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A Novel Approach to Model Order Reduction
for Coupled Multiphysics Problems

Wil H.A. Schilders and Agnieszka Lutowska

Abstract Model order reduction (MOR) has become an important tool in the design
of complex high-tech systems. It can be used to find a low-order model that approx-
imates the behavior of the original high-order model, where this low-order approx-
imation facilitates both the computationally efficient analysis and controller design
for the system to induce desired behavior. This chapter introduces MOR techniques
that are designed especially for coupled problems, meaning that different physical
phenomena are simulated in conjunction with each other. The method developed
makes use of the reduction of the individual systems, and low rank approximations
of the coupling blocks. This is done in such a way that existing software for indus-
trial problems can be adapted in a straightforwward way. An industrial test case is
described in detail, so as to demonstrate the effectiveness of the reduction technique.

1.1 Introduction

This chapter focuses on the development of a model reduction methodology for cou-
pled multi-physical models to serve the efficient simulation-based design of the un-
derlying coupled systems. Examples of coupled systems are larger systems such
as magnetic resonance imaging (MRI) scanners, printers/copiers, precision motion
stages, foldable solar panels of a space-telescope, down to very small systems such
as very large scale integrated (VLS/) systems (see for instance [12,21]) and micro-
electromechanical systems (MEMS) (see for instance [15]). Figure 1.1 shows such
examples.
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an advantage that the individual sub-systems can be reduced in parallel (see [3]) with
the method best suited for each of them. This can save a considerable amount of data
storage and computational time since these systems are also smaller than the system
as a whole. On the other hand, one must figure out how to couple the individually
reduced models to a reduced model for the whole, i.e., need to figure out how to
effectively deal with interior couplings/interconnections.

Our reduction methods are primarily for coupled time-invariant linear models.
Time-dependent linear models, affine models (such as presented in [4]) and non-
linear models (see for instance [14,23]) require other than the presented reduction
techniques. Furthermore, we restrict ourselves to Krylov subspace projection tech-
niques (see [11]).

In more detail, without loss of generality, we focus at systems which consist of
two coupled subsystems. We suggest a method for the parallel reduction of the in-
dividual sub-systems, call it the Separate Bases Reduction algorithm (SBR), and
show how to create a reduced model for the whole system based on the reduced
parts. Furthermore, we show that this algorithm applied to coupled systems matches
at least the same amount of moments as a standard method applied to the whole sys-
tem would (see [24] for interconnected systems). We establish that a large amount
of internal couplings leads to large and hence undesirable reduced models and show
that this can be overcome with the use of a generalized singular value decomposition
(GSVD) based reduction of the coupling blocks. However, the use of a GSVD-based
approximation leads to an approximation of the moments — which as benchmark ex-
amples show can still be quite accurate.

The remainder of this chapter is focused on the presentation of the SBR algorithm
and the GSVD reduction of the internal couplings. It is organized as follows. Sec-
tion 1.2 describes Krylov subspace techniques, focusing on coupled and intercon-
nected time-invariant linear systems. First, it shows what happens if standard tech-
niques are applied to the coupled system as a whole — it shows that the block structure
is lost. Next, it introduces existing techniques from the literature such as [1,6,9], still
based on Krylov subspace methods for the coupled system as a whole, which pre-
serve the block-structure and the number of matched moments. At the end of this
chapter, we show an alternative method to efficiently calculate the second Krylov
projector and extend the proof of [6] to a more general case, under assumptions.

In Sect. 1.3 we assume that Krylov subspace reduction methods are already avail-
able for the individual sub-systems and based thereon, we focus on the construction
of a reduced-order model for the system as a whole. We show that this is possi-
ble (and also that moments are matched) in Theorem 1.2 and call the approach the
Separate Bases Reduction algorithm (SBR). In Subsection 1.3.6 we show that the
SBR algorithm also matches the standard double amount of moments if one uses
two Krylov subspace projectors instead of one.

In Sect. 1.4 we show that the replacement of the coupling blocks by an explicitly
rank-revealing GSVD based components leads to the same Krylov subspaces and
hence matched moments. Approximations based on a few of the dominant modes
lead to quite accurate moment approximation.



Finally, in Sect. 1.5 we apply the SBR algorithm to a benchmark system. The
system under consideration is scaled in a specific manner such that it is numerically
better conditioned. We conclude with some remarks and recommendations for fur-
ther research in Sect. 1.6.

1.2 Block-Structure Preserving Model Order Reduction

Model order reduction is frequently based on Krylov subspace projections. The start-
ing point is a linear time-invariant system, that in the Laplace domain is given by
(later we will also use small letters x, y for unknowns in the Laplace domain)

SEX(s) = AX(s) + BU(s)
Y(s) = CTX(s).

The left side of Fig. 1.2 represents a schematic model of an inrerconnected system
which consists of four sub-systems and a number of interconnections. These inter-
connections can be realized in different ways, which will be focused on in Sect. 1.3.
The right side of Fig. 1.2 shows the system matrix A which corresponds to the graph
on the left. The matrix A has a visible block-structure. Each of the gray diagonal
blocks corresponds to one sub-system. The oft-diagonal blocks are related to the
interconnections. The blue dots in the off-diagonal blocks show that the two corre-
sponding sub-systems are inferconnected. The empty off-diagonal blocks show that
there is no coupling between the corresponding two sub-systems.

In general, a system of k£ components, can be described by a linear system

(L.1)

Evi - Eie| [ Xy Ay A | |1X B,
s = + U
En - Ew| [ Xk Apr oo A [ X By
_ (1.2)
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Fig. 1.2. Modeling of a coupled system



Fig. 1.3. L.oosing of the structure in the reduced-order matrix A

Fig. 1.4. Block structure preservation in the reduced-order matrix A

where the X, e RM, N, € N, i =1,....4, and the corresponding sub-blocks have
compatible dimensions, where typically the off-diagonal blocks are not square. Nat-
urally, we would like to still be able to recognize this type of block-structure in a
reduced-order system matrix A. Unfortunately, if we apply a standard Krylov sub-
space reduction technique to the matrix A we unavoidably lose the block-structure
and obtain a non-structured dense reduced-order matrix A as shown in Fig. 1.3. In the
next two subsections, we present a brief overview of Krylov-subspace based block-
structure preserving reduction techniques. Such techniques applied to a structured
matrix A result in a reduced-order matrix A like the one shown in Fig. 1.4. Al-
though the potential sparse nature of the interconnection off-diagonal blocks is lost,
ong¢ can still recognize the system’s general block-structure. The diagonal blocks
still correspond to the reduced-order sub-systems and the zero blocks related to un-
coupled sub-systems are preserved. The reduction techniques of this type are called
block-structure preserving (BSP) methods (see for instance [9]). For more informa-
tion about this type of technique the reader can consult for instance [18].

For the sake of simplicity assume that there are two coupled sub-systems (k = 2
in (1.2)). Then the system matrix has the block structure

A A
A2 A

We call such a system an interconnected system if A1 and Ay are explicitly defined
by means of their inputs and outputs, i.e., if for instance A = B3CI. Otherwise, if
A> and A, are specified in unfactored form, we call the system a coupled system.
However, it is reasonable to assume that even for the blocks specified in unfactored
form there might be defined related input and output operators, i.e., that there can be



constructed B3 and C4 such that for instance Ay = B3C}. [13] considers possible
construction methods for the input and output maps when A}, and Ay, are specified
in unfactored form.

1.2.1 Moment Matching Methods for the Coupled Formulations

We will begin with BSP methods that are directly applicable to coupled systems of
the form (1.2)

Ei - Eir| | Xy A A | | X B
Ky = -+ U
Ej Ew | [ Xk Ap A | | Xk B,
X,
Y= [C{a T ’C}j(']
| Xk

This type of methods is studied in more detail in for instance [2,6,9]. These methods
aim at the creation of a reduced-order model whose matrices exhibit the original
block-structure and whose transfer function matches a number of moments of the
transfer function of the original system. As for standard Krylov methods, the moment
matching property is realized by projecting the original system matrices onto the
appropriate input- and/or output-based Krylov subspaces by using the matrices
and I for a chosen expansion point so € C. However, to preserve the block structure
of the original system, the reduction bases also need to have a special shape. They
are created by partitioning the matrices V and W into & sub-blocks (with & being the
number of sub-systems)

Vi W,
V= and W=| : |,
Vi Wi
where the number of rows in the blocks V;, W;, i = 1,...,k corresponds to the

number of rows of the diagonal blocks A;;. Next, the blocks V; and W; are used to
build block-diagonal reduction matrices V and W

V] W]
V= and W= (1.3)



and the reduced-order system is obtained by projecting the original matrices
A=w'Av, E=W'EV, B=wW'B, C=V'C (1.4)

Note that since the splitting of the matrices V and W into sub-blocks may create
linearly dependent columns, one needs to apply a re-orthogonalization of the ma-
trices V and W to remove every possible linear dependence. Moreover, after re-
orthogonalization, one has to assure, that the matrices V and W have the same num-
ber of columns. This can be done by adding the necessary number of random or-
thogonal columns to the matrix with the smallest amount of columns.

For the reduction bases created in the way described above, the following theorem
holds.

Theorem 1.1 Let V and W span the input- and output-based Krylov subspaces of
the rth order around the expansion point s € C for the system (1.2). If

colspanV C colspanV and colspanW C colspanW,

then a reduced-order system computed as in (1.4) has the transfer function that
matches 2 p moments of the transfer function of the original system (1.2).

There are several examples of methods that satisty the foregoing. Paper [6] pre-
sents SPRIM, a structure preserving reduced order method for interconnect macro-
modeling. It focuses on an RLC circuit application, as model order reduction meth-
ods are of importance to microchip manufacturers since complex microchips such
as processors contain many interconnected substructures. The relevant equations are
(notation as in [6])

Gx+ExX = Bu (1.5)
with
T T T T
o [EIGE.ET| [ElcEc0] - [ET]
—-E;, 0 0 L 0

where G, C, and L are symmetric positive definite (square) matrices. The matrices
Eo, Ec, E; and E; are parts of an adjacency matrix E which describes the connectivity
of the electronic circuit, the subscripts g, ¢,/,i stand for branches containing resis-
tors, capacitors, inductors and current sources. The SPRIM related Laplace domain
transfer function Hgprin 18

HSPRIM(S> = A! (cg +S(€)71 A
where %4, ¢ and ¥ are re-written

B,
0

C 0
0 G

G G
~G; 0

%:

= f@:

) ?

The paper presents a reduction basis V of the type (1.3) in [6, (21)] and proves in [6,
Theorem 3] that it (W = V) preserves 2p moments, double the amount preserved by
PRIMA.



The technique proposed in [5] is motivated by the fact, that for some applica-
tions the single-point expansion does not give a sufficient approximation accuracy
in the frequency range. On the other hand, using a multi-point expansion can result
in excessively large models, especially for systems with many external inputs and
outputs. The method proposed in the paper mentioned above, is based on creating
a reduction space that consists of a number of sampling matrices Z;, j = 1,...,p,
computed for the system (1.2) for p sampling points s; as follows

Z,=(s;E-A) 'B.

In other words, Z;, j = 1,...,p is a vector (or a matrix) that, after projecting the
system (1.2) onto, will match the Oth moment around the point s; of the original
transfer function, since it consists of the input based starting matrix for the Krylov
subspace for s ;. After computing p samples, the total sampling matrix Z is defined
as

Z=[7,.. 1,.

Next, following the block-structure presented by the system matrices, matrix Z is
split row-wise into & blocks V;, i=1,...,k

Vi
Finally, the singular value decomposition (SVD) is performed on each of the blocks
separately, to produce the orthogonal matrix V

where V,,i = 1,...,k is an orthogonal basis for V;. At this point, further reduction
in size is possible, by removing from the bases V;,i = 1,..., k the columns that cor-
respond to to small singular values. Having the reduction bases V, one can project
the original system in the way defined in (1.4).

A noticeable advantage of the technique described above is, next to the block-
structure preservation, the possibility of reducing different sub-systems with differ-



ent reduction ratio, determined for each sub-system separately, based on the sin-
gular values related to this sub-block as well as the importance of the considered
sub-system in the total coupled system.

1.2.2 Two-Sided Structure Preserving Methods

In this section we will explain how the two-sided projection idea can be implemented
in case of the block-structure preserving methods. A detailed explanation of the two-
sided methods one can find for instance in [8]. Generally speaking, the use of a
two-sided reduction method means, that the system is projected onto two subspaces,
V and W, based on input and output matrices, respectively. In case of the coupled
system (1.10) (defined somewhat later), the reduction matrices V and W, for an
expansion point 5o € C, are built according to the following algorithm:

1. Create matrix V, whose columns span the nth Krylov subspace around so € C
V = J(P(s0),R(s50)),
where P(sp) and R(sp) are
P(so) = (spE—A)"'E and R(so) = (soE—A)"'B.
2. Create matrix W, whose columns span the nth Krylov subspace around sy € C
W = #,(S(s0), T(s0)),
where S(so) and T(s¢) are
S(s0) = (soE—A) TE” and T(sp) = (soE—A) 'C.

3. Build the block-diagonal reduction matrix V with N; + N, = N rows

Vi 0
0 Vv,

V=

9

where V1 and V; contain the first N; respectively last N; rows of the matrix V.
4. Build the block-diagonal reduction matrix W with Ny + N, = N rows

W; 0
W= ,
0 W,

where W1 and W5 contain the first N respectively last N> rows of the matrix W.

Different algorithms lead to V and W (and hence V and W) with different specific
properties (such as orthogonality or bi-orthogonality). Some properties and their ad-
vantages and disadvantages are discussed in [17].

The described BSP algorithm results in a block-structured reduced order system
and uses both inputs and outputs. Consequently, the BSP-based reduced order sys-



tem’s transfer function matches twice as many moments of the original system’s
transfer function.

1.3 Separate Bases Reduction Algorithm

Model order reduction techniques, designed especially for coupled or interconnected
systems, became a new field of research in recent years. The common feature of this
type of methods is the use of a special block-diagonal form reduction basis V

Vi
v=1| - (1.6)

Vi

that results from the splitting a matrix V created by a Krylov method applied directly
to the coupled system. This approach allows for preservation of the zero-blocks in
the coupled system’s coefficient matrix. Such blocks appear when two of the sub-
systems are not coupled (interconnected) or the coupling holds only in one direction.
An example of uni-directional coupling can be a case of a vibrating structure, where
the movement of the structure causes acoustic noise, but there is no influence (feed-
back) of the acoustic behavior of the system on it’s dynamics.

Due to the fact that the zero-blocks are preserved in the reduced system, such
MOR techniques are called block structure preserving (BSP) model reduction meth-
ods. Their application usually results in a good approximation of the original model.
For most of them one can prove the moment matching property. However, this type
of methods also has three important drawbacks:

« Though V in (1.6) (possibly) matches the same (number of) moments as V, it
has k times more column vectors and therefore leads to a & times larger reduced
system.

« The calculation of V requires (repeatedly) solving systems with the entire coupled
system’s coefficient matrix which can be computationally (time- and memory-
wise) expensive.

* In practice, the reduction techniques based on an uncoupled formulation of the
system (see e.g. [24]) are restricted to the case of interconnected systems with
a limited number of interconnections. Otherwise, the reduction procedure is not
very efficient, since the dimension of the reduction basis (hence, the reduced-
order model) grows very fast. Moreover, such techniques assume that the inputs
B and outputs C of the sub-systems are both explicitly available. In case of a
coupled system these are not explicitly available, only their product BC is.

In the remainder of this chapter, we will focus on the second and third issue. We
present a reduction algorithm suitable for systems, coupled through a large num-
ber of couplings. We introduce a reduction technique based on an uncoupled for-
mulation of a coupled system, called Separate Bases Reduction (SBR) algorithm.
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instance in case of modeling of systems, where the dynamics of the structure is influ-
enced by an electromagnetic field (and vice versa). In the depicted case the change
of the velocity of the node u(x;) influences the electromagnetic field x — e(x) at the
node x;, and at many nodes in the neighborhood of x;.

1.3.1 Interconnected System — System Definition

In this subsection we introduce the family of linear interconnected systems to which
the reduction algorithm is to be applied to. For the sake of simplicity, we focus on
a system of two-subsystems where one sub-system’s output is used as a part of the
other sub-system’s input and vice versa. However, the proposed method can easily
be extended to systems composed of an arbitrary number of sub-systems.

1.3.1.1 The Uncoupled Formulation

The time domain behavior of each of the sub-systems S and S, is modeled by a sys-
tem of first order differential-algebraic equations after which the frequency domain
behavior is obtained via Laplace transformation. For the two sub-system examples
in Fig. 1.7, this procedure leads to the Laplace domain systems

,

sE11xy = Ay1x1 +Bju; +Bsus,
St o y1 = Clxy,

_ !
L Y3 = C3 Xy,
.
sExxy = Azxo + Bouz + Bauy,
. v
S2 . Y2 = C2 X2,
T
L y4 — C4 X2.
fS ™
ul y1l N
51 ’
uz S ¥3
ya ud
52
Z
N y2 - uz
L -

Fig. 1.7. Schematic representation of the interconnected system

12



Using matrix notation, the system S| and system S; can be described as

;

uy
sEi1x1 = Ajxq + [Bl B3]
u;
St (L.7)
M| c’
— " X1,
\ Y3 C;
.
uz
sExxa = Anxz + [By By
U4
Sy , (1.8)
y2 CQ
= T X2.
L[4 C,

1.3.1.2 The Coupled System

When the output of S is used as an input of S, and the output of S> is used as an
input of S1, equations (1.7) and (1.8) reduce to an interconnected Laplace domain
system. Due to the design of the system depicted in Fig. 1.7 one has

{U3 B (1.9)

w= y;= Cix,
which in addition implies
m3 = p4
m4 = p3.
Using relation (1.9), the interconnected system (1.7) can be represented as a single
coupled system S of equations

.
SEi1x; = Anixy +Buyg +B3C£X2,
sExnxs = Anxs +Boup +B4C§X1,

S
Y :C{Xh
\ y2 = Cix
and in matrix form
( E]] 0 _X]_ _A]l B3CZ_ X1 B] 0 u
S =
0 E22 X2 B4C§ A22 X2 0 B2 u»
S: - : (1.10)
yi| ch o |x
= .
L _yg_ i 0 C2 X2_

13



Let N =N+ Nz, m =m| +m>, p= p)+ pz and define

E;y 0 A B;Ch B 0 C 0
E= , A= , B= , C= . (1.11)
0 E» B,Ci Ay 0 B, 0 C,

where A, E € RVV B e RV € € RV*P. The matrices defined in (1.11) show a
special block structure. The sub-systems’ matrices Aj; and Ajy form the diagonal
blocks of the system matrix A of S. The off-diagonal blocks are the products B3CZ“
and B4C] of the internal input and output matrices of the sub-system. The input and
output matrices B and C are block structured, as well as the matrix E.

1.3.2 Transfer Functions of the Uncoupled and Coupled Systems

One of the questions arising at this point is the relation between the transfer functions
of the sub-systems S1 and S2, and the transfer function of the coupled system. In this
subsection we will study this issue. Let us begin with the uncoupled sub-systems. At
s € C the transfer function of sub-system S1 defined in (1.7) is given by

_C]T

H(S): (SEu—A“)*l[Bl B3]

7
L >3

C{(SEU —Au)_lBl C{‘(SEU —All)_1B3
_Cg(sE” —An) 'By CL(sEq1 —Ay) 1B;s

_ [HII(S) Hix(s)
H21 (S) H22(S)

1.12)
For the sub-system S2 defined in (1.8), similarly
(e |
G(S) = p (SE22 —Azz)i [Bz B4]
G
B _Czj(SEzz — Azz)ile Czj(SEzz — A22)71B4 B G]](S) G]Q(S)
_Cz{ (sEx2 — Ax) 'By CI(sEx — A2) !By G21(s) Gaa(s)
1.13)
At s € C the transfer function of the coupled system (1.10) is
0 cl o E; O Aq B3CT - B, 0
Z(s)=C/'(sE—A) 'B=| ! s — 4
0 Cl 0 Exn| |BsCi A 0 B,
B Z11(s) Zi2(s)
Z21 (S) Z22(S)
(1.14)

Based on definitions Eqs. (1.12) to (1.14) we will express the components of the
transfer function Z(s) in terms of the components of the transfer functions H(s)
and G(s) in two manners. First we follow the typical approach used in the field of
systems and control (more details can be found in for instance [19]). Secondly we
use the Sherman-Morrison-Woodbury formula.

14



The Systems and Control Approach

The starting point of this approach are two transfer functions H(s) and G(s) of the
sub-systems 1 and 2, respectively. For each sub-system, its transfer function relates

its inputs to outputs:
uj y2 uz
uj Y4 uy

[Yl

Y3 H (s) Haa(s)

[Yl Zy1(s) Zi2(s) [lh] ' (1.15)
y2 Z>\(s) Zyo(s)| |ur

Systems (1.12) and (1.13) in combination with relation (1.9) lead to

Hii(s) Hia(s) Gii(s) Gia(s)

G (s) Gaa(s)

and

HII(S)U] +Hi2(s)y4 (1.16)

Hy; (s)uy + Haa(s)y4 (1.17)

Y2 = G11(S)112 +Gi2(s)y3 (1.18)
y4 = Go1(s)uy + G2 (s)ys. (1.19)

Substituting y4 of (1.19) for y4 in (1.17) we obtain
y3 = Ho1(s)u; +Haa(s)ys = Hay (s)u) + Hoo(5)[Ga1 (s)uz + G2 (s)ys]
and hence
y3 = [I—Hx (S)GQQ(S)]_] [Ha1 (s)u; + Hao (5)Gop (s)uz]. (1.20)

With this result and (1.19), we can also express y4 in terms of u; and u;

y4 = Goj(s)uz + G (s)ys = Gai(s)uz

(1.21)
+G22(s)[1 —Hx(s)Gaa (S)]_] Hoi (s)ug + H2a(s5)Gay (s)ua].

Using (1.20) and (1.21) in (1.16) and (1.18), we arrive at

y1 = Hy1(s)uy +Hia(s)ys = Hii(s)uy
FHis(s) (G21 (s)uz + Goa (5)[1 — Haa (5)Gaa (s)] !

x [Hai (s)uy +H22(S)G21(S)“2]>

— (HU <S) —+ H12 (S)GQQ (S) [l — HQQ (S)GQQ <S>]71H21 (S)) uj

+ (H]Q(S)GQ] (S) + H]2 (S)G22 (S) [I — H22 (S)G22 <S)]7] H22 (S)GQ] ) u»

15



and

Y2 = Gu(s)llz +G2(s)ys =Gy (S)llz +Gia(s) [l — H22<S)G22 (S)]fl [Hzl (s)uj

+ H(5)Ga1(s)uz] = Gia(s)[1—Haa(s)Ga(s)] " Hay (s)uy
+ (G]] (S) + G]2<S) [I — H22<S>G22 (S)]ilez <S>G21 (S)) us.

This shows that the components of Z(s), as defined in (1.15), are

Zy1(s) = Hyy(s) +Hj2(s)Gaa (s)[I — Haa ()G (s)] " Hay (s) (1.22)
Z12(s) = Hi2(s)G21 (s) + Hi2(s)Goa(s)[I — Hoa (s)Gaa(s)] " Hoa(5)Gor (s) (1.23)
Z>1(s) = G12(s)[1 —Hay(s)Gaa(s)] "' Hy (s) (1.24)
Zox(s) = Gy (s) + Gra(s)[I — Haa(5)Ga2(s)] "Ha(s)Gay (s). (1.25)

Computing the Transfer Function of the Coupled System Using the
Sherman—Morrison—Woodbury Formula

The evaluation of the transfer function of the coupled system, as defined in (1.14),
requires a computation of an inverse of a block matrix. For a system consisting of
an arbitrary number of sub-systems, a suitable tool towards this end is the Sherman—
Morrison—Woodbury formula (see for instance [10] and references therein). This
formula allows for a computationally cheap matrix inversion, as long as the con-
sidered matrix can be easily expressed as a sum of a matrix for which an inverse is
known (or easy to compute) and a (low rank) correction. Let L be non-singular and
let matrices J, M, N be of compatible size. Then the formula of K = L+ MJN is
(after [10])

K'=L+MIN)'"=L "L "M@ "+N'L'M)"'N'L", (1.26)

In our case, the matrix to be inverted can be decomposed into

K E;; 0 A1 B;Cl sEj1—A;; —B3Ch
=S - " = .
0 EQQ B4C§ A22 —B3C§ SE22—A22
- SEU —A11 0 0 B3C£
0 SE>»» — Ao B4C§' 0
B 0 Bi;C
B.C] 0

where L is a block-diagonal matrix, whose inverse can be calculated by computing
the inverses of each sub-block separately and the correction matrix can be factored

0 B;Ci
B,C{ 0

0 B3
B; 0

|cio

| = MJINT.
0 C}

16



Abbreviate G;‘(S) = (SE,‘;‘ —Al',')il, Pl'<S) = Gj(S)Ejj and R;‘(S) = G;‘(S)[Bl' BZ—H']’
i = 1,2 and omit the argument s when possible. Note that R; = [R;|,Rp] =
|G/B;,G;B;4,] consists of two blocks. Substituting the formulas for L,M,J and N
into the the Sherman-Morrison—-Woodbury formula, we get

-1
E;p 0 A B;Ch
S J—
0 Ex B4C§ Ax
_(|sEn-An 0 0 B3| |[C] 0
0 SE22—A22 B4 0 0 Civ
G 0 G 0|]0B;
— O
0 G 0 G>| [Bs 0
P S S (127)
] cl 0]|G 0|0 B; cl 0]]Gy o
0 C/||0 Gy| |BsO 0 Cll]|0 Gy
G 0 0 Rp;
f— O
0 G| |Rn 0
) —1
0 CIRp ciG; 0
CIRy 0 0 CiGy|’

where the entries of G and R depend on s. Using this result and Eqs. (1.12), (1.13),
(1.14), one can find the formula for the transfer function of the coupled system

2(5) = Keif OT ( G 0 0 Rpp|_
|0 C] 0 G| |Ryp 0
0 cIrRp]\ [clG o B; 0
|CiRn 0 ) 0 CiG ) 0 B
[cTRy 0 0 C{Rp|_
L0 CRa] [GRz 0 (128)
0 CiRp CiRy; 0
|CIRy 0 ) 0 C[Ry
- Hy (s) 0 0 le(s)]O
I 0 Gii(s) Gia(s) 0
o ma )‘ [Hzl(s) 0
Gxn(s) 0 0 Go(s)

It is easy to show, that the formulation (1.28) is equivalent to the formulation given
by Egs. (1.22) to (1.25). Moreover, (1.28) provides an clegant relationship between
the components of the transfer functions of the sub-systems and the coupled system,
that reveals the symmetry and the structure of the coupled system. In addition it
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shows that the relation between the transfer functions is not straightforward. Since
several sub-expressions such as (sE; —A,~,-)_1 reoccur frequently, we will introduce
abbreviations in the upcoming sections.

Formula (1.28) reveals a structure which is more difficult to find in (1.22)—(1.25)
and can be used to calculate the transfer function of the coupled system if the transfer
functions of the individual sub-systems are available. The involved inverse is of a
small matrix which means that calculation of the transfer function of the coupled
system is relatively cheap.

1.3.3 Standard Block Structure Preserving Reduction

In this section we will recall the general ideas of the standard block-structure pre-
serving methods.

A typical block structure preserving (BSP) model reduction method applied to
the system (1.10) consists of the following three steps:

1. Create the matrix V whose columns span the nth Krylov subspace around sg € C
V =, (P(s0), R(s0)),
where P(so) and R(so) are
P(so) = (s)E—A) "Ec R™" and R(sp)=(soE—A) 'BeR".
2. Build a the block-diagonal reduction matrix V with Ny + N, = N rows

Vi 0
0V,

V=

?

where V| and V; contain the first Ny respectively last N; rows of the matrix V.
3. Project the original system onto a lower-dimensional space

E=V'EV, A=viAav, B=V/B, C=VIC.

When possible we write P and R rather than P(s) respectively R(sp). The model
reduction methods based on this idea are widely applied and popular due to a good
accuracy of the reduced-order systems that they deliver. However, they have a few
drawbacks, one of them being the high cost of the construction of the reduction basis.
The main computational cost of this type of methods is related to evaluation of x —
(soE — A)~'x, which involves solving a system of equations with a large coefficient
matrix. In the next section we introduce an alternative structure preserving method
which for some cases can significantly reduce the computational costs.

1.3.4 Separate Bases Reduction Algorithm

In the classical case, the reduction basis is built using the coupled formulation of
the system (1.10). The construction of this basis requires repeated evaluations of
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x +— (soE — A) " Ix where soE — A is an N x N matrix. For large N this procedure can
be computationally very expensive or even unfeasible. In such cases one can try to
make use of a natural block structure of the coupled system and for instance replace
the evaluations involving (soE — A)*1 by evaluations involving (soEj; — Ay )*1 and
(soE2n — Azz)_] , 1.e., by evaluations involving only the coefficient matrices of both
sub-systems. If NV is large and for instance N; = N> = N /2 then the serial computation
of (soE11 — A )’1 and (soE22 — A22) ! may be much faster that of (soE — A)~!.
Further acceleration can be achieved through parallelism.

Following this idea, we introduce a new model reduction algorithm, called Sep-
arate Bases Reduction (SBR) algorithm. Here the Krylov subspaces that create the
reduction bases correspond to the uncoupled sub-systems (as defined in (1.7) and
(1.8)) rather than to the coupled system (1.10). The procedure is as follows:

1. Create two matrices V; and V», one for each sub-system:

* For the sub-system S, build a matrix V;, whose columns span the »;th Krylov
subspace around sy € C

Vi = o (P1(s0),Ri(s0)),
where P (sg) and R (sg) are
Pi(so) = (soE11 —Ay) 'E;; and Ry(so) = (soE1; —Aqp) '[By Bs).

Matrix V5 has Nj rows.
» For the sub-system S5, build a matrix V3, whose columns span the n>th Krylov
subspace around sp € C

Va = 0, (Pa(s0),Ra(s0)),
where P> (s9) and Ry (sg) are
P>(s0) = (soE2 — A22)7]E22 and Ra(so) = (soEx —Azz)fl (B> By].

Matrix V, has N, rows.
2. Build the block-diagonal reduction matrix V with Ny + N, = N rows

Vi 0
0V,

V =

3. Project the original system onto a lower-dimensional space
E=V'EV, A=V'Av, B=V'B, C=V/C.

In the sequel, when possible without causing confusion, we omit the argument sg of
P; and R;, i = 1,2. In the next subsection, we will compare the SBR algorithm with
a standard BSP reduction method, by examining their most important properties.
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1.3.5 Separate Bases Reduction Algorithm — Properties

In this subsection we will discuss the differences and similarities between Separate
Bases Reduction algorithm and standard block structure preserving model reduction
methods.

Block-Structure Preservation

As described in subsection 1.3.4, the SBR algorithm uses reduction matrices of the
block-diagonal form
Vi 0

0V,

Therefore, its application preserves the block structure of the coupled system matri-
ces.

Rank and Orthogonality

The sub-blocks V1 and V> of the projector V are constructed separately, using one
of the Krylov basis building algorithms. Hence, both of them have a full column
rank and, as a result, the matrix V also has a full column rank. If the sub-blocks V;
and V; have orthogonal columns then also matrix V has (automatically) orthogonal
columns, i.e., no explicit orthogonalization has to be applied.

Computational Cost

The difference between the computational costs for a standard block structure pre-
serving method and the Separate Bases Reduction algorithm comes from the fact,
that the SBR algorithm computes the reduction bases for the set of uncoupled sys-
tems instead of using the coupled formulation of the system. This approach can sig-
nificantly reduce the computational time and storage requirements needed during the
model reduction process.

The main cost of the Krylov basis construction lies in the evaluation of the matrix
pencil inverse function x — (soE — A) ™ !x. For coupled models with many degrees
of freedom this evaluation may be unfeasible. But for sub-problems of smaller size
evaluation may be possible. The amount of computational work required for the so-
lution of (soE — A)x = d depends on the employed solution method which at its turn
relies on specific properties of the matrix s)E — A (symmetry, monotone, positive
definite, etc.). Different methods lead to different amounts of computational work:
The minimal amount of work of O(») operations is usually achieved by multigrid
methods (see [25]), other methods such as GMRES, PCG, CGS and BiCGstab(1)
(see [16,20,22]) are more expensive. Classical fixed point methods such as Jacobi,
Gauss-Seidel and matrix-splitting based methods are usually even slower.
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Size of the Reduction Space

Another difference with respect to the standard BSP reduction methods is the size
of the reduction matrix V and, as a result, dimension of the reduced order model.

Let us consider the coupled system (1.10) and assume, for simplicity, that there is
no need for deflation (all columns turn out to be linearly independent) while building
the matrix V. We will apply a typical reduction procedure like described in subsec-
tion 1.3.3 and the SBR algorithm. In both cases, we will build a Krylov subspace of
order »n and estimate the size of the reduction space and reduced order model.

We begin with the analysis of the standard structure preserving algorithm. The
nth Krylov subspace built for the coupled system for the starting matrices as defined
in subsection 1.3.3 will be of the form

V=, (P,R) — colspan{R, ..., P" 'R}

where P = (soE — A)"'E and R = (soE — A)~'B. Since B € RY*™, each of the
components P/R of the matrix V has m columns. Thus, for a degree » Krylov space,
assuming no deflation, the size of V is N x (nm). Next, the block-diagonal reduction
matrix V is created by splitting the rows of V according to the dimensions of the
sub-problems. In our case, the coupled system consists of two sub-systems, so the
final size of the reduction matrix V is N x (2nm). This leads to a reduced model of
order 2nm.

Next, we will focus on the SBR algorithm. In this case two matrices V| and V,, are
built separately and we assume that each of them corresponds to an nth degree Krylov
subspace based on the appropriate matrices (for i = 1,2 define G;(sg) = (soE;; —
A,‘,‘)il, P,‘(So) = G,E;; and R,‘(S()) = G,‘[B,‘ B2+i] and observe that R, = [R,’],R,‘Q]
where R;; and Rj; are G;B;, respectively G;B_;). For the sub-system S|, we create
the matrix V;

Vi :,%(Pl, Rl).

Here, R|,[B; B3] € RM*(m+m3) g5 each component P{Rl of the matrix V| has
(m1 + m3) columns whence V has n x (m) +m3) columns.
For the sub-system 5>, we create

Vo = %(Pz, R2)~

Similarly, since Ry, [B; By| € RN2X(mam4) - every component Péf R, of the matrix
V> has (m» + my) columns, and matrix V3 has n x (m2 +my) columns.

Next, matrices V| and V, are used as diagonal blocks of the reduction matrix V,
resulting in a reduced model of order

nx (my+m3)+nx(m+my)=nx(m+m3+my).

This result shows that the SBR algorithm creates a smaller reduced order model than
standard BSP methods if (m3 + m4) < m. This is for instance the case for coupled
systems for which the number of internal inputs is not larger than the number of
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external inputs. If there are many more internal inputs than external ones, the size of
the SBR algorithm based reduction matrix will grow very fast compared to the size
of the BSP reduction matrix. However, this problem can be avoided for the category
of systems for which the internal input matrices B, and B4 can be approximated by
only a small number of dominant components. This approach will be explained in
more detail in the next section.

The Moment Matching Property

In order to assess the SBR moment matching properties we compare the column-
spaces of the BPS and SBR reduction matrices. For simplicity, without loss of gener-
alization, we focus on the SISO case (the coupled system is SISO) where in addition
B;, C;, i=1,...,4related to the sub-systems are column-vectors which implies that
all products Cl-T (...)B;, i,j=1,...,4, are scalars. A similar analysis is possible for
the MIMO case (a MIMO coupled system with sub-system matrices B;, C;).

Theorem 1.2 Let the coupled system be as in Fig. 1.7, described by (1.7) and (1.8).
Assume that all inputs and outputs are column-vectors, i.e., mi=p;=1,i=1,2,3.4.
Then the SBR reduced-order model transfer function matches at least the same
(number of) moments as the BSP reduced-order model transfer function.

Proof First, we examine the reduction space built by a standard BSP method. To
match the first £ moments at so € C, of the coupled system of the form (1.10), one
has to construct the Krylov space

V = %#,(P,R),
where
P=(E—A) 'E and R=(sE—A) 'B.

The #% Krylov step for the BSP method adds to the reduction basis the column span
of the following matrix Vl(al)sp

vivid o o

(i)
Viop = N
BSP 0 0 Vg]) ng)

(1.29)

with blocks of the form
EVURYY;
o= | b v
1 7
Vai Vs
PR+ Z",;f) /PR D PR |
Y0 B/PiR2 Py 'Ra + 3/ 6,PR

(1.30)

By (1.27) there exist scalars a, b, ¢, d and by construction (induction) there exist
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coefficient vectors & = [ay,..., 0] € R 2, B,7,8 € R such that

v pyl=D
Visp = PVpep

S|
_ . E; O B Aqq B3C£ Ei;; 0 \NI(FI)
0 Ex B4C§ A» i 0 Ex Bar
(1.27) G, 0 0 Rpp| [ab| |CIG, 0O En 0 o6
induction _O G Ry 0 cd_ 0 CZGQ 0 Ex Hse
_ P, 0 0 Rpp| [ab] |CiP; 0
(0P |Rp O ||cdf| 0 CiP;
2 2 : 2
Pll R]].-I—Z}ZQOCJ'P‘{RIQ | ‘l/v:()}’j_])‘{RIZ _
35 BiPIR Py *Ror + 37 8,P)R
_ PiflRl] —l-zll;ll OCJ'P‘{RIZ 2],;11 }’J'P‘{RIZ |
I Z;;ll PIR2» P, 'Ry +2_’,—;11 8;PjR2>
0 Ry [ab] [CIP 0
_R22 0 cd 0 CﬁPz
PRy +ZI,;20 o, PR 25 YPIR: |
| SIABPRy P, Raj + X5 8,P)Ra |
_ Pi 'R +3 PRy SRR ]
C7(..)BeC ¥ B/PIRy P, 'Roy +3) | §;PjR2)
[0 Riz| |a b| |* %
R» 0 cd| |xx
_ PRy +3) j PR 3 yPR
I Z’,;ll B, PSRy P, IRy + Zl,;ll ;PSR
0 Riz| (11 12
Ry 0 | (3 14
: P171R11+Zj,;11_ o,P{R1> 237:11 PR _
S BPRz Py Ry +3 5P Ry
HiR2 2R 2
3R 4Ry
_ P 'Ry +Zj,~;lg &;P{Rlz Zi,;%) }?/P‘{Rlz | (1.31)
S oBPRn Py Roi+3X 7 0,PIRy
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where & = (i1, o], B = [u3, B8], 7= |12, 7], 6 = [it4, 8], and the matrix with **’ is
a full matrix. Now it is easy to see that the column span of the matrix constructed
from the matrix Vg)sp by splitting its rows, has the same column span as the matrix
defined in (1.29). Finally, the reduction basis Vggp after £ steps of the BSP algorithm
has the following form

Visp = [Vidp,..., VI, (1.32)

Now we will examine the SBR reduction space algorithm. Let P;,R; = [R;1,R2],
i = 1,2 be as defined before. For s € C SBR builds two Krylov subspaces

V]Z%(P],R]), and VQZL%(PQ,RQ).

One can easily prove, that the /" step of the Krylov iteration within the SBR algo-

rithm adds to the reduction basis the column span of the following matrix V(S%R

Vi Vé’) V%‘) | (133)
2
where
vl = [P’l IRy, P! lng}
and

vy = [P Roy PR .
Finally, the reduction basis Vgpr after £ steps of the SBR algorithm has the following
form

Vssr = Ve, .., VL. (1.34)

Comparing (1.30) and (1.33), we observe that

colspanVigp C colspanVgpRr.

Because the dimensions of the spaces are equal for our case (SISO external and
column-vectors B;, C; for the sub-systems) one finds that in addition

colspanVigp = colspanVgpr. (1.35)

Because colspanVgsp C colspanVsgr the SBR reduced-order model transfer func-
tion matches (at least) the same (number of) moments as the BSP reduced-order
model transfer function which at its turn (Theorem 2, [6]) matches the same (num-
ber of) moments as the original coupled system’s transfer function. For the more
general case where B;, C;, i = 1,...,4 are matrices one should also obtain

colspanVpsp C colspanVgpr (1.36)

which is sufficient to prove the moment matching property of the SBR reduced-order
system.
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1.3.6 Two-Sided Separate Bases Reduction Algorithm

The two-sided projection technique introduced in the previous section can be adapted
to similarly improve the moment matching properties of the SBR algorithm, where
we assume, as in the previous section, thath the B; and C; are column vectors. With
the uncoupled formulation (1.7) and (1.8) in mind we define the reduction algorithm
as follows.

1. For the sub-system Sj, create two matrices:

» Matrix Vi, whose columns span the »;th Krylov subspace around sg € C
Vi =2, (P1(s0),Ri(s0)),
where P (s¢) and R (so) are
Pi(s0) = (soE11 — A1) 'Ey; and  Ry(so) = (soE11 — A1) '[B; Bs).

Matrix V; has N| rows.
* Matrix W1, whose columns span the nith Krylov subspace around sp € C

Wi =, (S1(s0), T1(s0)),
where S;(so) and T (so) are
Sl(So) = (soE 1 —Au)_TE{l and T(so) = (soEn _A“)—T[Cl C3].

Matrix Wi has Nj rows.
2. For the sub-system S5, create two matrices:

* Matrix V>, whose columns span the nyth Krylov subspace around sg € C
Vo =, (Pa(s0),Ra(s0)),
where P(s¢) and Ry (sg) are
P>(s0) = (s0E22 — A22) 'Ex  and  Ra(so) = (soE22 — Ax) ' [B2 Byl

Matrix V> has N, rows.
» Matrix W5, whose columns span the n>th Krylov subspace around sy € C

Wy = 2, (S2(s0), T2(s0)),
where Sy (s0) and Ta(sg) are
SQ(S()) = <S0E22 — A22)7TE272 and T2<S0) = <S0E22 fAzz)iT[Cz C4].

Matrix Wj has N> rows.
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3. Build two block-diagonal reduction matrices V and W with Ny + N, = N rows

Vi 0
0 V>

0 W,

W, 0
and W:[]

4. Project the original system onto the lower-dimensional space
Espr = W/EV, Aggr = W/AV, Bggr =W’'B, Cspr=V/C.

Again, different algorithms lead to Vi, V> and W, W, with different properties.
Also the above SBR algorithm results in a block-structured reduced order system and
uses all of the inputs and outputs. Consequently, also the above SBR-based reduced
order system’s transfer function matches twice as many moments of the original
system’s transfer function as the only inputs based one in Sect. 1.3.3 (the moment
matching property follows from the BSP algorithm, Theorem 1 and Theorem 2).

1.4 Low-Rank Approximations Based SBR Algorithm

In Sect. 1.3 we presented the Separate Bases Reduction algorithm — a block-struc-
ture preserving model reduction method for coupled systems. As discussed in that
section, one of the SBR method’s disadvantages is that the sizes of the its Krylov
subspaces increase very fast for systems with a large number of internal inputs and
outputs. Hence, the use of the SBR algorithm was recommended for the cases, in
which the number of internal inputs and outputs was considerably smaller than the
dimension of the system or comparable to the number of the external inputs and
outputs. In this section, we approximate the internal inputs (outputs) by their GSVD-
based dominant parts. This improves the efficiency of the SBR method. In addition
we will prove that both the SBR algorithm and its low-rank based variant can be
applied to coupled systems for which the internal input and output operators B and
C are not explicitly availabe.

1.4.1 Implicitly Defined Couplings

In Sect. 1.3, we introduced the interconnected system (1.10) as a result of the cou-
pling of the two sub-systems, (1.7) and (1.8). Here, the coupling blocks are given
by the explicit products of the internal inputs and outputs of the two sub-systems,
namely B3C£ and B4C§ . Having such a formulation at our disposal, we can ap-
ply the SBR algorithm in a straightforward way. However, for some applications it
may be impossible to obtain matrices B3z, B4, C3 and C4. In the following sections
we propose a way of transforming an interconnected system with implicitly defined
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couplings of a form

E Ei 0 | [xi| A A |x B, 0] 111]
0 E A-r| A 0B
S 2] [X2] (A2 A2 X2 2| w2 137
Yi o C{ 0 X1
_y2_ B _0 Cg X2
with
E; 0 Al Ap| B, 0 Ci 0
g |Fn A= 11 A B— 1 Cc= 1 (1.38)
0 Ex» Ar Azz_ 0 B, 0 G

into a form that can be reduced using the SBR algorithm. Our goal is to find decom-
positions (factorizations) of the two coupling blocks

A12 = ﬁg;é!l and A2] = ]~34(~:é (139)

that provide a good (with respect to the corresponding Krylov subspaces) approx-
imation of the original internal inputs and outputs of the coupled system (1.37). A
factorization of the type A = BC is not be unique. The next section shows how to
deal with this.

1.4.2 Decomposition Theorem

In this section, related to (1.37), first we show that a factorization A = BC is not
unique and next we prove that if Aj; = B1C; and simultaneously Aj> = B>C; then
Hp(A11,B1) = #,(A11,B2) if Cy and C; are of full column rank. The proofs will
be for the input-based Krylov subspaces. Similar theory applies to the output-based
Krylov subspaces.

First, a factorization of the type A = BC is not unique since A = 1A and A = Al are
two different factorizations. Even a QR factorization A = QR is not unique since
if A = QR then A = (QS)(SR) for all complex valued diagonal matrices S with
unit-length diagonal elements (S denotes the complex conjugate of S). Also other
factorizations such as Gaussian-elimination based A = LU exist.

Since we aim at the use of B for the generation of a Krylov subspace ., (A1, B1)
we will next show that the non-uniqueness does not need to be an issue. To this end
we prove the following Lemma 1.1 and Theorem 1.3.

Lemma 1.1 Let B R™P, C € R”*™ m,n,p € N, Then
rank(C) = p = colspan BC = colspanB.

Proof Matrix C has rank p which implies p < m and that C has p linearly indepen-
dent columns of length p. Thus based on

colspanC = {Cx: x € R"} (1.40)
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one finds
_ . my . mp
colspanC 50 {Cx: x e R"} = R (1.41)

whence

— . m _ . P —
colspanBC 50 {BCx:xeR }(1.—41) {By:yeR }(1.?0) colspanB.

Note: The condition that C has full column rank is sufficient but not necessary. It can
be relaxed: If for instance B has only 2 < p linearly independent columns, e.g. the ith
and the jth column, then a sufficient condition is colspanC = colspan {e;,e;} C R”.

Theorem 1.3 Let By, B, € R™7, C1,C; € R”*™ and m,n, p € N.

If
rank(Cy) =rank(C2) =p and B;C| =B:C>

then
colspanB| = colspanB;.

Proof Observe that
colspanB; = colspanB;C; = colspanB,C> = colspanB;.
Lem.1.1 Lem.1.1

Next we prove that certain Krylov subspaces are identical.

Theorem 1.4 Let A € R™" js non-singular and By,By € R, n,m € N. Then

colspanB| = colspanBy =—> J,(A,B1) = (A, By).
Proof Note that

colspanB; = colspanB, <=
{Bix: xe R"} = {Bx: x e R"} «—
{ABix: x e R"} = {AByx: x e R"} «—
colspan AB; = colspan AB»,

which, repeatedly applied, shows that colspanA*B; = colspanA*B, for all £ > 0
whence J7,(A,B1) = ,(A,By).

Theorem 1.3 in combination with Theorem 1.4 show that every factorization of
an off-diagonal block of the form Aj» = BC' with C of full column rank leads
to the same krylov space .%7,,(A;1,B). The following sections show how to use this
property for the application of the SBR method to an arbitrary coupled system (1.37).

1.4.3 Decomposition Theorem — Numerical Example

In Sect. 1.4.2 we showed that the Krylov space does not depend on the factors of the
decomposition Ajr> = BC! when these factors are of maximal column rank. To illus-
trate this numerically, we calculate these factors of A > with different factorization
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techniques, based on a QR factoration and LU factorization. For simplicity, we use
a one-sided variant of the SBR method. The system used for the test is a linear beam
coupled to a controller. Only the beam system has an external input and external
output. Hence, the considered system is of a form

( ¢ [I]] 0 ] [X]] An B3C£ X] B "
- 1
0 In| [x B,CI A X
S 22 2 4%-3 22 2 (142)
g X1
yi =[C] 0]
\ XZ

Let Ajp = B3C£ and Ay = B4C3T . Here, the full coupled system has 80 degrees of
freedom, 40 for each sub-system. Both of the sub-systems have 5 internal inputs and
5 internal outputs. It means, that the coupling blocks Aj; and A, are of rank 5. For
all cases, the same number of Krylov iterations is performed and the reduced-order
systems are of the order 55 (originally 80). The first sub-system was reduced from
order 40 down to 30 and the second from order 40 down to 25.

To reduce the original system, we will build three reduction matrices involving
an nth-order Krylov sub-space as follows:

* Reduction matrix based on the original internal input blocks
The diagonal sub-blocks of the reduction matrix span the Krylov subspaces

Vi =2,(P,Ry),

where
P :(Sl“—All)il and R; :(Sl“—A“)il[Bl B3]
and
Vo = J4,(P2,Ry),
where

P, = (S122 — A22)71 and R, = (S122 — A22)71B4.
The block-diagonal reduction matrix V is of the form

Vi 0
0V,

* Reduction matrix based on a QR decomposition of the coupling blocks
Based on a QR decomposition of the coupling matrices Aj> and As;, we get

A12 = :,021%1 and A21 = 32%2.

We use an rank-revealing version of the QR algorithm, i.e., 2|, 2>, %!, %}
are of full column rank. Hence, the matrices 2| and 2 used to build the Krylov
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subspaces have the same rank (and most likely amount of columns) as B3 and Bj.
Next, the reduction sub-blocks are created

VR = 2, (PO RY™),

where
PP = (sl At and  RY=(shi—An) (B 2]
and ) , ]
IR a OR OR
where

PgR = (sIhy —An) ! and R%)R = (sIp —Ap) 12

The block-diagonal reduction matrix V¢¥ is of the form

o [V o
o OR | *
0 V35

* Reduction matrix based on the LU decomposition of the coupling blocks
Based on the LU decomposition of the coupling matrices Aj> and Aj;, we get

A =% and Ay = L.

We use a rank-revealing version of the LU algorithm, i.e., .27, .25, 02/1T and %2T
are of full column rank. Hence, the matrices .¢ and .%> used to build the Krylov
subspaces have the same rank (and most likely amount of columns) as B3 and By.
Next, the reduction sub-blocks are created

V%U — %I(P%U : R%U),

where
PV =(sljy —A;)! and RV =(sI; - Ap) ' [B) A
and
Vit = (P5Y REY),
where

Pé(/ = (S122 - A22)71 and Ré(/ = (S122 - A22)71,,%2.
The block-diagonal reduction matrix V-V is of the form
LU
0 ViV

VLU —

Figure 1.8 shows the magnitude plots with respect to the frequency of the frequency
response functions of the three reduced-order systems, created using original, QR-,
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The next section shows how Theorems 1.3 and 1.4 in combination with GSVD
can be used to improve the performance of the SBR algorithm applied to coupled
systems with a high number of couplings (or interconnections).

1.4.4 Low-Rank Approximations Based SBR Algorithm

For coupled systems it is not always necessary to take into account all of the coupling
components. Sometimes only a small number of them determines the behavior of
the system and the rest can be neglected without much loss of accuracy. This section
extends the application of the SBR algorithm to coupled (or interconnected) systems
characterized by a high number of couplings of which only a small percentage is
relevant to obtain an accurate solution.

Section 1.3 pointed out that the standard SBR method should be applied only
for the systems with a relatively small number of internal inputs and outputs. That
is, only for coupled systems where few degrees of freedom of one sub-system (re-
lated to one physical domain or to a physcial quantity) are coupled/connected to the
other sub-system, which implies that the coupling blocks A1, and Aj; of the system
(1.37) are of low rank. Otherwise, the SBR method produces reduction bases which
increase in size too fast with respect to the number of Krylov iterations. However,
if only a part of the components of the high rank coupling blocks is relevant, we
can decrease the growth speed of the reduction bases. To do so, we first need to de-
termine, which components of the coupling are important and should be kept, and
which ones can be neglected. One of the ways to make this decision, is to apply the
generalized singular value decomposition (GSVD) to the coupling matrices A, and
A;1. The GSVD should be applied to the pairs (A{;, A],) and (A}, A},). One then
has

AL =visiXI' and Al = V,8:,X]

which results in the expressions for the coupling blocks

Ap=XSI V] (1.43)
As; =X,83VE. (1.44)

Note, that here the matrices C; and C, are not used to denote external output ma-
trices, but components of the GSVD. Assuming that the coupling blocks are of the
form (1.39), since S| and S; are real-valued non-negative diagonal, we can define
the input and output matrices as following products

B;=Xi8|%,  Cy=ViS)? (1.45)
B, =X,82 Gy =Vv,8)2 (1.46)

Since S| and S, are diagonal matrices with non-negative entries their square roots
are diagonal matrices with entries \/[S;]; and 1/[S2];;. Constructing the inputs and
outputs as in (1.45) and (1.46), all of B; and C,, i = 3,4 are scaled by /S or v/S;.
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According to the Theorems 1.3 and 1.4, .#,(A11,BsCL) = #,(A11,B;C}) and
(A2, BsCh) = #,(A11,B4C]). Moreover, using a type of the decomposition
that orders the components with respect to their importance has an additional benefit.
It makes it possible to approximate the inputs and outputs leaving only the most
relevant components and, as a result, reduces the dimensions of the blocks. In some
cases, this reduction is sufficient to allow for an efficient application of the SBR
algorithm.

Let us now compare the procedures of building the standard and GSVD-based
Krylov subspaces. Here, we will limit the discussion to the case of creation of a
Krylov space based on inputs of the sub-system (1.7), but a similar analysis applies
to all the other cases, i.e. input-based Krylov subspace for (1.8) and output-based
Krylov subspaces for both sub-systems, (1.7) and (1.8). As defined in Chap. 1.3,
matrices Aj; € RVUNM By € RM>*™ and By € RV >3 Assume, that B; has full
column rank m3 and that application of GSVD to the pair (A%, Al,) leads to

By =XiS,* = [b1, .., by € RV 7,

where both Xy and Sy in (1.45) are of full column rank. Next, let B; = XY‘)(SY‘))V2
approximate B3 with the use of £ dominant components. Then

B; = [by,..,b] € RM>%, (1.47)

For simplicity, we assume that #| + m3 is a multiple of m| + & (this may not be the
case in general), so there exists A € N such that

my+m3 =A(m) +k). (1.48)

The pth Krylov subspace created by the SBR algorithm for the sub-system (1.7) for
so € Cis
Hp(P1,Ry) = colspan{R,P|Ry,...,P" 'Ry},

where
P, = (soE;1 —Aq) '"E;; and R = (soEq; —Aq;) ' [B Bs]

and consists of p(m) 4+ m3) columns (assuming that no linear dependence occurs).
Likewise,

Jiﬁp(Pl,ﬁl) = colspan{lf{hPllf{l,...7P?“p711i1}, (1.49)
where
P; = (soE;1 —A;1) 'E;p and Ry = (soE1; — A1)~ ' [By B3]

consists also of p(m; + m3) columns, but approximately matches A as many mo-
ments of the original transfer function.

Projecting system (1.7) onto a subspace .7} ,(P1, ﬁl) in (1.49) does not preserve
the moments of the transfer function of this sub-system. However, if the column span
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of the matrix B3 gives a good approximation of the column span of the matrix Bs
we can expect that the reduced-order system obtained by projection onto the space
(1.49) will give an accurate approximation of the appropriate number of moments
of the transfer function of the original system. Moreover, if the matrix B3 can be
approximated by By with a significantly smaller number of columns, A times more
steps may be used during the Krylov procedure (to approximate a higher number of
moments) or one can use more expansion points, keeping the reduced-order model
still relatively small.

In the next section, we present the results of some numerical tests that show the
advantage of using the low-rank approximation based SBR algorithm for a system
with a high order of coupling.

1.5 Numerical Examples

In this section, we present two examples of the application of the SBR method com-
bined with low rank approximations for the coupling blocks. The first example is a
simple and small example, yet exhibiting interesting behaviour as far as coupling is
concerned. The second example is described in much more detail, as this is an in-
dustrial benchmark problem and needs some preliminary steps before the methods
described in this chapter can be applied.

1.5.1 A Simple Example

In this section, we consider a simple example. The difficulty of this test case is that
here the coupling blocks of the system are of rank 10 (the coupled system has 10 in-
ternal inputs and 10 internal outputs), while each of the sub-systems contains only 40
degrees of freedom (80 degrees of freedom in total). In this case, the standard SBR
algorithm generates too many columns to be competitive. However, the use of low-
rank approximations makes the SBR algorithm more competitive. Fig. 1.10 shows
the magnitude plots with respect to the frequency of the original and reduced-order
frequency response functions. In case of the two-sided BSP method and the two-
sided SBR algorithm based reduced-order systems, the original system was reduced
to 42 degrees of freedom. The low-rank approximation based two-sided SBR algo-
rithm created the reduction bases for rank 3 approximations of the coupling blocks,
i.e. the internal input and output matrices B;,C;, € R**10 ;=3 4 were approx-
imated by B;,C; € R**3  j = 3,4. Hence, every Krylov step was adding 4 new
columns to the reduction basis (3 corresponding to B; or €4 and 1 corresponding to
B; or C;) in case of the sub-system S; and 3 new columns (corresponding to By or
63) in case of the sub-system S>. To construct the reduced-order system of dimen-
sion 42, the low-rank approximation based SBR algorithm performed 6 iterations
for each sub-system (for both, input and output related bases). Figure 1.11 shows
the magnitude plots of the relative errors of the reduced-order frequency response
functions with respect to the original one. Note that the two-sided SBR algorithm
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Fig. 1.10. Magnitude plots of the frequency response functions of the original and reduced-
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Fig. 1.11. Magnitude plots of the relative errors of the reduced-order frequency response
functions with respect to the original frequency response function

based on low-rank approximations of the internal inputs and outputs leads to much
better results than the SBR algorithm applied to the original coupling blocks. The
two-sided low-rank based reduced-order transfer function Hjgy _rank—spr approxi-
mates H less accurate than the standard two-sided BSP transfer function but in the
neighborhood of the expansion point s the relative error is still below 2%. Table 1.1
shows that not only the first 6 derivatives are matched but also the 7' one is well
approximated.
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chamber (2). Below the actuation chamber, a 300 um long feed-through is placed
(3), after which the nozzle plate is reached. The nozzle plate is 75 pum thick and
consists of a pyramid shaped funnel (4) and a nozzle (5) with a radius of 11 pum.

The main goal is to suppress acoustic pressure waves, which can be generated in
a number of ways, such as the non-continuous ink supply by many thousands of ink
channels, residual vibrations at the inlet of the ink channels, fast movement of the
printhead, resonance of the whole structure, etc.

The models of such devices used for simulations can reach large dimensions,
hence application of the model order reduction techniques is often required, to de-
crease the simulation time. In this chapter, we study the application of the GSVD
based approximations for the coupling blocks in the model of the printhead.

1.5.3 The Second and First Order System

The related system of equations is a second order system. Let #;,n, € N and n =
n1 + ny. The second order system of interest is

Mx"+Kx =b
{ (1.50)
y = ex
with (n; +m) X (11 +m2), 2 x 2 block-matrices
M;; 0 K1 K
M — 1 K= 1 K2 (1.51)
M2 M 0 K
and My = —pKTz. The first sub-system corresponds to the displacement of the

structure and the second sub-system describes the pressure of the fluid. The related
Laplace transformation

WMX +-KX = B
Y =c¢X

leads to transfer function
H(w) =c¢(K+%w'M) 'b, weC.

Searching for purely oscillatory modes implies that the related w is purely imaginary,
i.e., that one is interested in positive real values w of:

Hw)=c¢(K—w'M)'b, weR. (1.52)

Let x; = X}. Then the first order system reformulation of (1.50) is

X2 =X X/]*X2:0
/ — /
Mx; +Kx; = b Mx, +Kx; = b

37



which implies

' ! B roo

I X1 I X1 0
= +
M| [x> —K X> b
E A o B
Yi . cO X1
\ y2 00 X2 |
Its related transfer function is
H(s)=C(sE—A) !'B. (1.53)

Solution of FX = B:

$X] —X; =0 $X]—X3 =0 xlz(szM—H()*lb
— —
sMx>+Kx; =b s*Mx; +Kx; = b X7 = §X].

This implies that |
yi=c(s*M+K) b

is identical to y if and only if s = iw, w € R.
In the sequel we will examine the second order system.

1.5.4 Sparsity Patterns and Magnitudes of the Blocks of M, K

There are three available discretizations for the OCE application: coarse: 1188_1050,
medium: 4752_5304 and fine: 20748_35775. The numbers relate to the amount of
degrees of freedom as follows: Case 47562_5304 implies n; = 4752 and n, = 5304.
Extracted from ANSYS, the blocks M|, M2, M2, K, Kj2,K3; in (1.51) are very
differently scaled: For instance, for the medium case their absolute value greatest
resp. smallest entries (magnitude) are of the order

M= O (10710 0 ') K = o (1078 10°% )

R B VB (Vi R I T [ O
: ] : (1.54)

M = O 10712 0 )K= O 107121077 )

B [ (O (e A | B T

For the calculation of the transfer function furthermore note that w € [0,27 % 1500].
Thus approximately, w? € [0, 10%]. The use of the standard MATLAB *\’ operations
to solve (K —w?M)x = b leads to error messages and abortions, not to solutions.
An alternative, the use of the MATLAB package Factorize, alleviates this problem,
but (too) severe round-off remains. Furthermore, the *\” operation turns out to be
very slow for this poorly scaled problem. Investigation shows that that K;; contains
entries in [10~12,1078]. The use of standard double precision floating point IEEE
arithmetic involved in matrix operations such as matrix multiplication is bound to
round-away contributions of the smaller entries.

38



Further investigation shows that all diagonal blocks but K;; are symmetric. For
the results shown in this chapter the slightly non-symmetric ANSYS block K;; has
been used as is. The results would be the same if one had instead used its symmetric
part (K1 +KJ,)/2 (tested). It has also been shown that indeed Mp; = —pK], for
all three examples, where p = 1090.

Observe that the determination of the smallest absolute value positive entry of
a sparse MATLAB matrix with MATLAB is not trivial: The smallest entry of a sparse
matrix usually is zero (since the default entry has value zero), MATHWORKS and
other sources do not provide an on-the-shelf solution. To obtain the smallest non-
zero entry we have written a MATLAB function vfilter which for a full or sparse
matrix X writes all entries X,; such that |X;;| > £ > 0 column-wise into a full vector.
The use of this function applied to matrix X and € = 0 in combination with min
provides the smallest absolute value entry of X.

Naturally, small entries should only be discarded if they are not relevant to the
system of interest, i.e., if the the system is properly scaled, which is the topic of
discussion of the next subsection.

1.5.5 Scaling the Second Order System

We need to scale the matrices K and M (E and A) to obtain a numerically robust
solution of the system

K —w’M K
Fw)x=b <= (K—w’M)x=b < [ e 12 ]x:b,

prK]Tz K22 — W2M22

which depends on w. For the problem of interest we expect symmetric blocks
Mi,M2, K| and Ky, and M| = —pKE. This implies that this system could be
scaled (preconditioned) into a symmetric one (symmetry scaling), for which effi-

cient linear solvers exist. This can be done as follows: Observe that for a two by two
matrix

ad

cb]’ ”lzllm]

can be scaled to a symmetric one. Hence, based on ¢ = pw2 and d = 1, define

A= = D, 'AD; =

a ed
Ved b

I
D = "

szlnz] .

Furthermore, to better scale the entries inside and between blocks (create diagonal
clements of magnitude 1), define

D, = diag(1/+/[D; 'FD1]11,...,1/4/[D; "FD ).
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We now scale with a diagonal scaling:

M := D,D; ' MD;D,,
N——~

which, by invariance under inputs and outputs transformations means that

A

Hw) :=¢(K—w*M)"'b

is identical to H in (1.52) for all w. Obviously Dy is non-singular except for w =0
and D; exists and is non-singular when all diagonal entries of Dl’1 FD; are non-zero.

The factors P = P(w) and Q = Q(w) depend on w. This is fine for the construction
of Krylov spaces to match moments. However, to plot the transfer function H one
needs to evaluate ¢(K —w?M) for many wy € [0, 10%]. Repeated calculation of P(wy)
and Q(wy) would be (too) costly, so we decided to use the w-independent factors
P:=P(w) Q := Q(w) for all w where W is the average of all w;. For the OCE
example, to plot the transfer functions, we sample the provided region of interest:
wy =51k, k=0,...,600. The value of w turns out to be w3p; which is close to
but not too close to a pole of H and such that all diagonal entries of Dl_lFD] are
non-zero.

1.5.6 The Structure and the GSVD of K>

Here we briefly comment on the GSVD of the scaled K1,. Figure 1.13 and numer-
ical investigation show that K> € R'88x1050 is a sparse matrix which contains a
small non-zero sub-block of size 295 x 175 (window (3,...,297) x (561,...,735)).
This is typical for applications where the different physical quantities are defined in
bordering sub-domains and are coupled via the mutual boundary — if one numbers
the degrees of freedom on the mutual boundary consecutively. Since K], has this
structure it is of the required type. This means that also V has all its non-zero entries
in the same sub-block, i.e., it only has possible non-zero entries from row 561 to
735. This information is of importance, because the standard GSVD implementa-
tions such as MATLAB’s do not use this information and generate V which contains
round-off (non-zero) entries outside the window, as can be seen in Fig. 1.14. For the
medium test case the results are worse, as to be expected: For p=5and € =0, Kg)
(definitions, see below) is a full matrix.

To work around this problem we have written a MATLAB function spfilter which
for a full or sparse matrix X copies all entries X;; such that |X;;| > M(X) - € into a
sparse matrix Y, where M(X) := max{|X|;;}; ;. This way, using € = 10!, both
Ki» = XSTVT and all of its dominant parts Kgg) = XSV (for some p < n)
have similar sparsity patterns.

In MATLAB there are different but equivalent manners for the filtering of entries
from a matrix. However, most of them do not terminate or lead to out of memory
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Fig. 1.15. Entries of x in (1.55), sorted

1.5.7 A GSVD-Based Approximation of K,

In this subsection we analyse how the GSVD based approximation of K> influences
the solution of the static problem
X1 b]
= (1.55)
X2 b2

Based on the definition of K%) the approximation leads to system

K K2
0 Kx»

Ko KG9 [W] o
0 K|y, b
We intend to estimate )
| (b =1/l ) e (1.57)

over the set of indices 7 for which x; is non-zero (outside round-off region). To deter-
mine this set, we first solved (1.55) and made a log-plot of its sorted entries, shown
in Fig. 1.15. Based on this plot we decided to omit all entries smaller than 107 and
obtained the results in Table 1.2. The accuracy does not seem to be (very) sensitive
to the amount of principal components used, which is due to the fact that the scaled
K> block is still of magnitude 10° smaller than the scaled diagonal blocks K17 and
K. However, Sect. 1.5.8 shows that different amounts of principal components do
have a remarkable effect on the related transfer function.

1.5.8 The K{2P GSVD-Approximation Based Transfer Function

The aim is to determine a principal component analysis (PCA) based rank-revealing
factorization K2 = BC' where B and C are constructed with the use of the first
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Fig. 1.17. First 1000 diagonal elements of S

and plot the related transfer functions, together with the transfer function related to
K> (blue) in Fig. 1.18. One can observe that the transfer function related to K
closely approximates p peaks of the original transfer function (the one for Kj»).

1.5.9 The GSVD Approximation of Ml_ll Ki2

In fact, we need to apply the GSVD to Ml_ll K3 rather than Ky;. Fortunately, there is
a straightforward relation between the GSVD of (K, K2} and (Mﬁl K, Mﬁl Kiz).
To see this, abbreviate K := K7 and M := M, and observe that

K' = vsx' —
K=XS'Vl =
M~'K = M~ !IXS'V! —
MK = (M !X)vSTV/STVT
S o
v zZ
which leads to the principal component based approximation:
MK =M xSy,
One first rewrites (1.53) to produce the term sl, for instance as follows:
Hw) = ¢(K—w’M)"'b =
Hw) = (M 'K-w )M~ b — (1.58)
H(w) = —e(w’l-M "KM 'p.
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whence

M K =

MﬁlKll MﬁlKlz
—Mz}l leMﬁl Ky —Mz}l leMﬁlK 12+ Mz}l K>

Now, SBR applied to the first row of this system leads to the approximation

MfllKll MHIX(P)S(P)V(P)

MK = ] 1 ] .| ]
—M,, MoiM, [ K —M5 Mo M Kz + M5, Ko

which shows that one can use the GSVD-based approximation

where

1.6 Conclusions

We proposed a new model order reduction technique for coupled systems. Our meth-
od, called the Separate Bases Reduction (SBR) algorithm, belongs to the family of
block-structure preserving (BSP) reduction techniques based on the uncoupled for-
mulation of the coupled problem. However, unlike other reduction approaches deal-
ing with the separate sub-system representation, the SBR algorithm can be applied
to a wide category of coupled systems, including strongly coupled systems and in-
terconnected systems with many interconnections. This is due to the fact that for
such cases we avoid a too fast growth of the reduction bases and related reduced-
order model, as long as the coupling can be well approximated by a relatively small
number of GSVD principal components. Examples of such strongly coupled sys-
tems are systems with an interface coupling, for instance systems describing inter-
actions between a fluid and a solid wall, or systems which for instance describe an
electromagnetic-structural coupling in an electronic device. Another advantage of
the proposed technique is that it is computationally cheaper than the more common
BSP reduction methods which deal with the coupled formulation of the system.
For the initial version of the SBR algorithm (without low-rank approximations of
the couplings), we proved the moment matching property. The GSVD based approx-
imation of the couplings only approximates the moments, but numerical experiments
show that taking a sufficient number of dominant components still results in accu-
rately approximated moments. What makes the SBR algorithm universal, is the fact,
that it can be applied even if the internal input and output matrices are not known
explicitly. We show, that having at our disposal only the coupled system’s matri-
ces, external inputs and outputs, and the dimensions of the sub-systems, we are able
to create appropriate Krylov subspaces for each sub-system. This property of the
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reduction method is desirable when dealing with industrial problems for which the
separate sub-systems’ information may not be available.

The SBR method has been designed keeping in mind the practical use in an in-

dustrial environment. It is fairly straightforward to adapt existing software modules
and make them suitable for application of SBR. This is certainly not the case for
the BSP type methods. Although the reduced-order models obtained by application
of the BSP methods frequently show a bit better approximation accuracy, the SBR
algorithm is much more beneficial from the point of view of the computational time.
This property is especially valuable in case of large industrial applications.
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