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Abstract. Induction motors optimal design can involve many variables and objectives, and generally re-
quires to make several trade-offs, especially when including the audible electromagnetic noise criterion
beyond the usual performance criteria. Multiobjective optimization techniques based on Pareto optimality
are useful to help us finding the most interesting solutions and decide which one(s) to adopt. However, it
is not always easy to analyse the Pareto-optimal solutions obtained with such methods, especially when
treating more than three objectives, and Pareto fronts may contain more data than we might think. This
paper briefly describes an analytical model of the variable-speed squirrel-cage induction machine which
computes both its performances and sound power level of electromagnetic origin. The model is then cou-
pled to the Non-dominated Sorting Genetic Algorithm (NSGA-II) in order to perform global optimization
with respect to several objectives (e.g. noise level, efficiency and material cost). Finally, an optimization
problem is solved and analysed, and some useful visualization tools of the Pareto optimal solutions and
their characteristics are presented.

PACS. 02.60.Pn Numerical optimization – 07.05.Tp Computer modeling and simulation – 07.50.-e Elec-
trical and electronic instruments and components – 43.50.Ed Noise generation

Nomenclature

Dc stator outer diameter (without frame)
g air-gap width
G number of generations
hc height of stator yoke
hf height of stator frame
Lc stator stack length
Lf stator frame length
lse stator slot opening
lre rotor slot opening
M number of design variables
N number of objectives
P population size
Rf stator frame mean radius
αs angular position in stator steady frame
η motor efficiency at nominal speed

1 Introduction

Induction machine optimal design is an issue which has
received much attention since the beginning of computer
science [1–8]. It usually aims at reaching some given per-
formances with high efficiency and low cost. However, as
acoustic norms become stricter in electric transport sys-
tems, the noise of electromagnetic origin which comes from

the air-gap Maxwell forces acting on the stator inner sur-
face is another important factor to consider during opti-
mization. We now aim at designing induction machines
with high efficiency, high torque, high specific power, low
material cost and low magnetic noise.

Dealing with the noise or vibration criterion in a mul-
tiobjective optimization of an electrical machine is rather
recent, and the first work may come from C. Hadj Amor
[9] who studied the trade-off between noise level and ma-
terial cost. Many other trade-offs have to be made during
induction machine design. For instance, a small air-gap is
known to improve its efficiency, but it usually increases it
sound power level. In a same way, decreasing the stator di-
ameter to height of yoke ratio Dc/hc generally lowers the
sound power level, but leads to a smaller volume available
for the rotor, and therefore to a higher temperature and
lower efficiency [9]. The machine ability to radiate noise
also decreases with the ratio Rf/Lf , where Lf is the stator
frame length and Rf = Dc/2 + hf/2 its mean radius [10].
These are general considerations, and the motor geome-
try influence on noise is more complex: the sound power
level of electromagnetic origin depends on the match be-
tween the motor natural modes and frequencies and the
magnetic exciting forces modes and fequencies [11]. Fi-
nally, the motor geometry is of course directly linked to
the motor material cost.
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When dealing with several conflicting objectives, using
Pareto optimality based algorithms like the Non-domina-
ted Sorting Genetic Algorithm (NSGA-II) [12] allows not
to obtain a single optimal solution, but a large set of
Pareto-optimal solutions. At the final stage of the opti-
mization process, it makes possible for the designer to add
some new criteria and then make a final decision.

This article first presents the electromagnetic, mechan-
ical and acoustic models used during the optimization pro-
cedure. Then, the NSGA-II optimization method is de-
scribed and some optimization results are presented and
analysed. Finally, some useful visualization tools of Pareto
optimal solutions are presented.

2 Electromagnetic, mechanical and acoustic

models

In order to compute the audible electromagnetic sound
power level radiated by an induction machine, some elec-
tromagnetic, mechanical and acoustic models are coupled.
As the goal is to perform evolutionary optimizations, these
models must have a low computational complexity. There-
fore, some analytical models are used and validated with
tests and finite elements simulations [13,14]. Some rather
simple models can be used within the optimization frame-
work as long as they give the right relative trends.

2.1 Electromagnetic model

The stator and rotor currents computation are based on
a fundamental single phase equivalent circuit. This circuit
computes the motor performances such as efficiency and
output torque. The stator and rotor magnetomotive forces
fs

mm and fr
mm are computed by the aid of the winding

functions [15]. However, that are not expressed as Fourier
series in order to lower computation times. Then, the per-
meance per unit area Λ is computed and the radial air-gap
flux density Bg is expressed as:

Bg(t, αs) = Λ(t, αs)(f
s
mm(t, αs) + fr

mm(t, αs)) (1)

Note that the saturation effects as well as iron losses
are not considered in the simulations presented in this
article.

2.2 Mechanical model

Neglecting the tangential component of the Maxwell ten-
sor and the magnetostrictive effect, the radial exciting
pressure Fr which is supposed to be responsible for mag-
netic noise can be approximated by

Fr = B2

g/(2µ0) (2)

where µ0 is the air-gap magnetic permeability. The static
radial displacements Y m

s are first computed from the com-
plex amplitudes Fmw of the 2D discrete Fourier transform

(FFT2) of Fr. Then, the dynamic displacements Y m
d are

computed by the aid of a the magnification factor:

Y m
d = Y m

s [
(

1 − f2/f2

m

)2

+ 4ξ2

mf2/f2

m]−1/2 (3)

where ξm is the modal damping coefficient, and fm is
the m-th mode natural frequency. These frequencies are
computed assuming that the stator is a 2D ring [10]. ξm

can be computed using the experimental law established
by [16]

2πξm = 2.76 × 10−5fm + 0.062 ⇒ ξm ∈ [1%, 3%] (4)

The vibration velocity of mode number m is finally
given by vm = Y m

d 2πf .

2.3 Acoustic model

The sound power radiated by the vibrations of mode m
and frequency f is

Wm(f) = ρ0c0Scσm < v2
m > (5)

where Sc is the stator outer surface, ρ0 the air density, c0

the speed of sound, and σm the modal radiation efficiency.
σm is approximated using either its pulsating sphere ex-
pression or its infinite cylinder expression according to the
stator dimensions [17].

The total sound power level is finally

Lw = 10 log
10

(
∑

f,m

Wm(f)/W0), W0 = 10−12W (6)

More details about these electromagnetic, mechanical
and acoustic models and their validation can be found in
[14,18].

3 Non-dominated Sorting Genetic Algorithm

We consider a vector of objective functions to minimize
F = (f1, ..., fN ) which depend on a design variables vec-
tor X = (X1, ...,XM ). The unconstrained optimization
problem can be written under the form

minF(X) (7)

Aggregating optimization techniques replace the prob-
lem (7) by

min

N
∑

i=1

λifi(X) (8)

where λi represents the weight given by the designer
to the i-th objective. However, giving to the weights the
right value is a tough task, and the aggregating method
lead to a single solution which make impossible to add
other criteria (e.g. temperature when simulations do not
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include a thermal model) or empirical knowledge at the
end of the optimal design search. On the contrary, multi-
objective optimization algorithms do not try to solve a

priori the conflicting objectives: they provide a whole set
of solutions among which the designer can a posteriori

choose.
NSGA-II is one of the most efficient multi-objective

evolutionary algorithms using an elitist approach [12,19].
The current population offspring is obtained using a bi-
nary tournament selection and the standard bimodal cross-
over and polynomial mutation operators used in genetic
algorithms. Then, in order to form the next generation
from the combined current population and offspring, NS-
GA-II algorithm uses a particular fitness assignment sche-
me which consists in sorting the individuals in different
fronts using the non-domination order relation (Fig. 1).
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Fig. 1. Illustration of NSGA ranking method in case of a 2-D
Pareto front. Individual j is non-dominated by i if there exist
k ∈ [1, N ] such as f

j

k < f i
k, f i

k denoting the k-th objective
function of individual i.

The new population is then chosen in terms of non-
dominance and diversity.

4 Definition of the optimization problem

4.1 Design variables

We here consider the M=8 continuous geometric design
variables hc, Dc, Lf , hf , lse, lre, Lc and g (see Fig. 2).
Note that the active stator stack length Lc and the stator
frame length Lf are supposed to be different: Lf influences
the motor ability to radiate noise whereas Lc influences its
electromagnetic performances.

4.2 Objective functions

The definition of the objective functions is very important
because it has much influence on the optimization results.
Five possible definitions of the variable-speed noise objec-
tive function are here presented. A first idea consists in
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Fig. 2. Induction machine main geometric variables.

computing the noise level at the motor nominal frequency
fN

s :

L1

w = Lw(fN
s ) (9)

Minimizing L1

w will therefore significantly reduce the
noise level at the most important supply frequency. In the
same way, we could define

L2

w =

∫

fs
Lw(fs)w(fs)dfs
∫

fs
w(fs)dfs

(10)

where w(fs) represents the machine lifecycle propor-
tion at frequency fs. In that case, minimizing L2

w will lead
to a quieter machine during its whole lifecycle, and noise
will be mostly reduced at nominal frequency. A third de-
finition consists in computing the average noise level on
the whole machine speed range:

L3

w =

∫

fs
Lwr(fs)dfs
∫

fs
dfs

(11)

If some noise specifications Lsp(fs) must be fulfilled,
one can use:

L4

w = max
fs

{Lw(fs) − Lsp(fs)} (12)

Finally, one can also use the maximum level of noise
encountered in the whole speed range:

L5

w = max
fs

Lw(fs) (13)

All these different definitions can be used for any varia-
ble-speed objective. As explained in [14], using L1

w can
lead to irrelevant solutions: the noise level is artificially
reduced by putting the machine natural frequencies away
from the exciting force frequencies at the given supply fre-
quency fN

s , and harmful resonances can still occur close to
fN

s . Moreover, using L4

w is not interesting as it is based on
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Fig. 3. Variable-speed noise level of two different designs in
function of supply frequency. This figure illustrates the fact
that motor1 design has a lower L3

w but a higher L5

w than mo-
tor2 design.

the comparison between the real noise level Lsp which nec-
essarily includes noise of mechanical and aeraulic sources
(e.g. bearings and fans), and a simulated magnetic noise
level Lw. In this paper, the noise objective functions that
we consider are both L5

w which ensures minimization of the
resonance levels and L3

w which ensures minimization of the
average noise (see Fig. 3). These two objective functions
could be aggregated defining the following new objective
function:

L6

w = 10 log
(

100.1L3

w + 100.1L5

w

)

(14)

We here consider N=5 objective functions to mini-
mize: the average sound power level L3

w in dB, the max-
imum sound power level L5

w in dB, material cost Pr in
euros, mass per unit of output power Mkw in kg/W (in-
verse of specific power) and the motor inverse efficiency
1−η at nominal speed (85 Hz). Material cost is computed
evaluating the amount of iron, copper and aluminium in
the machine. Efficiency is computed as:

η =
Pout

Pin
=

Pout

Pgap + Pjs
; (15)

where Pout is the mechanical output power (neglecting
the mechanical friction losses and iron losses), Pgap is
the air-gap electromagnetic power, and Pjs is the sta-
tor Joule power losses. All these quantities are computed
using the single-phase equivalent circuit. Finally, Mkw is
simply computed as m/Pout where m is the machine total
mass.

4.3 Constraints

A repair algorithm is used in order to fix the individuals
which do not respect geometric constraints (for instance,
too large stator slot openings lse lead to negative stator
teeth width). However, we do not consider any design con-
straints in this paper.

5 Optimization results

Table 1. Optimization problem OP1

Design variables hc, Dc, Lf , hf , lse, lre, Lc, g

Objective functions Pr, L3

w, L5

w, Mkw, 1 − η

We consider the optimization problem of Tab. 1. The
initial population is made of P = 100 individuals ran-
domly generated in some specified design variables bounds.
The distribution indices for mutation and cross-over op-
erators are fixed to 30, and the number of generations is
G=50. The noise objective function is computed in off-
load sinusoidal case on the speed range fs ∈[10 Hz,100
Hz] (traction mode at constant flux). The speed range
discretization step is fixed to ∆fd=3 Hz, i.e. noise level is
computed at 30 different supply frequencies. ∆fd is fixed
in order to correctly take into account resonance phenom-
ena. If a resonance is defined by a ±3 dB variation of
the noise level around the natural frequency fm, we must
have:

∆fd < min
m

2ξmfm

As ξm ≥1% and fm ≥ 250 Hz, we obtain the condi-
tion ∆fd < 5 Hz which is fullfilled with ∆fd=3 Hz. One
evaluation of the variable-speed objective function takes
about t1=10 s, and the NSGA-II algorithm runs in ap-
proximately 10 h with a 2.13 GHz processor.

The evolution of best fitnesses during NSGA-II itera-
tions is shown in Fig. 4.
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Fig. 4. Evolution of NSGA-II current population best fitnesses
during the 50 generations (OP1 problem).

When dealing with more than three objectives, it be-
comes impossible to visualize the whole Pareto front in a
single figure. However, it is always possible to draw all its
3-D or 2-D projections.

The 3D projection in space (L3

w, Pr, 1− η) is shown in
Fig. 5. It has been materialized with a Delaunay triangu-
larization, and the individuals have been projected on the
corresponding three hyperplanes. The objective function
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(OP1 problem). Only 95 individuals out of 100 are plotted
because individuals which do not respect geometric constraints
are not represented. The projection of the Pareto front on the
3 planes have been also plotted.

of an existing industrial design has been plotted to be com-
pared with simulation results. The Pareto Front individu-
als have been compared to this initial design, and only one
individual among the 100 improves simultaneously all the
objective functions of the existing design. This is because
we have considered many objectives: indeed, 14 individu-
als exactly improve 4 objectives, 55 individuals improve 3
of them and 30 improve 2 of them. Moreover, the initial
population was widespread in the design variables space
(±30% of the existing design dimensions).

In fact, if the optimization aims at finding a design
X improving an existing one X0, one can run NSGA-II
adding in the objective function computation Fc a penalty-
based constraint:

Fc(X) = F(X) + C(X,X0) (16)

where

Ci(X,X0) =

{

Ki(fi(X) − fi(X0)) if fi(X) > fi(X0)
0 otherwise

(17)
There are several ways to choose the Ki factors quanti-

fying the severity of fi(X) ≤ fi(X0) constraint. It can be
fixed to 1 independently of the generation number t, or it
can be increased during generations (for instance Ki = t)
in order to allow highly infeasible solutions at the begin-
ning of the search, and end it with feasible designs. More
details about these methods can be found in [20]. Using
this penalization technique, far more individuals improv-
ing all the existing design objectives can be obtained.

In Fig. 5, the Pareto front individuals have been colou-
red in function of their Euclidian distance to the existing
design in the design variables space. It helps visualizing
data coming from both the objective functions space and
the design variables space (through the colours legend).
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Fig. 6. Final population (Pareto front) 2-D projections (OP1
problem).

In addition, it allows distinguishing innovative designs,
which are very different from the existing one and may
require new manufacturing process, from designs repre-
senting slight modifications of the existing one.

All the Pareto front 2-D projections are plotted in Fig.
6. As we have 5 objectives, we obtain

(

5

2

)

= 10 differ-

ent projections. The trade-offs curves in planes (L
3/5

w , Pr),

(1 − η, Pr), (1 − η,Mkw) and (Mkw, L
3/5

w ) have the same
convex shape. They show for instance that we cannot min-
imize at the same time noise level and material price. In
a same way, maximizing efficiency leads to a higher cost
and a lower specific power. The projections (Mkw, Pr) and
(L5

w, L3

w) have the same linear shape. They show that
minimizing the average noise globally leads to a lower
maximum noise, and that minimizing material cost gen-
erally leads to a higher specific power. The two projec-

tions (1 − η, L
3/5

w ) are more scattered, which means that

we can nearly minimize 1 − η and L
3/5

w independently.
In all these figures, the individuals that were ”repaired”
during the evaluation of the objective function, i.e. which
did not respect basic geometric constraints, are displayed
in a different color than the individuals which did not
need to be repaired. There are obviously many individu-



6 Jean Le Besnerais et al.: Multi-objective optimization of the induction machine with noise minimization

als representing non-feasible designs: without any repair
algorithm, all these individuals would be assigned a high
fitness value in order to avoid inconsistent geometries in
the final Pareto front, which would degrade population
diversity and NSGA-II convergence.
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Fig. 7. Variation of objective functions with respect to initial
design (OP1 problem). Some Pareto-optimal solutions are not
represented for readability. The individual improving all the
objectives reaches [-25 %, -5%, -9%, -21%, -3%].

Fig. 7 represents the objective functions variations with
respect to the existing design. The only individual improv-
ing all the existing design objectives reaches a 25% mater-
ial cost decrease, a 5% average noise decrease, a 9% maxi-
mum noise decrease, a 21% increase in specific power, and
a 3% efficiency increase. In this figure, we can also easily
see the trade-offs to be made: for example, the individuals
with the lowest noise levels have the highest material cost
and lowest specific power.

Fig. 8 represents the objective functions of the 50 Pare-
to fronts generated during NSGA-II iterations in function
of the design variables Dc and hc. It helps seeing if an
objective is directly linked to a particular design variable.
In this example, all the individuals are almost randomly
distributed in the graphs. The only design variable whose
influence on objective functions is clear is the stator di-
ameter Dc: when it increases, the maximum and average
noise levels tend to slighly decrease, whereas material cost
and mass per unit of power increase. The effect of Dc on
noise was not predictible: as explained in the introduc-
tion, increasing Dc at constant stack length decreases it
ability to radiate noise through the modification of its ra-
diation factor. However, it also changes the stator natural
frequencies, and increases vibration levels when keeping
constant the height of yoke hc.

The visibly high correlation between Dc and the ob-
jective functions can be rigourously quantified using the

0.04 0.05 0.06
0

0.5

1

1.5

h
c

ob
je

ct
iv

e 
fu

nc
tio

ns

0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

0.5

1

1.5

D
c

ob
je

ct
iv

e 
fu

nc
tio

ns

P
r

L
w
3

L
w
5

M
kw

1−η

P
r

M
kw

L
w
3

L
w
5

1−η

Fig. 8. Relation between design variables and objectives (OP1
problem).

correlation factor ρXY between variables X and Y :

ρXY =
Cov(X,Y )

σXσY
∈ [−1, 1] (18)

where Cov(X,Y ) = E(XY )−E(X)E(Y ) is the covariance
between X and Y , and σX is the standard deviation of
X. Indeed, if xi and fj are higly correlated, for instance
when fj = αxi, we have ρxifj

= 1. However, if they are
independent, we have ρxifj

= 0.
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Fig. 9. Correlation factors between variables and objective
functions (OP1 problem). Dc is highly correlated to Pr, Mkw

and 1 − η.

Correlation factors are plotted in Fig. 9. The expecta-
tions are computed during all NSGA iterations in order
to use all available data and obtain more accurate results.
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As previously seen in Fig. 8, Dc is the design variable the
most correlated to objectives Mkw, 1 − η and Pr. Lc is
also significantly linked to the same objectives. The other
design variables have low correlation factors, which shows
that no simple design rule can be inferred.

6 Conclusion

This paper has shown how it is possible to design a cheap
and efficient motor with a reasonable noise level of elec-
tromagnetic origin. A multi-objective genetic algorithm
has been used in order to find some Pareto-optimal so-
lutions achieving in particular low noise levels on a wide
speed range. These new motor designs were reached by
acting on both their natural frequencies and exciting elec-
tromagnetic forces. Simulations show that there is clearly
a trade-off to make between material cost, specific power,
efficiency and electromagnetic sound power level.

According to optimization results, it seems quite easy
to improve a motor efficiency without degrading its quiet-
ness. Nethertheless, it is unrealistic because our model
does not include the thermal criterion yet. Changing a mo-
tor’s dimensions in order to avoid resonances and decrease
its radiation factor can possibly alter the way it is cooled
and raise temperature. Future work will therefore couple
the existing model with a nodal-network thermal model
in order to perform multi-objective optimizations includ-
ing the thermal criterion. Constrained and mixed-variable
multi-objective optimizations will be also investigated.
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