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Abstract

This paper presents the full analysis of the vibration behaviour responsible for audible magnetic

noise in a PWM-fed fractional-slot induction machine, including theoretical predictions, numerical

simulations, and experimental validations (stator modal analysis and deflection shapes visualisa-

tion). Magnetic force waves due to slotting harmonics, pulse-width modulation (PWM) harmonics

and their interactions are characterised in terms of nodes number, rotation speed, and propagation

direction.

It is shown in particular that some odd spatial order vibration waves appear due to fractional

slotting, and that some combinations between slotting lines and PWM lines can be very noisy due

to an elliptical mode natural frequency close from the switching frequency.
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Nomenclature

fc PWM chopping frequency

fs Fundamental stator supply frequency

fn
s Stator current n-th time harmonic

fR Rotor mechanical frequency (fR = fs(1 − s)/p)

hs Integers involved in stator magnetomotive force

(mmf) Fourier series

kr, ks Integers involved in permeance Fourier series

p Number of pole pairs

qs Number of stator phases

s Fundamental slip

Zr Number of rotor slots

Zs Number of stator slots

1 Introduction

As acoustic comfort becomes increasingly important in electrical transport systems such as sub-

ways, tramways and trains, a full understanding of the audible magnetic noise radiation by inverter-

fed motors is crucial. However, this goal requires to accurately modelling both the electromagnetic

excitation and the mechanical structure of the motor. Magnetic excitations come from Laplace

forces, Maxwell forces and magnetostrictive forces. Laplace forces apply on stator conductors, but

the magnetic flux density is too low at this place to produce significant vibrations, and conductors

are wedged into the slots. Magnetostrictive vibrations can be greater than Maxwell vibrations at

certain frequencies, but they are not able to excite any stator mode [1]. This article is therefore

focused on Maxwell vibrations.

The attempt to characterise and reduce vibrations and acoustic noise generated by Maxwell

forces in the electrical machines began with Jordan [2] and Alger [3] in the 1950’s. Their work

was mainly pursued by Timar [4] in the 1970’s. The analytical expressions of Maxwell forces

frequencies in the case of a sinusoidal supply current were found early, including the effect of
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slotting, non-sinusoidally distributed windings, saturation and eccentricities. The expression of

Maxwell force waves number of nodes in function of p, Zr and Zs was derived at the same time.

The characterisation of the PWM force waves was studied later in the 1980’s, especially by Belmans

[5–7]. However, the influence of the interaction between slotting and PWM harmonics was only

pointed out in 2000’s by Lo [8], Okuyama [9] and Hubert [10]. The distinction between rotating

and standing force waves was first done by Zhu and Howe [11] in an analytical vibro-acoustic

model. Later, Verma and Balan [12, 13] experimentally studied the vibratory influence of these

types of exciting force waves by using a special winding, and feeding the motor with single-phase

or three-phase currents.

All these interesting works present analytical calculations that do not enable a systematic

association between a given magnetic force wave frequency and its corresponding number of nodes.

Moreover, they generally do not make the distinction between clockwise or anti-clockwise rotating

waves, and no experimentation has checked the difference between standing and rotating waves

(Verma and Balan have artificially built these force waves, but they did not experimentally observe

this standing or rotating property in a standard motor). Finally, the emergence of odd order

vibrations waves has not been studied yet.

The goal of this article is to shed further light on these several points. Indeed, if many authors

aim at reducing magnetic noise due to PWM [14–19], a clear computation of the physical properties

of magnetic force waves caused by PWM has not been done yet.

Firstly, this paper derives the expressions of the spatial orders 1, frequencies and propagation

direction of the noisiest magnetic vibration lines due to slotting harmonics, PWM harmonics and

their interaction. A different formalism is used in order to be able to quickly associate a given

vibration wave frequency to its right number of nodes, and a distinction between rotating and

standing waves is done. This theoretical work is based on a series of analytical models which were

implemented in a fast simulation tool, Diva [20]. This software is able to compute the magnetic

sound power level radiated by the motor, but only its magnetic force and vibration models are used

in this paper. It also allows a virtual separation of vibration harmonics in function of their origin,

and its numerical results are used in the article to check the validity of the analytical computation

1Spatial order of a force wave corresponds to its spatial frequency, and equals half its number of nodes.
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method. The test motor is a three-phase, squirrel cage, 700 W fractional-slot induction machine

(p = 2, Zs = 27 and Zr = 21). Thanks to an improvement of the electromagnetic model presented

in [10], odd slot numbers are shown to produce odd order magnetic force waves (especially 1 and

3), and the high resonance experimented in [10] due to the interaction between slotting and PWM

harmonics is analytically identified.

Secondly, an experimental modal analysis is done to validate Diva natural frequencies compu-

tation. Finally, stator deflections are visualised in order to check the frequency, spatial order and

propagation direction of main magnetic vibration waves due to slotting and PWM, even without

resonance effect.

2 Analytical models and theoretical predictions

2.1 Electromagnetic, mechanical, vibration and acoustic models

The magnetic exciting force responsible for magnetic noise is supposed to come from the radial

component of the air-gap Maxwell stress (its tangential component is neglected [4, 14, 21], as well

as magnetostrictive effects [22]).

The electromagnetic model is based on an extended equivalent circuit for currents computation

[23] and the winding functions formalism [24–26] for magnetomotive forces computation (Fig. 1),

which is able to model any type of winding (shorted-pitch, fractional-slot, etc). The radial air-gap

flux density Bg is obtained as the product of permeance and magnetomotive forces, and validated

by finite element method (FEM) [20].

The magnetic force per unit area PM applied on the inner stator surface (Fig. 2) is then

approximated by [4,27–29]

PM = B2

g/(2µ0) (1)

In Figure 2, the Maxwell force distribution has 2p = 4 maxima as it is a quadratic function of

the air-gap flux density. Its discontinuities are due to stator and rotor slotting, and its asymmetrical

shape is due to the fractional-slot winding. Note that this slotting effect is also responsible for

4



torque ripple, which can be reduced by active methods [30].

The 2D discrete Fourier transform Pmω of the magnetic radial force is then computed, and static

deflections of the stator are analytically found from the expression of a cylinder deflection loaded

with a sinusoidal force [31]. The natural frequencies of the stator are analytically determined using

an equivalent 2D ring model, whose mass density contains the winding and teeth mass. The 3D

effects are accounted for by using Cremer coefficients [23]. The damping factor is approximated

using the empirical law proposed by Yang [32]. From damping factors and natural frequencies

are finally determined the dynamic deflections of the stator, and the corresponding magnitudes of

vibration waves. This vibration model can be easily extended to the sound power level determi-

nation using an analytical model of radiation efficiency [33]. In that case, the A-weighted curve

is used in order to account for the human’s ear sensitivity in function of frequency. However, the

acoustic part of the simulation tool Diva is not used in this article.

More details about Diva model, which has been validated at several levels with tests and FEM,

can be found in [20,34].

2.2 Analytical predictions

In order to find the expression of Maxwell forces spatial orders and frequencies, permeance and

magnetomotive functions are developed in 2D Fourier series. They are therefore represented by a

series of rotating wave (mi, fi), mi being the spatial order of the wave, and fi being its electrical

frequency (the wave mechanical rotation speed is then fi/mi). All these waves are rotating in

the air-gap, apart when mi = 0, or when two waves of same magnitude and same order rotate

in opposite directions (case of pulsating waves, also called standing waves as their nodes speed is

null, cf. Fig. 3).

The Maxwell force waves are obtained by multiplying the flux density waves one with another

; flux density waves are given by permeance and mmf waves multiplication. When two waves

(f1,m1) and (f2,m2) are multiplied, they generate two additional waves (f1 + f2,m1 + m2) and

(f1 − f2,m1 − m2) which can be represented by (f1 + ǫf2,m1 + ǫm2) where ǫ = ±1. The use of

ǫ instead of ±1 in the force waves expression makes it easier to associate a given frequency to its
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spatial order formula, and reciprocally.

Permeance and stator mmf waves are characterised in Table 1 [34,35], where Ps (resp. Pr) waves

represent stator (resp. rotor) slotting harmonics contribution, and Psr represent their interaction.

Saturation and eccentricities effects are here neglected.

Table 1: Permeance and stator mmf waves characterisation
Name/Amplitude Spatial orders Frequencies Comments

P0 0 0
Ps ksZs 0 kr, ks ≥ 1
Pr krZr krZrfR

Psr ksZs ± krZr ±krZrfR

Fs p ± qshs ±fn
s hs ≥ 0

2.2.1 Fundamental lines

If we consider an ideal machine with an ideal frequency inverter, a sinusoidal mmf and a smooth

air-gap, the only Maxwell force harmonics are a DC component (order 0, frequency 0 Hz) and an

AC component of same magnitude (order 2p, frequency 2fs). These fundamental force lines orders

generate low static and dynamic deflections, and have also very low frequencies: they are either

inaudible, or covered by mechanical noise.

2.2.2 Slotting magnetic lines

Taking the fundamental stator mmf wave Fs = (p, fs), and combining the flux density waves

PrFs = (krZr + ǫrp, krZrfR + ǫrfs) with PsFs = (ksZs + ǫsp, ǫsfs), the following Maxwell force

waves appear:

PrFsPsFs =

(krZr + ǫksZs + (ǫr + ǫǫs)p, krZrfR + (ǫr + ǫǫs)fs) (2)

These force waves can only be noisy if they have low spatial orders (0 to 4), i.e. for ǫ = −1

as kr and ks are positive integers. Furthermore, their magnitude decrease with kr and ks with the

following law [35]
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Ps ∝ 1/ks Pr ∝ 1/kr (3)

These force waves can be called pure slotting waves, as they are given by the combination

between slotting harmonics and the fundamental stator mmf wave: if they are noisy in sinusoidal

case, they will remain noisy in PWM case. In addition, the parity of their spatial order m2 in our

test motor (Zs = 27, Zr = 21) is given by:

m = krZr + ǫksZs = kr + ǫks (4)

As ks and kr can be even or odd, some odd order vibration can occur on our test motor. In

fact, a necessary and sufficient condition to have a slotting vibration of odd order is to have an odd

number of stator slots, and/or an odd number of rotor slots, independently of the number of pole

pairs. Induction machines usually have an integral winding, which imposes an even Zs, while Zr is

also chosen even in order to avoid magnetic pull [36]: as a consequence, only even order magnetic

vibrations usually occur.

Table 2 shows the expressions of the main slotting force waves (order 0 to 4) occurring on our

test motor (in decreasing magnitude order).

2.2.3 PWM magnetic lines

Pure PWM force waves are given by the combination between fundamental flux density (p, fs) and

its time harmonics (p, fn
s ). The resulting forces are thus given by (0, fn

s − fs) and (2p, fn
s + fs).

Our test motor is supplied with an asynchronous PWM generated by a sawtooth-shaped carrier

which produces a first group of current harmonics at frequencies fn
s = ±fc + fs and ±fc − 2fs.

The resulting PWM force lines are displayed in Table 3.

2.2.4 PWM and slotting lines combinations

Combining flux density waves PsFs coming from stator slotting and stator fundamental mmf, with

flux density waves PrF
s
n coming from rotor slotting and stator mmf PWM harmonics give rise to

2By definition, m equals 0 if m is even, and 1 if m is odd.
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Table 2: Characterisation of test motor main slotting vibration lines.
nb. ks kr ǫs ǫr Order m Frequency f (Hz)

1 1 1 -1 1 -2 fs(Zr(1 − s)/p + 2)
3 3 4 1 -1 -1 fs(4Zr(1 − s)/p − 2)

3 4 ±1 ±1 3 fs(4Zr(1 − s)/p)
4 4 5 ±1 ±1 -3 fs(5Zr(1 − s)/p)
5 4 5 -1 1 1 fs(5Zr(1 − s)/p + 2)
6 6 8 1 -1 2 fs(8Zr(1 − s)/p − 2)

7 9 1 -1 -4 fs(9Zr(1 − s)/p − 2)
7 7 9 ±1 ±1 0 fs(9Zr(1 − s)/p)

7 9 -1 1 4 fs(9Zr(1 − s)/p + 2)
8 8 10 -1 1 -2 fs(10Zr(1 − s)/p + 2)
9 10 13 1 -1 -1 fs(13Zr(1 − s)/p − 2)
10 10 13 ±1 ±1 3 fs(13Zr(1 − s)/p)

11 14 ±1 ±1 -3 fs(14Zr(1 − s)/p)
11 14 -1 1 1 fs(14Zr(1 − s)/p + 2)
13 17 1 -1 2 fs(17Zr(1 − s)/p − 2)
14 18 1 -1 -4 fs(18Zr(1 − s)/p − 2)

11 14 18 ±1 ±1 0 fs(18Zr(1 − s)/p)
14 18 -1 1 4 fs(18Zr(1 − s)/p + 2)

Table 3: Characterisation of test motor main PWM vibration lines.
Spatial order m Frequency f

0 fc − 3fs

−2p = −4 fc − 2fs

2p = 4 fc − fs

0 fc

−2p = −4 fc + fs

2p = 4 fc + 2fs

0 fc + 3fs

the force waves

PrFsPsF
n
s =

(krZr + ǫksZs + (ǫr + ǫǫs)p, krZrfR + ǫǫsf
n
s + ǫrfs) (5)

As in pure slotting forces case, these waves can only have low spatial orders if ǫ = −1. On our

test motor, for kr = ks = 1 and ǫr = −ǫs = 1, the main force waves due to PWM and slotting

interaction are therefore given by (−2, fs(Zr(1−s)/p+2)±fc) and (−2, fs(Zr(1−s)/p−1)±fc). As

8



our motor test elliptical mode is near 2400 Hz (see section 4.2), it can cause a resonance according

to the applied switching frequency fc value [10].

3 Simulation results

In this part, the simulation tool Diva is used in order to uncouple the sources of space and time

harmonics in the exciting magnetic forces, and check the analytical results of previous section.

Simulations can be carried on a virtual motor with a smooth or slotted air-gap, sinusoidal or

stepped magnetomotive forces, sinusoidal or PWM currents in order to distinguish in the exciting

forces spectrum space and time harmonics coming from several origins. For each case, only the

greatest force lines expressions are detailed for readability purpose.

Note that these simulations give an important information of magnetic force lines magnitude:

as the analytical method of previous section do not consider phase angles, some destructive in-

terferences can occur and cancel a vibration line that was theoretically dangerous (e.g. in section

3.3).

3.1 Fundamental lines

A first simulation is run with in the ideal case (no inverter time harmonics, no winding harmonics,

no slotting harmonics). The resulting force spectrum is presented in Fig. 4, and consists of two

lines as predicted in section 2.2.1.

3.2 Slotting lines

A second simulation is run on a sinusoidally-fed slotted machine (no PWM time harmonics, and no

stator mmf space harmonics) in order to check slotting lines frequencies, orders and propagation

direction (Fig. 5). Simulation results give the same line as computed in table 3.
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3.3 PWM lines

A third simulation is run in PWM no load case. As in previous simulation, stator mmf is forced to

be sinusoidal, but the permeance function is also forced to be uniform in order to cancel slotting

harmonics. The main force lines agree with analytical predictions (Fig. 6). The force line of order

0 and frequency fc has a low magnitude compared to other PWM force lines because it results

from the destructive interference between the force lines (0, fc) and (0,−fc).

Pure PWM lines magnitude are thus twenty times greater than slotting lines. However, in-

dependently of resonance effects, stator displacements highly depend on the spatial orders of the

exciting force waves [37]: order 2 displacements are for instance twenty times higher than order 4

displacements, so that PWM vibrations can be as noisy as slotting vibrations in compliance with

tests.

3.4 PWM and slotting lines combinations

A last simulation is run in PWM no load case with a non-uniform air-gap and a sinusoidal mmf.

In Fig. 7, the force lines of spatial orders m = ±2 in PWM case are overlaid with the same force

lines in sinusoidal case: the two graphs only share a common peak at 625 Hz, which is a pure

slotting line that has already been identified in section 3.2 (line nb. 1). The other peaks of the

simulated spectrum were effectively computed in section 2.2.4.

4 Experimental results

4.1 Experimental set-up

The test motor is a low voltage, three-phase 700 W squirrel-cage induction machine (p = 2,

Zs = 27, Zr = 21). Tests are realised with 10 V phase voltage and 6 A phase current at no

load condition. Its section, as well its flux density lines distribution and its fractional-slot winding

scheme are represented in Fig. 8. The motor is fed by a DSP-controlled power converter, and

radial vibrations are recorded by the aid of four accelerometers (Fig. 9), besides a reference

accelerometer. These three accelerometers are sequentially displaced on the mesh defined for
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the operational modal analysis (section 4.2) or operational deflection shape ((section 4.3). Data

acquisition and post-processing are done in Pulse Labshop software.

4.2 Operational modal analysis (OMA)

An operational modal analysis (OMA) was done in order to check the natural frequencies of

the motor. Contrary to the impact hammer or shaker method, the experimental modal analysis

consists in using the intrinsic forces of the structure to identify its modal parameters [38]: thus,

the exciting force spectrum (Maxwell forces in our case) must be as wide as possible in order to

excite the system on a wide frequency range.

The accelerometers were moved on a 3 per 8 points mesh around the stator frame, and mea-

surements were made while running the motor from 0 to 80 Hz with PWM at fc = 1600 Hz. The

final averaged spectral density is shown in Fig. 10, and the shapes of the first five circumferen-

tial modes are displayed in Fig. 11. Table 4 favourably compares previous studies on natural

frequencies calculation [23] with the analytical model predictions [34] and OMA results.

Table 4: Stator natural frequencies computation (Hz) using different methods. OR: Out of Range,
ND: Non Definite.

m 2-D FEM Shock Method Sinus Method Diva OMA
0 14656 OR OR 14859 14400
1 ND 1200 1273 1234 1148
2 2364 2400 2423 2485 2245
3 6473 6100 6210 6415 6370
4 11898 11700 OR 12065 11790

4.3 Operational deflection shapes (ODS)

In order to validate the spatial order, the frequency and the propagation direction of pure slotting

lines, an ODS analysis was run in sinusoidal case (fs = 30 Hz) on a 16 points mesh around the

stator frame median circumference. The accelerometers accuracy and the software features make

it possible to visualise stator structure movements at each frequency, even when it is subjected to

an exciting force far from any resonance.
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The resulting frequency response function (FRF) is shown in Fig. 12. This FRF is different from

the synthesised function obtained with the OMA (Fig. 10), as it was generated by the interaction

between the exciting magnetic forces spectrum and the stator natural frequencies spectrum: when

an exciting force frequency is far all the natural frequencies of the structure, the deflection shape

which is visualised is a direct image of the exciting force (forced response); on the contrary, when an

exciting frequency is close to a natural frequency, the visualised shape can be dominated by a modal

response. This is the example of the vibration line of order 3, and frequency fs(4Zr(1−s)/p)=1260

Hz at fs=30 Hz, whose propagation direction could not be clearly observed because the deflection

shape was dominated by the bending mode response.

Most of the vibrations listed in Table 2 have been visualised, and the rotation direction of

vibration waves agree with analytical results (see Fig. 13). For instance, the main slotting vibration

(line nb. 1) given by kr = 1 and ks = 1 has a spatial order of krZr − ksZs + 2p = −2 and a

frequency fs(Zr/p + 2): the stator deflection shape at that frequency is elliptical and rotates in

counter-clockwise direction.

Another ODS has been done in PWM case in order to visualise pure PWM vibrations. Fig.

14 shows that their shape and propagation direction also agree with analytical predictions and

simulations.

5 Conclusion

The most dangerous magnetic vibration waves coming from slotting, PWM supply and their inter-

actions, have been analytically characterised to clearly associate rotation speeds, numbers of nodes

and propagation directions. The emergence of odd order vibrations waves with fractional slotting

has been taken into account too. Some simulations, based on analytical models, have been run in

order to check these predictions. They also have been validated using some advanced vibro-acoustic

tools, namely the experimental modal analysis and the deflection shapes visualisation.

Future work will carry exhaustive variable-speed simulations with the fast simulation tool Diva

in order to find the quietest combinations of slot numbers on small power induction machines, as

it is was done for switched reluctance machines [39] or permanent magnet brushless machines [40].
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Figure 1: Winding scheme, winding functions and stator mmf of test motor.

Figure 2: Maxwell radial force distribution at a given time, which tends to pull stator teeth towards
the rotor.
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Order 4, rotating Order 3, standing Order 0, standing

Figure 3: Illustration of different force waves types. The nodes of rotating waves travel along the
air-gap, whereas standing waves ones stay at the same place.
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Figure 4: Fourier transform of simulated radial Maxwell force (no load sinusoidal case, sinusoidal
mmf and smooth air-gap, fs = 50 Hz, s ≈ 0) in [0 Hz,200 Hz] range.
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Figure 5: 2D Fourier transform of simulated radial Maxwell force (no load sinusoidal case, sinu-
soidal mmf, fs = 50 Hz, s ≈ 0) in [500 Hz,3000 Hz] range.
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Figure 6: 2D Fourier transform of simulated radial Maxwell force (no load asynchronous PWM
case, sinusoidal mmf and smooth air-gap, fs = 50 Hz, fc = 1600 Hz, s ≈ 0) in [600 Hz,4000 Hz]
range.
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Figure 7: Simulated Maxwell forces spectra of order 2 in asynchronous PWM and sinusoidal cases
(fs = 50 Hz, fc = 1600 Hz, s ≈ 0).

Figure 8: Test motor section, fractional-slot winding scheme and flux density lines distribution.

Figure 9: Experimental set-up scheme.
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Figure 10: OMA synthesised frequency response function (PWM case, fc=1600 Hz) in [0 Hz,
16200 Hz] range. The peaks indicate the natural frequencies of stator modes (for instance, the
peak around 2300 Hz corresponds to the stator elliptical mode).

Mode 0, 14400 Hz Mode 1, 1148 Hz Mode 2, 2245 Hz

Mode 3, 6370 Hz Mode 4, 11790 Hz

Figure 11: Deflection shapes of the first five stator circumferential modes.
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Figure 12: ODS synthesised frequency response function (sinusoidal case, fs=30 Hz) in [0 Hz,
12800 Hz] range.

Line nb. 1, c.c. r. Line nb. 6, c. r. Line nb. 8, c.c. r.

Line nb. 4, c.c. r. Line nb. 10, c. r.

Figure 13: Operational deflection shapes of the stator under slotting force waves, and their prop-
agation direction (c.c. r.: counter-clockwise rotation, c. r.: clockwise rotation).
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Figure 14: Operational deflection shapes of the stator under pure PWM force waves, and their
propagation direction (c.c. r.: counter-clockwise rotation, c. r.: clockwise rotation).

23


