe is presented in Sect.15,
as a demonstration of the ability of our numerical technigue to handle

nonsmooth solutions.
REMARK 14.2 From the mathematical standpoint, we think that little has to

be retained of the early discussions on the subject. At the time, differential
equations were implicitely understood in the sense of the elementary theory:
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solutions should possess some regu/ated rfunctions. as their derivatives of
the highest order involved. In other words, it was admitted that the
acceleration " possessed a right-limit and a left-1imit at every t. Certain
of these limits played an essential role in the discussions by Painlevé and
his followers Unfortunately, in usual instances where an interval of smooth
motion precedes the catastrophic instant tS , one finds that the norm of ¢"
actually tends to infinity when t tends to tg from the left. The concept of a
measure differential inclusion, on which the present lectures are based,
provides a more synthetic view, since it allows one to express Dynamics on
the whole interval | , including ty, and does not rely on the existence of

one-side accelerations.

REMARK 143 There remains to discuss whether the velocity jumps agreeing
with the constraint law (12.10) are physically realistic. We have already
stressed that, even in the absence of friction, predicting safely the outcome
of a shock would require some high order of information, actually una-
vailable in engineering situations. Things naturally become worse if friction
is entered into account. wWhat do we know about the Physics of high pressure
friction, during the “"very short™ interval of time on which the velocity
change takes place? Already for the frictionless case, we have in Sect.6 been
reluctant in accepting the invariance of the direction of Vf(q) during this
interval. The latter invariance, if admitted, makes of the no-friction
assumption a time-independent linear condition imposed on the contact
force at every instant; therefrom, the normality of the contact percussion is
inferred, by integration on the interval. On the contrary, Coulomb law
imposes on contact force a nonlinear condition. Even if one assumes this

condition independent of time, it cannot be expected in general to commute
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with integration. The contact percussion can safely be asserted to verify
(12.10) only as far as the sliding velocity is sure to remain zero or to keep a
constant direction for the short duration of the investigated shock. it is of
course in the case of two-dimensional friction that the latter event proves
the easiest to discuss.

The reader may find in [2] an attempt at analysing frictional impact, in
the line formerly suggested by G. Darboux. This consists in investigating the
variation of the velocity as a function of some "micro-time”, relatively to
which the system position remains a constant. Even so, the conclusion is
subject to some assumption about the shock end which seems difficult to
justify,

In conclusion, the concept of a frictional and soft contact, as involved in
Definition 12.3, only generates a special model of frictional shock, with the
advantage of good theoretical consistency. As we shall see in the next
Section, the corresponding motions are also very tractable numerically.
Physical situations to which this model is relevant very probably exist, but
experimentation is still needed to safely identify them in practice.

15. ALGORITHM FOR TWO-DIMENSIONAL FRICTION

we now present a time-discretization procedure for computing a motion
under the conditions of Sec.13. The notations are the same as in the
frictionless case, exposed in Sec.11.
Stage /. Calculate tmztp%h , the midpoint approximants
q,~1=q,+‘§hu| R",  Ay=AlG) ER™",  Ky=K(ty,amu) €R"
and the "loose velocity”
U =Uy + 0 AL Ky
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As in Sec.13, a single constraint inequality, say f<0Q, is taken into account.
If flgy) < 0 or u.Vfgy) < O, then make up =y and go to Stage 3.

Stage 2 If, on the contrary, f(gqy) > 0 and uL.Vf(qM > 0, contact Is
estimated to have effect on the considered time-step. One constructs a
discrete analog to the measure differential inclusion of Dynamics
du = A~(@) Kt qu at + A7 () 0R
by equaliing some approximate values of the integrais on (tl,tF) of the
respective members, namely
U - Uy = NAT Ky + AR'R. (15.1)

Let Gy denote the value taken at q=qy by the linear mapping Gq: fR”—»[R2

defined in Sec.13. Then an approximate version of (13.7) reads
R = 6P,

where P, an element of the calculation plane, is an approximant of the total
contact impulsion on the interval (t,,tp). Putting U, = Gyu, and Ug = Gyug ,one
derives from (15.1) that

Up - Uy = hGyyAR Kay + HyyP. (15.2)
Here, similarly to what has been done in 3ec.13, one denotes by Hy the
symmetric positive definite 2x2 matrix GMAF}]G‘;.

According to the decision made in Sec.11, of considering Ug as a
simulation of u®, the softness condition (13.7) will, in the present discre-
tization procedure, be transcribed as

joeR Up = 0. (15.3)
Discretizing the two-dimensional Coulomb law consists in relating P to Ug
by the system of implications

0>0 = PeD,

0<0 = PeD_
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0=0 = PeC.
In the case where the friction coefficients depend on q, the elements D, , D_
and C will be evaluated at q = Q.
The determination of P and uc from this set of conditions is similar to
what has been done in one of the cases of shock investigated in Sec.14. If one

puts U, =6pmy, , (15.2) becomes

By combination with (15.3), this yields
I0€R © P =-H U +oHi

This expresses that P belongs to the line A of IR2, drawn through the known
point —H,]'UL , With known directing vector Hr‘,,]i . This line intersects the
second axis of IR2 at point
Sy = ~(J.UDJ/(JHLD .
A similar expression was discussed in (14.8). Since the present computation
stage is developed under the assumption u; .Vf(gy)>0, one finds in the same
way as in Sec.14 that j.UL<0, S0 Sy is sure to be interior to C. Observe in
addition that P lies in & on the right or on the left of —H,I1]UL according to
the sign of 0. One concludes to the existence of a unique solutfon P, charac-
terized as the nearest point to —H,I1]UL n the intersection ANC.
For computation it is more convenient to formulate the same as follows:
-1 -1
» If -Hy U € C,then P=-HyU .
s Otherwise Hy'U <0 = P=5MD,
Hy'U 1 >0 = P=AMD_.
After P is calculated, one derives ugc from (151 ), namely
1.
UF = UL+ AM GMP
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Slage A The computation step finishes with Q¢ = gy +%huF.

REMARK 151 A more intuitive description of the above discretization
procedure may be found in [24]. Instead of relying on the calculation plane, it
uses the image of C under GJ", a two-dimensional cone in R". This makes
the comparison with the frictionless case clearer, but numerically is less
effective. The calculation plane is also useful at the stage of deriving the

inequalities needed in the study of existence and regularity of solutions.

REMARK 15.2 The case -H#ULEC yields U-=0, i.e. zero sliding velocity (the
discussion here is simpler than that of the similar geometric construction
made in Sec. 14, because Sy is certainly interior to C).

In that connection, the algorithm works very well to compute a motion
involving the event which, in Remark 14.1, we have calleq a /r/ctiona/
calastrophe. Now, we have just seen that each computation step is deter-
ministic, i.e. it yields a unigue pair qg, ug. This contrasts with the conclu-
sions of Sec.14, showing multiple possible outcomes for such a cata-
strophe: all the points of a line segment are solutions in what concerns the
contact percussion P and similarly in what concerns u*(t)) or U*(ty) (the
latter may take any value between zero and U (t,)).

In fact, the algorithm is able to approximate any of these solutions. As
soon as the successive discretization intervals are chosen, a sequence of
values of ug 1S unambiguously generated. This sequence 1s smooth, except for
a jump in one of the intervals, said catastrophic. Before this jump, the
computation of the motion, from- given initial data q(tg), u(ty), yields
consistent results, for arbitrarily fine discretizations. But the value of the

jump obtained in a catastrophic interval depends on the ratio in which the
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exact instant divides this interval. So, calculations made with different
discretization meshes may yield different results after the catastrophe.

EXAMPLE 15.3 A round-tipped rigid body B, performs motions parallel to a
vertical plane. It is submitted to gravity and confined by a horizontal fixed
boundary fBO, with friction coefficient equal to 0.5. Initfal conditions are
those of contact, with negative angular velocity and sliding velocity directed
to the right.

On Figure 15.1, the computer has drawn the profile of B, for every third
step of the time-discretization (numbers refer to these steps). After an epi-
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Figure 15.1
sode of persistent contact with sliding of constant direction, a catastrophe
occurs. The horizontal component of the velocity of the lowest particle of B,
(this equals the sliding velocity in the case of contact) presents a sudden
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drop. At the same instant, contact is broken, with zero normal velocity. In
the process, a percussion is imparted to B, from B, making the negative
angular veloCity increase in magnitude.

Though discretization is rather rough, the corrective procedure of the
possible constraint violation, described in Remark 11.1, has nof been used.
Drawing is however found to comply very well with the unilateral constraint.

On Figure 15.2, the horizontal component of the velocity of the Jowest
particle is plotted versus time. All curves correspond to the same initial
conditions as above, but are computed with finer discretization. In order o
display the multiple possible outcomes of the catastrophe, computation has

HORIZ. VELOCITY OF LOWEST POINT

Y

TIME

\/

Figure 15.2
been repeated, each time with uniform time-mesh, but successively using
different values of the step-length, namely
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h = 0.00046 - 0.0001+RND.

Here RND denotes the built-in random sequence of the computer, with values
in [0,1]. The maximal catastrophe, i.e. sliding velocity dropping to zero, is
rebeatedly obtained, more than two times out of three on an average, and
followed with a well defined contact-free motion. The other curves show
various sliding velocity drops of smaller amplitudes. More extensive expe-
rimentation has confirmed that each value of the sliding velocity drop
corresponds 1o a well defined consequent motion. Statistically, the values of
the drop are not uniformly distributed: frequency is found maximal in the
vicinity of zero drop.

As expected, consistent results are obtained regarding the motion prior
to the catastrophe. It is apparent that the rate of change of the sliding velo-
city tends to -oco on the left of the catastrophic instant. The acceleration
g 1-R" thus beeing unbounded, cannot possess a left-limit at the cata-

strophic instant.

16. AN EXAMPLE OF THREE-DIMENSIONAL FRICTION

We suppose in this section that the system consists of a single particle
of unit mass, confined in a region ¢ of physical space by an unmoving
boundary Z. This is a model of a small object which, in the case of contact
with the boundary, is assumed to slide on it, without rolling nor tumbling.

'@, q° may be identified with the particle coordinates, relative to

Then g
some inertial orthonormal Cartesian frame and A(qQ) consists, for every g, in
the unit matrix.

In addition to the possible frictional reaction of the boundary, the
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particle is submitted to a force given as a smooth function F of t, g, u. The
case of a boundary with prescribed motion may be reduced to this one,
through changing the reference frame; there only is to include in F the
fictitious forces, thanks to which the new reference frame may be treated
as inertial.

The particle dynamics is expressed by this equality of Ez-valued
measures on the time-interval |

du=dR + F(t, g, u) dt, (16.1)
j.e. after representing vector measures by density functions relative to some
nonnegative real measure dy,

u‘U(t) = R‘U(t)+ F(t, q, u)t'u(t),
an equality to be satisfied for every tel.

In the present case, the mapping Gq reduces to identity for every q. Then,
using the law of frictional contact in the form (12.8), one obtains the
measure differential inclusion

Oan;C(q)(U'U - F(t, g, u)t)+ 38, (u"). (16.2)
The feasible region & of R™ is defined as before by a single inequality f(q)<O0.
For f(g)=0, C(g) denotes the friction cone at the point g of the boundary.
Again, let us agree to extend its definition, in @ smooth arbitrary way, to the
values of g such that f(g)>0. In addition, C(q) is interpreted as reducing to
the zero of le when f(q)<0. With every g such that f(q)>0, the vector plane
T(q) also is associated, orthogonal to Vf(qg). For f(g)<0, we agree
understand T(q) as consisting of the whole of IRS. The extended-real function
8> @s defined in (127), equals %II.I|2+ ¥riq)

In particular, at every t such that f(q(t))<0, one has aeqm(x):{x} for
every xelR3, while the value of dypqq))(X) equals R> for x:O,' and. @
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otherwise. Therefore (16.2) reduces in that case to the differential equation
Uy~ F(t,q,u)=0 of contact-free motion.

Recall that a condition such as (16.2) implies that g(t)ed for every t, as
soon as this is assumed to hold for t=t,

Some cases of existence, for the solutions to the coresponding imtial
value problem, are investigated in [13].

Here we shall only present a time-discretization method for their
approximate computation [25]. With the same notations as in previous

sections, each time-step runs as follows.

Stage /. Calculate tmzt,s»%h , the midpoint approximant qmzq,s»-‘?—hu,, the
force estimation Fy= F(tp,am,4p) and the "loose velocity” y =y, +h Fp-

Stage 2.

n (fflgy) <O or u.Vflgy) € 0, then up =y .

=« Otherwise, ug is determined by a semi-implicit discretization of (16.2).
In view of the positive homogeneity of the multifunction 8y, this is

0 € yplup-u ) +08(up),

whith the cone C and the function 6 evaluated at point qy. Using the
definition of 6, one gives to this inclusion the form O€dyp{up)+up, where D
denotes the set T(qu)(C(gy)+u ). Through elementary Convex Analysis, this
means that ug equals the proximal point to the origin in this set, with regard
to the usual Euclidean metric of [RS. For the traditional, isotropic, Coulomb

law, D is a disk, so the proximal point is specially easy to calculate.
Stage 3. Calculate Gp=0y+ %huF.

REMARK 16.1 Even if one assumes isotropic friction, computing the motion
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of systems involving three-dimensional friction is not in general as simple
as above, due to the role of the mapping Gq, The determination of U, at each
time-step, usually is a non convex problem, which may possess several

solutions.

EXAMPLE 16.2 The numerical technique presented here has been applied [24]
to the motion of a particle P submitted to gravity and confined by a plane
boundary with prescribed motion. This particle represents an object which,
in the case of contact, may slhide on the boundary, without rolling nor
tumbling. The plane boundary may be the ground surface, in the course of an
earthquake, or also a vibrating table. Motions of the following sort are

common in industrial conveyors.

Z V4
p A Y
0 -
S O — s »&/j Y
Figure 16.1

The vibrating table 15 assumed to have the motion of the shaft in a
crank and shart mechanism. Let orthonormal axes Oxyz be attached to the
table, with Oxy in its surface. Axes Oy and' 0z move in fixed plane QYZ The
point O is guided along a segment of the line QY. The point A (0, a, 0) of the
table is astrained, by an eccentric, to describe, at constant velocity, a circle
in the plane QYZ, centered on QY. Therefore, the plane QXY is the mean
position of the vibrating table.
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In order to produce a clear pattern of trajectories, the whole machine is
set at a slant: the plane QZX is vertical, but QZ is not in line with gravity.
Hence, OX is the direction of steepest descent in the plane QXY and
determines the general trend of the motion of P.

A computer program, using the numerical technique described above,
draws the projections to Oxy an to Oyz of the trajectories of P re/at/ve (o
the tabje. No experiment has so far been conducted for comparison with
reality.

At the initial instant, P is left on the table with zero relative velocity.
Subsequent trajectories are drawn for several choices of this initial
position, at various distances of Ox. Motions taking place sufficiently far
from Ox involve intermittent contact break; the loops then observed on the
Oyz projection correspond to the parabolic motion that P have, when referred
to fixed axes.

Here are the values of the system constants, understood as referring to
€.g.S. units. Gravity equals 981; QZ makes an angle of 13° with the upward
vertical direction. The eccentric has radius 0.5 and rotation speed 10 rps. The
length OA equals 50. Friction coefficient is taken equal to 0.4.

with this values, it turns out that the table shake is strong enough for
leaving no place where P could rest without sliding. The whole pattern of
trajectories admits Ox as an axis of symmetry. Depending on the direction in
which the eccentric rotates, this line is a locus of attraction or of repulsion,
a fact which could be asserted from qualitative reasoning. More inexpected
is the existence of other lines of attraction or of repulsion (they exchange
their roles when rotation is reversed), parallel to this one. Such a "quantic’
effect appears to be connected with the number of fiappings that the table
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performs while the particle runs through each episode of contact-free
motion. Actually, the farther they lie from Ox, the more confuse these
attraction loci appear, due to the chaotic behaviour that trajectories then
have.

Figure 16.2 shows the trajectories of P, conseguent to 15 initial
positions equally spaced from y=5 to y=320; the eccentric rotates in the
reverse direction to that indicated on Fig. 16.1.

-
/r =
T i

Figure 16.2
Fig.16.3 displays a larger scale drawing, corresponding to the same

direction of rotation as on Fig.16.1. The trajectories correspond to 7 initial
positions equally spaced from y=5 to y=150.
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17. STATIC AND DYNAMIC FRICTIONS

In many familiar si‘t‘uations, friction appears higher when the contacting
bodies are to be set in motion from rest than during an episode of
established sliding. Such an effect of “"tangent sticking" is traditionally
accounted for by introducing a larger value for the static friction coeffi-
cient, i.e. relative to zero sliding velocity, than for the gvaanic one.

The numerical techniques proposed in the foregoing sections handle this
refinement without difficulty. There only 15, in each step of time
discretization, to make the cone C depend on the sliding status in the
antecedent step. For instance, in the algorithm described n Sec.15, this
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antecedent step involves sliding or no sliding, according to —H,T1‘UL belonging
to C or not. This precisely makes one of the branching conditfons one anyway
had to consider.

At the stage of the analytical formulation, one has to make the cone C
depend not only on @, but also on U or, if the possibility of a velocity jump is
considered, on U . At first glance, this seems to reduce the advantage of the
formulations of friction presented in the foregoing. But the example below
tends to demonstrate that, far from being an heterogeneous addition to the
previous theorization, such a refinement actually proves inherent in the
subject matter. In fact, this example shows that, even if one starts from a
law of friction with single coefficient, it may happen that the logical
derivation of consequences eventually makes some contact force appear to
obey a Coulomb law with coefficient depending on sliding velocity.

Let us consider again the situation of Sec.13, namely, in a position g of
the system, with f(q)=0, the range Gq(lR") is assumed to reduce to a
two-dimensional subspace W of SES, different from the common tangent
plane T to the contacting bodies. In a motion with continuous velocity, it is
assumed that the contact force Re 1'3 is related to U through Coulomb’s law,
expressed as before in the form

-Ueprojo d-(R). (17.1)

As already observed, R pertains to the equations of mechanics only through
its equivalence class modulo ker g; , @ hatural representative of which is

R* =pro R
Furthermore, since U essentially belongs to the tangent vector plane T, it

has the form U=s1, where / denotes a unit vector of the line TNW , and
s€R. We are going to show that the resulting relation between s and R* may
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have a more general form than it has been assumed in Sect.13.

Let us consider only, for simplicity, the traditional case where C is a
cone of revolution about N. Clearly, for all s>0, the set of the values of R
that relation (17.1) associates with U=s/ consists of a certain boundary
half-line, say H*, of the cone. With all s<0 is associated the half-line H
symmetric to K ‘relative to the cone axis. Finally, to $=0, correspond all the
points of C. The orthogonal projections of H *and H “to W are two half-lines,
say D" and D7, lying on the same side of TNW. The expected relation

between s and R” is then expressed by the three implications
>0 = R'e¢D’
s<0 = R'e¢D
5=0 = R'€projg,C.

W iy

Boundary of projwc

Figure 17.1
Depending on the span of the cone C and on the angle that W makes with
N, the orthogonal projection of C to %W may equal the whole of W or some
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angular region C™ of this two-dimensional space.

In the 1atter case, C*contains D* and D~ but has no reason in general to
possess them as its edges: this means that the relation found between U and
R* is equivalent to g two-aimensional Coulomb law with static coefficient

jarger than the gynamic one. The equality of these coefficients, namely the
simple case studied in Sec.13, is however achieved if W is orthogonal to T.
If projwcz'w, every value of R* in W is assoclated with U=0, possibly

making with T an angle larger than 11/2. In statical problems, this could be
described as a weagg/ng effect.

The above discussion provides an example of the interaction between the
constraints of the system and the frictional effects at possible contact
points. The treatment of systems involving severa/ contacts with Coulombd
friction, a question left aside in these lectures, leads in general to simflar
situations.
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