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I. INTRODUCTION

Among the eddy-viscosity models as well as the scale similarity models some new formulations have been developed in the last 10 years in order to get rid of the tuning of coefficients which in principle are highly dependent on the local turbulent properties of the flow. [START_REF] Lilly | A proposed modification of the Germano subgrid-scale closure method[END_REF][START_REF] Zang | A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows[END_REF][START_REF] Wong | A comparison of two dynamic subgrid closure methods for turbulent thermal convection[END_REF][START_REF] Ghosal | A dynamic localization model for large-eddy simulation of turbulent flows[END_REF][START_REF] Shah | A new non-eddy viscosity subgrid-scale model and its application to channel flow[END_REF][START_REF] Meneveau | A Lagrangian dynamic subgridscale model of turbulence[END_REF][START_REF] Horiuti | A new dynamic two-parameter mixed model for large-eddy simulation[END_REF][START_REF] Salvetti | Large-eddy simulation of free-surface decaying turbulence with dynamic subgrid-scale models[END_REF][START_REF] Sarghini | Scale-similar models for largeeddy simulations[END_REF] These coefficients, being dynamically determined from the original ''Germano identity'' [START_REF] Germano | A dynamic subgridscale eddy viscosity model[END_REF] are linked to the characteristics of the resolved flow in a way prescribed by the sub-grid scale ͑SGS͒ model considered. A few studies [START_REF] Vreman | Large-eddy simulation of the turbulent mixing layer[END_REF][START_REF] Germano | Turbulence: The filtering approach[END_REF][START_REF] Lund | On the use of discrete filters for large-eddy simulation[END_REF][START_REF] Winckelmans | Testing of a new mixed model for LES: The Leonard model supplemented by a dynamic Smagorinsky term[END_REF][START_REF] Kuerten | Dynamic inverse modeling and its testing in large-eddy simulations of the mixing layer[END_REF] focused on the definition of the explicit filter ͑test filter͒ which is required in the dynamic procedure. They aimed at especially defining the proper length scale of this filter which is an issue of the modeling, since the ratio between the explicit and the implicit filter sizes enters the SGS tensor as a weighting factor ͑see below͒. Considering a general family of filters with a local support in physical space ͑the tophat filter being only one example among others͒ we evaluate first analytically the proper length scale required in such a procedure. A priori tests [START_REF] Brun | A priori tests of SGS stress models in fully developed pipe flow and a new local formulation[END_REF] on a direct numerical simulation ͑DNS͒ of fully developed pipe flow at Re ϭ180 are finally used to show the effect of the modifications of the dynamic approach. In the Appendix we provide the complete derivation of one-dimensional ͑1D͒ expansions of the different SGS stress tensors with respect to the velocity field and the filter length scale. Three-dimensional ͑3D͒ expansions yield similar results which support the general formulation that we propose.

II. THE FILTERING PROCEDURE

A. SGS stress tensors for the filtered Navier-Stokes equations

When applying a filter F with the characteristic filter size l f to a quantity h in physical space, one gets the filtered value h ¯,

͵ Ϫϱ ϱ F͑xϪ,l f ͒h͑ ͒dϭh ¯͑x ͒, ͑1͒ ͵ Ϫϱ ϱ
F͑xϪ,l f ͒dϭ1.

By applying this lowpass filter F to the velocity and pressure fields of an incompressible flow, one obtains, e.g., the resolved fields u ¯i and p ¯which are expected to be equivalent to the ones computed in large eddy simulation ͑LES͒. We express the filtered incompressible Navier-Stokes equations commonly solved in LES in the form,

ץu ¯i ץt ϩu ¯j ץu ¯i ץx j ϭϪ 1 ץp ץ x i Ϫ ץ ij ץx j ϩ ץ 2 u ¯i ץx j ץx j ; ץu ¯i ץx i ϭ0. ͑2͒
The SGS stress tensor which has then to be modeled, writes ij ϭu i u j Ϫu ¯iu ¯j. ͑3͒

Introducing a test filter G with the characteristic filter size l g ϭrl f so that h ˆrepresents the filtered value of the quantity h, gives

͵ Ϫϱ ϱ G͑xϪ,l g ͒h͑ ͒dϭh ˆ͑x ͒, ͑4͒ ͵ Ϫϱ ϱ
G͑xϪ,l g ͒dϭ1.

Applying both filters F, G to the Navier-Stokes equations yields the following doubly-filtered equations:

1 ץu i C ץt ϩu j C ץu i C ץx j ϭϪ 1 ץp C ץx i Ϫ ץT ij ץx j ϩ ץ 2 u i C ץx j ץx j ; ץu i C ץx i ϭ0. ͑5͒
The turbulent transport on the right-hand side of Eq. ͑5͒ involves both the effect of the first filter F and the test filter G through the SGS stress tensor arising from the double filtering,

T ij ͑ r ͒ϭu i u j C Ϫu i C u j C . ͑6͒
Discussing the modeling of this term is the main issue of the present paper. The combination of the two stress tensors ij , T ij yields the definition of a third SGS stress tensor L ij through the so-called ''Germano identity'' that writes

L ij ͑ r ͒ϭu ¯iu ¯j ˆϪu C i u C j ϭT ij ͑ r ͒Ϫ ij . ͑7͒
It is actually the generalized Leonard stress tensor at the r level, where rϭl g /l f , written in a Galilean invariant form. [START_REF] Meneveau | A Lagrangian dynamic subgridscale model of turbulence[END_REF][START_REF] Sarghini | Scale-similar models for largeeddy simulations[END_REF][START_REF] Germano | A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations[END_REF] 

B. Reduction of DNS data for a priori tests

The analytical ansatz to be presented below, is checked, based on a priori tests. The reference test case is a DNS ͑Ref. 18͒ of fully developed pipe flow at Re ϭ180. The same flow has been computed earlier by Eggels and Unger [START_REF] Eggels | Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment[END_REF][START_REF] Ha ¨rtel | Subgrid-scale energy transfer in the near-wall region of turbulent flows[END_REF] and was recently recomputed by Hu ¨ttl [START_REF] Hu ¨ttl | Direkte numerische simulation turbulenter stro ¨mungen in gekru ¨mmten und tordierten rohren[END_REF] with a Navier-Stokes code for flow in helical pipes. The DNS data have been produced with a finite volume method on staggered grids which uses second order central schemes in space and time. The computational domain is a pipe section of length L x ϭ10R, R being the radius of the pipe. The number of grid points in axial, circumferential and radial directions is n x ϫn ϫn r ϭ256ϫ128ϫ96. The mesh is equidistant in each direction with the center of the wall-nearest cell being at z ϩ ϭ0.94. At the wall, no-slip boundary conditions are realized. In the circumferential and axial directions periodic boundary conditions are used.

The most common way to lowpass filter a field in a priori approaches is to apply a tophat or Gaussian filter in physical space or a sharp cutoff filter in spectral space. [START_REF] Liu | On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet[END_REF][START_REF] Salvetti | The effect of the numerical scheme on the subgrid-scale term in large-eddy simulation[END_REF] These procedures result in a more or less local filtering in spectral space with respect to the filter size l f characterizing the cutoff wave number k c ϭ/l f . In Fig. 1, one can see the effect of the filtering procedure on the spectral energy distribution of both the velocity and the SGS stress tensor. It is especially strong and nonlocal for the tophat filter. One also observes that, because of its nonlinear contribution, the SGS tensor contains information at wave numbers higher than the cuttoff. Recent studies dealing with decoupling between LES grid and numerical grid [START_REF] Ghosal | A dynamic localization model for large-eddy simulation of turbulent flows[END_REF][START_REF] Cabot | Local dynamic subgrid-scale models in channel flow[END_REF][START_REF] Lund | Experiments with explicit filtering for LES using a finite-difference method[END_REF][START_REF] Kravchenko | On the effect of numerical errors in large eddy simulations of turbulent flows[END_REF][START_REF] Geurts | Numerical effects contaminating LES; A mixed story[END_REF] showed that this high wave number contribution should play an important role in SGS modeling. Therefore, in order to focus on these aspects, we did not truncate our filtered DNS data on the coarse LES grid although it was more often considered in a priori tests to mimic real LES effects. [START_REF] Liu | On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet[END_REF] We should also note that such a truncation of a tophat filter at the cutoff wave number yields an explicit filter which is no longer a tophat filter since it contains nonlocal contributions in physical space ͑due to truncation with a sharp cutoff filter͒.

The explicit filtering procedure used in a priori tests has been applied to the DNS data using a tophat filter F of width l f ϭ4⌬ DNS . When it became necessary, a second tophat filter G of width l g ϭrl f was used, r ranging from rϭ1t orϭ5. Where it is not specified, the filtering procedures have been applied in the 2D homogeneous directions of the flow, resulting in the following filter width in axial and circumferential direction, respectively:

⌬ ¯xϩ ϭ4⌬x ϩ ϭ28, R⌬ ¯ϩ ϭ4R⌬ ϩ ϭ35.2.
Interesting results have also been obtained when filtering in 3D, including the radial nonhomogeneous direction z ϩ of the pipe for which the filter width is ⌬ ¯zϩ ϭ4⌬z ϩ ϭ7.52.

Although the flow is turbulent at this low Reynolds number Re ϭ180, [START_REF] Ha ¨rtel | Subgrid-scale energy transfer in the near-wall region of turbulent flows[END_REF] the spectral energy distributions do not show up a well-developed k Ϫ5/3 law ͑Fig. 1 left͒. The inertial range being developed over less than one wave number decade, it is difficult to study the effect of larger filter size without affecting the energy containing scales. This would be inconsistent with the principle of LES. Therefore, we focus in our study on the only case of filtering described above. At this FIG. 1. ͑a͒ 2D energy spectrum of the velocity in the buffer layer, z ϩ ϭ14, for l f ϭ4⌬ DNS . ---, filtering with ideal spectral cutoff filter. -, filtering with the physical tophat filter. ͑b͒ Energy spectrum of the trace of the SGS tensor in the buffer layer, z ϩ ϭ14, for l f ϭ4⌬ DNS . ---, filtering with ideal spectral cutoff filter. -, filtering with the physical tophat filter.

filter size, the SGS tensor ij exhibits some backscatter prop- erties in the buffer layer (Ϫ͗ ij Љ S ij Љ͘Ͻ0 in Fig. 4͒. It means that the filter cutoff does not lie in the pure dissipative zone of the energy spectrum, but at a wave number for which the flow shows both forward and backward energy transfer. Finally the filter width taken appears as an optimum choice which constitutes a difficult test case for SGS models. Statistical quantities are presented, which are obtained from averaging in the axial and circumferential directions of the pipe; they are denoted by ͗¯͘. Such an averaging procedure allows to define a fluctuating part for each parameter h as hЉϭhϪ͗h͘ which should not be confused with its nonresolved part hЈϭhϪh ¯.

III. STUDYING THE ''GERMANO IDENTITY''

The ''Germano identity'' ͑7͒ involves tensors which can be considered as SGS stress tensors related to a different filter width. 27 ij represents the SGS tensor related to the filter width l f resulting from the first filter F and yielding the turbulent transport term in Eq. ͑2͒. The turbulent transport term in Eq. ͑5͒ involves the tensor T ij which results from the combination of the two filters F and G and has the filter size l fg . The latter depends on l f and l g and the shape of the filter. The determination of such a lengthscale is an important issue in the dynamic approach. For example the composition of two Gaussian filters F and G is still a Gaussian filter FGϭGF of characteristic length l fg ͑Ref. 12͒ given by

l fg 2 ϭl g 2 ϩl f 2 ϭl f 2 ͑ r 2 ϩ1 ͒. ͑8͒
The composition of two tophat filters is not a tophat filter. Recently Vreman et al. [START_REF] Vreman | Large-eddy simulation of the turbulent mixing layer[END_REF] showed that relation ͑8͒ could also be derived as an optimum filter width of a top-hat filter resulting from such a combination. In a real LES the first filter F is implicitly dependent on the resolution and the numerical scheme. Therefore we consider it as an interesting issue to derive a relation for the filter width l fg valid for any filter. In the following we approximate l fg based on 1D and 3D Taylor expansions applied to each of the SGS tensors described above.

A. 1D Taylor expansion

One can associate to each filtered velocity field a 1D expansion with respect to the original velocity field. 14,16,28 -31 The fourth order expansion writes ͑Appendix 2͒

u i ϭu i ϩal f ץu i ץx ϩbl f 2 ץ 2 u i ץx 2 ϩcl f 3 ץ 3 u i ץx 3 ϩdl f 4 ץ 4 u i ץx 4 ϩo͑l f 4 ͒, ͑9͒
where al f , bl f 2 , cl f 3 , and dl f4 are, respectively, the first, second, third, and fourth moments of the filter F ͑Appendix 1͒. Introducing the expansion above into the SGS stress tensor ͑Appendix 3͒ yields

ij ϭ͑2bϪa 2 ͒l f 2 ץu i ץx ץu j ץx ϩ͑3cϪab͒l f 3 ͩ ץu i ץx ץ 2 u j ץx 2 ϩ ץu j ץx ץ 2 u i ץx 2 ͪ ϩ͑6dϪb 2 ͒l f 4 ץ 2 u i ץx 2 ץ 2 u j ץx 2 ϩ͑4dϪac͒l f 4 ͩ ץu i ץx ץ 3 u j ץx 3 ϩ ץu j ץx ץ 3 u i ץx 3 ͪ ϩo͑l f 4 ͒. ͑10͒
The leading term of Eq. ͑10͒ is second order with respect to l f . [START_REF] Pruett | On the direct approximation of subgrid-scale stresses in large-eddy simulation[END_REF] The lower order terms vanish because of the Galilean invariance of ij . Nevertheless, the first moment a of the filter appears in the leading term of the expansion and contributes to a decrease in intensity of the SGS stress tensor. Concerning higher order terms, one notes a similar influence of lower moments that limit the intensity of the SGS tensor.

When symmetric filters are considered, the odd moments of the filter vanish, aϭcϭ0. Then Eq. ͑10͒ becomes

ij ϭ2bl f 2 ץu i ץx ץu j ץx ϩ͑6dϪb 2 ͒l f 4 ץ 2 u i ץx 2 ץ 2 u j ץx 2 ϩ4dl f 4 ͩ ץu i ץx ץ 3 u j ץx 3 ϩ ץu j ץx ץ 3 u i ץx 3 ͪ ϩo͑l f 4 ͒. ͑11͒
Although this expansion is only of 1D nature, it retains some general aspects due to the kind of filter considered, through the second and fourth moments b, d, respectively. In the same way, when considering that F and G do not differ in shape ͑same coefficients a, b, c, and d͒, but in size ͑ratio r͒, an expansion of the velocity field with respect to the test filter G ͑Appendix 2͒ reads

u i ϭu i ϩarl f ץu i ץx ϩbr 2 l f 2 ץ 2 u i ץx 2 ϩcr 3 l f 3 ץ 3 u i ץx 3 ϩdr 4 l f 4 ץ 4 u i ץx 4 ϩo͑l f 4 ͒. ͑12͒
By combination of first and second level filters F and G one gets the expansion of the generalized Leonard stress tensor ͑Appendix 4͒,

L ij ͑ r ͒ϭ͑ 2bϪa 2 ͒r 2 l f 2 ץu i ץx ץu j ץx ϩ͑a͑2bϪa 2 ͒ϩ͑ 3cϪab͒r ͒r 2 l f 3 ͩ ץu i ץx ץ 2 u j ץx 2 ϩ ץu j ץx ץ 2 u i ץx 2 ͪ ϩ͑a 2 ͑ 2bϪa 2 ͒ϩ2a͑ 3cϪab͒rϩ͑6dϪb 2 ͒r 2 ͒r 2 l f 4 ץ 2 u i ץx 2 ץ 2 u j ץx 2 ϩ͑b͑2bϪa 2 ͒ϩa͑ 3cϪab͒rϩ͑4dϪac͒r 2 ͒r 2 l f 4 ͩ ץu i ץx ץ 3 u j ץx 3 ϩ ץu j ץx ץ 3 u i ץx 3 ͪ ϩo͑l f
Considering the leading order of both Eqs. ͑10͒ and ͑13͒ yields the following second order approximation between the two tensors: 31

L ij ͑ r ͒ϭr 2 ij ϩo͑l f 2 ͒ϭr 2 ij ϩo͑l f 2 ͒. ͑14͒
Equation ͑14͒ can be rewritten as a third-order expansion,

L ij ͑ r ͒Ϫr 2 ij ϭ͑͑3cϪab͒Ϫa͑2bϪa 2 ͒͒ ϫr 2 ͑ rϪ1 ͒l f 3 ͩ ץu i ץx ץ 2 u j ץx 2 ϩ ץu j ץx ץ 2 u i ץx 2 ͪ ϩo͑l f 3 ͒. ͑15͒
For symmetric filters, third-order terms vanish, hence

L ij ͑ r ͒Ϫr 2 ij ϭ͓6d͑r 2 Ϫ1 ͒Ϫb 2 ͑ 5r 2 Ϫ1 ͔͒r 2 l f 4 ץ 2 u i ץx 2 ץ 2 u j ץx 2 ϩ2͑2dϪb 2 ͒͑ r 2 Ϫ1 ͒r 2 l f 4 ϫ ͩ ץu i ץx ץ 3 u j ץx 3 ϩ ץu j ץx ץ 3 u i ץx 3 ͪ ϩo͑l f 4 ͒. ͑16͒
Equation ͑16͒ shows how accurate the approximation of ij based on L ij is. This provides an analytical demonstration of the similarity between the grid-filter SGS stress tensor and the generalized Leonard stress tensor. An interesting case is obtained for rϭ1(FϭG), since the leading order of expansion ͑15͒ becomes fourth order for any filter ͑even asymmetric ones͒,

L ij ͑ 1 ͒Ϫ ij ϭϪ͑2bϪa 2 ͒ 2 l f 4 ץ 2 u i ץx 2 ץ 2 u j ץx 2 ϩo͑l f 4 ͒. ͑17͒
This relation emphasizes the results of Sec. IV, where we show based on a priori tests that good results are obtained in the limit rϭ1, that is to say when twice the same filter F is applied to the dynamic approach. By combination of identity ͑7͒ with Eqs. ͑10͒ and ͑13͒ as well as by a direct development, one obtains an approximation for the SGS stress tensor derived from the application of the two filters F and G ͑Appendix 5͒,

T ij ͑ r ͒ϭ͑ 2bϪa 2 ͒͑ 1ϩr 2 ͒l f 2 ץu i ץx ץu j ץx ϩ͑a͑2bϪa 2 ͒r͑ 1ϩr ͒ϩ͑ 3cϪab͒͑1ϩr 3 ͒͒l f 3 ͩ ץu i ץx ץ 2 u j ץx 2 ϩ ץu j ץx ץ 2 u i ץx 2 ͪ ϩ͑͑2bϩa 2 ͒͑ 2bϪa 2 ͒r 2 ϩ2a͑3cϪab͒r͑1ϩr 2 ͒ϩ͑ 6dϪb 2 ͒͑ 1ϩr 4 ͒͒l f 4 ץ 2 u i ץx 2 ץ 2 u j ץx 2 ϩ͑2b͑2bϪa 2 ͒r 2 ϩa͑3cϪab͒r͑1ϩr 2 ͒ϩ͑ 4dϪac͒͑1ϩr 4 ͒͒l f 4 ͩ ץu i ץx ץ 3 u j ץx 3 ϩ ץu j ץx ץ 3 u i ץx 3 ͪ ϩo͑l f 4 ͒. ͑18͒
We now consider the equivalent filter of width l fg . It yields the following expansion ͓Eq. ͑10͔͒:

T ij ͑ r ͒ϭ͑ 2bϪa 2 ͒l fg 2 ץu i ץx ץu j ץx ϩ͑3cϪab͒l fg 3 ͩ ץu i ץx ץ 2 u j ץx 2 ϩ ץu j ץx ץ 2 u i ץx 2 ͪ ϩ͑6dϪb 2 ͒l fg 4 ץ 2 u i ץx 2 ץ 2 u j ץx 2 ϩ͑4dϪac͒l fg 4 ͩ ץu i ץx ץ 3 u j ץx 3 ϩ ץu j ץx ץ 3 u i ץx 3 ͪ ϩo͑l fg 4 ͒. ͑19͒
The leading order of the test-filter SGS tensor ͓Eqs. ͑18͒ and ͑19͔͒ underlines the fact that the length scale, characteristic of the combination of F and G, could be approximated by relation ͑8͒. This result first confirms the ones obtained by Vreman et al. [START_REF] Vreman | Large-eddy simulation of the turbulent mixing layer[END_REF] and second constitutes a generalization of the determination of the length scale l fg since at this point all filters with a local support in physical space can be considered. Vreman et al. [START_REF] Vreman | Large-eddy simulation of the turbulent mixing layer[END_REF] had only determined the optimal approximation of the composition of two symmetric top-hat filters. They noticed the coincidence of the second moment of the resulting filter with the one of the original filter. Actually, relation ͑A12͒ shows that this coincidence holds only for symmetric filters (aϭ0). Therefore, the coincidence of the second moment of the two filters F and FG does not appear to be a necessary condition for relation ͑8͒ to form a correct expression. This is an important result since the filter F is an implicit filter related to the grid resolution and the numerical scheme considered. Therefore we consider the most general formulation of such an expansion. When focusing on higher order terms in Eqs. ͑18͒ and ͑19͒ one gets the limitation of relation ͑8͒ as an optimum approximation. For specific filters ͑2bϭa 2 for example͒ the third order terms of the expansion would lead to l fg 3 ϭ͑1ϩr 3 ͒l f 3 .

In the same way, the fourth-order terms ͑assuming 2bϭa 2 and 3cϭab͒ would lead to l fg 4 ϭ͑1ϩr 4 ͒l f 4 .

In the limit of an nth order expansion (nӷ1) one would get ͑for rϾ1͒,

l fg n ϭ͑1ϩr n ͒l f n ϰr n l f n ,
which is compatible with a cutoff filter that one expects to be nonlocal in physical space ͑high order moments larger than low order ones͒. However, we decided to restrict our study to filters with a local support in physical space, and therefore consider the low order terms of the expansions to be representative of the leading terms of the approximations derived in this work. Relation ͑15͒ also holds for T ij , due to the ''Germano identity,''

T ij ͑ r ͒Ϫ͑ r 2 ϩ1 ͒ ij ϭL ij ͑ r ͒Ϫr 2 ij ϭo͑l f 2 ͒. ͑20͒

B. 3D Taylor expansion

One will note that the same approach using a 3D expansion of the velocity field [START_REF] Brun | A priori tests of SGS stress models in fully developed pipe flow and a new local formulation[END_REF] leads to equivalent results concerning the filter behavior. There, the 3D filters F and G have the filter width ⌬x k and r⌬x k in the k direction, respectively. Actually, the use of a 3D expansion allows to account for both the effect of cross-derivatives of the velocity field and the effect of mesh anisotropy. [START_REF] Borue | Local energy flux and subgrid-scale statistics in three-dimensional turbulence[END_REF] This is interesting from a fundamental point of view, but does not modify our findings in the previous chapter ͑1D expansion͒ since relation ͑20͒ still holds in 3D,

T ij ͑ r ͒Ϫ͑ r 2 ϩ1 ͒ ij ϭL ij ͑ r ͒Ϫr 2 ij ϭ͑͑3c (klm) Ϫa (k) b (lm) ͒Ϫa (k) ͑ 2b (lm) Ϫa (l) a (m) ͒͒ ϫr 2 ͑ rϪ1 ͒⌬x k ⌬x l ⌬x m ͩ ץu i ץx k ץ 2 u j ץx l x m ϩ ץu j ץx k ץ 2 u i ץx l x m ͪ ϩo͑⌬x k 3 ͒. ͑21͒
An interesting aspect of the 3D expansion is that it is not restricted to isotropic symmetric filters as generally stated in the literature. [START_REF] Horiuti | A new dynamic two-parameter mixed model for large-eddy simulation[END_REF] This is an important point showing one of the limitations of the eddy-viscosity concept for which only one length scale ⌬ is considered. Scotti et al. [START_REF] Scotti | Generalized Smagorinsky model for anisotropic grids[END_REF] 

ϫ⌬x k ⌬x l ⌬x m ⌬x n ͩ ץu i ץx k ץ 3 u j ץx l ץx m ץx n ϩ ץu j ץx k ץ 3 u i ץx l ץx m ץx n ͪ ϩo͑⌬x k 4 ͒. ͑22͒

C. A priori tests

In Fig. 2 a priori tests for fully developed pipe flow have been performed to assess the relations ͑20͒ and ͑21͒. Both a 2D filter in the homogeneous directions of the pipe and a 3D filter accounting also for the wall normal direction are considered. The first filter F was kept constant at ⌬ ¯xk ϭ4⌬x k when varying the size of the test filter G through the coefficient r. The analytical expressions derived above for 1D and 3D filters are confirmed based on explicit filtering applied in two or three directions. Up to a ratio rϭ5 one gets a scaling law L ij (r)Ӎr 2 ij Ӎr 2 ij equivalent to T ij (r)Ӎ(r 2 ϩ1) ij Ӎ(r 2 ϩ1) ij , which has to be taken into account when modeling T ij (r). The scatter of the points for high values of r is not surprising since, for example, the case rϭ5 corresponds to the effect of a test filter G the filter size of which is r⌬ ¯xk ϭ20⌬x k . The cutoff of such a filter is located at /l g ϩ ϭ0.04 ͑Fig. 1͒, that is to say in the range of the energy containing wave numbers. Nevertheless, the relation between L ij , T ij , and ij is still well approximated. This is true, even when a 3D filter is considered, including effects of the nonhomogeneous direction of the pipe flow.

IV. MODELING THE ''GERMANO IDENTITY''

The ''Germano identity'' is generally used in the framework of the Smagorinsky model in order to determine the coefficient of the modeled SGS stress tensor dynamically. At the first filter level F the eddy-viscosity assumption writes

ij m Ϫ 1 3 kk m ␦ ij ϭC͑l f ͒ 2 ␤ ij ϭϪ2C͑l f ͒ 2 ͉S ¯͉S ij .

͑23͒

When combining the first and the second-filter level GF, the eddy-viscosity assumption yields

T ij m ͑ r ͒Ϫ 1 3 T kk m ͑ r ͒␦ ij ϭC͑l fg ͒ 2 ␣ ij ϭϪ2C͑l fg ͒ 2 ͉S C ͉S ij C . ͑24͒
The strain rate tensors considered in Eqs. ͑26͒ and ͑27͒ are defined as

S ij ϭ 1 2 ͩ ץu i ץx j ϩ ץu j ץx i ͪ , S ij C ϭ 1 2 ͩ ץu i C ץx j ϩ ץu j C ץx i ͪ .
One will note that a main approximation in this approach is to consider the coefficient C to be the same at the two-filter levels. One generally considers that the test filter and the first filter sizes are close enough to assume the same functional form for the model and also the same coefficient, as far as the eddy-viscosity concept is concerned. After modeling identity ͑7͒ using the two expressions above, one gets the following equation from which C is determined:

L ij ͑ r ͒Ϫ 1 3 L kk ͑ r ͒␦ ij ϭ͑l fg ͒ 2 C␣ ij Ϫl f 2 ͑ C␤ ij ͒. ͑25͒
Obviously, the accuracy of the determination of the coefficient C is related to the choice of the length scale l fg which acts as a weighting factor.

A. The standard dynamic procedure

Originally, Germano et al. [START_REF] Germano | A dynamic subgridscale eddy viscosity model[END_REF] have applied the dynamic procedure in the context of an explicit spectral sharp cutoff filter. In this and only this case the characteristic length scale of the test filter writes l fg ϭl g ϭrl f . ͑26͒

Although the equation above is no longer valid when using filters localized in space ͑top-hat filter and Gaussian filter, for example͒, it has been used to determine l fg in most of the applications of the dynamic model. [START_REF] Zang | A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows[END_REF][START_REF] Ghosal | A dynamic localization model for large-eddy simulation of turbulent flows[END_REF][START_REF] Salvetti | Large-eddy simulation of free-surface decaying turbulence with dynamic subgrid-scale models[END_REF] This is a main issue in the dynamic approach, leading to the following relation:

L ij ͑ r ͒Ϫ 1 3 L kk ͑ r ͒␦ ij ϭr 2 l f 2 C␣ ij Ϫl f 2 ͑ C␤ ij ͒. ͑27͒
A classical choice of parameters consists in taking rϭ2, i.e., l fg ϭ2l f , 10 while using for l f the anisotropic formulation derived by Scotti et al. [START_REF] Scotti | Generalized Smagorinsky model for anisotropic grids[END_REF] There are then different ways to obtain C from Eq. ͑27͒. Two of them are described below: ͑1͒ In the global eddy-viscosity formulation of Lilly 1 the above expression ͑27͒ is contracted with the tensor (r 2 ␣ ij Ϫ␤ ij ) and averaged in the homogeneous directions of the flow for which C is considered to be a constant. This leads to a least square formulation of the coefficient which writes

C͑z,t ͒l f 2 ϭ ͗L ij ͑ r ͒͑ r 2 ␣ ij Ϫ␤ ij ͒͘ ͗͑r 2 ␣ kl Ϫ␤ kl ͒ 2 ͘ . ͑28͒
͑2͒ A more general formulation proposed by Ghosal [START_REF] Ghosal | A dynamic localization model for large-eddy simulation of turbulent flows[END_REF] results in solving a minimization problem in order to determine the local coefficient C(x,t). It finally leads to an integral problem which may be solved iteratively in the following way:

C nϩ1 l f 2 ϭ͑1Ϫ ͒C n l f 2 ϩ ͑ ␣ ij L ij ͑ r ͒Ϫr 2 ␤ ij L ij ͑ r ͒͒ϩ͑ ␣ ij r 2 ␤ ij C n l f 2 ϩr 2 ␤ ij ␣ ij C n l f 2 Ϫr 4 ␤ ij ␤ ij C n l f 2 ͒ ␣ kl ␣ kl , ϭ0.1. ͑29͒
Because of the prohibitive computational time that the numerous filtering levels entrain, this last approach is rarely used in a real LES. Nevertheless a priori tests in Fig. 3 show that such a formulation highly increases the correlation between the model ij m and the real SGS stress tensor ij deter- mined from the DNS data,

Cor͑ ij ; ij m ͒ϭ ͗ ij ij m ͘Ϫ͗ ij ͗͘ ij m ͘ ͱ ͗͑ ij Ϫ͗ ij ͒͘ 2 ͘ ͱ ͗͑ ij m Ϫ͗ ij m ͒͘ 2 ͘ . ͑30͒
Averaging this correlation coefficient in the radial direction z ϩ of the pipe yields for the formulation of Ghosal Cor( xz ; xz m ) av. ϭ0.36 instead of Cor( xz ; xz m ) av. ϭ0.18 for the formulation of Lilly. This difference underlines the advantage of a local formulation with respect to a global one.

B. Correction of the filter length scale in the modelization of T ij

On the basis of the ''Germano identity'' ͑7͒ we propose an improvement of the dynamic approach by using a corrected length scale l fg derived from the expansion discussed above. Here, we aim at applying the dynamical model by using filters localized in space, so that it makes sense to develop the filtered velocity field in an expansion. From approximation ͑20͒ we then model the characteristic length scale of T ij as l fg ϭl f ͱr 2 ϩ1 that is consistent with the spe- cial case of a Gaussian filter ͓relation ͑8͔͒ as reported by Germano. [START_REF] Germano | Turbulence: The filtering approach[END_REF] Introducing this modeled length scale in Eq. ͑25͒ one gets

L ij ͑ r ͒Ϫ 1 3 L kk ͑ r ͒␦ ij ϭ͑r 2 ϩ1 ͒l f 2 C␣ ij Ϫl f 2 ͑ C␤ ij ͒, ͑31͒
which has to be compared with the standard Eq. ͑27͒. A case where this correcting factor (r 2 ϩ1) has been taken into ac count, is presented in the work of Winckelmans et al. [START_REF] Winckelmans | Testing of a new mixed model for LES: The Leonard model supplemented by a dynamic Smagorinsky term[END_REF] The authors considered the case of both Gaussian and tophat filters while restricting their study to rϭ) ͑i.e., ͱr 2 ϩ1ϭ2͒.

The above relation for l fg was also verified by Horiuti [START_REF] Horiuti | A new dynamic two-parameter mixed model for large-eddy simulation[END_REF] who used a Gaussian test filter of width l g ϭ)l f . Furthermore one will note that the case rϭ1 leads to the most local formulation of the model that writes

L ij ͑ 1 ͒Ϫ 1 3 L kk ͑ 1 ͒␦ ij ϭl f 2 ͓2C␣ ij Ϫ͑C␤ ij ͔͒. ͑32͒
Without correction of the length scale l fg , the factor r 2 in Eq. ͑27͒ would give rise to a singularity leading to an infinite value of C when r tends to rϭ1, as checked numerically by Germano et al. in the channel flow at Re ϭ180. [START_REF] Germano | A dynamic subgridscale eddy viscosity model[END_REF] Applying this modified length scale to the case of the variational eddyviscosity formulation of Ghosal 4 leads to the corrected dynamic procedure which then writes

C nϩ1 l f 2 ϭ͑1Ϫ ͒C n l f 2 ϩ ͑ ␣ ij L ij ͑ r ͒Ϫ͑ r 2 ϩ1 ͒␤ ij L ij ͑ r ͒͒ ␣ kl ␣ kl ϩ ͑ ␣ ij ͑ r 2 ϩ1 ͒␤ ij C n l f 2 ϩ͑r 2 ϩ1 ͒␤ ij ␣ ij C n l f 2 Ϫ͑r 2 ϩ1 ͒ 2 ␤ ij ␤ ij C n l f 2 ͒ ␣ kl ␣ kl , ϭ0.1, ͑33͒
and has to be compared with the standard formulation ͑29͒.

An interesting analytical aspect according to Germano 27 is the behavior of the above model in the limit of r→0( l g Ӷl f ). The kernel G then tends to a Dirac function, i.e., the test filter operation results in the identity, h ˆ→h. This yields lim r→0 S ij C ϭS ij and lim r→0 ␣ ij ϭ␤ ij . Since lim r→0 L ij (r)ϭu ¯iu ¯jϪu ¯iu ¯jϭ0, Eq. ͑31͒ leads to an indeterminacy which can be removed using expansion ͑14͒ that writes in the limit of r→0: L ij (r)ϭr 2 ij ϩo(r 2 ). Equation ͑31͒ becomes then in the limit of r→0,

C͑x គ ,t ͒l f 2 r 2 ␤ ij S ij ϭr 2 ij S ij ϩo͑r 2 ͒, ͑34͒ ij m S ij Ӎ ij S ij ,
where one can recognize the initial formulation ͑23͒ of the SGS model as an eddy-viscosity formulation applied at the implicit filter size l f of the computation ͑after contraction with the filtered strain rate tensor͒. This confirms the consistency of the corrected formulation ͓Eq. ͑31͔͒ with the basic SGS assumption ͑23͒. In contrast, the same consideration (r→0) applied to the standard formulation ͓for example, Eq. ͑28͒, considered before averaging in homogeneous direc-tions͔ leads in the limit of r→0 to an inconsistency,

C͑x គ ,t ͒l f 2 ␤ ij ␤ ij ϭϪL ij ͑ 0 ͒␤ ij , ͑35͒ ij m S ij ϭ0.
This undesirable behavior of the model in the limit of (r →0) underlines the importance of the accurate determination of the double filtering length scale l fg .

C. A priori tests

In Fig. 4 we compare the effect of the correction for two values of the test filter size, rϭ2 and rϭ1. The amount of subgrid scale energy produced by Reynolds fluctuations is clearly improved by the correction in the core zone of the pipe flow (z ϩ Ͼ30). This choice of focusing on the subgrid energy transfer is important, [START_REF] Borue | Local energy flux and subgrid-scale statistics in three-dimensional turbulence[END_REF] since the SGS energy production writes for the eddy-viscosity concept,

Ϫ ij m S ij ϭ2Cl f 2 ͉S ¯͉S ij S ij ϭCl f 2 ͉S ¯͉3 . ͑36͒
This expression indicates the ''correlation'' between the coefficient C of the model and the strain rate of the flow. The fact that our corrected approach provides a better fit to the DNS results in Fig. 4 shows that C is accurately determined and confirms that the same coefficient should be considered for the model of the subgrid stress tensor ij and the model of the test filter stress tensor T ij . Since the same model was used for comparison ͑Ghosal dynamic approach͒, one cannot consider the improvement to be due to a low Reynolds number effect, but a consequence of the proper determination of the length scale l fg . Finally, although the maximum of the energy transfer obtained around z ϩ ϭ30 is more accurately determined with the corrected approach, the global backscatter phenomenon taking place in the buffer layer of the pipe flow is not properly modeled. This lack is obviously due to the eddyviscosity formulation of the SGS model which is based on a high correlation between ij and S ij . This assumption is principally wrong in the near wall zone of wall bounded flows. The error cannot be compensated by any dynamic approach based on the eddy-viscosity concept.

V. CONCLUSIONS

Based on Taylor expansions we show that the standard dynamic approach used in the eddy-viscosity concept for modeling the SGS stress tensor has to take into account a correction factor ͓Eqs. ͑18͒ and ͑19͔͒ when the explicit filtering procedure is applied in physical space. This redefinition of the double filter size, which is only exact in the case of Gaussian filters ͓Eq. ͑8͔͒, yields in any case an increased correlation between the modeled and the real SGS stress tensor ͑which is known to be fairly low when considering standard eddy-viscosity dynamic models͒ and an improvement in the subgrid energy production evaluated from DNS data of a fully developed pipe flow. The limit of the ratio rϭ1 between test filter width and first filter width ͓Eq. ͑32͔͒ no longer leads to an inconsistency as in the standard formula- tion and would be the optimal condition for applying the procedure if one could apply the same filter ͑with the grid size as filter width͒ twice to the discretized velocity field. Work is now focusing on an alternative procedure to determine the model coefficient dynamically, which allows us to get rid of extra assumptions as needed in the classical approach ͑filtering in homogeneous directions of the flow͒. The Leonard stress tensor, which has shown in the present work similar properties as other SGS stress tensors, appears to be a good candidate for such a direct modeling of the coefficient. [START_REF] Germano | ͑private communication[END_REF] 
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APPENDIX: 1D EXPANSIONS 1. Filter characteristics

We consider here a general 1D lowpass filter F of characteristic width l f , applied to a variable h at M (x,t): F͑xϪ,l f ͒d. ͑A6͒

Filter procedure applied to a Taylor expansion of a variable h

The Taylor expansion of a variable h around M (x,t) reads The composition of the two filters F and G yields an expansion of the doubly-filtered field h C (x,t) derived from Eqs. ͑A8͒ and ͑A9͒,

FIG. 2 .

 2 FIG. 2. ͑a͒ Radial profile of the ratio between the Leonard stress tensor and the subgrid scale stress tensor ͓all (i, j) components͔ for various values of the test filter l g ϭrl f with filtering in the 2D homogeneous directions of the flow. The line corresponds to the law L ij (r)ϭr 2 ij . ͑b͒ Radial profile of the ratio between the Leonard stress tensor and the subgrid scale stress tensor ͓all (i, j) components͔ for various values of the test filter l g ϭrl f with filtering in the 3D directions of the flow including the radial non-homogeneous direction. The line corresponds to the law L ij (r)ϭr 2 ij .

FIG. 3 .

 3 FIG. 3. Radial profiles of the correlation coefficient between the real ͑DNS͒ and the modeled SGS stress tensor for the component xz . Standard dynamic approach: * , Lilly ͑Ref. 1͒; ᮀ, Ghosal et al. ͑Ref. 4͒.

FIG. 4 .

 4 FIG. 4. Mean radial profiles of the cross-correlation of SGS energy production. Comparison between the filtered DNS data and Ghosal's dynamic approach including corrections for two different values of the ratio r ͑rϭ1 and rϭ2͒. -, DNS; ᮀ, Ghosal et al. ͑Ref. 4͒; ϩ, Ghosal et al. corrected rϭ2; ϫ, Ghosal et al. corrected rϭ1.

  

  ͑A1͒-͑A7͒ one can derive an expansion of the filtered variable h ¯(x,t) with respect to a filter F of characteristics ͓a,b,c,l f ͔,h ¯͑x,t ͒ϭh͑ x,t ͒ϩal f ץh ץx ͑ x,t ͒ϩbl f 2 ץ 2 h ץx 2 ͑ x,t ͒ϩcl f 3 ץ 3 h ץx 3 ͑ x,t ͒ϩdl f 4 ץ 4 h ץx 4 ͑ x,t ͒ϩo͑ l f 4 ͒. ͑A8͒We consider now a filter G with the same shape ͑same values a, b, c, and d͒ but with a different width l g ϭrl f . An expansion of the filtered variable h ˆ(x,t) with respect to G ͓a,b,c,d,l g ͔ writesh ˆ͑x,t ͒ϭh͑ x,t ͒ϩal g ץh ץx ͑ x,t ͒ϩbl g 2 ץ 2 h ץx 2 ͑ x,t ͒ϩcl g 3 ץ 3 h ץx 3 ͑ x,t ͒ϩdl g 4 ץ 4 h ץx 4 ͑ x,t ͒ϩo͑ l f 4 ͒ ϭh͑x,t ͒ϩarl f ץh ץx ͑ x,t ͒ϩbr 2 l f 2 ץ 2 h ץx 2 ͑ x,t ͒ϩcr 3 l f
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	Considering Eqs.									

3 ץ 3 h ץx 3 ͑ x,t ͒ϩdr 4 l f 4 ץ 4 h ץx 4 ͑ x,t ͒ϩo͑ l f 4 ͒. ͑A9͒

͒. ͑13͒

␤͑r͒ϭb͑1ϩr 2 ͒ϩa 2 r, ͑A12͒ ␥͑r͒ϭc͑1ϩr 3 ͒ϩabr͑ 1ϩr ͒, ͑A13͒ ␦͑r͒ϭd͑1ϩr 4 ͒ϩacr͑ 1ϩr 2 ͒ϩb 2 r 2 .

͑A14͒

Expansion of the SGS tensor ij

From Eq. ͑A8͒ applied both to hϭu i and hϭu j one gets

Considering hϭu i u j in Eq. ͑A8͒ yields

ץu i ץx

ץu j ץx

From Eqs. ͑A15͒ and ͑A16͒ one can then derive the expansion of the SGS stress tensor,

From Eq. ͑A9͒ the SGS stress tensor filtered at the second filter level then writes

Expansion of the generalized Leonard stress tensor L ij "r…

Considering hϭu i u j in Eq. ͑A9͒ yields

ץu i ץx

ץu j ץx

From Eq. ͑A10͒ applied both to hϭu i and hϭu j one gets

From Eqs. ͑A19͒ and ͑A20͒ one derives the expansion of the Leonard stress tensor,

Expansion of the test SGS tensor T ij "r…

Considering hϭu i u j in Eq. ͑A10͒ yields

From Eqs. ͑A20͒ and ͑A22͒ one obtains the expansion of the SGS stress tensor arising from the convolution of two filters,

From Eq. ͑A17͒ applied to a filter FG the width of which is l fg one gets

Although the combination of two filters has not always the same shape as the basic ones, as pointed out by Eq. ͑A10͒ ͑especially for nonsymmetric filters͒, the leading order of the final approximation of the SGS tensors only depends on a few remaining second order terms of the original expansion of the filtered velocity field. Relations ͑A23͒ and ͑A24͒ show that a good candidate for modeling the length scale appearing in the SGS tensor and resulting from the convolution of two filters is l fg ϭl f ͱ1ϩr 2 with respect to the leading order of the approximation. The error made in such a modeling is only third order with respect to l f . Obviously, this approximation of l fg does not hold for higher order terms of the expansion.