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A Novel Approach to Model Order Reduction 
for Coupled Multiphysics Problems 

Wil H.A. Schilders and Agnieszka Lutowska 

Abstract Model order reduction (MOR) has become an important tool in the design 
of complex high-tech systems. It can be used to find a low-order model that approx­
imates the behavior of the original high-order model, where this low-order approx­
imation facilitates both the computationally efficient analysis and controller design 
for the system to induce desired behavior. This chapter introduces MOR techniques 
that are designed especially for coupled problems, meaning that different physical 
phenomena are simulated in conjunction with each other. The method developed 
makes use ofthe reduction ofthe individual systems, and low rank approximations 
of the coupling blocks. This is done in such a way that existing software for indus­
trial problems can be adapted in a straightforwward way. An industrial test case is 
described in detail, so as to demonstrate the effectiveness of the reduction technique. 

1.1 Introduction 

This chapter focuses on the development of a model reduction methodology for cou­
pled multi-physical models to serve the efficient simulation-based design of the un­
derlying coupled systems. Examples of coupled systems are larger systems such 
as magnetic resonance imaging (MRI) scanners, printers/copiers, precision motion 
stages, foldable solar panels of a space-telescope, down to very small systems such 
as very large scale integrated (VLS!) systems (see for instance [12,21]) and micro­
electromechanical systems (MEMS) (see for instance [15]). Figure 1.1 shows such 
examples. 
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Fig. 1.1. Coupled systems. (a) Foldable solar panels (courtesy ESA); (b) A MEMS comb drive 

The word system, which originates from the Greek word s'ustema and the Latin 
word sustema, stands for "a set of interacting or interdependent components form­
ing an integrated whole". In this chapter, the integrated whole is called the system 
or coupled system and its individual components are called sub-systems. The word 
model as in "physical model" stands for a "representation" for the system under 
consideration, usually in terms of a set of physical quantities and relations. A cou­
pled system's model consists ofthe coupled sub-systems' models. A multi-physical 
model is a model which is represented by multiple physical quantities such as tem­
perature, structural mechanical displacements [7], electro-magnetic fields, and so 
forth. Simple systems in an insulated environment can often be described with few 
physical quantities and relations, while interacting systems frequently require more 
of such quantities and relations. 

This chapter is about sub-systems which interact. When the interaction takes place 
inside a domain of interest or through the boundary which separates, such a domain 
of interest from the outside world such a system is called a coupled system. If the 
physical quantities interact through a discrete amount of inputs and outputs in space, 
then the system is said to be an interconnected system (see for instance [24]) rather 
than a coupled system. 

To explain the envisioned reduction, first note that most physical models can­
not be solved exactly with contemporary computers. To calculate an approximate 
solution, the involved physical quantities such as an electromagnetic field are first 
discretized, i.e., represented by a finite number of degrees of freedom, after which the 
physical equations are reformulated for the discretized physical quantities, leading to 
a discrete system of equations. This process is called discretization of the model. An 
accurate representation of physical quantities such as an electromagnetic field can 
require millions of degrees of freedom and consume a considerable amount of data 
storage and computation time. Therefore, an analysis of a coupled system's dynamic 
behavior can require excessive amounts of data storage and computation time. 

We focus on state-of-the-art model order reduction techniques which reduce the 
system as a whole based on available reduction techniques for the individual sub­
systems. Such methods are scarcely available and mostly in development. They have 
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an advantage that the individual sub-systems can be reduced in parallel (see [3]) with 
the method best suited for each of them. This can save a considerable amount of data 
storage and computational time since these systems are also smaller than the system 
as a whole. On the other hand, one must figure out how to couple the individually 
reduced models to a reduced model for the whole, i.e., need to figure out how to 
effectively deal with interior couplings/interconnections. 

Our reduction methods are primarily for coupled time-invariant linear models. 
Time-dependent linear models, affine models (such as presented in [4]) and non­
linear models (see for instance [14, 23]) require other than the presented reduction 
techniques. Furthermore, we restrict ourselves to Krylov subspace projection tech­
niques (see [ 11 ]). 

In more detail, without loss of generality, we focus at systems which consist of 
two coupled subsystems. We suggest a method for the parallel reduction of the in­
dividual sub-systems, call it the Separate Bases Reduction algorithm (SBR), and 
show how to create a reduced model for the whole system based on the reduced 
parts. Furthermore, we show that this algorithm applied to coupled systems matches 
at least the same amount of moments as a standard method applied to the whole sys­
tem would (see [24] for interconnected systems). We establish that a large amount 
of internal couplings leads to large and hence undesirable reduced models and show 
that this can be overcome with the use of a generalized singular value decomposition 
(GSVD) based reduction of the coupling blocks. However, the use of a GSVD-based 
approximation leads to an approximation of the moments- which as benchmark ex­
amples show can still be quite accurate. 

The remainder of this chapter is focused on the presentation of the SBR algorithm 
and the GSVD reduction of the internal couplings. It is organized as follows. Sec­
tion 1.2 describes Kry lov subspace techniques, focusing on coupled and intercon­
nected time-invariant linear systems. First, it shows what happens if standard tech­
niques are applied to the coupled system as a whole- it shows that the block structure 
is lost. Next, it introduces existing techniques from the literature such as [1,6, 9], still 
based on Krylov subspace methods for the coupled system as a whole, which pre­
serve the block-structure and the number of matched moments. At the end of this 
chapter, we show an alternative method to efficiently calculate the second Krylov 
projector and extend the proof of [6] to a more general case, under assumptions. 

In Sect. 1.3 we assume that Krylov subspace reduction methods are already avail­
able for the individual sub-systems and based thereon, we focus on the construction 
of a reduced-order model for the system as a whole. We show that this is possi­
ble (and also that moments are matched) in Theorem 1.2 and call the approach the 
Separate Bases Reduction algorithm (SBR). In Subsection 1.3.6 we show that the 
SBR algorithm also matches the standard double amount of moments if one uses 
two Krylov subspace projectors instead of one. 

In Sect. 1.4 we show that the replacement of the coupling blocks by an explicitly 
rank-revealing GSVD based components leads to the same Krylov subspaces and 
hence matched moments. Approximations based on a few of the dominant modes 
lead to quite accurate moment approximation. 
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Finally, in Sect. 1.5 we apply the SBR algorithm to a benchmark system. The 
system under consideration is scaled in a specific manner such that it is numerically 
better conditioned. We conclude with some remarks and recommendations for fur­
ther research in Sect. 1.6. 

1.2 Block-Structure Preserving Model Order Reduction 

Model order reduction is frequently based on Kry lov subspace projections. The start­
ing point is a linear time-invariant system, that in the Laplace domain is given by 
(later we will also use small letters x, y for unknowns in the Laplace domain) 

sEX(s) = AX(s) + BU(s) 

Y(s) = crx(s). 
(1.1) 

The left side of Fig. 1.2 represents a schematic model of an interconnected system 
which consists of four sub-systems and a number of interconnections. These inter­
connections can be realized in different ways, which will be focused on in Sect. 1.3. 
The right side of Fig. 1.2 shows the system matrix A which corresponds to the graph 
on the left. The matrix A has a visible block-structure. Each of the gray diagonal 
blocks corresponds to one sub-system. The off-diagonal blocks are related to the 
interconnections. The blue dots in the off-diagonal blocks show that the two corre­
sponding sub-systems are interconnected. The empty off-diagonal blocks show that 
there is no coupling between the corresponding two sub-systems. 

In general, a system of k components, can be described by a linear system 

I' · •• 
1 
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4 

Fig. 1.2. Modeling of a coupled system 
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Fig. 1.3. Lo ing of the structure in the reduced-order matri A 
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Fig. 1.4. Block structure preservation in the reduced-order matrix A 

where the X, E ~N;, Ni E N, i = 1, ... , k, and the corresponding sub-blocks have 
compatible dimensions, where typically the off-diagonal blocks are not square. Nat­
urally, we would like to still be able to recognize this type of block-structure in a 
reduced-order system matrix A. Unfortunately, if we apply a standard Krylov sub­
space reduction technique to the matrix A we unavoidably lose the block-structure 
and obtain a non-structured dense reduced-order matrix A as shown in Fig. 1.3. In the 
next two subsections, we present a brief overview of Krylov-subspace based block­
structure preserving reduction techniques. Such techniques applied to a structured 
matrix A result in a reduced-order matrix A like the one shown in Fig. 1.4. Al­
though the potential sparse nature of the interconnection off-diagonal blocks is lost, 
one can still recognize the system's general block-structure. The diagonal blocks 
still correspond to the reduced-order sub-systems and the zero blocks related to un­
coupled sub-systems are preserved. The reduction techniques of this type are called 
block-structure preserving (BSP) methods (see for instance [9]). For more informa­
tion about this type of technique the reader can consult for instance [18]. 

For the sake of simplicity assume that there are two coupled sub-systems (k = 2 
in (1.2)). Then the system matrix has the block structure 

We call such a system an interconnected system if A12 and A21 are explicitly defined 
by means of their inputs and outputs, i.e., if for instance A 12 = B3 CJ. Otherwise, if 
A12 and A21 are specified in unfactored form, we call the system a coupled system. 
However, it is reasonable to assume that even for the blocks specified in unfactored 
form there might be defined related input and output operators, i.e., that there can be 
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constructed B3 and C4 such that for instance A 12 = B3CJ. [13] considers possible 
construction methods for the input and output maps when A12 and An are specified 
in unfactored form. 

1.2.1 Moment Matching Methods for the Coupled Formulations 

We will begin with BSP methods that are directly applicable to coupled systems of 
the form (1.2) 

Ell ···Elk x1 All ··· Alk x1 B1 

s + u 

Ekl ... Ekk xk Ak1 ... Akk xk Bk 

x1 

T 1' y = [CI ,··· ,Ck] 

xk 

This type of methods is studied in more detail in for instance [2, 6, 9]. These methods 
aim at the creation of a reduced-order model whose matrices exhibit the original 
block-structure and whose transfer function matches a number of moments of the 
transfer function of the original system. As for standard Krylov methods, the moment 
matching property is realized by projecting the original system matrices onto the 
appropriate input- and/or output-based Krylov subspaces by using the matrices V 
and W for a chosen expansion point so E C. However, to preserve the block structure 
of the original system, the reduction bases also need to have a special shape. They 
are created by partitioning the matrices V and W into k sub-blocks (with k being the 
number of sub-systems) 

V= and W= 

where the number of rows in the blocks Vi, Wi, i = 1, ... ,k corresponds to the 
number of rows of the diagonal blocks Aii. Next, the blocks Vi and Wi are used to 
build block-diagonal reduction matrices V and W 

V= and W= (1.3) 
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and the reduced-order system is obtained by projecting the original matrices 

( 1.4) 

Note that since the splitting of the matrices V and W into sub-blocks may create 
linearly dependent columns, one needs to apply a re-orthogonalization of the ma­
trices V and W to remove every possible linear dependence. Moreover, after re­
orthogonalization, one has to assure, that the matrices V and W have the same num­
ber of columns. This can be done by adding the necessary number of random or­
thogonal columns to the matrix with the smallest amount of columns. 

For the reduction bases created in the way described above, the following theorem 
holds. 

Theorem 1.1 Let V and W span the input- and output-based Krylov subspaces of 
the rth order around the expansion points E CC for the system (1.2). If 

colspanV ~ colspanV and colspanW ~ colspanW, 

then a reduced-order system computed as in (1.4) has the transfer function that 
matches 2p moments qfthe transferfunction qfthe original system (1.2). 

There are several examples of methods that satisfy the foregoing. Paper [ 6] pre­
sents SP RIM, a structure preserving reduced order method for interconnect macro­
modeling. It focuses on an RLC circuit application, as model order reduction meth­
ods are of importance to microchip manufacturers since complex microchips such 
as processors contain many interconnected substructures. The relevant equations are 
(notation as in [6]) 

r;;x + Cfo'x' = 81Ju (1.5) 

with 

(1 ~ [E~~~g En 'C ~ [E;~E, ~]' @ ~ [~l 
where G, C, and L are symmetric positive definite (square) matrices. The matrices 
Eg, Ec, Ez and Ei are parts of an adjacency matrix E which describes the connectivity 
of the electronic circuit, the subscripts g, c, l, i stand for branches containing resis­
tors, capacitors, inductors and current sources. The SPRTM related Laplace domain 
transfer function HsPRIM is 

where 81J, Cfo' and r;; are re-written 

The paper presents a reduction basis Vofthe type (1.3) in [6, (21)] and proves in [6, 
Theorem 3] that it (W = V) preserves 2p moments, double the amount preserved by 
PRIMA. 
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The technique proposed in [5] is motivated by the fact, that for some applica­
tions the single-point expansion does not give a sufficient approximation accuracy 
in the frequency range. On the other hand, using a multi-point expansion can result 
in excessively large models, especially for systems with many external inputs and 
outputs. The method proposed in the paper mentioned above, is based on creating 
a reduction space that consists of a number of sampling matrices z1, j = 1, ... , p, 
computed for the system (1.2) for p sampling points s1 as follows 

In other words, Z 1, j = 1, ... , p is a vector (or a matrix) that, after projecting the 
system (1.2) onto, will match the Oth moment around the point sJ of the original 
transfer function, since it consists of the input based starting matrix for the Krylov 
subspace for s1. After computing p samples, the total sampling matrix Z is defined 
as 

Z = [ZJ, ... ,Zp]· 

Next, following the block-structure presented by the system matrices, matrix Z is 
split row-wise into k blocks vi' i = 1' ... 'k 

Z= 

and a block-diagonal projector is created 

V= 

Finally, the singular value decomposition (SVD) is performed on each of the blocks 
separately, to produce the orthogonal matrix V 

V= 

where Vi, i = 1, ... , k is an orthogonal basis for Vi. At this point, further reduction 
in size is possible, by removing from the bases Vi, i = 1, ... , k the columns that cor­
respond to to small singular values. Having the reduction bases V, one can project 
the original system in the way defined in ( 1.4 ). 

A noticeable advantage of the technique described above is, next to the block­
structure preservation, the possibility of reducing different sub-systems with differ-
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ent reduction ratio, determined for each sub-system separately, based on the sin­
gular values related to this sub-block as well as the importance of the considered 
sub-system in the total coupled system. 

1.2.2 Two-Sided Structure Preserving Methods 

In this section we will explain how the two-sided projection idea can be implemented 
in case of the block-structure preserving methods. A detailed explanation of the two­
sided methods one can find for instance in [8]. Generally speaking, the use of a 
two-sided reduction method means, that the system is projected onto two subspaces, 
V and W, based on input and output matrices, respectively. In case of the coupled 
system ( 1.10) (defined somewhat later), the reduction matrices V and W, for an 
expansion point so E CC, are built according to the following algorithm: 

1. Create matrix V, whose columns span the nth Krylov subspace around so E CC 

V = Xn(P(so),R(so)), 

where P(so) and R(so) are 

P(so) = (soE-A)-1E and R(so) = (soE-A)-1B. 

2. Create matrix W, whose columns span the nth Krylov subspace around so E CC 

W = Xn(S(so), T(so)), 

where S(so) and T(so) are 

S(so) = (soE- A)-TET and T(so) = (soE- A)-T C. 

3. Build the block-diagonal reduction matrix V with N1 + N2 = N rows 

where V1 and V2 contain the firstN1 respectively lastN2 rows of the matrix V. 
4. Build the block-diagonal reduction matrix W with N1 + N2 = N rows 

where W1 and W2 contain the first N1 respectively last N2 rows of the matrix W. 
Different algorithms lead to V and W (and hence V and W) with different specific 
properties (such as orthogonality or hi-orthogonality). Some properties and their ad­
vantages and disadvantages are discussed in [ 1 7]. 

The described BSP algorithm results in a block-structured reduced order system 
and uses both inputs and outputs. Consequently, the BSP-based reduced order sys-
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tern's transfer function matches twice as many moments of the original system's 
transfer function. 

1.3 Separate Bases Reduction Algorithm 

Model order reduction techniques, designed especially for coupled or interconnected 
systems, became a new field of research in recent years. The common feature of this 
type ofmethods is the use of a special block-diagonal form reduction basis V 

V= (1.6) 

that results from the splitting a matrix V created by a Krylov method applied directly 
to the coupled system. This approach allows for preservation of the zero-blocks in 
the coupled system's coefficient matrix. Such blocks appear when two of the sub­
systems are not coupled (interconnected) or the coupling holds only in one direction. 
An example ofuni-directional coupling can be a case of a vibrating structure, where 
the movement of the structure causes acoustic noise, but there is no influence (feed­
back) of the acoustic behavior of the system on it's dynamics. 

Due to the fact that the zero-blocks are preserved in the reduced system, such 
MOR techniques are called block structure preserving (BSP) model reduction meth­
ods. Their application usually results in a good approximation of the original model. 
For most of them one can prove the moment matching property. However, this type 
of methods also has three important drawbacks: 

• Though V in (1.6) (possibly) matches the same (number of) moments as V, it 
has k times more column vectors and therefore leads to a k times larger reduced 
system. 

• The calculation ofV requires (repeatedly) solving systems with the entire coupled 
system's coefficient matrix which can be computationally (time- and memory­
wise) expensive. 

• In practice, the reduction techniques based on an uncoupled formulation of the 
system (see e.g. [24]) are restricted to the case of interconnected systems with 
a limited number of interconnections. Otherwise, the reduction procedure is not 
very efficient, since the dimension of the reduction basis (hence, the reduced­
order model) grows very fast. Moreover, such techniques assume that the inputs 
B and outputs C of the sub-systems are both explicitly available. In case of a 
coupled system these are not explicitly available, only their product BC is. 

In the remainder of this chapter, we will focus on the second and third issue. We 
present a reduction algorithm suitable for systems, coupled through a large num­
ber of couplings. We introduce a reduction technique based on an uncoupled for­
mulation of a coupled system, called Separate Bases Reduction (SBR) algorithm. 
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Fig. 1.5. Schematic representation of the interconnected system S 
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Fig. 1.6. Different types of strong coupling. (a) an interface coupling; (b) a strong coupling 
between different physical domains 

It creates a reduction basis for each sub-system separately, hence is computation­
ally cheaper compared to the reduction techniques that use a coupled formulation 
such as the BSP methods discussed in Sect. 1.2. However, the algorithm still suffers 
from the third point of the drawback list presented above. They can be easily applied 
to interconnected systems of a form shown in Fig. 1.5, where the sub-systems are 
not strongly interconnected (i.e. each sub-system exchanges information only with 
a small number of other sub-systems). We suggest a way to relax this limitation, and 
will also show how to apply the SBR algorithm to strongly coupled systems, i.e. to 
the systems, where many degrees of freedom of one sub-system are coupled to many 
degrees of freedom of other sub-systems and where the internal input and output ma­
trices are not explicitly given in the system formulation. Examples of these types of 
coupled problems are shown in Fig. 1.6. Figure 6(a) presents a coupled system that 
consists of two sub-structures, for instance a solid body and a fluid. The coupling 
occurs at the interface, where all degrees of freedom of one sub-domain which are 
sufficiently close to the interface influence similar degrees of :freedom ofthe second 
sub-domain and vice versa. A different type of strong coupling is shown in Fig. 6(b ). 
This picture shows a situation, where all degrees of freedom related to both physi­
cal quantities u and e are located inside the same domain. Such situations appear for 
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instance in case ofmodeling of systems, where the dynamics ofthe structure is influ­
enced by an electromagnetic field (and vice versa). In the depicted case the change 
of the velocity of the node u(xi) influences the electromagnetic field x ~-------+ e(x) at the 
node Xi, and at many nodes in the neighborhood of Xi. 

1.3.1 Interconnected System -System Definition 

In this subsection we introduce the family of linear interconnected systems to which 
the reduction algorithm is to be applied to. For the sake of simplicity, we focus on 
a system of two-subsystems where one sub-system's output is used as a part of the 
other sub-system's input and vice versa. However, the proposed method can easily 
be extended to systems composed of an arbitrary number of sub-systems. 

1.3.1.1 The Uncoupled Formulation 

The time domain behavior of each of the sub-systems S1 and S2 is modeled by a sys­
tem of first order differential-algebraic equations after which the frequency domain 
behavior is obtained via Laplace transformation. For the two sub-system examples 
in Fig. 1.7, this procedure leads to the Laplace domain systems 

5 yl ul ~ ' 
~ 51 ~ 

, 

"" ~ 52 r 
' y2 

,, 
u2 

Fig. 1.7. Schematic representation ofthe interconnected system 
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Using matrix notation, the system S1 and system S2 can be described as 

sEll X! ~ A11XJ + [B1 B3] [ :: l 
[~: l ~ [~[]X]' (1.7) 

sE22X2 ~ A22X2 + ~~ B4] [ ::] 

[~:l [ ~n '2 

(1.8) 

1.3.1.2 The Coupled System 

When the output of S1 is used as an input of S2 and the output of S2 is used as an 
input of S1, equations (1.7) and (1.8) reduce to an interconnected Laplace domain 
system. Due to the design ofthe system depicted in Fig. 1.7 one has 

(1.9) 

which in addition implies 

Using relation (1.9), the interconnected system (1.7) can be represented as a single 
coupled system S of equations 

S: 

and in matrix form 

S: 

sE11x1 = A]]X] +B1u1 +B3crx2, 

sE22X2 = A22X2 + B2U2 + B4cr XI' 

Y1=Cfx1, 
/' Y2 = C2x2 

(1.10) 
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C= [cl ol, (1.11) 
o c2 

where A, E E IR.NxN, BE IR.Nxm, C E IR.Nxp. The matrices defined in (1.11) show a 
special block structure. The sub-systems' matrices A 11 and A22 form the diagonal 
blocks of the system matrix A of S. The off-diagonal blocks are the products B3C~ 
and B4CI of the internal input and output matrices of the sub-system. The input and 
output matrices B and C are block structured, as well as the matrix E. 

1.3.2 Transfer Functions of the Uncoupled and Coupled Systems 

One of the questions arising at this point is the relation between the transfer functions 
ofthe sub-systems Sl and S2, and the transfer function ofthe coupled system. In this 
subsection we will study this issue. Let us begin with the uncoupled sub-systems. At 
sEC the transfer function of sub-system Sl defined in (1.7) is given by 

[cr] 1 H(s) = C§' (sEll- All)- [B1 B3] 

= [C{(sEll-A11 )-
1
B1 Cf(sEn-An)-

1
B3] = [Hn(s) H12(s)l· 

1' 1 1' 1 C3 (sE11 - A11 )- B1 C3 (sE11- A11 )- B3 H21 (s) H22(s) 
1.12) 

For the sub-system S2 defined in (1.8), similarly 

= [Z11 (s) Z12(s)l· 
Z21 ( s) z22 ( s) 

(1.14) 
Based on definitions Eqs. (1.12) to (1.14) we will express the components of the 

transfer function Z(s) in terms of the components of the transfer functions H(s) 
and G(s) in two manners. First we follow the typical approach used in the field of 
systems and control (more details can be found in for instance [ 19]). Secondly we 
use the Sherman-Morrison-Woodbury formula. 

14



The Systems and Control Approach 

The starting point of this approach are two transfer functions H(s) and G(s) of the 
sub-systems 1 and 2, respectively. For each sub-system, its transfer function relates 
its inputs to outputs: 

[
YI] = [Hu(s)H12(s)l [UI]' 
Y3 H21 (s) H22 (s) U3 

and 

[
Yll = [Z11 (s) Z12(s)l [u1l· 
Y2 Z21 (s) Z22(s) u2 

Systems (1.12) and (1.13) in combination with relation (1.9) lead to 

Yl = H11 (s)u1 + H12(s)y4 

Y3 = H21(s)u1 +H22(s)y4 

Y2 = Gu(s)u2 +G12(s)y3 

Y4 = G21 (s)u2 + G22(s)y3. 

Substituting Y4 of (1.19) for Y4 in (1.17) we obtain 

and hence 

With this result and (1.19), we can also express y4 in terms ofu1 and u2 

Y4 = G21 (s)u2 + G22(s)y3 = G21 (s)u2 

+ G22 (s) [I- H22 (s)G22 (s) ]-1 [H21 (s)u1 + H22 (s)G21 (s)u2]. 

Using (1.20) and (1.21) in (1.16) and (1.18), we arrive at 

Yl = H11 (s)u1 + H12(s)y4 = H11 (s)u1 

+H12 (s) ( G21 (s )u2 + G22 (s) [I- H22 (s )G22 (s) ]-1 

x [H21 (s )u1 + H22 (s )G21 (s )u2]) 

= ( Hu (s) + H12 (s)G22 (s) [I- H22 (s)G22 (s) ]-1 H21 (s)) u1 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

(1.21) 

+ ( H12(s)G21 (s) + H12(s)G22 (s) [I- H22 (s)G22(s)]-1 H22(s)G21) u2 
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and 

Y2 = G 11 (s)u2 + G12 (s)y3 = G 11 (s )u2 + G 12 (s) [I- H22 (s)G22 (s)]-1 [Hn (s)u1 

+ H22(s)G21 (s)u2] = G12(s) [I- H22(s)G22(s)]-1 Hn (s)u1 

+ ( G11 (s) + G12(s) [I- H22(s)G22(s)]-1 H22(s)G21 (s)) u2. 

This shows that the components of Z(s ), as defined in (1.15), are 

Z11 (s) = Hn (s) + H12 (s)G22(s) [I- H22 (s)G22 (s)r1 Hn (s) (1.22) 

Z12 (s) = H12 (s )G21 (s) + H12 (s)G22 (s) [I- H22 (s)G22 (s) r 1 H22 (s)G21 (s) (1.23) 

Zn(s) = G12(s)[I-H22(s)G22(s)r1H21(s) (1.24) 

Z22 (s) = Gn (s) + G12 (s) [I- H22 (s)G22 (s)r 1 H22 (s)Gn (s). (1.25) 

Computing the Transfer Function of the Coupled System Using the 
Sherman-Morrison-Woodbury Formula 

The evaluation of the transfer function of the coupled system, as defined in ( 1.14 ), 
requires a computation of an inverse of a block matrix. For a system consisting of 
an arbitrary number of sub-systems, a suitable tool towards this end is the Sherman­
Morrison-Woodbury formula (see for instance [10] and references therein). This 
formula allows for a computationally cheap matrix inversion, as long as the con­
sidered matrix can be easily expressed as a sum of a matrix for which an inverse is 
known (or easy to compute) and a (low rank) correction. Let L be non-singular and 
let matrices J, M, N be of compatible size. Then the formula ofK = L + MJN1 is 
(after [ 1 0]) 

K-1 = (L+MJNT)-1 = L -1 -L -1M(J-1 +NTL -1M)-1NTL -1' (1.26) 

In our case, the matrix to be inverted can be decomposed into 

where Lis a block-diagonal matrix, whose inverse can be calculated by computing 
the inverses of each sub-block separately and the correction matrix can be factored 
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Abbreviate G,(s) = (sEii -Aii)- 1, P;(s) = G;(s)E;; and R,(s) = G;(s)[B, B2+i], 
i = 1, 2 and omit the argument s when possible. Note that R; = [Rn , Ri2] = 

[G;B;,G;B2+,] consists oftwo blocks. Substituting the formulas for L,M,J and N 
into the the Sherman-Morrison-Woodbury formula, we get 

(1.27) 

where the entries of G and R depend on s. Using this result and Eqs. (1.12), (1.13), 
(1.14), one can find the formula for the transfer function of the coupled system 

Z(s) = 

(1.28) 

It is easy to show, that the formulation (1.28) is equivalent to the formulation given 
by Eqs. (1.22) to (1.25). Moreover, (1.28) provides an elegant relationship between 
the components ofthe transfer functions of the sub-systems and the coupled system, 
that reveals the symmetry and the structure of the coupled system. In addition it 
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shows that the relation between the transfer functions is not straightforward. Since 
several sub-expressions such as (sEu- Au)- 1 reoccur frequently, we will introduce 
abbreviations in the upcoming sections. 

Formula (1.28) reveals a structure which is more difficult to find in (1.22)-(1.25) 
and can be used to calculate the transfer function of the coupled system ifthe transfer 
functions of the individual sub-systems are available. The involved inverse is of a 
small matrix which means that calculation of the transfer function of the coupled 
system is relatively cheap. 

1.3.3 Standard Block Structure Preserving Reduction 

In this section we will recall the general ideas of the standard block-structure pre­
serving methods. 

A typical block structure preserving (BSP) model reduction method applied to 
the system (1.10) consists ofthe following three steps: 

1. Create the matrix V whose columns span the nth Krylov subspace around so E C 

V = Xn(P(so),R(so)), 

where P(so) and R(so) are 

P(so)=(soE-A)- 1 EE~NxN and R(so)=(soE-A)- 1 BE~N. 

2. Build a the block-diagonal reduction matrix V with N1 + N2 = N rows 

where V 1 and V2 contain the first N1 respectively last N2 rows of the matrix V. 
3. Project the original system onto a lower-dimensional space 

E=VTEV, A=VTAV, 

When possible we write P and R rather than P(so) respectively R(so). The model 
reduction methods based on this idea are widely applied and popular due to a good 
accuracy of the reduced-order systems that they deliver. However, they have a few 
drawbacks, one of them being the high cost of the construction of the reduction basis. 
The main computational cost of this type of methods is related to evaluation of x ~-------+ 

(s0E- A)- 1x, which involves solving a system of equations with a large coefficient 
matrix. In the next section we introduce an alternative structure preserving method 
which for some cases can significantly reduce the computational costs. 

1.3.4 Separate Bases Reduction Algorithm 

In the classical case, the reduction basis is built using the coupled formulation of 
the system (1.10). The construction of this basis requires repeated evaluations of 
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x ~------+ ( soE - A) - 1 x where soE -A is anN x N matrix. For large N this procedure can 
be computationally very expensive or even unfeasible. ln such cases one can try to 
make use of a natural block structure of the coupled system and for instance replace 
the evaluations involving (soE- A)- 1 by evaluations involving (soE11 - A11 )-1 and 
(soE22- A22)-1, i.e., by evaluations involving only the coefficient matrices of both 
sub-systems. If N is large and for instance N1 = N2 = N /2 then the serial computation 
of (soE11 - A11 )-1 and (soE22- A22)- 1 may be much faster that of (soE- A)- 1. 
Further acceleration can be achieved through parallelism. 

Following this idea, we introduce a new model reduction algorithm, called Sep­
arate Bases Reduction (SBR) algorithm. Here the Krylov subspaces that create the 
reduction bases correspond to the uncoupled sub-systems (as defined in (1.7) and 
(1.8)) rather than to the coupled system (1.10). The procedure is as follows: 

1. Create two matrices V1 and V2, one for each sub-system: 

• For the sub-system S1, build a matrix V 1, whose columns span the n1 th Krylov 
subspace around so E CC 

where P1 (so) and R1 (so) are 

P1(so) = (soE11 -A1I)-1E11 and R1(so) = (soEn -A11)-1[B1 83]. 

Matrix V1 has N1 rows. 
• For the sub-system S2, build a matrix V2, whose columns span the n2th Krylov 

subspace around so E CC 

where P2 (so) and R2 (so) are 

P2(so) = (soE22 -A22)-1E22 and R2(so) = (soE22 -A22)-1 [B2 B4]. 

Matrix V 2 has N2 rows. 

2. Build the block-diagonal reduction matrix V with N1 + N2 = N rows 

3. Project the original system onto a lower-dimensional space 

E=VTEV, A=VTAV, 

In the sequel, when possible without causing confusion, we omit the argument so of 
Pi and Ri, i = 1, 2. In the next subsection, we will compare the SBR algorithm with 
a standard BSP reduction method, by examining their most important properties. 
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1.3.5 Separate Bases Reduction Algorithm- Properties 

In this subsection we will discuss the differences and similarities between Separate 
Bases Reduction algorithm and standard block structure preserving model reduction 
methods. 

Block-Structure Preservation 

As described in subsection 1.3.4, the SBR algorithm uses reduction matrices ofthe 
block-diagonal form 

Therefore, its application preserves the block structure of the coupled system matri­
ces. 

Rank and Orthogonality 

The sub-blocks V1 and V2 of the projector V are constructed separately, using one 
of the Krylov basis building algorithms. Hence, both of them have a full column 
rank and, as a result, the matrix V also has a full column rank.lfthe sub-blocks V1 
and V2 have orthogonal columns then also matrix V has (automatically) orthogonal 
columns, i.e., no explicit orthogonalization has to be applied. 

Computational Cost 

The difference between the computational costs for a standard block structure pre­
serving method and the Separate Bases Reduction algorithm comes from the fact, 
that the SBR algorithm computes the reduction bases for the set of uncoupled sys­
tems instead of using the coupled formulation ofthe system. This approach can sig­
nificantly reduce the computational time and storage requirements needed during the 
model reduction process. 

The main cost of the Krylov basis construction lies in the evaluation ofthe matrix 
pencil inverse function x ~-------+ (soE- A)- 1x. For coupled models with many degrees n 
of freedom this evaluation may be unfeasible. But for sub-problems of smaller size 
evaluation may be possible. The amount of computational work required for the so­
lution of (s0E- A)x = d depends on the employed solution method which at its tum 
relies on specific properties of the matrix soE- A (symmetry, monotone, positive 
definite, etc.). Different methods lead to different amounts of computational work: 
The minimal amount of work of O(n) operations is usually achieved by multigrid 
methods (see [25]), other methods such as GMRES, PCG, CGS and BiCGstab(l) 
(see [ 16, 20, 22]) are more expensive. Classical fixed point methods such as Jacobi, 
Gauss-Seidel and matrix-splitting based methods are usually even slower. 
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Size of the Reduction Space 

Another difference with respect to the standard BSP reduction methods is the size 
of the reduction matrix V and, as a result, dimension of the reduced order model. 

Let us consider the coupled system ( 1.1 0) and assume, for simplicity, that there is 
no need for deflation (all columns tum out to be linearly independent) while building 
the matrix V. We will apply a typical reduction procedure like described in subsec­
tion 1.3.3 and the SBR algorithm. In both cases, we will build a Krylov subspace of 
order n and estimate the size of the reduction space and reduced order model. 

We begin with the analysis of the standard structure preserving algorithm. The 
nth Krylov subspace built for the coupled system for the starting matrices as defined 
in subsection 1.3.3 will be ofthe form 

V = Xn ( P, R) = colspan {R, ... , pn- 1 R} 

where P = (soE- A)- 1 E and R = (soE- A)- 1 B. Since 8 E IRNxm, each of the 
components PJR of the matrix V has m columns. Thus, for a degree n Krylov space, 
assuming no deflation, the size ofV is N x (nm). Next, the block-diagonal reduction 
matrix V is created by splitting the rows of V according to the dimensions of the 
sub-problems. In our case, the coupled system consists of two sub-systems, so the 
final size of the reduction matrix V is N x (2nm). This leads to a reduced model of 
order 2nm. 

Next, we will focus on the SBR algorithm. In this case two matrices V 1 and V 2, are 
built separately and we assume that each of them corresponds to an nth degree Krylov 
subspace based on the appropriate matrices (fori= 1,2 define Gi(so) = (soEu­
Aii)- 1, Pi(so) = GiEii and Ri(so) = Gi[Bi B2+i] and observe that Ri = [Rn ,Ri2] 
where Ril and Ri2 are Gi8i, respectively Gi82+i). For the sub-system S1, we create 
the matrix V 1 

V1 =,%n(P1, Rl)· 

Here, R1, [81 83] E JR.N1 x(m1 +m3 ), so each component P{ R1 of the matrix V 1 has 
(m1 +m3) columns whence V1 has n X (m1 +m3) columns. 
For the sub-system S2, we create 

V2=Xn(P2,R2)-

Similarly, since R2, [82 84] E JR.N2 x(m2 +m4 ), every component PiR2 of the matrix 
V 2 has ( m2 + m4) columns, and matrix V 2 has n x ( m2 + m4) columns. 

Next, matrices V 1 and V2 are used as diagonal blocks of the reduction matrix V, 
resulting in a reduced model of order 

This result shows that the SBR algorithm creates a smaller reduced order model than 
standard BSP methods if (m3 + m4) < m. This is for instance the case for coupled 
systems for which the number of internal inputs is not larger than the number of 
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external inputs. If there are many more internal inputs than external ones, the size of 
the SBR algorithm based reduction matrix will grow very fast compared to the size 
of the BSP reduction matrix. However, this problem can be avoided for the category 
of systems for which the internal input matrices B2 and B4 can be approximated by 
only a small number of dominant components. This approach will be explained in 
more detail in the next section. 

Tile Moment Mate/zing Property 

In order to assess the SBR moment matching properties we compare the column­
spaces of the BPS and SBR reduction matrices. For simplicity, without loss of gener­
alization, we focus on the SISO case (the coupled system is SISO) where in addition 
Bi, Ci, i = 1, ... , 4 related to the sub-systems are column-vectors which implies that 
all products cT ( .. . )B1, i,j = 1, ... ,4, are scalars. A similar analysis is possible for 
the M!MO case (a MIMO coupled system with sub-system matrices Bi, Ci). 

Theorem 1.2 Let the coupled system be as in Fig. 1. 7, described by (1.7) and (1.8). 
Assume that all inputs and outputs are column-vectors, i.e., mi =Pi = 1, i = 1, 2, 3, 4. 
Then the SBR reduced-order model transfer function matches at least the same 
(number of) moments as the BSP reduced-order model transfer function. 

Proof First, we examine the reduction space built by a standard BSP method. To 
match the first k moments at so E C, of the coupled system of the form (1.1 0), one 
has to construct the Kry lov space 

V = Jtk(P,R), 

where 
P= (sE-A)- 1E and R= (sE-A)-1B. 

The flh Krylov step for the BSP method adds to the reduction basis the column span 
of the following matrix v~~p 

with blocks ofthe form 

- (i) v 11 v 12 

[ 

(i) (i)l 
V BSP = (i) (i) 

Y21 Y22 

[ 

(I) (i) l (i) V 11 V 12 o o 
V BSP = 0 0 y(i) y(i) 

21 22 

[p
i-1R "'i-1 p/R "'i-1 p./R l = 1 11 + LJ1=o ai 1 12 L..J=O Yi 1 12 . 

"'i-1 f3 pJR pi-1R "'i-1 s: pJR · 
L..j=O J 2 22 2 21 + L..J=O uJ 2 22 

(1.29) 

(1.30) 

By (1.27) there exist scalars a, b, c, d and by construction (induction) there exist 
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coefficient vectors a = [ a1, ... , a1] E ~i-2 , f3, y, 8 E ~i-2 such that 

-y(i) - py(i-1) 
BSP- BSP 

(s [E~, E:J- [B~~i B~~rl) -1 [E~, E:,] V~S~: 
( [

G1 0 l + [ 0 R12] [a bl [CfG1 rO l ) [E11 0 l v~;~) 
0 G2 R22 0 c d 0 C 4 G2 0 E22 

(1l_7) 

induction 

( [
P1 o l + [ o R12] [a bl [CIP1 

1
0 ] ) 

o P2 R22 o c d o C 4 P2 

[p
i-2R + "'i-2 pfR "'i-2 pfR l 1 11 L.J=O aj 1 12 L.J=O Y.J. 1 12 . 

"'i-2 f3 pJ R pi-2 R + "i-2 s: nJ R 
L.j=O J 2 22 2 21 L...j=OUf£2 22 

[p
i-1R + "i-1 p.IR "i-1 pJR l 1 11 L...f=1 aJ 1 12 L...f=1 Yt 1 12 . 

"i-1 f3 P'R pi-1R "i-1 s: P'R + 
L.j=1 } 2 22 2 21 + L.j=1 Uj 2 22 

[ 
0 R12] [a bl [CIP1 

1
0 l 

R22 0 cd 0 C 4 P2 

1 11 + L.j=O a/ 1 12 L.j=O Yi 1 12 . 
[p

i-2R "'i-2 p.IR "i-2 piR l 
"'i-2 f3 pJR pi-2R + "i-2 s: pJR 
L.J=O j 2 22 2 21 L.J=O Uj 2 22 

[p
i-IR +"i-1 pfR "'i-1 pfR l 1 11 L..J=1 a/ 1 12 L..J=1 Y.J 1 12 . 

"'i-1 f3 P'R pi-1R + "i-1 s: pJR + 
~=1 j 2 22 2 21 ~j=1Uf 2 22 

[R:, R~'] [: ~] [: :] 
[p

i-1R "i-1 p.IR "'i-1 pfR l 1 11. + L.J=I aJ 1 12 . L.J=I Yt 1 12 . 
"i-1 f3 pJR pi-1R + "i-1 s: pJR + 
L.j=1 } 2 22 2 21 L.j=1Uf 2 22 

(1.31) 

23



~ ~ 

where ix = [.Ul' a], f3 = [.U3' {3], r = [.U2' y], 8 = [.U4' 8], and the matrix with '*' is 
a full matrix. Now it is easy to see that the column span of the matrix constructed 
from the matrix v~~p by splitting its rows, has the same column span as the matrix 
defined in (1.29). Finally, the reduction basis VBsP after k steps of the BSP algorithm 
has the following form 

(1.32) 

Now we will examine the SBR reduction space algorithm. Let Pi,Ri = [Rn ,Ri2], 
i = 1, 2 be as defined before. For s E C SBR builds two Krylov sub spaces 

One can easily prove, that the lh step of the Krylov iteration within the SBR algo­
rithm adds to the reduction basis the column span of the following matrix v~1R 

(1.33) 

where 
V (i) _ [pi-1 R pl-1 R ] 

1 - 1 11' 1 12 

and 
y(i) _ [pi-1 R pi-1 R ] 2 - 2 21' 2 22 . 

Finally, the reduction basis V SBR after k steps ofthe SBR algorithm has the following 
form 

[ 
(1) (k) l 

VsBR = VsBR' · · ·, VsBR · ( 1.34) 

Comparing (1.30) and (1.33), we observe that 

colspanVBsP c colspanVsBR· 

Because the dimensions of the spaces are equal for our case (SISO external and 
column-vectors Bi, Ci for the sub-systems) one finds that in addition 

colspan V ssP = colspan V SBR. (1.35) 

Because colspan V BSP c colspan V SBR the SBR reduced-order model transfer func­
tion matches (at least) the same (number of) moments as the BSP reduced-order 
model transfer function which at its turn (Theorem 2, [6]) matches the same (num­
ber of) moments as the original coupled system's transfer function. For the more 
general case where B1, C 1, i = 1, ... ,4 are matrices one should also obtain 

colspanVBsP ~ colspanVsBR (1.36) 

which is sufficient to prove the moment matching property of the SBR reduced-order 
system. 
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1.3.6 Two-Sided Separate Bases Reduction Algorithm 

The two-sided projection technique introduced in the previous section can be adapted 
to similarly improve the moment matching properties of the SBR algorithm, where 
we assume, as in the previous section, thath the Bi and Ci are column vectors. With 
the uncoupled formulation ( 1. 7) and ( 1.8) in mind we define the reduction algorithm 
as follows. 

1. For the sub-system S1, create two matrices: 

• Matrix V 1, whose columns span the n1 th Krylov subspace around so E CC 

where P1 (so) and R1 (so) are 

P1(so) = (soE11-A11)-1E11 and R1(so) = (soE11-A11)-1[81 83]. 

Matrix V 1 has N1 rows. 
• Matrix W 1, whose columns span the n1 th Krylov subspace around so E CC 

where S1 (so) and T1 (so) are 

Matrix W 1 has N1 rows. 

2. For the sub-system S2, create two matrices: 

• Matrix V2, whose columns span the n2th Krylov subspace around so E CC 

where P2 (so) and R2 (so) are 

Matrix V 2 has N2 rows. 
• Matrix W2, whose columns span the n2th Krylov subspace around so E CC 

where S2(so) and T2(so) are 

Matrix W2 has N2 rows. 
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3. Build two block-diagonal reduction matrices V and W with N1 + N2 = N rows 

and 

4. Project the original system onto the lower-dimensional space 

A 1' A 1' A 1' A 1' 
EsBR = W EV, AsBR = W AV, BsBR = W B, CsBR = V C. 

Again, different algorithms lead to V1, V2 and W1, W2 with different properties. 
Also the above SBR algorithm results in a block -structured reduced order system and 
uses all of the inputs and outputs. Consequently, also the above SBR-based reduced 
order system's transfer function matches twice as many moments of the original 
system's transfer function as the only inputs based one in Sect. 1.3.3 (the moment 
matching property follows from the BSP algorithm, Theorem 1 and Theorem 2). 

1.4 Low-Rank Approximations Based SBR Algorithm 

In Sect. 1.3 we presented the Separate Bases Reduction algorithm - a block-struc­
ture preserving model reduction method for coupled systems. As discussed in that 
section, one of the SBR method's disadvantages is that the sizes of the its Krylov 
subspaces increase very fast for systems with a large number of internal inputs and 
outputs. Hence, the use of the SBR algorithm was recommended for the cases, in 
which the number of internal inputs and outputs was considerably smaller than the 
dimension of the system or comparable to the number of the external inputs and 
outputs. ln this section, we approximate the internal inputs (outputs) by their GSVD­
based dominant parts. This improves the efficiency of the SBR method. In addition 
we will prove that both the SBR algorithm and its low-rank based variant can be 
applied to coupled systems for which the internal input and output operators B and 
C are not explicitly availabe. 

1.4.1 Implicitly Defined Couplings 

In Sect. 1.3, we introduced the interconnected system (1.10) as a result of the cou­
pling of the two sub-systems, (1.7) and (1.8). Here, the coupling blocks are given 
by the explicit products of the internal inputs and outputs of the two sub-systems, 
namely B3cr and B4Cf. Having such a formulation at our disposal, we can ap­
ply the SBR algorithm in a straightforward way. However, for some applications it 
may be impossible to obtain matrices B3, B4, C3 and C4. In the following sections 
we propose a way of transforming an interconnected system with implicitly defined 
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couplings of a form 

S: 

s [E 11 0 l [x 1] 
0 E22 X2 

[~:] 
(1.37) 

with 

E = [Ell 0 l ' A= [All A12] , B = [B1 0 l , C = [C1 0 l 
0 E22 A21 A22 0 82 0 C2 

(1.38) 

into a form that can be reduced using the SBR algorithm. Our goal is to find decom­
positions (factorizations) of the two coupling blocks 

and (1.39) 

that provide a good (with respect to the corresponding Krylov subspaces) approx­
imation ofthe original internal inputs and outputs ofthe coupled system (1.37). A 
factorization of the type A = BC is not be unique. The next section shows how to 
deal with this. 

1.4.2 Decomposition Theorem 

In this section, related to (1.37), first we show that a factorization A= BC is not 
unique and next we prove that if A 12 = B1 C 1 and simultaneously A12 = B2C2 then 
Xp(All, B1) = Xp(All, B2) if C1 and C2 are of full column rank. The proofs will 
be for the input-based Krylov subspaces. Similar theory applies to the output-based 
Krylov subspaces. 

First, a factorization of the type A = BC is not unique since A = lA and A = AI are 
two different factorizations. Even a QR factorization A = QR is not unique since 
if A= QR then A= (QS)(SR) for all complex valued diagonal matrices S with 
unit-length diagonal elements (S denotes the complex conjugate of S). Also other 
factorizations such as Gaussian-elimination based A= LU exist. 

Since we aim at the use ofB for the generation of a Krylov subspace Xp(A11, B1) 
we will next show that the non-uniqueness does not need to be an issue. To this end 
we prove the following Lemma 1.1 and Theorem 1.3. 

Lemma 1.1 Let BE IR.nxp, C E JR.Pxm, m,n,p EN. Then 

rank( C) = p ====} co/span BC = colspanB. 

Proof Matrix C has rank p which implies p S: m and that C hasp linearly indepen­
dent columns of length p. Thus based on 

colspanC = { Cx: x E IR.m} (1.40) 
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one finds 
colspane = {ex: x E ffi.m} = ffi.P 

(1.40) p~m 
(1.41) 

whence 

colspanBe = {Bex: x E ffi.m} = {By: y E ffi.P} = colspanB. 
(1.40) (1.41) (1.40) 

Note: The condition that e has full column rank is sufficient but not necessary. It can 
be relaxed: If for instance B has only 2 :S p linearly independent columns, e.g. the ith 
and the jth column, then a sufficient condition is colspane = colspan { ei, eJ} c ffi.P. 

Theorem 1.3 Let 81, 82 E ffi.nxp, e1, e2 E ffi.pxm and m, n,p E N. 

If 

then 
colspanB 1 = colspanB2. 

Proof Observe that 

colspanB1 = colspanB1 e 1 = colspanB2e 2 = colspanB2. 
Lem.1.1 Lem.1.1 

Next we prove that certain Krylov subspaces are identical. 

Theorem 1.4 Let A E ffi.nxn is non-singular and B1, B2 E ffi.nxm, n, m E N. Then 

colspan81 = colspan82 ====? .Jt];(A, 81) = Xp(A, 82). 

Proof Note that 

colspan81 = colspan82 <¢==:::} 

{81 X: X E ffi.m} = {82x: X E ffi.m} <¢==:::} 

{ AB1 X: X E ffi.m} = { AB2x: X E ffi.m} <¢==:::} 

colspan AB 1 = colspan AB2, 

which, repeatedly applied, shows that colspanAkB1 = colspanAkB2 for all k ~ 0 
whence Xp(A,B1) = Xp(A,B2). 

Theorem 1.3 in combination with Theorem 1.4 show that every factorization of 
an off-diagonal block of the form A12 =neT with e offull column rank leads 
to the same krylov space Xp(A11 , B). The following sections show how to use this 
property for the application ofthe SBRmethod to an arbitrary coupled system (1.37). 

1.4.3 Decomposition Theorem -Numerical Example 

In Sect. 1.4.2 we showed that the Krylov space does not depend on the factors of the 
decomposition A12 =BeT when these factors are of maximal column rank. To illus­
trate this numerically, we calculate these factors of A12 with different factorization 
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techniques, based on a QRfactoration and LU factorization. For simplicity, we use 
a one-sided variant of the SBR method. The system used for the test is a linear beam 
coupled to a controller. Only the beam system has an external input and external 
output. Hence, the considered system is of a form 

S: (1.42) 

Let A12 = B3cr and A21 = B4CI. Here, the full coupled system has 80 degrees of 
freedom, 40 for each sub-system. Both of the sub-systems have 5 internal inputs and 
5 internal outputs. It means, that the coup I ing blocks A 12 and A21 are of rank 5. For 
all cases, the same number ofKrylov iterations is performed and the reduced-order 
systems are ofthe order 55 (originally 80). The first sub-system was reduced from 
order 40 down to 30 and the second from order 40 down to 25. 

To reduce the original system, we will build three reduction matrices involving 
an nth-order Krylov sub-space as follows: 

• Reduction matrix based on the original internal input blocks 
The diagonal sub-blocks of the reduction matrix span the Krylov subspaces 

where 

and 

and 

where 

and 

The block-diagonal reduction matrix Vis of the form 

• Reduction matrix based on a QR decomposition of the coupling blocks 
Based on a QR decomposition of the coupling matrices A12 and A21, we get 

and 

We use an rank-revealing version of the QR algorithm, i.e., £?1, £?2, 81![, &i!J 
are offull column rank. Hence, the matrices £?1 and £?2 used to build the Krylov 
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subspaces have the same rank (and most likely amount of columns) as 83 and 84. 
Next, the reduction sub-blocks are created 

yQR = X (PQR RQR) 
1 n 1 ' 1 ' 

where 

and 

and 

where 

OR ( )-1 P2 = sl22 - A22 and OR ( )-1 en R2 = sl22 - A22 ,;z2. 

The block-diagonal reduction matrix yQR is ofthe form 

[ 
OR l QR = Vf 0 

V OR . o v-2 

• Reduction matrix based on the LU decomposition of the coupling blocks 
Based on the LU decomposition of the coupling matrices A12 and A21, we get 

and 

We use a rank-revealing version of the LU algorithm, i.e., 21, 22, %'? and %'2T 

are of full column rank. Hence, the matrices 21 and 22 used to build the Krylov 
subspaces have the same rank (and most likely amount of columns) as B3 and B4. 
Next, the reduction sub-blocks are created 

yLU = X (pfU RLU) 
1 n 1 ' 1 ' 

where 

and 

and 

where 

and 

The block-diagonal reduction matrix yLU is of the form 

[
yn! o l yLU = 1 . 

0 yU! 
2 

Figure 1.8 shows the magnitude plots with respect to the frequency of the frequency 
response functions ofthe three reduced-order systems, created using original, QR-, 

30



--original system 
+ QR 
0 LU 

1 0 -!() .__ .................................... ...__~~ .................. ...._____. ...................................... _......_ .................. .......,, 

1~ 1~ 1~ 1~ 1~ 
omega [radfs] 

Fig. 1.8. Magnitude plots of the frequency response functions of the reduced-order systems 
based on different decompositions of the coupling blocks 
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Fig. 1.9. Magnitude plots ofthe relative errors of the reduced-order frequency response func­
tions based on different decompositions of the coupling blocks with respect to the reduced­
order frequency response function based on the original input and output matrices 

and LU-decomposition based input matrices. The plots are almost identical, which 
is confirmed in Fig. 1.9, that shows the relative errors between the reduced-order 
frequency response function of the original system and the frequency response func­
tions computed based on both decompositions. The small differences between the 
three frequency response functions should be caused by round-off errors. 
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The next section shows how Theorems 1.3 and 1.4 in combination with GSVD 
can be used to improve the performance of the SBR algorithm applied to coupled 
systems with a high number of couplings (or interconnections). 

1.4.4 Low-Rank Approximations Based SBR Algorithm 

For coupled systems it is not always necessary to take into account all of the coupling 
components. Sometimes only a small number of them determines the behavior of 
the system and the rest can be neglected without much loss of accuracy. This section 
extends the application of the SBR algorithm to coupled (or interconnected) systems 
characterized by a high number of couplings of which only a small percentage is 
relevant to obtain an accurate solution. 

Section 1.3 pointed out that the standard SBR method should be applied only 
for the systems with a relatively small number of internal inputs and outputs. That 
is, only for coupled systems where few degrees of freedom of one sub-system (re­
lated to one physical domain or to a physcial quantity) are coupled/connected to the 
other sub-system, which implies that the coupling blocks A12 and A21 ofthe system 
(1.37) are of low rank. Otherwise, the SBR method produces reduction bases which 
increase in size too fast with respect to the number of Krylov iterations. However, 
if only a part of the components of the high rank coupling blocks is relevant, we 
can decrease the growth speed of the reduction bases. To do so, we first need to de­
termine, which components of the coupling are important and should be kept, and 
which ones can be neglected. One of the ways to make this decision, is to apply the 
generalized singular value decomposition (GSVD) to the coupling matrices A12 and 

'l /' 'l /' A21. The GSVD should be applied to the pairs (A 11 , A12 ) and (A22 , A21 ). One then 
has 

Af2 = V1S1Xf and AI1 = V2S2XI 

which results in the expressions for the coupling blocks 

(1.43) 

(1.44) 

Note, that here the matrices C 1 and C2 are not used to denote external output ma­
trices, but components of the GSVD. Assuming that the coupling blocks are of the 
form (1.39), since S1 and S2 are real-valued non-negative diagonal, we can define 
the input and output matrices as following products 

(1.45) 

(1.46) 

Since S1 and S2 are diagonal matrices with non-negative entries their square roots 
are diagonal matrices with entries ~ and ~- Constructing the inputs and 
outputs as in (1.45) and (1.46), all ofBi and C" i = 3,4 are scaled by v's1 or y's2. 
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T ~ ~ T 
According to the Theorems 1.3 and 1.4, Xp(A11 ,B3C4) = Xp(A11 ,B3C4 ) and 

,_Xp(A22, B4CD = ,_Xp(AII, B4CD. Moreover, using a type of the decomposition 
that orders the components with respect to their importance has an additional benefit. 
It makes it possible to approximate the inputs and outputs leaving only the most 
relevant components and, as a result, reduces the dimensions of the blocks. In some 
cases, this reduction is sufficient to allow for an efficient application of the SBR 
algorithm. 

Let us now compare the procedures of building the standard and GSVD-based 
Krylov subspaces. Here, we will limit the discussion to the case of creation of a 
Krylov space based on inputs of the sub-system (1.7), but a similar analysis applies 
to all the other cases, i.e. input-based Krylov subspace for (1.8) and output-based 
Krylov subspaces for both sub-systems, (1.7) and (1.8). As defined in Chap. 1.3, 
matrices All E JR.Nl xN,' 81 E JR.Nl xm, and 83 E JR.Nl xm3 . Assume, that 83 has full 
column rank m3 and that application of GSVD to the pair (Afi, Aj~) leads to 

B~ -X sl/2- [b~ b~ l TT1lNJ xm3 3 - I 1 - I , · ·, m3 E .lG>. • 

where both X1 and S1 in (1.45) are of full column rank. Next, let 83 = xik\sik)) 112 

approximate B3 with the use of k dominant components. Then 

(1.47) 

For simplicity, we assume that m1 + m3 is a multiple of m1 + k (this may not be the 
case in general), so there exists A E N such that 

(1.48) 

The pth Krylov subspace created by the SBR algorithm for the sub-system (1.7) for 
so E Cis 

where 

and consists of p( m 1 + m3) columns (assuming that no I in ear dependence occurs). 
Likewise, 

( 1.49) 

where 

consists also of p(m1 + m3) columns, but approximately matches A as many mo­
ments of the original transfer function. 

Projecting system (1.7) onto a subspace ~p(P1, R1) in (1.49) does not preserve 
the moments of the transfer function of this sub-system. However, if the column span 
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of the matrix B3 gives a good approximation of the column span of the matrix B3 
we can expect that the reduced-order system obtained by projection onto the space 
(1.49) will give an accurate approximation of the appropriate number of moments 
of the transfer function of the original system. Moreover, if the matrix B3 can be 
approximated by B3 with a significantly smaller number of columns, A times more 
steps may be used during the Krylov procedure (to approximate a higher number of 
moments) or one can use more expansion points, keeping the reduced-order model 
still relatively small. 

In the next section, we present the results of some numerical tests that show the 
advantage ofusing the low-rank approximation based SBR algorithm for a system 
with a high order of coupling. 

1.5 Numerical Examples 

In this section, we present two examples ofthe application ofthe SBRmethod com­
bined with low rank approximations for the coupling blocks. The first example is a 
simple and small example, yet exhibiting interesting behaviour as far as coupling is 
concerned. The second example is described in much more detail, as this is an in­
dustrial benchmark problem and needs some preliminary steps before the methods 
described in this chapter can be applied. 

1.5.1 A Simple Example 

In this section, we consider a simple example. The difficulty of this test case is that 
here the coupling blocks of the system are of rank 10 (the coupled system has 10 in­
ternal inputs and 10 internal outputs), while each of the sub-systems contains only 40 
degrees of freedom (80 degrees of freedom in total). In this case, the standard SBR 
algorithm generates too many columns to be competitive. However, the use oflow­
rank approximations makes the SBR algorithm more competitive. Fig. 1.10 shows 
the magnitude plots with respect to the frequency of the original and reduced-order 
frequency response functions. In case of the two-sided BSP method and the two­
sided SBR algorithm based reduced-order systems, the original system was reduced 
to 42 degrees of freedom. The low-rank approximation based two-sided SBR algo­
rithm created the reduction bases for rank 3 approximations of the coupling blocks, 
i.e. the internal input and output matrices Bi,Ci E IR.40 x 10 , i = 3,4 were approx­
imated by Bi,Ci E IR.40 x 3 , i = 3,4. Hence, every Krylov step was adding 4 new 
columns to the reduction basis (3 corresponding to B3 or c4 and 1 corresponding to 
B1 or CJ) in case of the sub-system S1 and 3 new columns (corresponding to B4 or 
C3) in case of the sub-system S2. To construct the reduced-order system of dimen­
sion 42, the low-rank approximation based SBR algorithm performed 6 iterations 
for each sub-system (for both, input and output related bases). Figure 1.11 shows 
the magnitude plots of the relative errors of the reduced-order frequency response 
functions with respect to the original one. Note that the two-sided SBR algorithm 
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Fig. 1.10. Magnitude plots of the frequency response functions of the original and reduced­
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Fig. 1.11. Magnitude plots of the relative errors of the reduced-order frequency response 
functions with respect to the original frequency response function 

based on low-rank approximations of the internal inputs and outputs leads to much 
better results than the SBR algorithm applied to the original coupling blocks. The 
two-sided low-rank based reduced-order transfer function H1ow-rank-SBR approxi­
mates H less accurate than the standard two-sided BSP transfer function but in the 
neighborhood of the expansion points the relative error is still below 2%. Table 1.1 
shows that not only the first 6 derivatives are matched but also the 71h one is well 
approximated. 
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Table 1.1. Derivatives of the original and low-rank approximation based reduced-order trans­
fer functions for the expansion point (s) for the second example, multiplied by I 07 

i JiH(s) JiHlow-rank-SBR (s) 

0 -0.3 49984611544531 -0.349975323605725 

1 0.000580754070987 0.000580770193275 

2 -0.000001928114532 -0.000001928787960 

3 0.000000012770698 0.000000012766510 

4 -0.000000000067912 -0.000000000068062 

5 0.000000000000859 0.000000000000859 

6 -0.000000000000014 -0.000000000000014 

7 0.000000000000000 0. 000000000000000 

8 -0.000000000000000 -0.000000000000000 

9 0.000000000000000 0. 000000000000000 

1. 5.2 Industrial Benchmark Problem 

The benchmark system treated in this chapter is a model of a printhead delivered by 
Oce Teclmologies B.V. in the Netherlands. It is a MEMS (micro-electro-mechanical­
system) based design, containing a large number of individual channels integrated 
into a single chip. A schematic overview of a single channel (a side and bottom view) 
is shown in Fig. 1.12. The dotted line depicts the ink flow; the ink, coming from the 
reservoir, enters through a restriction (l ), from which it flows into the actuation 

Nozzle plale wafer 
Side view 

Bottom view 

Fig. 1.12. A schematic overview of a single channel (courtesy of Herman Wij shoff) 
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chamber (2). Below the actuation chamber, a 300 f-Lm long feed-through is placed 
( 3), after which the nozzle plate is reached. The nozzle plate is 7 5 f.1m thick and 
consists of a pyramid shaped funnel ( 4) and a nozzle ( 5) with a radius of 11 f.1m. 

The main goal is to suppress acoustic pressure waves, which can be generated in 
a number of ways, such as the non-continuous ink supply by many thousands of ink 
channels, residual vibrations at the inlet of the ink channels, fast movement of the 
printhead, resonance of the whole structure, etc. 

The models of such devices used for simulations can reach large dimensions, 
hence application of the model order reduction techniques is often required, to de­
crease the simulation time. In this chapter, we study the application of the GSVD 
based approximations for the coupling blocks in the model of the printhead. 

1.5.3 The Second and First Order System 

The related system of equations is a second order system. Let n1, n2 E N and n = 

n1 + n2. The second order system of interest is 

{ 
Mx" +Kx = b 

y =ex 

with (n1 + n2) x (n1 + n2), 2 x 2 block-matrices 

[
Mll 0 l 

M= M22 M22 ' 

(1.50) 

(1.51) 

and M21 = -pKJ2 . The first sub-system corresponds to the displacement of the 
structure and the second sub-system describes the pressure ofthe fluid. The related 
Laplace transformation 

leads to transfer function 

{ 
w2MX+KX = B 

Y =eX 

wE CC. 

Searching for purely oscillatory modes implies that the related w is purely imaginary, 
i.e., that one is interested in positive real values w of: 

wE JR. (1.52) 

Let x2 = x~. Then the first order system reformulation of (1.50) is 

X2 = xl xl - x2 = 

{ 
' { ' 0 

Mx; + Kx1 = b ====? Mx; + Kx1 = b 
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which implies 

Its related transfer function is 

Solution of FX = B: 

{ 

SXI -X2 = 0 

sMx2+Kx1 = b 

H(s) = C(sE- A)- 1 B. 

This implies that 
YI = c (s2 M + K) -I b 

is identical toy if and only if s = iw, wE Itt. 
In the sequel we will examine the second order system. 

1.5.4 Sparsity Patterns and Magnitudes of the Blocks ofM, K 

(1.53) 

There are three available discretizations for the OCE application: coarse: 1188_1050, 

medium: 4752_5304 andfine: 20748_35775. The numbers relate to the amount of 
degrees of freedom as follows: Case 4752_5304 implies n1 = 4752 and n2 = 5304. 
Extracted from ANSYS, the blocks M11, M21, M22, K11, K12, K22 in (1.51) are very 
differently scaled: For instance, for the medium case their absolute value greatest 
resp. smallest entries (magnitude) are ofthe order 

[
10-10 0 l 

M = o( 10-s 10-18 ), [
1o+8 10-8

] 
K- 0( ) - o 10-4 ' 

(1.54) 

[
10-12 0 l 

M = 0( 10-6 10-20 ), 
_ [10-12 10-9] 

K-0( 
6 

). 
0 10-

For the calculation of the transfer function furthermore note that w E [ 0, 2n * 15 00 ]. 
Thus approximately, w2 E [0, 108]. The use of the standard MATLAB '\' operations 
to solve (K- w2M)x = b leads to error messages and abortions, not to solutions. 
An alternative, the use ofthe MATLAB package Factorize, alleviates this problem, 
but (too) severe round-off remains. Furthermore, the '\' operation turns out to be 
very slow for this poorly scaled problem. Investigation shows that that K11 contains 
entries in [10- 12 , 10+8]. The use of standard double precision floating point IEEE 
arithmetic involved in matrix operations such as matrix multiplication is bound to 
round-away contributions ofthe smaller entries. 
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Further investigation shows that all diagonal blocks but Kn are symmetric. For 
the results shown in this chapter the slightly non-symmetric ANSYS block K11 has 
been used as is. The results would be the same if one had instead used its symmetric 
part (K11 + Kj1) /2 (tested). It has also been shown that indeed M21 = -p Kj2 for 
all three examples, where p = 1090. 

Observe that the determination of the smallest absolute value positive entry of 
a sparse MATLAB matrix with MATLAB is not trivial: The smallest entry of a sparse 
matrix usually is zero (since the default entry has value zero), MA THWORKS and 
other sources do not provide an on-the-shelf solution. To obtain the smallest non­
zero entry we have written a MATLAB function vfil ter which for a full or sparse 
matrix X writes all entries Xu such that I Xu I > £ ~ 0 column-wise into a full vector. 
The use of this function applied to matrix X and £ = 0 in combination with min 
provides the smallest absolute value entry of X. 

Naturally, small entries should only be discarded if they are not relevant to the 
system of interest, i.e., if the the system is properly scaled, which is the topic of 
discussion ofthe next subsection. 

1.5.5 Scaling the Second Order System 

We need to scale the matrices K and M (E and A) to obtain a numerically robust 
solution of the system 

which depends on w. For the problem of interest we expect symmetric blocks 
M11, M22, K11 and K22, and M21 = -pKJ2 . This implies that this system could be 
scaled (preconditioned) into a symmetric one (symmetry scaling), for which effi­
cient linear solvers exist. This can be done as follows: Observe that for a two by two 
matrix 

[
1 l _1 

[ a v'Cdl VCfd ====? D 1 AD1 = VCd b 

can be scaled to a symmetric one. Hence, based on c = pw2 and d = 1, define 

Furthermore, to better scale the entries inside and between blocks (create diagonal 
elements of magnitude 1 ), define 

D2 = diag(1/ J[D]1FD1]11, ... , 1/ J[D]1FD1]nn)· 
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We now scale with a diagonal scaling: 

A -1 
M := D2D1 MD1D2, 

"-v--' .._,_., 
Q p 

K := QKP, b := Qb,c := cP, 

which, by invariance under inputs and outputs transformations means that 

is identical to H in (1.52) for all w. Obviously D1 is non-singular except for w = 0 
and D2 exists and is non-singular when all diagonal entries of Dj1 FD1 are non-zero. 

The factors P = P(w) and Q = Q(w) depend on w. This is fine for the construction 
ofKrylov spaces to match moments. However, to plot the transfer function Hone 
needs to evaluate c(K -w~M) for many wk E [0, 108]. Repeated calculation ofP(wk) 
and Q(wk) would be (too) costly, so we decided to use thew-independent factors 
P := P(w) Q := Q(w) for all w where w is the average of all wk. For the OCE 
example, to plot the transfer functions, we sample the provided region of interest: 
wk = 5n · k, k = 0, ... , 600. The value of w turns out to be w3o1 which is close to 
but not too close to a pole of H and such that all diagonal entries of Dj1 FD1 are 
non-zero. 

1.5.6 The Structure and the GSVD oJK12 

Here we briefly comment on the GSVD ofthe scaled KT2 . Figure 1.13 and numer­
ical investigation show that K12 E IF£. 1188 x 1050 is a sparse matrix which contains a 
smallnon-zerosub-blockofsize295 x 175 (window (3, ... ,297) x (561, ... ,735)). 
This is typical for applications where the different physical quantities are defined in 
bordering sub-domains and are coupled via the mutual boundary- if one numbers 
the degrees of freedom on the mutual boundary consecutively. Since KT2 has this 
structure it is of the required type. This means that also V has all its non-zero entries 
in the same sub-block, i.e., it only has possible non-zero entries from row 561 to 
735. This information is of importance, because the standard GSVD implementa­
tions such as MATLAB's do not use this information and generate V which contains 
round-off(non-zero) entries outside the window, as can be seen in Fig. 1.14. For the 
medium test case the results are worse, as to be expected: For p = 5 and£= 0, K~i) 
(definitions, see below) is a full matrix. 

To work around this problem we have written a MATLAB function spf il ter which 
for a full or sparse matrix X copies all entries Xi/ such that IXiJI > M(X) ·£into a 
sparse matrix Y, where M(X) := max{IXIlfh.i· This way, using£= w- 11 , both 

K12 = xsTyT and all of its dominant parts K;i) := X(P)S(P)y(p) (for some p:::::; n) 
have similar sparsity patterns. 

In MATLAB there are different but equivalent manners for the filtering of entries 
from a matrix. However, most of them do not terminate or lead to out of memory 
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Fig. 1.14. Entries of K\~) greater than£· M(K\~l), small case 

errors even for the small case. Functions vf ilter and spf ilter contain information 
on manners which somehow do not lead to the desired result. 

Explicit multiplication with factors X(P), S(P) and y(p) for the multiplication with 
x ~----+ Kx is likely to be the more efficient then the use of multiplication with K~i). 
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Fig. 1.15. Entries ofx in (1.55), sorted 

1.5. 7 A GSVD-Based Approximation ofKn 

In this subsection we analyse how the GSVD based approximation of K12 influences 
the solution ofthe static problem 

(1.55) 

Based on the definition of K~) the approximation leads to system 

(1.56) 

We intend to estimate 
(1.57) 

over the set of indices i for which Xi is non-zero (outside round-off region). To deter­
mine this set, we first solved ( 1.55) and made a log-plot of its sorted entries, shown 
in Fig. 1.15. Based on this plot we decided to omit all entries smaller than I o-7 and 
obtained the results in Table 1.2. The accuracy does not seem to be (very) sensitive 
to the amount of principal components used, which is due to the fact that the scaled 
K12 block is still of magnitude 105 smaller than the scaled diagonal blocks K11 and 
K22- However, Sect. 1.5.8 shows that different amounts of principal components do 
have a remarkable effect on the related transfer function. 

1.5.8 The K12(p) GSVD-Approximation Based Transfer Function 

The aim is to determine a principal component analysis (PCA) based rank-revealing 
factorization K12 · BCT where B and C are constructed with the use of the first 
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Table 1.2. Relative errors due to use of the GSVD approximation 

p lllx(i) -y(P)(i)l/lx(i)llloo 

1 3. 75008064 7e-008 
2 1.427208120e-007 
3 1.119493657e-007 
4 1.468582269e-007 
5 1.500944068e-007 

p::; n principal components, based on the scaled versions of K (and if needed M) 
as constructed above. 

To the scaled matrix K (which depends on w) we apply a GSVD to KT1 and KT2 
such that KJ1 = UCXT and KJ2 = VSXT. Hence, 

Figure 1.16 shows all of the diagonal values of the matrix Sand Fig. 1.17 shows the 
first I 000 of them. Next, for p = I, ... , 5 we approximate K12 by the contribution 
of its p most dominant modes 

10~ --~----~------~------~------~------~ 

10 -2j) '--------.l-------.l....-------..l..-------...!-----..:::0 --l 
0 1000 2000 3000 4000 5000 

Fig. 1.16. Diagonal elements of S 
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Fig. 1.17. First 1000 diagonal elements of S 

and plot the related transfer functions, together with the transfer function related to 
K12 (blue) in Fig. 1.18. One can observe that the transfer function related to K(P) 
closely approximates p peaks of the original transfer function (the one for K12). 

1.5.9 The GSVD Approximation ofMii1 
K12 

In fact, we need to apply the GSVD to M!1
1K12 rather than K12- Fortunately, there is 

a straightforward relation between the GSVD of(K11 , K 12) and (M]/ K11 , M]/ K 12 ). 
To see this, abbreviate K := K12 and M := M 11 and observe that 

Kr = vsxr ====? 

K = xsryr ====? 

M-1 K = M-1 xsryr ====? 

M-1 K = (M-1 X)VST JSfyT .._ _____ _,;....___....., 
y z 

which leads to the principal component based approximation: 

M-1 K . M-1 xCP)s(P)y(p). 

One first rewrites (1.53) to produce the term sl, for instance as follows: 

H(w) = c(K-w2M)-1b ====? 

H(w) = c(M- 1 K- w2I)M-1 b ====? 

H(w) = -c(w21-M-1 K)M- 1 b. 

(1.58) 
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Fig. 1.18. Low-rank approximations ofblock K12 

Observe that the inverse of block-matrix M in (1.51) is 
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whence 

M-IK = [ M!/Kn M!/K12 l 
- M22

1 
M21 M!/ Kn - M22

1 
M21 M!/ K12 + M22

1 
K22 

Now, SBR applied to the first row of this system leads to the approximation 

M_ 1 K . [ M!/ K 11 M!/ x(r)s(p)y(p) l 
-M22

1 
M21M!/ K11 -M22

1 
M21M!/ K12 + M22

1 
K22 

which shows that one can use the GSVD-based approximation 

where 

K = [K11 xCP)s(P)y(P)l· 

0 K22 

1.6 Conclusions 

We proposed a new model order reduction technique for coupled systems. Our meth­
od, called the Separate Bases Reduction (SBR) algorithm, belongs to the family of 
block-structure preserving (BSP) reduction techniques based on the uncoupled for­
mulation of the coupled problem. However, unlike other reduction approaches deal­
ing with the separate sub-system representation, the SBR algorithm can be applied 
to a wide category of coupled systems, including strongly coupled systems and in­
terconnected systems with many interconnections. This is due to the fact that for 
such cases we avoid a too fast growth of the reduction bases and related reduced­
order model, as long as the coupling can be well approximated by a relatively small 
number of GSVD principal components. Examples of such strongly coupled sys­
tems are systems with an interface coupling, for instance systems describing inter­
actions between a fluid and a solid wall, or systems which for instance describe an 
electromagnetic-structural coupling in an electronic device. Another advantage of 
the proposed technique is that it is computationally cheaper than the more common 
BSP reduction methods which deal with the coupled formulation of the system. 

For the initial version of the SBR algorithm (without low-rank approximations of 
the couplings), we proved the moment matching property. The GSVD based approx­
imation of the couplings only approximates the moments, but numerical experiments 
show that taking a sufficient number of dominant components still results in accu­
rately approximated moments. What makes the SBR algorithm universal, is the fact, 
that it can be applied even if the internal input and output matrices are not known 
explicitly. We show, that having at our disposal only the coupled system's matri­
ces, external inputs and outputs, and the dimensions of the sub-systems, we are able 
to create appropriate Krylov subspaces for each sub-system. This property of the 
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reduction method is desirable when dealing with industrial problems for which the 
separate sub-systems' information may not be available. 

The SBR method has been designed keeping in mind the practical use in an in­
dustrial environment. It is fairly straightforward to adapt existing software modules 
and make them suitable for application of SBR. This is certainly not the case for 
the BSP type methods. Although the reduced-order models obtained by application 
of the BSP methods frequently show a bit better approximation accuracy, the SBR 
algorithm is much more beneficial from the point of view of the computational time. 
This property is especially valuable in case of large industrial applications. 
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