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A Novel Approach to Model Order Reduction for Coupled Multiphysics Problems

Model order reduction (MOR) has become an important tool in the design of complex high-tech systems. It can be used to find a low-order model that approximates the behavior of the original high-order model, where this low-order approximation facilitates both the computationally efficient analysis and controller design for the system to induce desired behavior. This chapter introduces MOR techniques that are designed especially for coupled problems, meaning that different physical phenomena are simulated in conjunction with each other. The method developed makes use ofthe reduction ofthe individual systems, and low rank approximations of the coupling blocks. This is done in such a way that existing software for industrial problems can be adapted in a straightforwward way. An industrial test case is described in detail, so as to demonstrate the effectiveness of the reduction technique.

Introduction

This chapter focuses on the development of a model reduction methodology for coupled multi-physical models to serve the efficient simulation-based design of the underlying coupled systems. Examples of coupled systems are larger systems such as magnetic resonance imaging (MRI) scanners, printers/copiers, precision motion stages, foldable solar panels of a space-telescope, down to very small systems such as very large scale integrated (VLS!) systems (see for instance [START_REF] Ionutiu | Model Order Reduction for Multi-terminals Systems with Applications to Circuit Simulation[END_REF][START_REF] Ugryumova | Model Order Reduction for Multi-terminals Systems with Applications to Circuit Simulation[END_REF]) and microelectromechanical systems (MEMS) (see for instance [START_REF] Rochus | Electrostatic coupling ofmems structures: transient simulations and dynamic pu11-in[END_REF]). The word system, which originates from the Greek word s'ustema and the Latin word sustema, stands for "a set of interacting or interdependent components forming an integrated whole". In this chapter, the integrated whole is called the system or coupled system and its individual components are called sub-systems. The word model as in "physical model" stands for a "representation" for the system under consideration, usually in terms of a set of physical quantities and relations. A coupled system's model consists ofthe coupled sub-systems' models. A multi-physical model is a model which is represented by multiple physical quantities such as temperature, structural mechanical displacements [START_REF] Geradin | Mechanical Vibrations and Structural Dynamics[END_REF], electro-magnetic fields, and so forth. Simple systems in an insulated environment can often be described with few physical quantities and relations, while interacting systems frequently require more of such quantities and relations.

This chapter is about sub-systems which interact. When the interaction takes place inside a domain of interest or through the boundary which separates, such a domain of interest from the outside world such a system is called a coupled system. If the physical quantities interact through a discrete amount of inputs and outputs in space, then the system is said to be an interconnected system (see for instance [START_REF] Vandendorpe | Model reduction of interconnected systems[END_REF]) rather than a coupled system.

To explain the envisioned reduction, first note that most physical models cannot be solved exactly with contemporary computers. To calculate an approximate solution, the involved physical quantities such as an electromagnetic field are first discretized, i.e., represented by a finite number of degrees of freedom, after which the physical equations are reformulated for the discretized physical quantities, leading to a discrete system of equations. This process is called discretization of the model. An accurate representation of physical quantities such as an electromagnetic field can require millions of degrees of freedom and consume a considerable amount of data storage and computation time. Therefore, an analysis of a coupled system's dynamic behavior can require excessive amounts of data storage and computation time.

We focus on state-of-the-art model order reduction techniques which reduce the system as a whole based on available reduction techniques for the individual subsystems. Such methods are scarcely available and mostly in development. They have an advantage that the individual sub-systems can be reduced in parallel (see [START_REF] Bisseling | Parallel Scientific Computation, A Structured Approach using BSP and MPI[END_REF]) with the method best suited for each of them. This can save a considerable amount of data storage and computational time since these systems are also smaller than the system as a whole. On the other hand, one must figure out how to couple the individually reduced models to a reduced model for the whole, i.e., need to figure out how to effectively deal with interior couplings/interconnections.

Our reduction methods are primarily for coupled time-invariant linear models. Time-dependent linear models, affine models (such as presented in [START_REF] Doris | A disturbance attenuation approach for continuous piecewise affine systems: Control design and experiments[END_REF]) and nonlinear models (see for instance [START_REF] Pavlov | Uniform Output Regulation ofNonlinear Systems[END_REF][START_REF] Van De Wouw | Non-linear dynamics of a stochastically excited beam system with impact[END_REF]) require other than the presented reduction techniques. Furthermore, we restrict ourselves to Krylov subspace projection techniques (see [START_REF] Heres | Combining krylov subspace methods and identification-based methods for model order reduction[END_REF]).

In more detail, without loss of generality, we focus at systems which consist of two coupled subsystems. We suggest a method for the parallel reduction of the individual sub-systems, call it the Separate Bases Reduction algorithm (SBR), and show how to create a reduced model for the whole system based on the reduced parts. Furthermore, we show that this algorithm applied to coupled systems matches at least the same amount of moments as a standard method applied to the whole system would (see [START_REF] Vandendorpe | Model reduction of interconnected systems[END_REF] for interconnected systems). We establish that a large amount of internal couplings leads to large and hence undesirable reduced models and show that this can be overcome with the use of a generalized singular value decomposition (GSVD) based reduction of the coupling blocks. However, the use of a GSVD-based approximation leads to an approximation of the moments-which as benchmark examples show can still be quite accurate.

The remainder of this chapter is focused on the presentation of the SBR algorithm and the GSVD reduction of the internal couplings. It is organized as follows. Section 1.2 describes Kry lov subspace techniques, focusing on coupled and interconnected time-invariant linear systems. First, it shows what happens if standard techniques are applied to the coupled system as a whole-it shows that the block structure is lost. Next, it introduces existing techniques from the literature such as [START_REF] Bai | Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems[END_REF][START_REF] Freund | SPRIM: structure-preserving reduced-order interconnect macromodeling[END_REF][START_REF] He | Block structure preserving model order reduction[END_REF], still based on Krylov subspace methods for the coupled system as a whole, which preserve the block-structure and the number of matched moments. At the end of this chapter, we show an alternative method to efficiently calculate the second Krylov projector and extend the proof of [START_REF] Freund | SPRIM: structure-preserving reduced-order interconnect macromodeling[END_REF] to a more general case, under assumptions.

In Sect. 1.3 we assume that Krylov subspace reduction methods are already available for the individual sub-systems and based thereon, we focus on the construction of a reduced-order model for the system as a whole. We show that this is possible (and also that moments are matched) in Theorem 1.2 and call the approach the Separate Bases Reduction algorithm (SBR). In Subsection 1.3.6 we show that the SBR algorithm also matches the standard double amount of moments if one uses two Krylov subspace projectors instead of one.

In Sect. 1.4 we show that the replacement of the coupling blocks by an explicitly rank-revealing GSVD based components leads to the same Krylov subspaces and hence matched moments. Approximations based on a few of the dominant modes lead to quite accurate moment approximation.

Finally, in Sect. 1.5 we apply the SBR algorithm to a benchmark system. The system under consideration is scaled in a specific manner such that it is numerically better conditioned. We conclude with some remarks and recommendations for further research in Sect. 1.6.

Block-Structure Preserving Model Order Reduction

Model order reduction is frequently based on Kry lov subspace projections. The starting point is a linear time-invariant system, that in the Laplace domain is given by (later we will also use small letters x, y for unknowns in the Laplace domain)

sEX(s) = AX(s) + BU(s) Y(s) = crx(s). (1.1)
The left side of Fig. 1.2 represents a schematic model of an interconnected system which consists of four sub-systems and a number of interconnections. These interconnections can be realized in different ways, which will be focused on in Sect. 1.3. The right side of Fig. 1.2 shows the system matrix A which corresponds to the graph on the left. The matrix A has a visible block-structure. Each of the gray diagonal blocks corresponds to one sub-system. The off-diagonal blocks are related to the interconnections. The blue dots in the off-diagonal blocks show that the two corresponding sub-systems are interconnected. The empty off-diagonal blocks show that there is no coupling between the corresponding two sub-systems.

In general, a system of k components, can be described by a linear system though the potential sparse nature of the interconnection off-diagonal blocks is lost, one can still recognize the system's general block-structure. The diagonal blocks still correspond to the reduced-order sub-systems and the zero blocks related to uncoupled sub-systems are preserved. The reduction techniques of this type are called block-structure preserving (BSP) methods (see for instance [START_REF] He | Block structure preserving model order reduction[END_REF]). For more information about this type of technique the reader can consult for instance [START_REF] Schilders | Model Order Reduction: Theory, Research Aspects and Applications[END_REF].
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For the sake of simplicity assume that there are two coupled sub-systems (k = 2 in (1.2)). Then the system matrix has the block structure We call such a system an interconnected system if A12 and A21 are explicitly defined by means of their inputs and outputs, i.e., if for instance A 12 = B3 CJ. Otherwise, if A12 and A21 are specified in unfactored form, we call the system a coupled system. However, it is reasonable to assume that even for the blocks specified in unfactored form there might be defined related input and output operators, i.e., that there can be constructed B 3 and C 4 such that for instance A 12 = B 3 CJ. [START_REF] Lutowska | Model Order Reduction for Coupled Systems using Low-rank Approximations[END_REF] considers possible construction methods for the input and output maps when A12 and An are specified in unfactored form.

Moment Matching Methods for the Coupled Formulations

We will begin with BSP methods that are directly applicable to coupled systems of the form (1.2)
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This type of methods is studied in more detail in for instance [START_REF] Bai | A unified Krylov projection framework for structure-preserving model reduction[END_REF][START_REF] Freund | SPRIM: structure-preserving reduced-order interconnect macromodeling[END_REF][START_REF] He | Block structure preserving model order reduction[END_REF]. These methods aim at the creation of a reduced-order model whose matrices exhibit the original block-structure and whose transfer function matches a number of moments of the transfer function of the original system. As for standard Krylov methods, the moment matching property is realized by projecting the original system matrices onto the appropriate input-and/or output-based Krylov subspaces by using the matrices V and W for a chosen expansion point so E C. However, to preserve the block structure of the original system, the reduction bases also need to have a special shape. They are created by partitioning the matrices V and W into k sub-blocks (with k being the number of sub-systems)

V=

and W=

where the number of rows in the blocks Vi, Wi, i = 1, ... ,k corresponds to the number of rows of the diagonal blocks Aii. Next, the blocks Vi and Wi are used to build block-diagonal reduction matrices V and W

V=

and W= (1.3) and the reduced-order system is obtained by projecting the original matrices ( 1.4) Note that since the splitting of the matrices V and W into sub-blocks may create linearly dependent columns, one needs to apply a re-orthogonalization of the matrices V and W to remove every possible linear dependence. Moreover, after reorthogonalization, one has to assure, that the matrices V and W have the same number of columns. This can be done by adding the necessary number of random orthogonal columns to the matrix with the smallest amount of columns.

For the reduction bases created in the way described above, the following theorem holds. There are several examples of methods that satisfy the foregoing. Paper [START_REF] Freund | SPRIM: structure-preserving reduced-order interconnect macromodeling[END_REF] presents SP RIM, a structure preserving reduced order method for interconnect macromodeling. It focuses on an RLC circuit application, as model order reduction methods are of importance to microchip manufacturers since complex microchips such as processors contain many interconnected substructures. The relevant equations are (notation as in [START_REF] Freund | SPRIM: structure-preserving reduced-order interconnect macromodeling[END_REF]) r;;x + Cfo'x' = 81Ju (1.5) with

(1 ~ [E~~~g En ' C ~ [E;~E, ~]' @ ~ [~l
where G, C, and L are symmetric positive definite (square) matrices. The matrices Eg, Ec, Ez and Ei are parts of an adjacency matrix E which describes the connectivity of the electronic circuit, the subscripts g, c, l, i stand for branches containing resistors, capacitors, inductors and current sources. The SPRTM related Laplace domain transfer function HsPRIM is where 81J, Cfo' and r;; are re-written

The paper presents a reduction basis Vofthe type (1.3) in [6, (21)] and proves in [START_REF] Freund | SPRIM: structure-preserving reduced-order interconnect macromodeling[END_REF]Theorem 3] that it (W = V) preserves 2p moments, double the amount preserved by PRIMA.

The technique proposed in [START_REF] Fernandez Villena | Order reduction techniques for coupled multi-domain electromagnetic based models[END_REF] is motivated by the fact, that for some applications the single-point expansion does not give a sufficient approximation accuracy in the frequency range. On the other hand, using a multi-point expansion can result in excessively large models, especially for systems with many external inputs and outputs. The method proposed in the paper mentioned above, is based on creating a reduction space that consists of a number of sampling matrices z 1 , j = 1, ... , p, computed for the system (1.2) for p sampling points s 1 as follows In other words, Z 1 , j = 1, ... , p is a vector (or a matrix) that, after projecting the system (1.2) onto, will match the Oth moment around the point sJ of the original transfer function, since it consists of the input based starting matrix for the Krylov subspace for s 1 . After computing p samples, the total sampling matrix Z is defined as

Z = [ZJ, ... ,Zp]•
Next, following the block-structure presented by the system matrices, matrix Z is split row-wise into k blocks vi' i = 1' ... 'k Z= and a block-diagonal projector is created

V=

Finally, the singular value decomposition (SVD) is performed on each of the blocks separately, to produce the orthogonal matrix V V= where Vi, i = 1, ... , k is an orthogonal basis for Vi. At this point, further reduction in size is possible, by removing from the bases Vi, i = 1, ... , k the columns that correspond to to small singular values. Having the reduction bases V, one can project the original system in the way defined in ( 1.4 ).

A noticeable advantage of the technique described above is, next to the blockstructure preservation, the possibility of reducing different sub-systems with differ-ent reduction ratio, determined for each sub-system separately, based on the singular values related to this sub-block as well as the importance of the considered sub-system in the total coupled system.

Two-Sided Structure Preserving Methods

In this section we will explain how the two-sided projection idea can be implemented in case of the block-structure preserving methods. A detailed explanation of the twosided methods one can find for instance in [START_REF] Grimme | Krylov projection methods for model reduction[END_REF]. Generally speaking, the use of a two-sided reduction method means, that the system is projected onto two subspaces, V and W, based on input and output matrices, respectively. In case of the coupled system ( 1.10) (defined somewhat later), the reduction matrices V and W, for an expansion point so E CC, are built according to the following algorithm:

1. Create matrix V, whose columns span the nth Krylov subspace around so E CC V = Xn(P(so),R(so)), where P(so) and R(so) are P(so) = (soE-A)-1 E and R(so) = (soE-A)-1 B.

2. Create matrix W, whose columns span the nth Krylov subspace around so E CC W = Xn(S(so), T(so)), where S(so) and T(so) are S(so) = (soE-A)-TET and T(so) = (soE-A)-T C.

3. Build the block-diagonal reduction matrix V with N1 + N2 = N rows where V1 and V2 contain the firstN1 respectively lastN2 rows of the matrix V.

4. Build the block-diagonal reduction matrix W with N1 + N2 = N rows where W1 and W2 contain the first N1 respectively last N2 rows of the matrix W. Different algorithms lead to V and W (and hence V and W) with different specific properties (such as orthogonality or hi-orthogonality). Some properties and their advantages and disadvantages are discussed in [ 1 7].

The described BSP algorithm results in a block-structured reduced order system and uses both inputs and outputs. Consequently, the BSP-based reduced order sys-tern's transfer function matches twice as many moments of the original system's transfer function.

Separate Bases Reduction Algorithm

Model order reduction techniques, designed especially for coupled or interconnected systems, became a new field of research in recent years. The common feature of this type ofmethods is the use of a special block-diagonal form reduction basis V V= (1.6) that results from the splitting a matrix V created by a Krylov method applied directly to the coupled system. This approach allows for preservation of the zero-blocks in the coupled system's coefficient matrix. Such blocks appear when two of the subsystems are not coupled (interconnected) or the coupling holds only in one direction. An example ofuni-directional coupling can be a case of a vibrating structure, where the movement of the structure causes acoustic noise, but there is no influence (feedback) of the acoustic behavior of the system on it's dynamics.

Due to the fact that the zero-blocks are preserved in the reduced system, such MOR techniques are called block structure preserving (BSP) model reduction methods. Their application usually results in a good approximation of the original model. For most of them one can prove the moment matching property. However, this type of methods also has three important drawbacks:

• Though V in (1.6) (possibly) matches the same (number of) moments as V, it has k times more column vectors and therefore leads to a k times larger reduced system.

• The calculation ofV requires (repeatedly) solving systems with the entire coupled system's coefficient matrix which can be computationally (time-and memorywise) expensive. • In practice, the reduction techniques based on an uncoupled formulation of the system (see e.g. [START_REF] Vandendorpe | Model reduction of interconnected systems[END_REF]) are restricted to the case of interconnected systems with a limited number of interconnections. Otherwise, the reduction procedure is not very efficient, since the dimension of the reduction basis (hence, the reducedorder model) grows very fast. Moreover, such techniques assume that the inputs B and outputs C of the sub-systems are both explicitly available. In case of a coupled system these are not explicitly available, only their product BC is.

In the remainder of this chapter, we will focus on the second and third issue. We present a reduction algorithm suitable for systems, coupled through a large number of couplings. We introduce a reduction technique based on an uncoupled formulation of a coupled system, called Separate Bases Reduction (SBR) algorithm.
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u5 'l It creates a reduction basis for each sub-system separately, hence is computationally cheaper compared to the reduction techniques that use a coupled formulation such as the BSP methods discussed in Sect. 1.2. However, the algorithm still suffers from the third point of the drawback list presented above. They can be easily applied to interconnected systems of a form shown in Fig. 1.5, where the sub-systems are not strongly interconnected (i.e. each sub-system exchanges information only with a small number of other sub-systems). We suggest a way to relax this limitation, and will also show how to apply the SBR algorithm to strongly coupled systems, i.e. to the systems, where many degrees of freedom of one sub-system are coupled to many degrees of freedom of other sub-systems and where the internal input and output matrices are not explicitly given in the system formulation. Examples of these types of coupled problems are shown in Fig. 1.6. Figure 6(a) presents a coupled system that consists of two sub-structures, for instance a solid body and a fluid. The coupling occurs at the interface, where all degrees of freedom of one sub-domain which are sufficiently close to the interface influence similar degrees of :freedom ofthe second sub-domain and vice versa. A different type of strong coupling is shown in Fig. 6(b ). This picture shows a situation, where all degrees of freedom related to both physical quantities u and e are located inside the same domain. Such situations appear for instance in case ofmodeling of systems, where the dynamics ofthe structure is influenced by an electromagnetic field (and vice versa). In the depicted case the change of the velocity of the node u(xi) influences the electromagnetic field x ~-------+ e(x) at the node Xi, and at many nodes in the neighborhood of Xi.

Interconnected System -System Definition

In this subsection we introduce the family of linear interconnected systems to which the reduction algorithm is to be applied to. For the sake of simplicity, we focus on a system of two-subsystems where one sub-system's output is used as a part of the other sub-system's input and vice versa. However, the proposed method can easily be extended to systems composed of an arbitrary number of sub-systems.

The Uncoupled Formulation

The time domain behavior of each of the sub-systems S 1 and S 2 is modeled by a system of first order differential-algebraic equations after which the frequency domain behavior is obtained via Laplace transformation. For the two sub-system examples in Fig. 1.7, this procedure leads to the Laplace domain systems Using matrix notation, the system S1 and system S2 can be described as

sEll X! ~ A11XJ + [B1 B3] [ :: l [~: l ~ [~[]X]' (1.7) sE22X2 ~ A22X2 + ~~ B4] [ ::] [~:l [ ~n '2
(1.8)

The Coupled System

When the output of S1 is used as an input of S2 and the output of S2 is used as an input of S1, equations (1.7) and (1.8) reduce to an interconnected Laplace domain system. Due to the design ofthe system depicted in Fig. 1.7 one has (1.9) which in addition implies

Using relation (1.9), the interconnected system (1.7) can be represented as a single coupled system S of equations S:

and in matrix form S:

sE11x1 = A]]X] +B1u1 +B3crx2, sE22X2 = A22X2 + B2U2 + B4cr XI' Y1=Cfx1, /' Y2 = C 2 x2 (1.10) C= [cl ol, (1.11) o c2
where A, E E IR.NxN, BE IR.Nxm, C E IR.Nxp. The matrices defined in (1.11) show a special block structure. The sub-systems' matrices A 11 and A22 form the diagonal blocks of the system matrix A of S. The off-diagonal blocks are the products B3C~ and B 4 CI of the internal input and output matrices of the sub-system. The input and output matrices B and C are block structured, as well as the matrix E.

Transfer Functions of the Uncoupled and Coupled Systems

One of the questions arising at this point is the relation between the transfer functions ofthe sub-systems Sl and S2, and the transfer function ofthe coupled system. In this subsection we will study this issue. Let us begin with the uncoupled sub-systems. At sEC the transfer function of sub-system Sl defined in (1.7) is given by

[ cr] 1 H(s) = C §' (sEll-All)-[B1 B3] = [C{(sEll-A 11 )- 1 B1 Cf(sEn-An)- 1 B3] = [Hn(s) H12(s)l• 1' 1 1' 1 C 3 (sE11 -A11 )-B1 C 3 (sE11-A11 )-B3 H21 (s) H22(s) 1.
12) For the sub-system S2 defined in (1.8), similarly

= [Z11 (s) Z12(s)l• Z21 ( s) z22 ( s) (1.14)
Based on definitions Eqs. (1.12) to (1.14) we will express the components of the transfer function Z(s) in terms of the components of the transfer functions H(s) and G(s) in two manners. First we follow the typical approach used in the field of systems and control (more details can be found in for instance [START_REF] Skogestad | Multivariable feedback control, Analysis and Design[END_REF]). Secondly we use the Sherman-Morrison-Woodbury formula.

The Systems and Control Approach

The starting point of this approach are two transfer functions H(s) and G(s) of the sub-systems 1 and 2, respectively. For each sub-system, its transfer function relates its inputs to outputs:

[ YI] = [Hu(s)H12(s)l [UI]' Y3 H21 (s) H22 (s) U3
and

[ Yll = [Z11 (s) Z12(s)l [u1l• Y2 Z21 (s) Z22(s) u2
Systems (1.12) and (1.13) in combination with relation (1.9) lead to Yl = H11 (s)u1 + H12(s)y4

Y3 = H21(s)u1 +H22(s)y4 Y2 = Gu(s)u2 +G12(s)y3 Y4 = G21 (s)u2 + G22(s)y3.
Substituting Y4 of ( 

Y4 = G21 (s)u2 + G22(s)y3 = G21 (s)u2 + G22 (s) [I-H22 (s)G22 (s) ]-1 [H21 (s)u1 + H22 (s)G21 (s)u2].
Using (1.20) and (1.21) in (1. [START_REF] Saad | GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF]) and (1.18), we arrive at

Yl = H11 (s)u1 + H12(s)y4 = H11 (s)u1 +H12 (s) ( G21 (s )u2 + G22 (s) [I-H22 (s )G22 (s) ]-1
x [H21 (s )u1 + H22 (s )G21 (s )u2])

= ( Hu (s) + H12 (s)G22 (s) [I-H22 (s)G22 (s) ]-1 H21 (s)) u1

(1.15)

(1.16)

(1.17)

(1.18) (1.19) (1.21) + ( H12(s)G21 (s) + H12(s)G22 (s) [I-H22 (s)G22(s)]-1 H22(s)G21) u2 and Y2 = G 11 (s)u2 + G12 (s)y3 = G 11 (s )u2 + G 12 (s) [I-H22 (s)G22 (s)]-1 [Hn (s)u1 + H22(s)G21 (s)u2] = G12(s) [I-H22(s)G22(s)]-1 Hn (s)u1 + ( G11 (s) + G12(s) [I-H22(s)G22(s)]-1 H22(s)G21 (s)) u2.
This shows that the components of Z(s ), as defined in (1.15), are Z11 (s) = Hn (s) + H12 (s)G22(s) [I-H22 (s)G22 (s)r 1 Hn (s)

(1.22) Z12 (s) = H12 (s )G21 (s) + H12 (s)G22 (s) [I-H22 (s)G22 (s) r 1 H22 (s)G21 (s) (1.23) Zn(s) = G12(s)[I-H22(s)G22(s)r 1 H21(s) (1.24)
Z22 (s) = Gn (s) + G12 (s) [I-H22 (s)G22 (s)r 1 H22 (s)Gn (s).

(1.25)

Computing the Transfer Function of the Coupled System Using the Sherman-Morrison-Woodbury Formula

The evaluation of the transfer function of the coupled system, as defined in ( 1.14 ), requires a computation of an inverse of a block matrix. For a system consisting of an arbitrary number of sub-systems, a suitable tool towards this end is the Sherman-Morrison-Woodbury formula (see for instance [START_REF] Henderson | On deriving the inverse of a sum of matrices[END_REF] and references therein). This formula allows for a computationally cheap matrix inversion, as long as the considered matrix can be easily expressed as a sum of a matrix for which an inverse is known (or easy to compute) and a (low rank) correction. Let L be non-singular and let matrices J, M, N be of compatible size. Then the formula ofK

= L + MJN 1 is (after [ 1 0]) K-1 = (L+MJNT)-1 = L -1 -L -1M(J-1 +NTL -1M)-1NTL -1' (1.26)
In our case, the matrix to be inverted can be decomposed into where Lis a block-diagonal matrix, whose inverse can be calculated by computing the inverses of each sub-block separately and the correction matrix can be factored Abbreviate G,(s) = (sEii -Aii)- 

Z(s) = (1.28)
It is easy to show, that the formulation (1.28) is equivalent to the formulation given by Eqs. (1.22) to (1.25). Moreover, (1.28) provides an elegant relationship between the components ofthe transfer functions of the sub-systems and the coupled system, that reveals the symmetry and the structure of the coupled system. In addition it

shows that the relation between the transfer functions is not straightforward. Since several sub-expressions such as (sEu-Au)-1 reoccur frequently, we will introduce abbreviations in the upcoming sections. Formula (1.28) reveals a structure which is more difficult to find in (1.22)-(1.25) and can be used to calculate the transfer function of the coupled system ifthe transfer functions of the individual sub-systems are available. The involved inverse is of a small matrix which means that calculation of the transfer function of the coupled system is relatively cheap.

Standard Block Structure Preserving Reduction

In this section we will recall the general ideas of the standard block-structure preserving methods.

A typical block structure preserving (BSP) model reduction method applied to the system (1.10) consists ofthe following three steps:

1. Create the matrix V whose columns span the nth Krylov subspace around so E C V = Xn(P(so),R(so)), where P(so) and R(so) are

P(so)=(soE-A)-1 EE~NxN and R(so)=(soE-A)-1 BE~N.
2. Build a the block-diagonal reduction matrix V with N1 + N2 = N rows where V 1 and V 2 contain the first N 1 respectively last N 2 rows of the matrix V.

3. Project the original system onto a lower-dimensional space E=VTEV, A=VTAV, When possible we write P and R rather than P(so) respectively R(so). The model reduction methods based on this idea are widely applied and popular due to a good accuracy of the reduced-order systems that they deliver. However, they have a few drawbacks, one of them being the high cost of the construction of the reduction basis. The main computational cost of this type of methods is related to evaluation of x ~-------+ (s 0 E-A)-1 x, which involves solving a system of equations with a large coefficient matrix. In the next section we introduce an alternative structure preserving method which for some cases can significantly reduce the computational costs.

Separate Bases Reduction Algorithm

In the classical case, the reduction basis is built using the coupled formulation of the system (1.10). The construction of this basis requires repeated evaluations of x ~------+ ( soE -A) -1 x where soE -A is anN x N matrix. For large N this procedure can be computationally very expensive or even unfeasible. ln such cases one can try to make use of a natural block structure of the coupled system and for instance replace the evaluations involving (soE-A)-1 by evaluations involving (soE11 -A11 )-1 and (soE22-A22)-1 , i.e., by evaluations involving only the coefficient matrices of both sub-systems. If N is large and for instance N1 = N2 = N /2 then the serial computation of (soE11 -A11 )-1 and (soE22-A22)-1 may be much faster that of (soE-A)-1 . Further acceleration can be achieved through parallelism.

Following this idea, we introduce a new model reduction algorithm, called Separate Bases Reduction (SBR) algorithm. Here the Krylov subspaces that create the reduction bases correspond to the uncoupled sub-systems (as defined in (1.7) and (1.8)) rather than to the coupled system (1.10). The procedure is as follows:

1. Create two matrices V1 and V2, one for each sub-system:

• For the sub-system S1, build a matrix V 1, whose columns span the n1 th Krylov subspace around so E CC where P1 (so) and R1 (so) are P1(so) = (soE11 -A1I)-1 E11 and R1(so

) = (soEn -A11)-1 [B1 83].
Matrix V1 has N1 rows. • For the sub-system S2, build a matrix V2, whose columns span the n2th Krylov subspace around so E CC where P2 (so) and R2 (so) are P2(so) = (soE22 -A22)-1 E22 and R2(so

) = (soE22 -A22)-1 [B2 B4].
Matrix V 2 has N2 rows.

2. Build the block-diagonal reduction matrix V with N1 + N2 = N rows 3. Project the original system onto a lower-dimensional space E=VTEV, A=VTAV, In the sequel, when possible without causing confusion, we omit the argument so of Pi and Ri, i = 1, 2. In the next subsection, we will compare the SBR algorithm with a standard BSP reduction method, by examining their most important properties.

Separate Bases Reduction Algorithm-Properties

In this subsection we will discuss the differences and similarities between Separate Bases Reduction algorithm and standard block structure preserving model reduction methods.

Block-Structure Preservation

As described in subsection 1.3.4, the SBR algorithm uses reduction matrices ofthe block-diagonal form Therefore, its application preserves the block structure of the coupled system matrices.

Rank and Orthogonality

The sub-blocks V 1 and V 2 of the projector V are constructed separately, using one of the Krylov basis building algorithms. Hence, both of them have a full column rank and, as a result, the matrix V also has a full column rank.lfthe sub-blocks V1 and V2 have orthogonal columns then also matrix V has (automatically) orthogonal columns, i.e., no explicit orthogonalization has to be applied.

Computational Cost

The difference between the computational costs for a standard block structure preserving method and the Separate Bases Reduction algorithm comes from the fact, that the SBR algorithm computes the reduction bases for the set of uncoupled systems instead of using the coupled formulation ofthe system. This approach can significantly reduce the computational time and storage requirements needed during the model reduction process.

The main cost of the Krylov basis construction lies in the evaluation ofthe matrix pencil inverse function x ~-------+ (soE-A)-1 x. For coupled models with many degrees n of freedom this evaluation may be unfeasible. But for sub-problems of smaller size evaluation may be possible. The amount of computational work required for the solution of (s 0 E-A)x = d depends on the employed solution method which at its tum relies on specific properties of the matrix soE-A (symmetry, monotone, positive definite, etc.). Different methods lead to different amounts of computational work:

The minimal amount of work of O(n) operations is usually achieved by multigrid methods (see [START_REF] Wesseling | An Introduction to Multigrid Methods[END_REF]), other methods such as GMRES, PCG, CGS and BiCGstab(l) (see [START_REF] Saad | GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF][START_REF] Sonneveld | CGS, a fast Lanczos-type solver for nonsymmetric linear systems[END_REF][START_REF] Van Der Vorst | Bicgstab(l) and other hybrid bi-cg methods[END_REF]) are more expensive. Classical fixed point methods such as Jacobi, Gauss-Seidel and matrix-splitting based methods are usually even slower.

Size of the Reduction Space

Another difference with respect to the standard BSP reduction methods is the size of the reduction matrix V and, as a result, dimension of the reduced order model. Let us consider the coupled system ( 1.1 0) and assume, for simplicity, that there is no need for deflation (all columns tum out to be linearly independent) while building the matrix V. We will apply a typical reduction procedure like described in subsection 1.3.3 and the SBR algorithm. In both cases, we will build a Krylov subspace of order n and estimate the size of the reduction space and reduced order model.

We begin with the analysis of the standard structure preserving algorithm. The nth Krylov subspace built for the coupled system for the starting matrices as defined in subsection 1.3.3 will be ofthe form V = Xn ( P, R) = colspan {R, ... , pn-1 R} where P = (soE-A)-1 E and R = (soE-A)-1 B. Since 8 E IRNxm, each of the components PJR of the matrix V has m columns. Thus, for a degree n Krylov space, assuming no deflation, the size ofV is N x (nm). Next, the block-diagonal reduction matrix V is created by splitting the rows of V according to the dimensions of the sub-problems. In our case, the coupled system consists of two sub-systems, so the final size of the reduction matrix V is N x (2nm). This leads to a reduced model of order 2nm.

Next, we will focus on the SBR algorithm. In this case two matrices V 1 and V 2, are built separately and we assume that each of them corresponds to an nth degree Krylov subspace based on the appropriate matrices (fori= 1,2 define Gi(so) = (soEu-Aii)-1 , Pi(so) = GiEii and Ri(so) = Gi[Bi B2+i] and observe that Ri = [Rn ,Ri2] where Ril and Ri2 are Gi8i, respectively Gi82+i). For the sub-system S1, we create the matrix V 1 V1 =,%n(P1, Rl)• Here, R1, [81 83] E JR.N 1 x(m 1 +m 3 ), so each component P{ R1 of the matrix V 1 has (m1 +m3) columns whence V1 has n X (m1 +m3) columns.

For the sub-system S2, we create V2=Xn(P2,R2)-Similarly, since R2, [82 84] E JR.N 2 x(m 2 +m 4 ), every component PiR2 of the matrix V 2 has ( m2 + m4) columns, and matrix V 2 has n x ( m2 + m4) columns.

Next, matrices V 1 and V 2 are used as diagonal blocks of the reduction matrix V, resulting in a reduced model of order This result shows that the SBR algorithm creates a smaller reduced order model than standard BSP methods if (m3 + m4) < m. This is for instance the case for coupled systems for which the number of internal inputs is not larger than the number of external inputs. If there are many more internal inputs than external ones, the size of the SBR algorithm based reduction matrix will grow very fast compared to the size of the BSP reduction matrix. However, this problem can be avoided for the category of systems for which the internal input matrices B2 and B4 can be approximated by only a small number of dominant components. This approach will be explained in more detail in the next section.

Tile Moment Mate/zing Property

In order to assess the SBR moment matching properties we compare the columnspaces of the BPS and SBR reduction matrices. For simplicity, without loss of generalization, we focus on the SISO case (the coupled system is SISO) where in addition Bi, Ci, i = 1, ... , 4 related to the sub-systems are column-vectors which implies that all products cT ( .. . )B 1 , i,j = 1, ... ,4, are scalars. A similar analysis is possible for the M!MO case (a MIMO coupled system with sub-system matrices Bi, Ci). Theorem 1.2 Let the coupled system be as in Fig. 1. 7, described by (1.7) and (1.8). Assume that all inputs and outputs are column-vectors, i.e., mi =Pi = 1, i = 1, 2, 3, 4.

Then the SBR reduced-order model transfer function matches at least the same (number of) moments as the BSP reduced-order model transfer function.

Proof First, we examine the reduction space built by a standard BSP method. To match the first k moments at so E C, of the coupled system of the form (1.1 0), one has to construct the Kry lov space V = Jtk(P,R), where P= (sE-A)-1 E and R= (sE-A)-1 B.

The flh Krylov step for the BSP method adds to the reduction basis the column span of the following matrix v~~p with blocks ofthe form where

-(i) v 11 v 12 [ (i) (i)l V BSP = (i) (i) Y21 Y22 [ (I) (i) l (i) V 11 V 12 o o V BSP = 0 0 y(i) y(i) 21 
( [ G1 0 l + [ 0 R12] [a bl [CfG1 rO l ) [E11 0 l v~;~) 0 G2 R22 0 c d 0 C 4 G2 0 E22 (1l_7) induction ( [ P1 o l + [ o R12] [a bl [CIP1 1 0 ] ) o P2 R22 o c d o C 4 P2 [p i-2R + "'i-2 pfR "'i-2
V (i) _ [pi-1 R pl-1 R ] 1 - 1 11' 1 12
and which is sufficient to prove the moment matching property of the SBR reduced-order system.

y(i) _ [pi-1 R pi-1 R ] 2 - 2 21' 2 22 .

Two-Sided Separate Bases Reduction Algorithm

The two-sided projection technique introduced in the previous section can be adapted to similarly improve the moment matching properties of the SBR algorithm, where we assume, as in the previous section, thath the Bi and Ci are column vectors. With the uncoupled formulation ( 1. 7) and ( 1.8) in mind we define the reduction algorithm as follows.

1. For the sub-system S 1 , create two matrices:

• Matrix V 1, whose columns span the n1 th Krylov subspace around so E CC where P1 (so) and R1 (so) are P1(so) = (soE11-A11)-1 E11 and R1(so

) = (soE11-A11)-1 [81 83].
Matrix V 1 has N1 rows. • Matrix W 1, whose columns span the n1 th Krylov subspace around so E CC where S1 (so) and T1 (so) are Matrix W 1 has N1 rows.

2. For the sub-system S2, create two matrices:

• Matrix V2, whose columns span the n2th Krylov subspace around so E CC where P2 (so) and R2 (so) are Matrix V 2 has N2 rows. • Matrix W2, whose columns span the n2th Krylov subspace around so E CC where S2(so) and T2(so) are Matrix W2 has N2 rows.

3. Build two block-diagonal reduction matrices V and W with N1 + N2 = N rows and 4. Project the original system onto the lower-dimensional space

A 1' A 1' A 1' A 1' EsBR = W EV, AsBR = W AV, BsBR = W B, CsBR = V C.
Again, different algorithms lead to V1, V2 and W1, W2 with different properties. Also the above SBR algorithm results in a block -structured reduced order system and uses all of the inputs and outputs. Consequently, also the above SBR-based reduced order system's transfer function matches twice as many moments of the original system's transfer function as the only inputs based one in Sect. 1.3.3 (the moment matching property follows from the BSP algorithm, Theorem 1 and Theorem 2).

Low-Rank Approximations Based SBR Algorithm

In Sect. 1.3 we presented the Separate Bases Reduction algorithm -a block-structure preserving model reduction method for coupled systems. As discussed in that section, one of the SBR method's disadvantages is that the sizes of the its Krylov subspaces increase very fast for systems with a large number of internal inputs and outputs. Hence, the use of the SBR algorithm was recommended for the cases, in which the number of internal inputs and outputs was considerably smaller than the dimension of the system or comparable to the number of the external inputs and outputs. ln this section, we approximate the internal inputs (outputs) by their GSVDbased dominant parts. This improves the efficiency of the SBR method. In addition we will prove that both the SBR algorithm and its low-rank based variant can be applied to coupled systems for which the internal input and output operators B and C are not explicitly availabe.

Implicitly Defined Couplings

In Sect. 1.3, we introduced the interconnected system (1.10) as a result of the coupling of the two sub-systems, (1.7) and (1.8). Here, the coupling blocks are given by the explicit products of the internal inputs and outputs of the two sub-systems, namely B 3 cr and B 4 Cf. Having such a formulation at our disposal, we can apply the SBR algorithm in a straightforward way. However, for some applications it may be impossible to obtain matrices B3, B4, C3 and C4. In the following sections we propose a way of transforming an interconnected system with implicitly defined couplings of a form S:

s [E 11 0 l [x 1] 0 E22 X2 [~:] (1.37) with E = [Ell 0 l ' A= [All A12] , B = [B1 0 l , C = [C1 0 l 0 E22 A21 A22 0 82 0 C2 (1.38)
into a form that can be reduced using the SBR algorithm. Our goal is to find decompositions (factorizations) of the two coupling blocks and (1.39) that provide a good (with respect to the corresponding Krylov subspaces) approximation ofthe original internal inputs and outputs ofthe coupled system (1.37). A factorization of the type A = BC is not be unique. The next section shows how to deal with this.

Decomposition Theorem

In this section, related to (1.37), first we show that a factorization A= BC is not unique and next we prove that if A 12 = B 1 C 1 and simultaneously A 12 = B 2 C 2 then Xp(All, B1) = Xp(All, B2) if C1 and C2 are of full column rank. The proofs will be for the input-based Krylov subspaces. Similar theory applies to the output-based Krylov subspaces.

First, a factorization of the type A = BC is not unique since A = lA and A = AI are two different factorizations. Even a QR factorization A = QR is not unique since if A= QR then A= (QS)(SR) for all complex valued diagonal matrices S with unit-length diagonal elements (S denotes the complex conjugate of S). Also other factorizations such as Gaussian-elimination based A= LU exist.

Since we aim at the use ofB for the generation of a Krylov subspace Xp(A11, B1) we will next show that the non-uniqueness does not need to be an issue. To this end we prove the following Lemma 1.1 and Theorem 1. Proof Note that colspan81 = colspan82 <¢==:::} {81 X: X E ffi.m} = {82x: X E ffi.m} <¢==:::} { AB1 X: X E ffi.m} = { AB2x: X E ffi.m} <¢==:::} colspan AB 1 = colspan AB2, which, repeatedly applied, shows that colspanAkB 1 = colspanAkB 2 for all k ~ 0 whence Xp(A,B1) = Xp(A,B2).

Theorem 1.3 in combination with Theorem 1.4 show that every factorization of an off-diagonal block of the form A12 =neT with e offull column rank leads to the same krylov space Xp(A 11 , B). The following sections show how to use this property for the application ofthe SBRmethod to an arbitrary coupled system (1.37).

Decomposition Theorem -Numerical Example

In Sect. 1.4.2 we showed that the Krylov space does not depend on the factors of the decomposition A12 =BeT when these factors are of maximal column rank. To illustrate this numerically, we calculate these factors of A12 with different factorization techniques, based on a QRfactoration and LU factorization. For simplicity, we use a one-sided variant of the SBR method. The system used for the test is a linear beam coupled to a controller. Only the beam system has an external input and external output. Hence, the considered system is of a form S:

(1.42)

Let A 12 = B 3 cr and A 21 = B 4 CI. Here, the full coupled system has 80 degrees of freedom, 40 for each sub-system. Both of the sub-systems have 5 internal inputs and 5 internal outputs. It means, that the coup I ing blocks A 12 and A21 are of rank 5. For all cases, the same number ofKrylov iterations is performed and the reduced-order systems are ofthe order 55 (originally 80). The first sub-system was reduced from order 40 down to 30 and the second from order 40 down to 25.

To reduce the original system, we will build three reduction matrices involving an nth-order Krylov sub-space as follows:

• Reduction matrix based on the original internal input blocks

The diagonal sub-blocks of the reduction matrix span the Krylov subspaces Next, the reduction sub-blocks are created yQR = X (PQR RQR)

1 n 1 ' 1 '
where and and where OR (

)-1 P2 = sl22 -A22 and OR ( )-1 en R2 = sl22 -A22 ,;z2.
The block-diagonal reduction matrix yQR is ofthe form

[ OR l QR = Vf 0 V OR . o v-2 •

Reduction matrix based on the LU decomposition of the coupling blocks

Based on the LU decomposition of the coupling matrices A12 and A21, we get and We use a rank-revealing version of the LU algorithm, i.e., 21, 22, %' ? and %' 2 T are of full column rank. Hence, the matrices 21 and 22 used to build the Krylov subspaces have the same rank (and most likely amount of columns) as B3 and B4.

Next, the reduction sub-blocks are created yLU = X (pfU RLU) and LU-decomposition based input matrices. The plots are almost identical, which is confirmed in Fig. 1.9, that shows the relative errors between the reduced-order frequency response function of the original system and the frequency response functions computed based on both decompositions. The small differences between the three frequency response functions should be caused by round-off errors.

1 n 1 ' 1 '
The next section shows how Theorems 1.3 and 1.4 in combination with GSVD can be used to improve the performance of the SBR algorithm applied to coupled systems with a high number of couplings (or interconnections).

Low-Rank Approximations Based SBR Algorithm

For coupled systems it is not always necessary to take into account all of the coupling components. Sometimes only a small number of them determines the behavior of the system and the rest can be neglected without much loss of accuracy. This section extends the application of the SBR algorithm to coupled (or interconnected) systems characterized by a high number of couplings of which only a small percentage is relevant to obtain an accurate solution.

Section 1.3 pointed out that the standard SBR method should be applied only for the systems with a relatively small number of internal inputs and outputs. That is, only for coupled systems where few degrees of freedom of one sub-system (related to one physical domain or to a physcial quantity) are coupled/connected to the other sub-system, which implies that the coupling blocks A12 and A21 ofthe system (1.37) are of low rank. Otherwise, the SBR method produces reduction bases which increase in size too fast with respect to the number of Krylov iterations. However, if only a part of the components of the high rank coupling blocks is relevant, we can decrease the growth speed of the reduction bases. To do so, we first need to determine, which components of the coupling are important and should be kept, and which ones can be neglected. One of the ways to make this decision, is to apply the generalized singular value decomposition (GSVD) to the coupling matrices A12 and According to the Theorems 1.3 and 1.4, Xp(A11 ,B3C 4 ) = Xp(A11 ,B3C 4 ) and ,_Xp(A22, B4CD = ,_Xp(AII, B4CD. Moreover, using a type of the decomposition that orders the components with respect to their importance has an additional benefit. It makes it possible to approximate the inputs and outputs leaving only the most relevant components and, as a result, reduces the dimensions of the blocks. In some cases, this reduction is sufficient to allow for an efficient application of the SBR algorithm.

Let us now compare the procedures of building the standard and GSVD-based Krylov subspaces. Here, we will limit the discussion to the case of creation of a Krylov space based on inputs of the sub-system (1.7), but a similar analysis applies to all the other cases, i.e. input-based Krylov subspace for (1.8) 

B ~ -X sl/2-[b~ b~ l TT1lNJ xm3 3 - I 1 - I , • •, m 3 E .lG>.
• where both X 1 and S 1 in (1.45) are of full column rank. Next, let 8 3 = xik\sik)) 1 1 2 approximate B3 with the use of k dominant components. Then

(1.47)

For simplicity, we assume that m1 + m3 is a multiple of m1 + k (this may not be the case in general), so there exists A E N such that (1.48)

The pth Krylov subspace created by the SBR algorithm for the sub-system (1.7) for so E Cis where and consists of p( m 1 + m3) columns (assuming that no I in ear dependence occurs).

Likewise, ( 1.49) where consists also of p(m1 + m3) columns, but approximately matches A as many moments of the original transfer function.

Projecting system (1.7) onto a subspace ~p(P1, R1) in (1.49) does not preserve the moments of the transfer function of this sub-system. However, if the column span of the matrix B3 gives a good approximation of the column span of the matrix B3 we can expect that the reduced-order system obtained by projection onto the space (1.49) will give an accurate approximation of the appropriate number of moments of the transfer function of the original system. Moreover, if the matrix B3 can be approximated by B3 with a significantly smaller number of columns, A times more steps may be used during the Krylov procedure (to approximate a higher number of moments) or one can use more expansion points, keeping the reduced-order model still relatively small.

In the next section, we present the results of some numerical tests that show the advantage ofusing the low-rank approximation based SBR algorithm for a system with a high order of coupling.

Numerical Examples

In this section, we present two examples ofthe application ofthe SBRmethod combined with low rank approximations for the coupling blocks. The first example is a simple and small example, yet exhibiting interesting behaviour as far as coupling is concerned. The second example is described in much more detail, as this is an industrial benchmark problem and needs some preliminary steps before the methods described in this chapter can be applied.

A Simple Example

In this section, we consider a simple example. The difficulty of this test case is that here the coupling blocks of the system are of rank 10 (the coupled system has 10 internal inputs and 10 internal outputs), while each of the sub-systems contains only 40 degrees of freedom (80 degrees of freedom in total). In this case, the standard SBR algorithm generates too many columns to be competitive. However, the use oflowrank approximations makes the SBR algorithm more competitive. Fig. 1.10 shows the magnitude plots with respect to the frequency of the original and reduced-order frequency response functions. In case of the two-sided BSP method and the twosided SBR algorithm based reduced-order systems, the original system was reduced to 42 degrees of freedom. The low-rank approximation based two-sided SBR algorithm created the reduction bases for rank 3 approximations of the coupling blocks, i.e. the internal input and output matrices Bi,Ci E IR. 40 x 10 , i = 3,4 were approximated by Bi,Ci E IR. 40 x 3 , i = 3,4. Hence, every Krylov step was adding 4 new columns to the reduction basis (3 corresponding to B 3 or c 4 and 1 corresponding to B1 or CJ) in case of the sub-system S1 and 3 new columns (corresponding to B4 or C3) in case of the sub-system S2. To construct the reduced-order system of dimension 42, the low-rank approximation based SBR algorithm performed 6 iterations for each sub-system (for both, input and output related bases). Figure 1.11 shows the magnitude plots of the relative errors of the reduced-order frequency response functions with respect to the original one. Note that the two-sided SBR algorithm shows that not only the first 6 derivatives are matched but also the 7 1 h one is well approximated. chamber [START_REF] Bai | A unified Krylov projection framework for structure-preserving model reduction[END_REF]. Below the actuation chamber, a 300 f-Lm long feed-through is placed ( 3), after which the nozzle plate is reached. The nozzle plate is 7 5 f.1m thick and consists of a pyramid shaped funnel ( 4) and a nozzle ( 5) with a radius of 11 f.1m. The main goal is to suppress acoustic pressure waves, which can be generated in a number of ways, such as the non-continuous ink supply by many thousands of ink channels, residual vibrations at the inlet of the ink channels, fast movement of the printhead, resonance of the whole structure, etc.

The models of such devices used for simulations can reach large dimensions, hence application of the model order reduction techniques is often required, to decrease the simulation time. In this chapter, we study the application of the GSVD based approximations for the coupling blocks in the model of the printhead.

The Second and First Order System

The related system of equations is a second order system. Let n1, n2 E N and n = n1 + n2. The second order system of interest is Searching for purely oscillatory modes implies that the related w is purely imaginary, i.e., that one is interested in positive real values w of: wE JR. This implies that YI = c (s 2 M + K) -I b is identical toy if and only if s = iw, wE Itt.

In the sequel we will examine the second order system.

Sparsity Patterns and Magnitudes of the Blocks ofM, K (1.53)

There are three available discretizations for the OCE application: coarse: 1188_1050, medium: 4752_5304 andfine: 20748_35775. The numbers relate to the amount of degrees of freedom as follows: Case 4752_5304 implies n1 = 4752 and n2 = 5304. Extracted from ANSYS, the blocks M11, M21, M22, K11, K12, K22 in (1.51) are very differently scaled: For instance, for the medium case their absolute value greatest resp. smallest entries (magnitude) are ofthe order Thus approximately, w 2 E [0, 10 8 ]. The use of the standard MATLAB '\' operations to solve (K-w 2 M)x = b leads to error messages and abortions, not to solutions. An alternative, the use ofthe MATLAB package Factorize, alleviates this problem, but (too) severe round-off remains. Furthermore, the '\' operation turns out to be very slow for this poorly scaled problem. Investigation shows that that K11 contains entries in [10-12 , 10+ 8 ]. The use of standard double precision floating point IEEE arithmetic involved in matrix operations such as matrix multiplication is bound to round-away contributions ofthe smaller entries.

Further investigation shows that all diagonal blocks but Kn are symmetric. For the results shown in this chapter the slightly non-symmetric ANSYS block K11 has been used as is. The results would be the same if one had instead used its symmetric part (K11 + Kj 1 ) /2 (tested). It has also been shown that indeed M21 = -p Kj 2 for all three examples, where p = 1090.

Observe that the determination of the smallest absolute value positive entry of a sparse MATLAB matrix with MATLAB is not trivial: The smallest entry of a sparse matrix usually is zero (since the default entry has value zero), MA THWORKS and other sources do not provide an on-the-shelf solution. To obtain the smallest nonzero entry we have written a MATLAB function vfil ter which for a full or sparse matrix X writes all entries Xu such that I Xu I > £ ~ 0 column-wise into a full vector.

The use of this function applied to matrix X and £ = 0 in combination with min provides the smallest absolute value entry of X.

Naturally, small entries should only be discarded if they are not relevant to the system of interest, i.e., if the the system is properly scaled, which is the topic of discussion ofthe next subsection.

Scaling the Second Order System

We need to scale the matrices K and M (E and A) to obtain a numerically robust solution of the system which depends on w. For the problem of interest we expect symmetric blocks M11, M22, K11 and K22, and M21 = -pKJ 2 . This implies that this system could be scaled (preconditioned) into a symmetric one (symmetry scaling), for which efficient linear solvers exist. This can be done as follows: Observe that for a two by two matrix is identical to H in (1.52) for all w. Obviously D1 is non-singular except for w = 0 and D2 exists and is non-singular when all diagonal entries of Dj 1 FD1 are non-zero.

The factors P = P(w) and Q = Q(w) depend on w. This is fine for the construction ofKrylov spaces to match moments. However, to plot the transfer function Hone needs to evaluate c(K -w~M) for many wk E [0, 10 8 ]. Repeated calculation ofP(wk) and Q(wk) would be (too) costly, so we decided to use thew-independent factors P := P(w) Q := Q(w) for all w where w is the average of all wk. For the OCE example, to plot the transfer functions, we sample the provided region of interest: wk = 5n • k, k = 0, ... , 600. The value of w turns out to be w3o1 which is close to but not too close to a pole of H and such that all diagonal entries of Dj 1 FD 1 are non-zero.

The Structure and the GSVD oJK12

Here we briefly comment on the GSVD ofthe scaled KT 2 . Figure 1.13 and numerical investigation show that K12 E IF£. 1188 x 1050 is a sparse matrix which contains a smallnon-zerosub-blockofsize295 x 175 (window (3, ... ,297) x (561, ... ,735)). This is typical for applications where the different physical quantities are defined in bordering sub-domains and are coupled via the mutual boundary-if one numbers the degrees of freedom on the mutual boundary consecutively. Since KT 2 has this structure it is of the required type. This means that also V has all its non-zero entries in the same sub-block, i.e., it only has possible non-zero entries from row 561 to 735. This information is of importance, because the standard GSVD implementations such as MATLAB's do not use this information and generate V which contains round-off(non-zero) entries outside the window, as can be seen in Fig. 1.14. For the medium test case the results are worse, as to be expected: For p = 5 and£= 0, K~i) (definitions, see below) is a full matrix.

To work around this problem we have written a MATLAB function spf i l ter which for a full or sparse matrix X copies all entries Xi/ such that IXiJI > M(X) •£into a sparse matrix Y, where M(X) := max{IXIlfh.i• This way, using£= w-11 , both K12 = xsTyT and all of its dominant parts K;i) := X(P)S(P)y(p) (for some p:::::; n)

have similar sparsity patterns.

In MATLAB there are different but equivalent manners for the filtering of entries from a matrix. However, most of them do not terminate or lead to out of memory To the scaled matrix K (which depends on w) we apply a GSVD to KT 1 and KT 2 such that KJ 1 = UCXT and KJ 2 = VSXT. Hence, 1.5.9 The GSVD Approximation ofMii 1 K12

In fact, we need to apply the GSVD to M! 1 1 K12 rather than K12-Fortunately, there is a straightforward relation between the GSVD of(K 11 , K 12 ) and (M]/ K 11 , M]/ K 12 ). To see this, abbreviate K := K 12 and M := M 11 and observe that Kr = vsxr ====? (1.58) reduction method is desirable when dealing with industrial problems for which the separate sub-systems' information may not be available.

The SBR method has been designed keeping in mind the practical use in an industrial environment. It is fairly straightforward to adapt existing software modules and make them suitable for application of SBR. This is certainly not the case for the BSP type methods. Although the reduced-order models obtained by application of the BSP methods frequently show a bit better approximation accuracy, the SBR algorithm is much more beneficial from the point of view of the computational time. This property is especially valuable in case of large industrial applications.
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 17 Fig. 1.7. Schematic representation ofthe interconnected system

Finally, the reduction

  basis V SBR after k steps ofthe SBR algorithm has the following 30) and (1.33), we observe that colspanVBsP c colspanVsBR• Because the dimensions of the spaces are equal for our case (SISO external and column-vectors Bi, Ci for the sub-systems) one finds that in addition colspan V ssP = colspan V SBR.(1.35) Because colspan V BSP c colspan V SBR the SBR reduced-order model transfer function matches (at least) the same (number of) moments as the BSP reduced-order model transfer function which at its turn (Theorem 2,[START_REF] Freund | SPRIM: structure-preserving reduced-order interconnect macromodeling[END_REF]) matches the same (number of) moments as the original coupled system's transfer function. For the more general case where B 1 , C 1 , i = 1, ... ,4 are matrices one should also obtain colspanVBsP ~ colspanVsBR(1.36) 

3 .Lemma 1 . 1

 311 Let BE IR.nxp, C E JR.Pxm, m,n,p EN. Then rank( C) = p ====} co/span BC = colspanB. Proof Matrix C has rank p which implies p S: m and that C hasp linearly independent columns of length p. Thus based on colspanC = { Cx: x E IR.m} (1.40) one finds colspane = {ex: x E ffi.m} = ffi.P : x E ffi.m} = {By: y E ffi.P} = colspanB. condition that e has full column rank is sufficient but not necessary. It can be relaxed: If for instance B has only 2 :S p linearly independent columns, e.g. the ith and the jth column, then a sufficient condition is colspane = colspan { ei, eJ} c ffi.P.

  diagonal reduction matrix Vis of the form • Reduction matrix based on a QR decomposition of the coupling blocks Based on a QR decomposition of the coupling matrices A12 and A21, we get and We use an rank-revealing version of the QR algorithm, i.e., £?1, £?2, 81![, &i!J are offull column rank. Hence, the matrices £?1 and £?2 used to build the Krylov subspaces have the same rank (and most likely amount of columns) as 83 and 84.

2 Figure 1 .Fig. 1 . 8 .Fig. 1 . 9 .

 211819 Figure 1.8 shows the magnitude plots with respect to the frequency of the frequency response functions ofthe three reduced-order systems, created using original, QR-,

  GSVD should be applied to the pairs (A 11 , A 12 ) and (A 22 , A 21 ). One then has Af 2 = V1S1Xf and AI 1 = V2S2XI which results in the expressions for the coupling blocks (1.43) (1.44) Note, that here the matrices C 1 and C 2 are not used to denote external output matrices, but components of the GSVD. Assuming that the coupling blocks are of the form (1.39), since S1 and S2 are real-valued non-negative diagonal, we can define the input and output matrices as following products (1.45) (1.46) Since S 1 and S 2 are diagonal matrices with non-negative entries their square roots are diagonal matrices with entries ~ and ~-Constructing the inputs and outputs as in (1.45) and (1.46), all ofBi and C" i = 3,4 are scaled by v's1 or y's2.

Fig. 1 . 10 .Fig. 1 . 11 .

 110111 Fig. 1.10. Magnitude plots of the frequency response functions of the original and reducedorder systems

  Fig. 1.12. A schematic overview of a single channel (courtesy of Herman Wij shoff)

{

  Mx" +Kx = b y =ex with (n1 + n2) x (n1 + n2), 2 x 2 block-matrices [ and M21 = -pKJ 2 . The first sub-system corresponds to the displacement of the structure and the second sub-system describes the pressure ofthe fluid. The related Laplace transformation leads to transfer function { w 2 MX+KX = B Y =eX wE CC.

( 1 .

 1 52) Let x2 = x~. Then the first order system reformulation of (1.50) is X2 = xl xl -x2 = Mx; + Kx1 = b ====? Mx; + Kx1 = b which implies Its related transfer function is Solution of FX = B: { SXI -X2 = 0 sMx2+Kx1 = b H(s) = C(sE-A)-1 B.

[ 10 -

 10 10 0 l M = o( 10-s 10-18 ), of the transfer function furthermore note that w E [ 0, 2n * 15 00 ].

  VCfd ====? D 1 AD1 = VCd b can be scaled to a symmetric one. Hence, based on c = pw 2 and d = 1, define Furthermore, to better scale the entries inside and between blocks (create diagonal elements of magnitude 1 ), defineD2 = diag(1/ J[D] 1 FD1]11, ... , 1/ J[D] 1 FD1]nn)•We now scale with a diagonal scaling: QKP, b := Qb,c := cP, which, by invariance under inputs and outputs transformations means that

Figure 1 .Fig. 1 . 16 .Fig. 1 .

 11161 Figure1.16 shows all of the diagonal values of the matrix Sand Fig.1.17 shows the first I 000 of them. Next, for p = I, ... , 5 we approximate K12 by the contribution of its p most dominant modes

K

  = xsryr ====? M-1 K = M-1 xsryr ====? M-1 K = (M-1 X)VST JSfyT .._ _____ _,;....___....., y zwhich leads to the principal component based approximation:M-1 K . M-1 xCP)s(P)y(p).One first rewrites (1.53) to produce the term sl, for instance as follows:H(w) = c(K-w 2 M)-1 b ====? H(w) = c(M-1 K-w 2 I)M-1 b ====?H(w) = -c(w 2 1-M-1 K)M-1 b.

  Let V and W span the input-and output-based Krylov subspaces of the rth order around the expansion points E CC for the system (1.2). If

	Theorem 1.1 colspanV ~ colspanV	and	colspanW ~ colspanW,
	then a reduced-order system computed as in (1.4) has the transfer function that
	matches 2p moments qfthe transferfunction qfthe original system (1.2).

  Now it is easy to see that the column span of the matrix constructed from the matrix v~~p by splitting its rows, has the same column span as the matrix defined in (1.29). Finally, the reduction basis VBsP after k steps of the BSP algorithm has the following form (1.32) Now we will examine the SBR reduction space algorithm. Let Pi,Ri = [Rn ,Ri2], i = 1, 2 be as defined before. For s E C SBR builds two Krylov sub spaces One can easily prove, that the lh step of the Krylov iteration within the SBR algorithm adds to the reduction basis the column span of the following matrix v~1R

	1 [p	11 L.J=O aj 1 12 "'i-2 f3 pJ R L.j=O J 2 22 i-1R + "i-1 p.IR 1 11 L...f=1 aJ 1 12 "i-1 f3 P'R L.j=1 } 2 22	pfR L.J=O Y.J. 1 12 . 21 L...j=OUf£2 22 "i-1 pJR L...f=1 Yt 1 12 . pi-1R 2 "i-1 s: P'R l 2 21 + L.j=1 Uj 2 22 l +
	[ [p 0 R12] [a bl [CIP1 R22 0 cd 0 C 4 P2 1 0 l 1 11 + L.j=O a/ 1 12 L.j=O Yi 1 12 . i-2R "'i-2 p.IR "i-2 piR "'i-2 f3 pJR pi-2R + "i-2 s: pJR L.J=O j 2 22 2 21 L.J=O Uj 2 22 l [p i-IR +"i-1 pfR "'i-1 pfR l 1 11 L..J=1 a/ 1 12 L..J=1 Y.J 1 12 . "'i-1 f3 P'R pi-1R + "i-1 s: pJR + ~=1 j 2 22 2 21 ~j=1Uf 2 22
	[p	i-1R 1 "i-1 f3 pJR "i-1 11. + L.J=I aJ 1 12 . p.IR pi-1R + "i-1 s: pJR "'i-1 pfR L.j=1 } 2 22 2 21 L.j=1Uf 2 22 l +
			(1.31)

pi-2 R + "i-2 s: nJ R [R:, R~'] [: ~] [: :] L.J=I Yt 1 12 . ~ ~ where ix = [.Ul' a], f3 = [.U3' {3], r = [.U2' y], 8 = [.U4' 8], and the matrix with '*' is a full matrix. (1.33)

  Theorem 1.3 Let 81, 82 E ffi.nxp, e1, e2 E ffi.pxm and m, n,p E N.

	If
	then
	colspanB 1 = colspanB2.
	Proof Observe that
	colspanB 1 = colspanB 1 e 1 = colspanB 2 e 2 = colspanB 2 . Lem.1.1 Lem.1.1

Next we prove that certain Krylov subspaces are identical. Theorem 1.

[START_REF] Doris | A disturbance attenuation approach for continuous piecewise affine systems: Control design and experiments[END_REF] 

Let A E ffi.nxn is non-singular and B1, B2 E ffi.nxm, n, m E N. Then colspan81 = colspan82 ====? .Jt];(A, 81) = Xp(A, 82).

  and output-based Krylov subspaces for both sub-systems, (1.7) and (1.8). As defined in Chap. 1.3, matrices All E JR.Nl xN,' 81 E JR.Nl xm, and 83 E JR.Nl xm 3 . Assume, that 83 has full column rank m3 and that application of GSVD to the pair (Afi, Aj~) leads to

Table

  

Table 1 .

 1 1. Derivatives of the original and low-rank approximation based reduced-order transfer functions for the expansion point (s) for the second example, multiplied by I 07 

	i	JiH(s)	JiHlow-rank-SBR (s)
	0	-0.3 49984611544531	-0.349975323605725
	1	0.000580754070987	0.000580770193275
	2	-0.000001928114532	-0.000001928787960
	3	0.000000012770698	0.000000012766510
	4	-0.000000000067912	-0.000000000068062
	5	0.000000000000859	0.000000000000859
	6	-0.000000000000014	-0.000000000000014
	7	0.000000000000000	0. 000000000000000
	8	-0.000000000000000	-0.000000000000000
	9	0.000000000000000	0. 000000000000000
	1. 5.2 Industrial Benchmark Problem

Table 1 . 2 .

 12 Relative errors due to use of the GSVD approximation ::; n principal components, based on the scaled versions of K (and if needed M) as constructed above.

	p	lllx(i) -y(P)(i)l/lx(i)llloo
	1	3. 75008064 7e-008
	2	1.427208120e-007
	3	1.119493657e-007
	4	1.468582269e-007
	5	1.500944068e-007

p

.... ~• •••~

"" :J .

,.

~ . . . : . . ••1 1000 ~\\\\V/1! errors even for the small case. Functions vf ilter and spf ilter contain information on manners which somehow do not lead to the desired result.

Explicit multiplication with factors X(P), S(P) and y(p) for the multiplication with

x ~----+ Kx is likely to be the more efficient then the use of multiplication with K~i). 

7 A GSVD-Based Approximation ofKn

In this subsection we analyse how the GSVD based approximation of K12 influences the solution ofthe static problem

Based on the definition of K~) the approximation leads to system (1.56)

We intend to estimate (1.57) over the set of indices i for which Xi is non-zero (outside round-off region). To determine this set, we first solved ( 1.55) and made a log-plot of its sorted entries, shown in Fig. 1.15. Based on this plot we decided to omit all entries smaller than I o- 7 and obtained the results in Table 1.2. The accuracy does not seem to be (very) sensitive to the amount of principal components used, which is due to the fact that the scaled K12 block is still of magnitude 10 5 smaller than the scaled diagonal blocks K11 and K22-However, Sect. 1.5.8 shows that different amounts of principal components do have a remarkable effect on the related transfer function.

The K12(p) GSVD-Approximation Based Transfer Function

The aim is to determine a principal component analysis (PCA 

Now, SBR applied to the first row of this system leads to the approximation

which shows that one can use the GSVD-based approximation where K = [K11 xCP)s(P)y(P)l• 0 K22

Conclusions

We proposed a new model order reduction technique for coupled systems. Our method, called the Separate Bases Reduction (SBR) algorithm, belongs to the family of block-structure preserving (BSP) reduction techniques based on the uncoupled formulation of the coupled problem. However, unlike other reduction approaches dealing with the separate sub-system representation, the SBR algorithm can be applied to a wide category of coupled systems, including strongly coupled systems and interconnected systems with many interconnections. This is due to the fact that for such cases we avoid a too fast growth of the reduction bases and related reducedorder model, as long as the coupling can be well approximated by a relatively small number of GSVD principal components. Examples of such strongly coupled systems are systems with an interface coupling, for instance systems describing interactions between a fluid and a solid wall, or systems which for instance describe an electromagnetic-structural coupling in an electronic device. Another advantage of the proposed technique is that it is computationally cheaper than the more common BSP reduction methods which deal with the coupled formulation of the system.

For the initial version of the SBR algorithm (without low-rank approximations of the couplings), we proved the moment matching property. The GSVD based approximation of the couplings only approximates the moments, but numerical experiments show that taking a sufficient number of dominant components still results in accurately approximated moments. What makes the SBR algorithm universal, is the fact, that it can be applied even if the internal input and output matrices are not known explicitly. We show, that having at our disposal only the coupled system's matrices, external inputs and outputs, and the dimensions of the sub-systems, we are able to create appropriate Krylov subspaces for each sub-system. This property of the