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Radial extensions in fractional Sobolev spaces

Haim Brezis'""?, Petru Mironescu®, Itai Shafrir®

February 20, 2018

Abstract

Given [ :0(-1,1)* — R, consider its radial extension Tf(X) := f(X/| X |lo), VX €
[-1,1]" \ {0}. In “On some questions of topology for S'-valued fractional Sobolev
spaces” (RACSAM 2001), the first two authors (HB and PM) stated the following aux-
iliary result (Lemma D.1). If O<s<1, 1<p<oco and n = 2 are such that 1<sp<n, then
f — Tf is a bounded linear operator from W*P(9(-1,1)") into W%P((-1,1)*). The
proof of this result contained a flaw detected by the third author (IS). We present a
correct proof. We also establish a variant of this result involving higher order deriva-
tives and more general radial extension operators. More specifically, let B be the
unit ball for the standard Euclidean norm | | in R”, and set U, f(X) := | X|* f(X/| X)),
VX eB\{0},Vf:0B—R. LetaeR, s>0, 1< p<oo and n =2 be such that (s —a)p<n.
Then f — U,f is a bounded linear operator from W*?(0B) into W*?(B).

In [1], the first two authors stated the following

Lemma 1. ([1, Lemma D.1]) Let 0<s<1,1< p <oo and n = 2 be such that 1 <sp <n.
Let

Q :=(-1,1)". 1)
Set
TFX):=fX/I1X o), VX €Q\{0},Vf:0Q —R; (2)

here, || || is the sup norm in R*. Then f — T'f is a bounded linear operator from W*?(0Q)
into W52(Q).

The argument presented in [1] does not imply the conclusion of Lemma 1. Indeed, it
is established in [1] (see estimate (D.3) there) that

F@ = FOIP
TfP ., _Cf f 7TV G 6()do(y).
@ = Jig Jaq ey 4047

However, this does not imply the desired conclusion in Lemma 1, for which we need
the stronger estimate

p
TP 0 <C faQ fa @ =FOIP o),

L n—l+sp
Q llx—ylloo P

In what follows, we establish the following slight generalization of Lemma 1.
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Lemma 2. Let 0<s<1,1<p<ooandn=2 be such that sp <n. Let @, T be as in
(1)—(2). Then f — Tf is a bounded linear operator from W*?(0Q) into W57 (Q).

Lemma 2 can be generalized beyond one derivative, but for this purpose it is necessary
to work on unit spheres arising from norms smoother that || [|o.. We consider for example
maps f : 0B — R, with

B := the Euclidean unit ball in R". (3)
For a e R, set
U,f(X):=X|*f(X/|X]), VX e B\ {0}, YV f:0B — R; 4)

here, | | is the standard Euclidean norm in R"”.
We will prove the following

Lemma 3. Leta€R,s>0,1<p <ooandn =2 be such that (s—a)p <n. Then f — U,f
is a bounded linear operator from W*%?(0B) into W*?(B).

It is possible to establish directly Lemma 2 by adapting some arguments presented in
Step 3 in the proof of Lemma 4.1 in [2]. However, we will derive it from Lemma 3.

Proof of Lemma 2 using Lemma 3 Let

|X—'X, if X#0
O:R"—-R", D(X):=<X 1 Xlleo , N:i=0F and ¥V := ®5p.
0, if X=0
Clearly,
A:B— @, ¥:0B — 0Q are bi-Lipschitz homeomorphisms (5)
and
Tf =[Uy(f o ¥)o A~ (6)

Using (5) and the fact that 0 <s <1, we find that
f — f oW is a bounded linear operator from W*?(0Q) into W*?(6B) (7)
and
g— goA~!is a bounded linear operator from W*?(B) into WP (Q). (8)

We obtain Lemma 2 from (6)—(8) and Lemma 3 (with @ = 0). The same argument
shows that the conclusion of Lemma 2 holds for the unit sphere and ball of any norm in
R™. O

Proof of Lemma 3 Consider a, s, p and n such that
a€R,s>0,1<p<oo,n=2and(s—a)p <n. 9
Considering spherical coordinates on B, we obtain that

1
WUt 12 i = fo faBr”_lanf(rx)lpda(x)dr o
10

1 1
_ n—1l+ap p e — b
j(; j(;B g lf(x)l da(x)dr n+ap ”f”LP(aB)'
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Here, we have used the fact that, by (9), we have n+ap >n—(s—a)p > 0.

In view of (10), it suffices to establish the estimate

IUaflp s,p SC'”f”p s,P(0B)’ \vleWS,p(aB)7 (11)
Ws-p(B) Ws-P(0B)

for some appropriate C = C, s , » and semi-norm | |ws» on W*?(B).
Step 1. Proof of (11) when 0 <s <1. We consider the standard Gagliardo semi-norm on

W*P(B). We have
oo [ [ UafQO-Uuf @)
I afIWs’P(B)_ 5JB |IX =Y |r+sp

p
f f f f ne1,n- 11Uaf(rx) = Uaf(py) do(x)da(y)drdp
oB JoB

|rx—pyl*sp

p
f f [ [ o L2 LT dodatyrdp
oB JoB rx—pylrep

p
_ZLBfan f el p"” 1 f &) = F)) dpdrdo(x)do(y).

lra— py|n+sp

dXdY

With the change of variable p =¢r, t €[0,1], we find that

1 1 — 1@ D
Uaf s = 2 fo proemarlgy fa . fa . fo -t MO 45 doty)

|l — ty|n+sp

1
-2 f f f k(x,y,H)dtdo(x)do(y),
n—(s—a)p JoJoB Jo

with
no1 If ()=t f(y)IP

k(x,y,t):=t
Y oty

, Vx,yeoB,Vtel0,1].

In order to complete this step, it thus suffices to establish the estimates

1/2
I := k(x,y,t)dtdo(x)da(y) < CIfIZ s, 19
! fanaB (x,y,0)dtdo(@x)do(y) < ClFLpep) (12)
L@ - fOP .,
fananl/z |loc — ¢ y|Hsp dtdo(x)do(y) < Clf by op) (13)
La-fP .
I3 —fananl X2y sy 4tdo()do(y) < ClIf N7 54y (14)

here, | lwsrgp) is the standard Gagliardo semi-norm on 6B.
In the above and in what follows, C denotes a generic finite positive constant inde-
pendent of f, whose value may change with different occurrences.

Using the obvious inequalities

lx—tyl=1-t=1/2, Vx,y€0B, Vte[0,1/2],
[f )=t FI = @+ AF QI+ £ (D,

and the fact that, by (9), we have n +ap > 0, we find that

1/2
-1 -1
L=C [ @ et A1 ) < CIF I oy
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so that (12) holds.
In order to obtain (13), it suffices to establish the estimate

1 1 C
dt< , Vx,y€0B. (15)
2 |x—tyntsp | — y|r-1tsp

Set A:=(x,y)e[-1,1]. If A<0, then |x—ty|=1, V¢t €[1/2,1], and then (15) is clear.
Assuming A = 0 we find, using the change of variable t = A + (1 - A%)12 ¢,

1 1 1
f —dtsf—dt: dt
172 |x_ty|n+sp R |x_ty|n+sp R (t2 +1-2A 2f)(n+sp)/2

B 1 1 d
- (1 - A2)n-1+sp)2 Jp (72 4 1)(n+sp)/2 T
C C _ C

- (1 _AZ)(n—1+sp)/2 = (2_2A)(n—1+sp)/2 - |x_y|n—1+sp ’

and thus (15) holds again. This completes the proof of (13).

In order to prove (14), we note that
1-t*P <CA-¢t)P, Vtell/2,1],

and that the integral

1-vP
J o= f f T sdt
1v2JoB |x —ty|*spP 7

does not depend on y € 0B.
By the above, we have

1-¢)? P
1/2J0B JOoB

|l — ty|n+sp

and thus (14) amounts to proving that J < co. Since J does not depend on y, we may
assume that y =(0,...,0,1). Expressing J in spherical coordinates and using the change
of variable t =1—17, 7 €[0,1/2], we find that

1 prm p n-1 0
J:Cf f L dodr.
12Jo (72 +4(1—1)sin®6/2)n+sp)2

When 7 €[0,1/2] and 6 € [0, 7], we have

7P sin"" 10 - 7P sin” 10 - 7P sin""10/2 cos /2
(12 + 4(1 — 7)sin26/2)+spV2 ~ (1 +sin6/2)"P ~ (7 +sin0/2)"+sP
< C(1 +sin6/2)? 5P~ cos0/2.

Inserting the last inequality into the formula of J, we find that
1/2 pn
J=<C f f (1 +sin0/2)P P71 cos0/2d0dt
o Jo

1/2 1
=C f f (T+&P P 1 dEdT < oo,
0 0



the latter inequality following from p —sp > 0. This completes the proof of (14) and Step
1.

Step 2. Proof of (11) when s = 1. We will reduce the case s =1 to the case 0 <s < 1.
Using the linearity of f — U, f and a partition of unity, we may assume with no loss of
generality that suppf is contained in a spherical cap of the form {x € 0B; |x — e| < €} for
some e € 0B and sufficiently small e. We may further assume that e =(0,0,...,0,1), and
thus

f e W*P(3B;R), suppf <& :={x € dB;|x—(0,0,...,0,1)| < &}. (16)
Let

& :={x €0B; |x-(0,0,...,0,1)| < 2¢} and 7 :=R""! x {1}.
Consider the projection ® with vertex 0 of

R? :={X = (X', X,)eR" 1 xR; X, > 0}

onto ./, given by the formula O(X’, X,,) = (X'/X,,1). The restriction IT of ® to . maps .%
onto A := % x {1}, with

B:={X"eR" L |X| <r:=2eV1-€2/(1-262)),

and is a smooth diffeomorphism between these two sets. We choose € such that r = 1/2,
and thus % c {X' e R"1; | X'|| o, < 1/2}.

Set
(X', D FATY(X', 1), ifX' e

L am
0, otherwise

g(X')::{

By the above, there exist C,C’ > 0 such that for every f € WS?(dB) satisfying (16), the
function g defined in (17) satisfies

C||g||Ws,p([Rn—1) < |Ifllwsr@p) < C,”g”Ws,p(Rn—ly (18)
On the other hand, set €:={(tY',t);Y' € %, t >0} and

X, egX'IX,), if(X',X,)e€

Va (X’,Xn) =
g {0, otherwise

Then we have U, (X', X,) = V,g(X',X,,), V(X',X,) € B\ {0}.

Write now s =m + o0, with m e N and 0 <o < 1. When s = m, we consider, on W*?(B),
the semi-norm

Flony = 2 10°FI7, g (19)
aeN"\{0}
lal=m

When s is not an integer, we consider the semi-norm

p — ar P ap P
|F|WS,p(B)_ Z ”6 F”Lp(B)+ Z |a FlWU,p(B) (20)
aeN"\{0} aeN"
lal=m la|l=m



(the semi-norm on W??(B) is the standard Gagliardo one.)
By the above discussion, in order to obtain (11) it suffices to establish the estimate

|Vag|§7vs,p(3) =C ”glllv)vs,p(Rn—l)? Vge W&P(R”_l) with suppg c 4. (21)

Let a € N" \ {0} be such that || < m. By a straightforward induction on ||, the distri-
butional derivative 0%[V, g] satisfies

Vgl X, X)) = Y ValPapd” gIX',X,) in 2'(B\{0D), (22)
1f'1=|al

for some appropriate polynomials P, g(Y'), Y’ € R""!, depending only on a € R, @ € N"
and g e N*7 1,

Thanks to the fact that g(X'/X,,) = 0 when (X', X,,) ¢ ¢, we find that for any such «
we have

| orvegiraz=c ¥ [ @)etnio g(ex, P dx'ax,
B 1p'1<la]/E€NQ

C f ,
= - 107 g(Y)IPdY'.
e a—Tabp i e 8

(23)

Here, we rely on

1

1
f (Xn)n—1+(a—|06|)p dX, = <
0 n+(a—lahp

thanks to the assumption (9), which implies that (|a| —a)p < n.

Using (23), the fact that V,g € W;Z;p (B\{0}) and the assumption that n = 2, we find
that the equality (22) holds also in 2'(B), that V,g € W™P(B) and that

IVaglfymogy < CIE N ympgn-sy V& EW™PR™™) with suppg < 2. (24)

In particular, (21) holds when s is an integer.

Assume next that s is not an integer. In view of (18), (22) and (24), estimate (21) will
be a consequence of
p o,pmh—1
<C ”h”WU,p(Rnfly Vhe W P(R" %) ©5)
with supph c 4,

IVb [Ph]|€vo,p(3)

under the assumptions

O<o<l,1<p<oo,n=2,(c-b)p<n (26)
and

PeC™®"™). @7

(Estimate (25) is applied with b:=a—m, P:=P, 5 and h:= 0% g.)



In turn, estimate (25) follows from Step 1. Indeed, consider % : 0B — R such that
suppk c B and Upk = Vp[Ph]. (The explicit formula of £ can be obtained by “inverting”
the formula (17).) By Step 1 and (18), we have

<C|IPh|}

|Vb [Ph]| Ws:p(Rr-1)

=C|kl

p _ p p
Ws:P(B) — |Ubk|stP(B) Ws:P(6B)

p
< CIIhIIWs,p(Rn_l).
This completes Step 2 and the proof of Lemma 3. O

Finally, we note that the assumptions of Lemma 3 are optimal in order to obtain that
U,f € W5P(B).

Lemma 4. Let a €R, s >0, 1< p <oo and n = 2. Assume that for some measurable
function f : 0B — R we have U, f € W%P(B). Then:

1. f e WSP(4B).
2. If, in addition, U, f is not a polynomial, we deduce that (s —a)p < n.

Proof. 1. Let G :(1/2,1)x0B — R, G(r,x) :=r *U,f(rx). If U,f € W%P(B), then G €
W?$:P((1/2,1) xdB). In particular, we have G(r,-) € W%P(0B) for a.e. r. Noting that G(r,x) =
f(x), we find that f € W5P(0B).

2. Let
Q;:={XeR": 271 <|X|<27}, jeN.

We consider on each (; a semi-norm as in (19)—(20). Assuming that U,f is not a
polynomial, we have |U, f|lws»,) > 0. By scaling and the homogeneity of U, f, we have

[(s—a)p- p
|Uaf|€Vs,p(Qj) — 9Jl(s—a)p n]|Uaf|WS’P(Qo)'

Assuming that U, f € W5?(B), we find that

00 > |Uaf Kyengy = 2 [Uaf e, @)= Y. ole-op-nly, pi2 oy > 05
j=0 j=0

so that (s—a)p <n. O O
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