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Abstract

Two specific extensions for fluctuation analysis are considered here: mutants
are sampled from only a fraction of the final cultures, also called plating efficiency,
and the final number of cells is no longer assumed to be constant from one culture
to another. We are focusing in this paper to the extension of three specific robust
methods: the classic P0 method of Luria and Delbrück, the Maximum Likelihood
and a method based on the generating function of the mutant count. Unbiased
estimators are thus proposed. Their asymptotic variances are computed. These
statistical properties are illustrated with simulation experiments. The methods are
also applied to real data sets. In particular, the results are compared with those
obtained using previous methods.

Introduction

Consider a culture of cells, which initially contains a homogeneous population. Make grow
this population and assume that mutations appear spontaneously upon cell division, at
any time during the growth process. A mutation which appears early during the growth
process will produce a large final number of mutants. These large values, called jackpots,
are evidence of a heavy-tail distribution for the final mutant count. This feature has
been first proposed by Luria and Delbrück [18], introducing fluctuation analyses. The
main purpose of fluctuation analysis is the estimation of the probability π for a mutation
to appear upon any cell division, given samples of integers, interpreted as final numbers
of mutant cells. These numbers may be coupled with final numbers of cells or a mean
final number of cells. Since the pioneer article of Luria and Delbrück, a large number of
studies about fluctuation analysis have been led: see for example [29, 36, 1] for different
reviews. The probabilistic description of the appearance of mutations during a growth
of a cell population constitutes the mutation models. Any classic mutation model can be
interpreted as the result of the following ingredients [10]:
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1. a random number of mutations occurring with small probability among a large
number of cell divisions. Due to the law of small numbers, the number of mutations
approximately follows a Poisson distribution. The expectation of that distribution,
denoted by m, is the product of the mutation probability π with the total number
of divisions;

2. from each mutation, a clone of mutant cells growing for a random time. Due to
exponential growth, most mutations occur close to the end of the experiment, and
the developing time of a random clone is exponentially distributed. The rate of that
distribution, denoted by ρ, is the relative fitness, i.e. the ratio of the growth rate of
normal cells to that of mutants;

3. the number of mutant cells that any clone developing for a given time will produce.
The distribution of this number depends on the distribution of division times of
mutants.

The definition of the growth rate (also called “Malthusian parameter”) mentioned in the
second ingredient can be found in [3, Chap. IV Sec. 4] or [10].

The estimation of mutation probabilities is of crucial importance in several domains,
such as the appearance of multidrug resistance of Mycobacterium Tuberculosis. Estimates
are realizations of an estimator which is a random variable depending on the considered
sample. Therefore, the considered estimator have to satisfy two properties: consistency
and explicit asymptotic distribution. In other words, an estimator θ̂n of a theoretical
value θ, built from a sample of size n must satisfy first:

lim
n→+∞

θ̂n = θ ,

where the considered limit may be weak (convergence in probability) or strong (almost

sure convergence). Moreover, the study of the asymptotic distribution of
√
n
(
θ̂n − θ

)
must be possible. Luria and Delbrück have proposed two estimators [18, eqs. (5); (8)].
The first is obtained taking the negative logarithm of the relative frequency of null counts
inf the sample. Thus, it is a consistent and asymptotically normal estimator of the mean
number of mutation. The second estimator uses the relation between the mean number
of mutations and the mean number of mutants. However, it can be shown that the
number of mutants does not have an expectation. Thus, the obtained estimator is not
consistent and should not be used. Several years after, Luria and Delbrück, Lea and
Coulson have proposed a method based on the empirical median and an approximation of
the mutant count distribution [15, eq. (25)]. However, the properties of consistency and
explicit asymptotic distribution are not satisfied by the empirical median in the discrete
case. Moreover, according to the authors, this method provides satisfying results only for
theoretical values of m larger than 4 and smaller than 15, when the typical values of m are
unit order. Thereafter, a wide panel of estimation methods based on empirical median
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or other quantiles have been proposed. Most of them are described in [8]. All these
methods do not satisfy the required properties and other methods should be considered
instead. In particular, under appropriate modelling assumptions, the distribution of the
final mutant counts is explicit. Therefore, the Maximum Likelihood (ML) seems to be an
obvious optimal choice [19, 37]. However, because of the jackpots, likelihood computation
can be numerically unstable. There are several ways to reduce tail effects [32, Sec. 2.2],
among which “Winsorization” consists in truncating the sample beyond some maximal
value. Another robust estimation method uses the probability generating function [26,
10]. The estimates obtained with Generating Function (GF) method proved to be close
to optimal efficiency, with a broad range of calculability, a good numerical stability, and
a negligible computing time.

All the mentioned methods compute estimates of the mean number of mutations m,
and possibly the relative fitness ρ. However, the true parameter of interest is the mutation
probability π. Usually, its estimate is computed dividing the estimate of m by the final
number of cells. Therefore, it requires that the final number of cells is the same in each
considered culture. However, even under careful monitoring, it is not possible to constrain
the final number of cells to be constant [14]. Theoretical models considering variations
in the population size have previously been proposed by Angerer [2] and Komarova et al.
[13]. The bias induced by ignoring the fluctuation of the final number of cells has been
studied for the P0 method by Ycart and Veziris [35]. They have proposed a bias correction
for the estimation of π. In this paper, this study will be extended to the GF and ML
method.

Another bias source will be considered in this article: the fully efficient plating. In
practice, only a fraction of the whole population is actually observed. Then, some of the
mutants will not be observed in the sample. The assumption has already been studied by
several authors (see for e.g. [29, 11, 1, 9]). In particular, Stewart et al. [29] have proposed
a correction which takes into account a plating efficiency smaller than 100%. However,
as it will be described later, this correction can be applied only under specific modelling
assumption. In this paper, extensions of the P0, ML and GF methods taken into account
the plating efficiency under general assumptions are proposed.

The paper is organized as follows. Section 1 is devoted to the probabilistic settings:
main assumptions are described and distribution of the final mutant count is given. The
P0, ML and GF estimation methods are shortly described in Section 2. The extensions
of these methods to not fully efficient plating and fluctuating final number of cells are
also proposed in Section 2. These extensions have already been illustrated in [23] with
simulation experiments performed on R with the package flan. Then, only applications
to the data sets of will be exposed in this paper, in Section 3.
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1 Probabilistic description

In this section, probabilistic mutation models are described. In previous articles [22, 21],
mutation models with birth date dependence have been described. Since the construction
of the estimators of interest is similar in both inhomogeneous and homogeneous case [21,
Sec. 5], the latter will be considered. The basic modelling hypotheses are the following:

• at time 0, n normal cells are present;

• the lifetime of any normal cell is a random variable with distribution function Fν ;

• upon completion of the lifetime of a normal cell:

– with probability π one normal and one mutant cell are produced;

– with probability γ the cell dies out;

– with probability 1− γ − π two normal cells are produced;

• the lifetime of any mutant cell is a random variable with distribution function Fµ;

• upon completion of the lifetime of a mutant cell:

– with probability δ the cell dies out;

– with probability 1− δ two mutant cells are produced;

• all random variables and events (division times, mutations, and deaths) are mutually
independent.

Usually, the scale of time is supposed to be adjusted so that the growth rate of mutants
is 1; thus the growth rate of normal cells is ρ. Let (τn)n∈N be a sequence of observation
instants, tending to infinity as n tends to infinity. Let (πn)n∈N be a sequence of mutation
probabilities, tending to 0 as n tends to infinity. At large instant τn, a proportion ε
of the clones stemming from the n initial cells will have died out: the final number of
normal cells will be asymptotically equivalent to n(1− ε)Ceρτn . The expected number of
mutations before τn is then asymptotically equal to nπn(1−ε)Ceρτn , where C is a constant
depending on Fν [34]. The asymptotic context is assumed to be such that

lim
n→+∞

nπn(1− ε)Ceρτn = m,

with m positive and finite.
Under the above hypotheses, as n tends to infinity, the pgf (probability generating

function) of the number of mutants at time τn starting with n normal cells tends to the
pgf

φ(z) = exp (−m (1− I(z))) , (1)
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with

I(z) =

∫ +∞

0

ψ(z, t)ρe−ρtdt , (2)

where ψ(z, t) is the pgf of the number of cells at time t in a mutant clone, starting from
a single cell at time 0. Observe that it depends on the lifetime distribution of normal
cells Fν only through ρ. Moreover, expressions (1) and (2) illustrate the three ingredients
decomposition described in the introduction:

1. the Poisson distribution with expectation m models the total number of mutations;

2. the exponential distribution with rate ρ is that of the time during which clone
develops;

3. the pgf ψ(·, t) models the number of cells in a random clone developing during a
time interval of length t. It is the solution of the following Bellman-Harris [4, eq.
(2)] equation:

ψ(z, t) =

∫ t

0

δ + (1− δ)ψ(z, u)2dFµ(u) + z(1− Fµ(t)) . (3)

Therefore, any mutation model is a Poisson compound of an exponential mixture. Note
that the pgf ψ has expressible form in two cases:

• Exponentially distributed lifetimes, i.e.

Fµ(t) =
(
1− e−t

)
1t>0 .

In this case, (3) has an explicit solution [3, p. 109]:

ψ(z, t) =
δ(1− z) + e−t((1− δ)z − δ)

(1− δ)(1− z) + e−t((1− δ)z − δ)
;

• Constant lifetimes, i.e.
Fµ(t) = 1t>a ,

where a = log(2(1− δ)) (so the growth rate of mutants is 1). In that case, (3) does
not make sense. However ψ remains expressible [22, p. 2938]:

ψ(z, t) =
∑
i>0

bi(z)1t∈[ia ; (i+1)a) ,

where bi is the pgf of the size in the time interval [ia ; (i + 1)a) of a mutant clone
started at time 0, i.e.

b0(z) = z , bi(z) = δ + (1− δ) (bi−1(z))2 , i > 1 .
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In practice, the plating process can be less than 100% efficient. In that case, a random
number of mutants will not be counted: if only a proportion ζ of the final population is
plated, then each cell will be observed with probability ζ. Denote by Mtot the total num-
bers of mutants. Given Mtot = k, M follows the binomial distribution with parameters k
and ζ. Thus, the pgf φ of M is given by:

φ(z) = E
[
E
[
zM |Mtot

]]
= exp

(
−m

(
1− I(ζ)(z)

))
. (4)

where

I(ζ)(z) = I(1− ζ + ζz)

=

∫ +∞

0

ψ(1− ζ + ζz, t)ρe−ρtdt , (5)

The pgf (4) defines a family of distributions, denoted hereafter by MM(m, ρ, δ, ζ, Fµ)
(Mutation Model). The mutation model where the pgf (2) is explicit will be denoted
by LD(m, ρ, δ, ζ) for the exponential case (Luria-Delbrück), and H(m, ρ, δ, ζ) for constant
case (Haldane model). Here the computation of probabilities of the LD models with ζ 6 1
is exposed. Define for any z ∈ (0 ; 1)

ψ(ζ)(z, t) = ψ(1− ζ + ζz, t) .

In the case of a LD formulation, ψ(ζ) is given by

ψ(ζ)(z, t) =
δ(1− (1− ζ + ζz)) + e−t((1− δ)(1− ζ + ζz)− δ)

(1− δ)(1− (1− ζ + ζz)) + e−t((1− δ)(1− ζ + ζz)− δ)
.

Denote by
(
r
(ζ)
k (t)

)
k∈N

the probabilities associated with ψ(ζ)(·, t). Let us rewrite ψ(ζ) as

ψ(ζ)(z, s, t) =
δ (1− e−t)− (1− ζ) (δ − e−t(1− δ))− zζ (δ − e−t(1− δ))

1− δ − δe−t − (1− ζ)(1− δ) (1− e−t)− zζ(1− δ) (1− e−t)

=
n0(s, t) + zn1(s, t)

d0(s, t) + zd1(s, t)
,

where

n0(s, t) = δ
(
1− e−t

)
− (1− ζ)

(
δ − e−t(1− δ)

)
,

n1(s, t) = −ζ
(
δ − e−t(1− δ)

)
,

d0(s, t) = 1− δ − δe−t − (1− ζ)(1− δ)
(
1− e−t

)
,

and
d1(s, t) = −ζ(1− δ)

(
1− e−t

)
.
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The r
(ζ)
k (t)’s can then be defined as follows:

r
(ζ)
0 (t) =

n0(t)

d0(t)
, r

(ζ)
1 (t) =

n1(t)

d0(t)
− d1(t)

d0(t)
r
(ζ)
0 (t)

and for any k > 2:

r
(ζ)
k (t) = −d1(t)

d0(t)
r
(ζ)
k−1(t) .

Now, (5) can be written as

I(ζ)(z) =
∑
k>0

q
(ζ)
k zk ,

where for any k > 0:

q
(ζ)
k =

∫ +∞

0

r
(ζ)
k (t)ρe−ρtdt .

Finally the probabilities (pk)k∈N of the mutant count after plating M are computed with
the following recursive algorithm [6]:

p0 = e−m(1−q(ζ)0 ) ,

pk =
m

k

k∑
i=1

iq
(ζ)
i pk−i k > 1 . (6)

Until now, there is no expression for the probabilities of the mutant count for Haldane
formulation when ζ < 1.

As mentioned in the introduction, the classic approach assumes that the total number
or cells N is constant. Therefore, if a reliable estimation of m is available, the mutation
probability π is estimated dividing the estimate of m by N . However, even under close
experimental monitoring, assuming that the final number of cells is a constant is quite
unrealistic. Thus, N must be considered as a random variable with a certain probability
distribution function K on [0,+∞). Therefore, the conditional pgf of the number of
mutants given N = k is given by

φ(z |N = k) = exp (−πk (1− I(z))) .

Hence, the conditional distribution of the number of mutants given N = k is the distri-
bution MM(πk, ρ, δ, ζ, Fµ). Assume that K is known. Therefore:

φ(z) =

∫ +∞

0

φ(z |N = k)dK(k)

= L[π(1− I(z))] , (7)
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where L is the Laplace transform of K:

L(z) =

∫ +∞

0

e−zkdK(k) . (8)

The pgf (7) defines a family of distributions, denoted hereafter by MMF (m, ρ, δ, ζ, Fµ, K)
(Mutation Model with Fluctuating number of cells). A realization of these distribution is
a couple (M,N) such that conditionally to N = k (according to the distribution K), M
follows the distribution MM(m, ρ, δ, ζ, Fµ). The two particular cases for distribution Fµ
will be denoted by LDF (m, ρ, δ, ζ,K) for the exponential case (Luria-Delbrück with Fluc-
tuating number of cells), and HF (m, ρ, δ, ζ,K) for constant case (Haldane model with
Fluctuating number of cells).

2 Robust estimation methods

Here the three estimation methods of interest (P0, ML and GF methods) are shortly
described and extended to the case where the plating is not fully efficient and when
the final number of cells is random. The methods exposed in this section perform es-
timation only for m and ρ. Indeed, the fluctuations of the distribution of final mu-
tant counts with respect to δ are very small [34]. Therefore, the death parameter δ
is assumed to be known from now. Remark that this assumption is quite unrealis-
tic: in practice, only the magnitude of δ can be measured [27, 7]. Note that the
three methods of interest are fully implemented in the R package flan [23], which is
available on the CRAN (https://cran.r-project.org/package=flan). Moreover, a
web-tool based on flan and implemented with the R package shiny is also available
(https://toltex-shiny.u-ga.fr/RodaShiny/ShinyFlan/).

Before the definition of the estimators, let us recall why these methods should be
preferred to the median methods. The P0, ML and GF method satisfy the following
asymptotic properties: consistency and explicit asymptotic variance; whereas the other
methods not. To illustrate the fact that estimation based on the empirical median should
not be used, simulation experiments have been performed using R [24]. Figure 1 shows
the results for the following estimators:

• P0: the estimator proposed by Luria and Delbrück [18, eq. (5)];

• GF: the Generating Function estimator proposed by Hamon and Ycart [10];

• ML: the Maximum Likelihood estimator;

• LC: the median estimator proposed by Lea and Coulson [15, eq. (25)];

• JM: the median estimator proposed by Jones et al. [11, eq. (6)];
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• KQ: the quartile estimator proposed by Koch [12, eqs. (3)-(5)];

• AC: accumulation of clones method proposed by Luria [17] (see also [8, eqs (14);
(15)]).

For each m = (0.5, 1, 2, 4), 104 samples of size 100 of the LD(m, 1, 0) distribution were
simulated. Estimates of m were calculated using the above methods. Each boxplot
represents the distribution of the 104 ratio m̂/m obtained for each estimation method.
According to the visual results, the GF and ML methods provide good estimates, whatever
the theoretical value of m: for these methods, most of the estimates have a relative bias
smaller than 10%. The P0 estimates seem to be less robust: when m increases. Remark
that for m = 4 the probability of null count is very small. Therefore, the P0 method
cannot be applied systematically. In that case, the ratio m̂/m has been set to 0 (hence
the number of outliers for the P0 method). The median methods provide good estimates
when m is large. However, the visual observations seem to show that these methods should
not be used. Indeed, the estimates are not relevant when m decreases: for example, the
estimates obtained with LC and JM methods are almost deterministic and are not centered
on m.

Recall that the parameter of interest is the mutation probability π. For P0, ML and
GF methods, the estimate of π is computed dividing the estimate of m by the mean
final number of cells. In the introduction, the mean method of [18, eq. (8)] (denoted
by LDM) has been mentioned. In this method, π is estimated by solving an equation
depending on the mean number of mutants and the final number of cells. As for the
median methods, simulation studies have been performed to show the lack of robustness
of the LDM method. These methods requires to find the root of an increasing function, so
a finite domain of research is required. Since the GF method provides precise estimates,
the research interval has been set to [0.01 ∗ π̂GF ; 100 ∗ π̂GF ]. Table 1 shows the summary
of the simulation study.

According to Table 1, the variance of LDM method is much larger than the three other
methods. Moreover, the LDM estimates are not centered on the true value of π. These
observations have been made by Rosche and Foster [25]: this method is not recommended,
although it still appears in recent studies (see for example [31]).

Therefore, only P0, ML and GF methods will be considered in this paper. Two kinds
of samples are considered from now:

1 a sample X = (Mi)i=1,...,n of a MM distribution, with the mean κ and the standard
deviation σ of the final number of cells;

2 a sample of couples X = (Mi, Ni)i=1,...,n of a MMF distribution, where there is no
particular assumption on the distribution of the Ni’s.

Remark that when ζ < 1, the Mi’s correspond to mutant counts after plating, when the
information on the final number of cells (i.e. κ and σ, or the Ni’s) are observed before the
plating.
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Figure 1: Comparison of different estimation methods of m. Red horizon-
tal lines mark unit. Blue horizontal lines mark relative bias of 0.9 and 1.1. For
each m = (0.5, 1, 2, 4), 104 samples of size 100 of the LD(m, 1, 0) distribution were simu-
lated. Estimates of m were calculated using the methods described earlier. Each boxplot
represents the distribution of the 104 ratio m̂/m obtained for each estimation method.
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m = 0.5 m = 1

P0 GF ML LDM

Minimum 0.4969 0.4525 0.4839 0.4004

First
quartile

0.8926 0.8851 0.8973 0.9648

Median 0.9886 0.9974 1.0019 1.2805

Mean 1.0077 1.0049 1.0062 2.1454

Last
quartile

1.1242 1.1169 1.1093 1.8589

Maximum 1.8326 1.8643 1.7287 182.3220

P0 GF ML LDM

Minimum 0.5978 0.5255 0.5838 0.4452

First
quartile

0.9163 0.9123 0.9185 0.9647

Median 0.9943 0.9958 0.9971 1.2422

Mean 1.0078 1.0011 1.0030 2.0966

Last
quartile

1.0788 1.0844 1.0812 1.7669

Maximum 1.5606 1.5312 1.5104 127.472

m = 2 m = 4

P0 GF ML LDM

Minimum 0.6189 0.6744 0.6938 0.5226

First
quartile

0.9163 0.9371 0.9041 0.9646

Median 1.0201 0.9976 1.0013 1.12159

Mean 1.0176 1.0012 1.0048 2.1193

Last
quartile

1.1036 1.0605 1.0659 1.6787

Maximum 1.9560 1.3820 1.3700 2059.1089

P0 GF ML LDM

Minimum 0.6314 0.7459 0.7639 0.5879

First
quartile

0.8766 0.9433 0.9512 0.9670

Median 0.9780 0.9965 1.0004 1.1835

Mean +∞ 1.0004 1.0033 1.7693

Last
quartile

1.1513 1.0545 1.0526 1.6041

Maximum +∞ 1.3727 1.3050 110.0355

Table 1: Comparison of different estimation methods of parameter π. For
each m = (0.5, 1, 2, 4), 104 samples of size 100 of the LDF (π, 1, 0, K) distribution were
simulated, where π = m/κ, κ = 109 and K is the cumulative distribution function of Dirac
measure located at κ. Each column contains the main statistics of the 104 ratio π̂/π for
each estimation method.
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The P0 method can be used whether the growth model of mutants is known. However,
the ML and GF methods require having an explicit expression of the distribution of the
mutant count. Hence, only LD, LDF , H and, HF models will be considered for ML
and GF methods. From now, the probabilities of the mutant count M will be denoted
by (pk)k∈N.

2.1 P0 method

The P0 method was introduced by Luria and Delbrück [18] in the case where δ = 0
and ζ = 1. In that case, the probability of null count in the sample is p0 = e−m, whatever
the distribution Fµ. Hence m can be estimated by

m̂0 = − log (p̂0) , (9)

where p̂0 is the relative frequency of null counts among the sample X. By definition, p̂0 is
a consistent and asymptotically normal estimator of the probability p0. By the ∆-method
[30, p. 79], m̂0 is a consistent and asymptotically normal estimator of m. Its asymptotic
variance is given by

vm̂0 =
1− p̂0
np̂0

.

Of course, this method cannot be applied if X does not contain null count. An extension
of the P0 method to the case where δ > 0 has been proposed by Ycart [34] (Fixed Point
estimator). It requires that δ < 1/2 (i.e. supercritical process), and is based on the fact
that

δ∗ =
δ

1− δ
,

is a fixed point of the pgf ψ(·, t) [3, Chap. I; p. 141]. Then, δ∗ is also a fixed point of the
pgf (2), and a consistent and asymptotically normal estimator of m is given by

m̂0 =
− log

(
φ̂n(δ∗)

)
1− δ∗

, (10)

where φ̂n denotes the empirical pgf of the sample X. For any z ∈ (0, 1), φ̂n is a consistent
and asymptotically normal estimator of φ(z). By the ∆-method, m̂0 is then a consistent
and asymptotically normal estimator of m. Its asymptotic variance is given by

vm̂0 =
1

n(1− δ∗)2

(
φ̂n(δ2∗)

φ̂n(δ∗)2
− 1

)
. (11)

Remark that m̂0 does not depend on ρ and distribution Fµ. The P0 method can then be
used on any mutation model, but does not directly yield an estimator of ρ.
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Assume now that ζ < 1. According to (6), the probability of null count in the sample
after plating is given by

p0 = exp (−m (1− I(1− ζ))) .

Consider first the case where X is a sample of LD(m, 1, 0). The pgf (2) is given by [15]:

I(z) = 1 +
1− z
z

log(1− z) ,

and then

p0 = exp

(
−m ζ

1− ζ
log(ζ)

)
.

Therefore, if m̂0 is given by (9), a consistent and asymptotically normal estimator of m
is given by

m̂
(ζ)
0 =

−m̂0(1− ζ)

ζ log(ζ)
.

This corresponds to the correction proposed by Stewart et al. [29, eq. (41)]. However, this
correction can be applied only in this specific case. For example, if ρ 6= 1, the probability
of null count after plating is given by

p0 = exp

(
−m

(
1− ρ

∫ 1

0

(1− ζ)vρ

1− (1− ζ)(1− v)
dv

))
.

Hence, the estimation ofm requires knowing ρ: the P0 method cannot be used when ζ < 1.
However, the estimator (10) can be extended to the case where ζ < 1. Since δ∗ is a

fixed point of ψ(·, t):
φ
(
δ(ζ)∗
)

= exp(−m(1− δ∗)) ,
where

δ(ζ)∗ =
δ∗ − (1− ζ)

ζ
.

Therefore, a consistent and asymptotically normal estimator of m is given by

m̂
(ζ)
0 =

− log
(
φ̂n

(
δ
(ζ)
∗

))
1− δ∗

. (12)

Its asymptotic variance is

v
m̂

(ζ)
0

=
1

n(1− δ∗)2

 φ̂n
(
δ
(ζ)
∗

2
)

φ̂n

(
δ
(ζ)
∗

)2 − 1

 .

Remark that (12) is well defined only if δ
(ζ)
∗ belongs to the unit disk. In particular,

if δ = 0, ζ has to be larger than 1/2. Therefore, ζ will be assumed to be 1 for P0 method.
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The estimate of π is then computed dividing the estimate of m by the final number
of cells. If the final number of cells N is random, its fluctuations are thus not taken into
account. It has been showed [35] that ignoring these fluctuations induced a bias on the
estimate of π. The authors have proposed the following correction when data is a sample
of type 1:

π̂ub = π̂0

(
1 +

π̂0C
2

2

)
,

with π̂0 = m̂0/κ (where m̂0 is given by (9)) and C is the coefficient of variation of N , i.e.:

C =
σ

κ
.

This correction is now extended to the case where δ > 0. Conditionally to N = k, the
mutant count M follow the MM distribution with m = πk, and:

φ (δ∗ |N = k) = e−πk(1−δ∗) ,

and then
φ(δ∗) = L[π(1− δ∗)] ,

where L denotes the Laplace transform (8). Therefore, the estimator m̂0 defined by (10)
is a consistent estimator of

− log (L[π(1− δ∗)])
1− δ∗

.

By Jensen inequality, m̂0 underestimates m, and π̂0 = m̂0/κ underestimates π. Assume
that the distribution of N is known and that the inverse L−1 of L is well defined. A
consistent and asymptotically normal estimator of π is then given by

L−1
[
φ̂n(δ∗)

]
1− δ∗

.

Its asymptotic variance is given by

φ̂n(δ2∗)− φ̂n(δ∗)
2

((1− δ∗)L′[π(1− δ∗])2
.

However, the distribution of N is not known in practice. Usually, estimates of the ex-
pectation and variance of N are available at best. Consider now the series expansion
of L

L[π] = 1− κπ +
E[N2]π2

2
+ . . .

14



Then:

− log (L[π(1− δ∗)])
κ(1− δ∗)

= π − π2C2κ(1− δ∗)
2

= π

(
1− πC2κ(1− δ∗)

2

)
.

Therefore, a consistent and asymptotically normal estimator of π is given by

π̂0 =
m̂0

κ

(
1 +

m̂0C
2(1− δ∗)

2

)
.

Its asymptotic variance is given by

vπ̂0 =
(
1 + m̂0C

2(1− δ∗)
)2 vm̂0

κ2
,

where vm̂0 is the variance (11).
In a case of a sample of type 2 with δ = 0 and ζ = 1, it is possible to compute directly

estimate of π [35]. Instead of the couples (Mi, Ni)i=1...n, consider the couples (Xi, Ni)i=1...n

where Xi = 1 if Mi is null, 0 else. Therefore, the log-likelihood of the sample (Xi, Ni)i=1...n

is given by

`(π) = −
n∑
i=1

−πNiXi + (1−Xi) log
(
1− e−πNi

)
.

Thus, the maximum π̂ML0 of ` is a consistent and asymptotically normal estimator of π
[16, Corollary 3.11, Chap. 6] with asymptotic variance

vπ̂ML0
=

(
n∑
i=1

(
−NiXi +

(1−Xi)Ni

eπNi−1

)2
)−1

.

Note that this estimator does not depend on the distribution of N .
The P0 estimators do not depend on the modelling assumption for mutants. Then, if

an estimate of the relative fitness is desired, the Maximum Likelihood can be used for ρ
only.

2.2 ML method

From now, the data X is assumed to be a sample distributed according to an expressible
formulation (i.e. LD, LDF , H or HF ). Since algorithms for the computation of the prob-
abilities of LD [6, 37, 10, 34] and H [33, 22] models are available, Maximum Likelihood
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seems to be an obvious choice for estimation of m and ρ. Consider first data of type 1.
Then, the ML method can be used to estimate m and ρ maximizing the log-likelihood

`(m, ρ) =
n∑
i=1

log (pMi
)

=

maxjMj∑
i=0

[
log (pi)

n∑
k=1

1Mk=i

]
. (13)

The couple of estimators (m̂ML, ρ̂ML) obtained by maximizing (13) is thus consistent,
asymptotically normal [16, Chap. 6., Theo. 5.1]. As for the P0 method, ignoring the
fluctuations of the final number of cells N will induces a bias on the estimate of π.
Assume first that the Laplace transform (8) is known. Then, the parameter m of a
formulation MM can be related to the parameter π of a MMF formulation:

m =
− log (L[π(1− I(z))])

1− I(z)
.

Hence, a consistent and asymptotically normal estimator of π is given by

π̂ML =
L−1

[
e−m̂ML(1−I(z))

]
1− I(z)

,

where Ix is the pgf (2) with ρ = x. By the ∆-method, its asymptotic variance is

vπ̂ML
=

(
e−m̂ML(1−I(z))

L′[π(1− I(z))]

)2

vm̂ML
.

As mentioned earlier, L is unknown in practice. However, the following approximation is
deduced from the series expansion of L:

− log (L[π(1− I(z))])

κ(1− I(z))
≈ π

(
1− m(1− I(z))C2

2

)
.

Consequently, the following estimator of π is approximately consistent and asymptotically
normal:

π̂ML =
m̂ML

κ

(
1 +

m̂ML(1− I(z))C2

2

)
.

Its asymptotic variance is given by

vπ̂ML
=
(
1 +m(1− I(z))C2

)2
vm̂ML

.

Remark that this correction depends directly on the value of z. In theory, this value should
be set such that it minimizes the above variance. However, the variance depends on the
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unknown parameter m. In the R package flan, the value of z has been set according to
simulation studies (see [10] for more details).

Consider now data of type 2. The ML method can be directly applied to estimate π
and ρ [35] by maximizing the following log-likelihood

`(π, ρ) =
n∑
i=1

log
(
pMi|Ni

)
, (14)

where for any k, j > 0, pk|j corresponds to probabilities (6) with m = πj. The couple
of estimators (π̂ML, ρ̂ML) obtained by maximizing ` is thus consistent and asymptotically
normal.

The ML methods has been widely recommended for the case δ = 0 (see for example
[19, 28, 37]). However, when the sample maximum is large, sums of products of small
terms must be computed [10]. The procedure can then be very long and numerically
unstable. In particular, the ML estimators may fail for large m and/or small ρ. The
computing time is also directly influenced by the maximal value of the sample and by the
choice of the model: when δ > 0, the computation of the log-likelihood is more expensive
for a H formulation than for a LD formulation; the computation of (14) is also more
expensive than that of (13). For LD formulation, the computational time of (13) can be
impoved using equivalents of the probabilities pk’s for large values of k are available [34].
In practice, these queue issues can be avoided using Winsorization [32, Sec. 2.2], which
consists in replacing any value of the sample that pass a certain bound by the bound
itself. All information above the bound is lost, and in an extreme case where the sample
minimum is greater than the bound, irrelevant estimates will be obtained. Therefore, the
ML method is not adapted for sample with large jackpots.

2.3 GF method

Using pgf to estimate the parameter of a Poisson compound was already known [26,
20]. The GF method has been exposed in [10] for LD formulation with δ = 0 and ζ = 1.
However, it can be easily adapted to any explicit formulation (see [34] for δ > 0). Consider
a sample X, whatever its type.

Let z1, z2, z3 ∈ (0 ; 1), with z1 6= z2. GF estimators of m and ρ are defined by

m̂GF (z3) =
log
(
φ̂n(z3)

)
Iρ̂GF (z1,z2)(z3)− 1

and ρ̂GF (z1, z2) = g−1(ŷn) , (15)

where Ix is the pgf (2) with ρ = x, and

g(x) =
Ix(z1)− 1

Ix(z2)− 1
and ŷn =

log
(
φ̂n(z1)

)
log
(
φ̂n(z2)

) .
17



By Theorem (3.4) of [26] and the ∆-method, it can be proved that the couple of estima-
tors (m̂GF (z3), ρ̂GF (z1, z2)) is consistent and asymptotically normal, with explicit asymp-
totic variance [10, Prop. 4.1].

Consider now the case ζ 6 1. GF estimators of m and ρ are now defined by

m̂GF (z3) =
log
(
φ̂n(z3)

)
I(ζ)ρ̂GF (z1,z2)

(z3)− 1
and ρ̂GF (z1, z2) = g−1(ŷn) , (16)

where I(ζ)x is the pgf (5) with ρ = x, and

g(x) =
I(ζ)x (z1)− 1

I(ζ)x (z2)− 1
and ŷn =

log
(
φ̂n(z1)

)
log
(
φ̂n(z2)

) .
Therefore, it can be shown that the couple of estimators is still consistent and asymptot-
ically normal. Moreover, its asymptotic variance is explicit.

Proposition 2.1. Let z1, z2, z3 ∈ (0 ; 1), such that z1 6= z2. Denote by C = (c(zi, zj))i,j=1,2,3

the asymptotic covariance matrix of

√
n
((
φ̂n(z1), φ̂n(z2), φ̂n(z3)

)
−
(
φ(z1), φ(z2), φ(z3)

))
,

i.e.
c(zi, zj) = φ(zizj)− φ(zi)φ(zj)

Then the couple of random variables

√
n
(

(m̂GF , ρ̂GF )− (m, ρ)
)

converges in distribution to the bivariate centered normal distribution with covariance
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matrix ATCA, where the matrix A = (ai,j)i=1,2,3
j=1,2

is such that

a1,1 =
ma1,2

I(ζ)(z3)− 1

∂I(ζ)(z3)
∂ρ

;

a1,2 =
I(ζ)(z2)− 1

mφ(z1)
(
∂I(ζ)(z1)

∂ρ
(I(ζ)(z2)− 1)− ∂I(ζ)(z2)

∂ρ
(I(ζ)(z1)− 1)

) ;

a2,1 =
ma2,2

I(ζ)(z3)− 1

∂I(ζ)(z3)
∂ρ

;

a2,2 =
I(ζ)(z1)− 1

mφ(z2)
(
∂I(ζ)(z2)

∂ρ
(I(ζ)(z1)− 1)− ∂I(ζ)(z1)

∂ρ
(I(ζ)(z2)− 1)

) ;

a3,1 =
1

φ(z3)(I(ζ)(z3)− 1)
;

a3,2 = 0 .

Remain that P0 and ML methods cannot be used under H models when ζ < 1. Since
it requires only a close expression of the pgf I and its derivative with respect to ρ, GF
method is available for both LD and H models. The GF estimators depend mainly on
the choice of the arbitrary values of z1, z2 and z3. Their value should be such that the
variance in Proposition 2.1 is minimized. However, the optimal values depend on the
unknown parameter m and ρ. Therefore, the values of z1, z2 and z3 have to be set before
performing estimation. The main advantage of the GF method is to allow a rescaling of
the sample, which makes the method applicable to large values of m. It is possible to
replace z by z1/b in the definition of φ̂n(z). Then, b is a fourth control parameter. Hamon
and Ycart [10] proposed values for z1, z2, z3 and b based on simulation studies.

Again, if π is estimated by the ratio of m̂GF to the mean final number of cells, a bias
will appear. As for the ML method, it is possible to adapt the correction exposed for the
P0 method to reduce this bias. As defined by (15), m̂Gf is a consistent and asymptotically
normal estimator of

− log (L[π(1− I(z3))])

1− I(z3)
.

By Jensen inequality, m̂GF/κ underestimates π. If L−1 is well defined and known, a
consistent and asymptotically normal estimator of π is given by

L−1
(
φ̂n(z3)

)
1− I(z3)

.

19



Its asymptotic variance is given by

φ̂n(z23)− φ̂n(z3)
2(

(1− I(z3))L′[π(1− I(z3))]
)2

Since the distribution of N is unknown, the above expression cannot be used. However,
by considering the series expansion of L, the following estimator of π can be constructed:

π̂GF =
m̂GF

κ

(
1 +

m̂GF (1− I(z3))C
2

2

)
.

Its asymptotic variance is given by

vπ̂GF =
(
1 +m(1− I(z3))C

2
)2
vm̂GF .

Simulation studies [23, Fig. 1, 2] have shown that the GF estimators are quite compa-
rable in precision to ML estimators, with a much broader range of calculability, a better
numerical stability, and a negligible computing time. Therefore, the optimization proce-
dure of the ML method is initialized with GF estimates, ensuring numerical stability and
computational economy.

3 Application on real data sets

Final number data are rarely reported in fluctuation analysis experiments, although ex-
ceptions exist such as two well-known data sets [5, 31]. In these two references, the authors
study the resistance to some antibiotics of Mycobacterium tuberculosis and use the LDM
method to perform estimation of π. As mentioned in Section 2, this method should not be
used. Moreover, the fluctuations of the final number of cells and the plating efficiency are
not rightly taking into account. In this section, these data sets are studied using R pack-
age flan. The results obtained by the authors using the LDM method are first compared
with the estimates of P0, ML and GF methods, under LD(m, 1, 0, 1) model. Therefore,
estimates and statistical tests will be computed and performed taking into account the
fluctuation of the final counts and the plating efficiency (still under LD formulation).

Consider first the study of David [5]. Table 1 of [5] contains 10 samples of mutant
counts. The author has decided to cluster the mutant counts according to some ranges
(for example, mutant count between 11 and 20). In this paper, these intervals have been
replaced by the median of their bounds (for example, 15 for the range 11-20). Each
sample of mutant counts is associated with a final number of cells. Table 2 of [5] is a
single sample of size 10 of couples (mutant count - final count of cells). Because of the
size of this sample, only the first data set will be considered here. Table 2 compares
the estimates obtained by the author with those of the P0, ML and GF methods under
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Author P0 ML GF

Antibio. π̂(×10−8) π̂(×10−8)
CI (95%)

of π(×10−8)
π̂(×10−8)

CI (95%)
of π(×10−8)

π̂(×10−8)
CI (95%)

de π(×10−8)

Ison.

1.84 1.85 [0.67 ; 3.03] 1.74 [1.07 ; 2.42] 1.78 [1.06 ; 2.50]

3.50 0.943 [0.514 ; 1.37] 2.62 [2.27 ; 2.98] 2.68 [2.01 ; 3.35]

1.70 1.17 [0.527 ; 1.82] 1.00 [0.545 ; 1.47] 1.01 [0.555 ; 1.46]

3.20 0.746 [0.451 ; 1.04] 2.05 [1.81 ; 2.29] 2.09 [1.67 ; 2.50]

Strept.
0.900 0.493 [0.194 ; 0.792] 0.376 [0.0857 ; 0.666] 0.241 [0.035 ; 0.447]

5.00 0.591 [0.375 ; 0.807] 1.89 [1.68 ; 2.09] 1.38 [1.08 ; 1.69]

Rifam.
0.180 0.0317 [0 ; 0.0937] 0.0309 [0 ; 0.0929] 0.0154 [0 ; 0.0665]

0.0270 0.0289 [0 ; 0.0572] 0.028 [0 ; 0.0563] 0.0166 [0 ; 0.0418]

Etham.
7.00 0.315 [0.0944 ; 0.536] 0.381 [0.165 ; 0.598] 0.606 [0.267 ; 0.944]

13.0 0.356 [0.224 ; 0.488] 0.649 [0.522 ; 0.777] 0.776 [0.578 ; 0.975]

Table 2: Estimates of π with data of David [5, Tab.1] under LD model. The
estimates of π by P0, ML and GF methods are computed dividing the estimates of m
obtained under LD model by the final number of cells. The relative fitness ρ and the
plating efficiency are set to 1, and the death parameter is set to 0. For each method, the
95% confidence intervals are also given.
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the LD model. Their 95% confidence intervals are also given. Remark that the data of
David [5] corresponds to the mutant counts in 0.1 mL of solution, when the cultures are
contained in 2 mL of solution. The author has exposed his results in terms of “mean
number of mutants by mL” and “final number of cells by mL”. In particular, the mean
number of mutants are obtained by multiplying by 10 those et in the samples. Of course,
this is not the right way to take into account the plating efficiency. This fact will be first
ignored: the current purpose is to show that the LDM method is not relevant. Indeed,
Table 2 illustrates the empirical observations of Table 1: the LDM method can provide
precise estimates (1st and 8th lines), but most of the estimates are biased, with some
times outliers (last line). Among all the estimates, only 3 belongs to the corresponding
confidence intervals (1st, 3rd and 8th lines). Recall that the one of the main conclusion
of this article was a high mutation rate to Ethambutol resistance.

Let us consider now that the relative fitness ρ is unknown and that the plating efficiency
is equal to ζ = 0.05. The estimates of the author has been computed with his reasoning,
but considering the “mean number of mutants in 2 mL” (resp. “final number of cells in
2 mL”) instead of the “mean number of mutants by mL” (resp. “final number of cells
by mL”). These estimates are compared with GF estimates in Table 3. Remark that the
fitness of the 7th sample cannot be estimated. In theory, that means that the fitness ρ
is larger than the upper bound of the research domain (set to [0 ; 100] in flan). The
associated estimate of m is thus irrelevant. The 5th and 8th estimates are the only that
belong t the corresponding confidence intervals. Remark that the size of 5th confidence
interval of π is very large, which is due to the large estimate of ρ. With these observations,
we could affirm that only the conclusion about the 8th sample conclusion in [5] seems
relevant.

Consider now the data set published by Werngren and Hoffner [31, Tab. 1]. In
this paper, the authors study the mutation rate of Beijing strains of Mycobacterium
tuberculosis to antibiotic resistance. The data set includes 13 samples of mutant counts
(7 non-Beijing strains, 6 Beijing strains). Each sample is associated with a final number
of cells. Table 4 compares the estimates of the authors with those of P0, ML and GF
methods under LD model. Their 95% confidence intervals are also given. The estimates
obtained by the authors are much closer to that of P0, ML and GF methods than in the
previous data set. Only the P0 method excludes some estimates (2nd, 4th, 5th and 9th
strains). Remark that the 1st and 7th samples do not contain null count: the P0 method
cannot be applied to these samples Consider now that the fitness ρ is unknown, and that
the plating efficiency is equal to ζ = 0.2. As for the previous data set, the LDM estimates
of π have been recalculated by replacing “ mean number of mutants by mL” (resp. “final
number of cells by mL”) by “mean number of mutants in 5 mL” (resp. “final number of
cells in 5 mL”). These estimates are compared with GF estimates in Table 5. Remark
that the GF method provides the mean number of mutations in the whole population
(i.e. in 5 mL of solution): then the final number of cells has to be multiplied by 5 in this
method.
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Author GF under LD model with ζ = 0.05

Antibio.
Estimates

of π(×10−8)

Recomputed
estimates

of π(×10−8)

Estimates
of π(×10−8)

CI (95%)
of π(×10−8)

Estimates
of ρ

CI (95%)
of ρ

Ison.

1.84 1.68 0.432 [0.143 ; 0.721] 0.719 [0.471 ; 0.967]

3.50 3.21 0.781 [0.461 ; 1.1] 0.789 [0.649 ; 0.93]

1.70 1.52 0.249 [0.0468 ; 0.451] 0.72 [0.383 ; 1.06]

3.20 3.04 0.0803 [0.0327 ; 0.128] 0.222 [0.106 ; 0.339]

Strept.
0.900 0.791 0.456 [0 ; 3.15] 16.3 [0 ; 1480]

5.00 4.39 0.0364 [0.0194 ; 0.0534] 0.0595 [0 ; 0.130]

Rifam.
0.0180 0.0140 0.00667 [0 ; 0.0255]

0.0270 0.0234 0.0148 [0 ; 0.0358] 1.69 [0 ; 3.87]

Etham.
7.00 6.26 0.0236 [0.00299 ; 0.0442] 0.151 [0 ; 0.323]

13.0 12.2 0.0236 [0.0127 ; 0.0346] 0.0929 [0.0157 ; 0.170]

Table 3: Estimates of π and ρ with data sets of David [5, Tab.1] under LD
model taking into account the plating efficiency. The LDM estimates have been
recomputed for the whole culture (2nd column). The estimates of m and ρ are computed
using GF method under LD model with a plating efficiency equal to ζ = 0.05 and a zero
death parameter. The estimates of π are obtained by dividing the estimates of m by the
final number of cells. The 95% confidence intervals of π and ρ are also given.
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Authors P0 ML GF

Strains π̂(×10−8) π̂(×10−8)
CI (95%)

of π(×10−8)
π̂(×10−8)

CI (95%)
of π(×10−8)

π̂(×10−8)
CI (95%)

of π(×10−8)

H37Rv 0.860 1.54 [0.484 ; 2.60] 0.998 [0.548 ; 1.45]

E865/94 2.40 6.27 [2.44 ; 10.1] 3.99 [1.79 ; 6.19] 3.03 [1.60 ; 4.46]

E729/94 0.960 1.94 [0.92 ; 2.97] 1.45 [0.759 ; 2.15] 1.16 [0.638 ; 1.69]

E740/94 1.10 2.53 [1.20 ; 3.86] 1.93 [0.868 ; 2.99] 1.35 [0.687 ; 2.01]

E1221/94 0.650 1.33 [0.662 ; 1.99] 0.921 [0.447 ; 1.40] 0.761 [0.401 ; 1.12]

E1449/94 1.50 3.18 [1.26 ; 5.10] 2.45 [1.22 ; 3.67] 1.8 [0.975 ; 2.62]

Harl. 1.40 2.53 [0.898 ; 4.16] 1.72 [0.933 ; 2.50]

E26/95 1.30 2.29 [1.17 ; 3.41] 1.73 [0.846 ; 2.60] 1.51 [0.823 ; 2.20]

E80/95 0.790 2.10 [0.997 ; 3.21] 1.41 [0.648 ; 2.17] 1.00 [0.500 ; 1.51]

E55/94 1.00 1.83 [0.888 ; 2.77] 1.49 [0.639 ; 2.35] 1.21 [0.500 ; 1.91]

E26/94 0.940 3.16 [1.50 ; 4.82] 1.76 [0.565 ; 2.96] 1.10 [0.461 ; 1.74]

E3942/94 1.50 2.81 [1.33 ; 4.28] 2.31 [1.28 ; 3.33] 1.90 [1.09 ; 2.72]

E47/94 1.20 1.59 [0.811 ; 2.36] 1.48 [0.849 ; 2.11] 1.46 [0.815 ; 2.10]

Table 4: Estimates of π with data set of Werngren and Hoffner [31, Tab.1]
under LD model. The estimates of π by P0, ML and GF methods are computed by
dividing those of m by the associated final number of cells. The relative fitness ρ and the
plating efficiency are set to 1 and the death parameter δ is null. For each method, 95%
confidence interval of π are also given.
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Authors GF sous modèle LD avec ζ = 0.2

Souches
Estimates

of π(×10−8)

Estimations
recalculées
de π(×10−8)

Estimates
of π(×10−8)

IC (95%)
de π(×10−8)

Estimates
of ρ

IC (95%)
de ρ

H37Rv 0.860 0.172 2.95 [0 ; 6.50] 8.59 [0 ; 87.0]

E865/94 2.40 0.482 4.05 [1.50 ; 6.59] 1.99 [0.433 ; 3.54]

E729/94 0.960 0.193 1.17 [0.552 ; 1.79] 1.45 [0.737 ; 2.17]

E740/94 1.10 0.223 2.11 [0.817 ; 3.40] 2.32 [0.233 ; 4.40]

E1221/94 0.650 0.128 0.739 [0.311 ; 1.17] 1.52 [0.636 ; 2.39]

E1449/94 1.50 0.300 2.35 [1.16 ; 3.55] 1.73 [0.815 ; 2.64]

Harl. 1.40 0.278 4.28 [0 ; 9.90] 8.01 [0 ; 81.9]

E26/95 1.30 0.256 1.29 [0.502 ; 2.07] 1.42 [0.555 ; 2.28]

E80/95 0.790 0.161 1.42 [0.549 ; 2.30] 2.16 [0.346 ; 3.98]

E55/94 1.00 0.202 1.12 [0.39 ; 1.85] 1.57 [0.478 ; 2.66]

E26/94 0.940 0.188 0.701 [0.338 ; 1.06]

E3942/94 1.50 0.302 1.75 [0.837 ; 2.66] 1.34 [0.725 ; 1.96]

E47/94 1.20 0.252 0.756 [0.320 ; 1.19] 0.874 [0.450 ; 1.30]

Table 5: Estimates of π and ρ with data set of Werngren and Hoffner [31,
Tab.1] under LD model taking into account the plating efficiency. The LDM
estimates have been recalculated for the whole population. The GF estimates of m and ρ
are computed under LD model with a plating efficiency ζ = 0.2 and a death parameter
equal to 0. The estimates of π are then obtained by dividing the estimates of m by the
final number or cells. The 95% confidence intervals are also given.
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Remark that the fitness cannot be estimated for the 11th sample. Also, its estimates
for the 1st and the 7th strains are ridiculously large. The estimates obtained by the
authors are very far from the GF estimates. However, since the samples are small, the
sizes of the confidence intervals are such that they contain the author’s estimates.

In this paper, the authors classify the strains according to their genotype (Beijing
and non-Beijing) to check if the mutation probability is higher for a particular strain.
Without performing a statistical test, they claim that there is no significative difference
between the Beijing and the non-Beijing. Denote by πnB an πB the mutation probability
for non-Beijing and Beijing strains. Performing the following bilateral Student test

H0 : πnB = πB vs H1 : πnB 6= πB;

using authors’ estimates gives a p-value equal to 0.56: thus it seems there is no significant
difference between the two genotypes. However, performing now the following unilateral
test

H0 : πnB = πB vs H1 : πnB > πB;

with the GF estimates taking into account the plating efficiency gives a p-value equal
to 0.0192: therefore, the mutation probability of the non-Beijing strains seems to be
significantly higher than that of the Beijing strains.

It is also possible to perform two sample test on all the strains, without considering
their genotype. Table 6 shows the p-values of the statistical tests

H0 : πi = πj vs H1 : πi > πj;

which compare the probability mutation of the i-th strain (rows) with that of the j-th
strain (columns). Table 7 exposes the p-values of the statistical tests

H0 : πi = πj vs H1 : ρi > ρj;

which compare the fitness parameter of the i-th strain (rows) with that of the j-th strain
(columns). The LD model with plating efficiency is considered, with ζ = 0.2 and δ = 0.
The type I error is set to 5%.

First of all, only E1449/94 and E47/94 seems to be significantly different in term of
relative fitness. Moreover, since the GF method cannot estimate the relative fitness of
the E26/94, the statistical tests have not been performed for this strain. Remain that
the previous tables contain unusually high values of fitness for some strains. Concerning
the mutation probability, the results are more precise than previously: the mutation
probability of the E865/94 strain seems to be significantly higher the Beijing strains.
However, other non-Beijing strains are not significantly different from Beijing strain:
for example, no significant difference is observed between the E729/94 or the Harlingen
strains and the Beijing strains. The assertion “the mutation probability of non-Beijing
strains is significantly higher than that of Beijing strains” has been previously accepted.
According to the results, it seems that this difference is mainly caused the E865/94 and
E1449/94 strains. Moreover, significant differences are also observed between strains with
the same genotype: see for example strains E1449/94 and E1221/94.
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Conclusion

This paper has first proposed an extension to classic mutation model to the case where
the plating is not fully efficient. The distribution of the final mutant count has been
explicited: it depends on the mean number of mutations m, the relative fitness ρ, the
death parameter δ, and the plating efficiency ζ. The estimation problem has been treated:
assuming that δ and ζ are known, and that the mutant lifetimes are exponentially i.i.d., the
three methods of interest (P0, Maximum Likelihood and Generating Function method)
can be applied, as in the case ζ = 1. When the mutant lifetimes are assumed to be
constant, only the Generating Function method can be used. The choice of these three
specific methods is justified: simulation studies had been performed to compare their
results with that of other methods which are still used despite their lack of robustness.
An other bias source studied in this paper is the varying final number of cells: it has
been previously shown that ignoring these fluctuations induces a negative bias on the
mutation probability estimate. Two types of data sets can be considered: for couples
(mutation count – final number), Maximum Likelihood can be directly used; in the case
where data are mutant counts associated with empirical informations (mean and standard
deviation), the correction previously proposed for the P0 method can be adapted to
the Maximum Likelihood and the Generating Function method. Remark that the best
mutation probabilities estimates are obtained when first type data are used. The R
package flan including the methods and extensions exposed in this paper is available on
the CRAN. It had been used on well-known real data sets, comparing the obtained results
with those of authors.
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