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We consider a immiscible two-phase flow through an one-dimensional heterogeneous porous medium made of an apposition of several homogeneous porous media. This leads to a nonlinear degenerate parabolic problem, with monotonous transmission conditions between the different homogeneous subdomains. We give an implicit finite volume scheme for such a twophase flow, and we prove the convergence of the inducted discrete solutions to a weak solution.

Under assumption on the initial condition, i.e. if it yields bounded flux, and if the total flowrate belongs to BV (0, T ), then the discrete solution obtained via the scheme converges toward a solution with bounded flux. We prove a L 1 -contraction principle for such a bounded flux solution. This uniqueness result is extended using a SOLA approach in the case where there are no particular regularity assumptions on the initial data, and we check that the discrete solution obtained via the implicit finite volume scheme converges to this SOLA.

Introduction: the model

We consider a heterogeneous porous medium Ω, which is an apposition of homogeneous porous media Ω i , representing the different geological layers, so that the physical properties of the medium only depend of the rock type and are piece-wise constant. We restrict our study to the one-dimensional case, even if all the results stated in section 2 can be quite easily adapted to larger dimensions (see [ENC 06]). For the sake of simplicity, we only deal with two geological layers with same size, because a generalisation to an arbitrary finite number of geological layers would only lead to notation difficulties. In the sequel, we denote by Ω =]-1, 1[ the heterogeneous porous medium, and by Ω 1 =] -1, 0[, Ω 2 =]0, 1[ the two homogeneous layers. The interface between the layers is thus {x = 0}. T is a positive integer.

The study of the flow in each Ω i , i = 1, 2 leads to the following degenerated parabolic equation:

φ i ∂ t u + ∂ x (qf i (u) -λ i (u)∂ x π i (u)) = 0, [1]
where, for i = 1, 2:

φ i is the porosity of Ω i , 0 < φ i < 1, -u(x, t) is the water-saturation, 0 ≤ u ≤ 1, -q(t) is the total flow rate, q ∈ L 1 (0, T ), q ≥ 0,

-f i is a continuous increasing function, f i (0) = 0, f i (1) = 1, -λ i is a continuous function, with λ i (0) = λ i (1) = 0, λ i (s) > 0 if 0 < s < 1, -the capillary pressure u → π i (u) ∈ C 1 ([0, 1], R) is increasing.
Focusing on the interface {x = 0}, we get the following transmission conditions: denoting u i the restriction of u to Ω i and

ϕ i (s) = s 0 λ i (a)π i (a)da, q(t)f 1 (u 1 )(0, t) -∂ x ϕ 1 (u 1 )(0, t) = q(t)f 2 (u 2 )(0, t) -∂ x ϕ 2 (u 2 )(0, t), [2] π1 (u 1 (0, t)) ∩ π2 (u 2 (0, t)) = ∅, [3] where πi (s) =    π i (s) if s ∈]0, 1[, ] -∞, π i (0)] if s = 0, [π i (1), +∞[ if s = 1.
We choose the boundary conditions:

q(t)f 1 (u 1 )(-1, t) -∂ x ϕ 1 (u 1 )(-1, t) = g(t) ∈ [0, q(t)],
[4]

∂ x ϕ 2 (u 2 )(1, t) = 0. [5]
and an initial data u 0 ∈ L ∞ (Ω).

Definition 1.1 (weak solution) A function u is said to be a weak solution if it fulfills:

1) u ∈ L ∞ (Ω × (0, T )), with 0 ≤ u ≤ 1, 2) for i = 1, 2, ϕ i (u) ∈ L 2 ((0, T ); H 1 (Ω i )), 3) for a.e. t ∈ (0, T ), π1 (u 1 (0, t)) ∩ π2 (u 2 (0, t)) = ∅, 4) for all ψ ∈ D(Ω × [0, T [), T 0 i=1,2 Ωi φ i u(x, t)∂ t ψ(x, t)dxdt + i=1,2 Ωi φ i u 0 (x)ψ(x, 0)dx + T 0 i=1,2 Ωi [q(t)f i (u)(x, t) -∂ x ϕ i (u)(x, t)] ∂ x ψ(x, t)dxdt + T 0 g(t)ψ(-1, t)dt - T 0 q(t)f 2 (u 2 )(1, t)ψ(1, t)dt = 0. [6]
2. Convergence of an implicit finite volume scheme

For the sake of simplicity, we choose to deal only with uniform discretization of Ω × (0, T ), which are defined by two positive integers M, N .

Discretization of Ω: we denote by δx = 1/N and

x j = j/N, ∀j ∈ [[-N, N]], x j+1/2 = j + 1/2 N , ∀j ∈ [[-N, N -1]].
Discretization of [0, T ]: we denote by δt = T /M , and

t n = nδt, for all n ∈ [[0, M]].
Discretization of the data:

-∀j ∈ [[-N, N -1]], u 0,D (x j+1/2 ) = u 0 j+1/2 = 1 δx xj+1 xj u 0 (x)dx, -q 0 = q 1 = 1 δt δt 0 q(t)dt, q n+1 = 1 δt t n+1 t n q(t)dt, -g 0 = g 1 = 1 δt δt 0 g(t)dt, g n+1 = 1 δt t n+1 t n g(t)dt, Equation [1] can be rewritten φ i ∂ t u + ∂ x F (x, t) = 0, with F (x, t) = q(t)f i (u) - ∂ x ϕ i (u).
We consider the following implicit scheme:

∀j ∈ [[-N, N -1]], ∀n ∈ [[0, M -1]], φ i u n+1 j+1/2 -u n j+1/2 δt δx + F n+1 j+1 -F n+1 j = 0, [7] 
where the discrete fluxes are given by the following two-points scheme:

-

∀j ∈ J int = [[-N + 1, -2]] ∪ [[1, N -2]], ∀n ∈ [[0, M -1]], F n+1 j = q n+1 f i (u n+1 j-1/2 ) - ϕ i (u n+1 j+1/2 ) -ϕ i (u n+1 j-1/2 ) δx , [8] -∀n ∈ [[0, M -1]], F n+1 -N = g n+1 , [9] F n+1 N = q n+1 f 2 (u n+1 N -1/2 ). [10] -∀n ∈ [[0, M -1]], π1 (u n+1 0,1 ) ∩ π2 (u n+1 0,2 ) = ∅ [11] F n+1 0 = q n+1 f 1 (u n+1 -1/2 ) - 2(ϕ 1 (u n+1 0,1 ) -ϕ 1 (u n+1 -1/2 )) δx [12] = q n+1 f 2 (u n+1 0,2 ) - 2(ϕ 2 (u n+1 1/2 ) -ϕ 2 (u n+1 0,2 )) δx . [13]
The definition of F n+1 0 is justified by the following lemma, which is a consequence of the monotony of the transmission conditions.

Lemma 2.1 (discrete transmission conditions) Let (a, b) ∈ R 2 , let n ∈ [[0, M -1]],
then there exists a unique couple (c, d) ∈ [0, 1] 2 such that:

q n+1 f 1 (a) - 2(ϕ 1 (c) -ϕ 1 (a)) δx = q n+1 f 2 (d) - 2(ϕ 2 (b) -ϕ 2 (d)) δx , π1 (c) ∩ π2 (d) = ∅,
where for all s ≤ 0, f i (s) = 0, ϕ i (s) = 0, and for all s ≥ 1, We deduce from lemma 2.1 that [7] is a monotonous scheme, and thus we can apply a classical study (see e.g. [EYM 00, ENC 06]) to claim the following.

f i (s) = 1, ϕ i (s) = ϕ i (1).

Proposition 2.2 (discrete solution)

There exists a unique solution (u n+1 j+1/2 ) j,n to the scheme, fulfilling furthermore:

∀j ∈ [[-N, N -1]], ∀n ∈ [[0, M]], 0 ≤ u n j+1/2 ≤ 1.
We define the unique discrete solution u D almost everywhere in Ω × (0, T ) by:

u D (x, t) = u n+1 j+1/2 if (x, t) ∈]x j , x j+1 [×]t n , t n+1 ].
If u 0,D , v 0,D are two discrete initial data, and if u D , v D are the inducted discrete solution, we obtain:

∀t ∈]0, T ], i=1,2 Ωi φ i |u D (x, t) -v D (x, t)|dx ≤ i=1,2 Ωi φ i |u 0,D (x) -v 0,D (x)|dx. [14]
The discrete solution fulfils a discrete L 2 (0, T ; H 1 (Ω i )) estimate, i.e. there exists C(q, T, φ i , π i ) depending on the data, but not on the discretization of Ω × (0, T ) such that:

∀i = 1, 2, ∀(N, M ) ∈ (N ) 2 , T 0   j∈Jint δx ϕ i (u D )(x j+1/2 , t) -ϕ i (u D )(x j-1/2 , t) x j+1/2 -x j-1/2 2   dt ≤ C. [15]
We deduce from [15] some estimates on the space and time translates (see [EYM 00]), and so we obtain a compactness result on the set of the discrete solutions. Letting the discretization step tend to 0, one gets the following convergence result.

Proposition 2.3 (convergence to a weak solution) Let (M p ) p∈N , (N p ) p∈N be two sequences of positive integers tending to +∞, and let (u Dp ) p be the sequence of the inducted discrete solutions. Then there exists a weak solution u in the sense of definition 1.1 such that, up to a subsequence: ∀r ∈ [1, +∞[,

u Dp → u in L r (Ω × (0, T )).
All the results of this section still hold in larger dimensions. This can be proven by adapting the proof of [ENC 06] to transmission conditions [2],[3].

Uniform bound on the flux

As will be stated in section 4, we are not able to prove the uniqueness of the weak solution. Some additional regularity on the weak solution is necessary, so we define the notion of the bounded-flux solution.

Definition 3.1 (bounded-flux solution) A function u is said to be a bounded-flux solution if:

1) u is a weak solution in the sense of definition 1.1,

2) ∂ x ϕ i (u) belongs to L ∞ (Ω i × (0, T )).
In order to get an existence result for bounded-flux solutions, we need some more regularity on the data, as stated below.

Assumption 1 (additional regularity on the data) We assume that:

1) ∂ x ϕ i (u 0 ) ∈ L ∞ (Ω i ), 0 ≤ u 0 ≤ 1, 2) π1 (u 0,1 ) ∩ π2 (u 0,2 ) = ∅, where u 0,i is the trace of u 0|Ω i on {x = 0}, 3) q ∈ BV (0, T ), q ≥ 0, 4) g ∈ L ∞ (0, T ), 0 ≤ g ≤ q.
Let us define (F 0 j ) |j|≤N as in [8], [9], [10], [11], [12] and [13] where (n + 1) must be replaced by 0. Assumption 1 allows us to claim that:

max j=-N,...,N |F 0 j | ≤ q 0 + 2 max i=1,2 ∂ x ϕ i (u 0 ) L ∞ (Ωi) ≤ C. [16]
Lemma 3.1 (uniform bound on the discrete fluxes) Under assumption 1, there exists C > 0 only depending on u 0 , ϕ i , q, g and T such that:

max j∈[[-N,N]] max n∈[[0,M]] |F n j | ≤ C.

Sketch of the proof of lemma 3.1

We here perform an adaptation to the discrete case of the proof stated in [CAN ], which uses a maximum principle on the fluxes. For i = 1, 2, equation [1] can be rewritten

φ i ∂ t u + ∂ x F (x, t) = 0, [17] with F (x, t) = q(t)f i (u)(x, t) -∂ x ϕ i (u)(x, t). [18]
Formally, deriving [18] w.r.t. t and using [17] yields:

∂ t F + qf i (u) φ i ∂ x F -∂ x ϕ i (u) φ i ∂ x F = q f i (u).
[19]

This computations on the discrete case gives a monotonous scheme with (F n+1 j ) j,n as unknowns: we deduce from [7] and [8] that for all j ∈ J int , for all n ∈ [[0, M -1]], there exists (a n+1 j,j-1 , a n+1 j,j+1 ) ∈ (R + ) 2 such that:

F n+1 j-1 , F n+1 j , F n+1 j+1 •   -a n+1 j,j-1 1 + a n+1 j,j-1 + a n+1 j,j+1 -a n+1 j,j+1   ≤ F n j + q n+1 -q n + . [20]
Using strongly the monotony of the discrete transmission conditions [11], [12] and [13], we can also show that there exist (a n+1 0,-1 , a n+1 0,1 ) ∈ (R + ) 2 such that [20] also holds for j = 0. Since the discrete boundary conditions [9] and [10] insure that F n+1 N and F n+1 -N stay uniformly bounded by q ∞ , we can claim that

max j F n+1 j ≤ max q ∞ , max j F n j + q n+1 -q n + ,
and thus

max n max j F n+1 j ≤ max q ∞ , max j F 0 j + 2T V (q).
Thanks to assumptions 1 and estimate [16], the right-hand-side member is uniformly bounded. We conclude the proof of lemma 3.1 by showing the corresponding underestimate:

min n min j F n+1 j ≥ min 0, min j F 0 j -2T V (q).
Proposition 3.2 (convergence to a bounded-flux solution) Let (M p ) p , (N p ) p be two sequences of positive integers tending to +∞, and let (u Dp ) p be the inducted sequence of discrete solutions. Under assumption 1 there exists a bounded-flux solution u in the sense of defintion 1.1 such that, up to a subsequence: ∀r ∈ [1, +∞[,

u Dp → u in L r (Ω × (0, T )).

Uniqueness of the bounded-flux solution

Theorem 4.1 (L 1 -contraction for bounded-flux solution) Suppose that for i = 1, 2,

f i • ϕ -1 i ∈ C 0, 1 2 ([0, ϕ i (1)], R).
Let u,v be two bounded-flux solutions in the sense of definition 3.1 associated to initial data u 0 ,v 0 . Then u and v belong to C([0, T ]; L 1 (Ω)), and for all t ≥ 0,

i=1,2 Ωi φ i (u(x, t) -v(x, t)) ± dx ≤ i=1,2 Ωi φ i (u 0 (x) -v 0 (x)) ± dx.
Corollary 4.2 Keeping the notations of proposition 3.2, and under assumptions 1, the whole sequence (u Dp ) p converges in L r (Ω × (0, T )) towards the unique bounded flux solution.

Sketch of the proof of theorem 4.1

The proof is based on a doubling variable method w.r.t. the time variable, first in each Ω i , and on a transmission lemma 4.3 to deal with the interface {x = 0}.

Since u, v are weak solutions, they belong to C([0, T ]; L 1 (Ω)) (see lemma 7.41 in [M`96]). Some classical computations (see e.g. [OTT 96]) give: ∀θ ∈ BV (0, T ), θ ≥ 0, θ(T ) = 0, ∀ψ ∈ W 1,1 (Ω), ψ ≥ 0, ψ(0) = 0,

T 0 i Ωi φ i (u(x, t) -v(x, t)) + ∂ t θ(t)ψ(x)dxdt + i Ωi φ i (u 0 (x) -v 0 (x)) + ψ(x)θ(0)dx + T 0 θ(t) i Ωi q(t)(f i (u)(x, t) -f i (v)(x, t)) + ∂ x ψ(x)dxdt - T 0 θ(t) i Ωi ∂ x (ϕ i (u)(x, t) -ϕ i (v)(x, t)) + ∂ x ψ(x)dxdt ≥ 0.
[21]

We need the following key lemma, which is a consequence of the uniform bound on the flux and of the monotony of the transmission conditions [2] and [3].

Lemma 4.3 If ε > 0, we denote ξ ε (x) = max 0, 1 -|x| ε . ∀θ ∈ BV (0, T ), θ ≥ 0, θ(T ) = 0, lim inf ε→0 T 0 θ(t) i=1,2 Ωi q(t)(f i (u)(x, t) -f i (v)(x, t)) + -∂ x (ϕ i (u)(x, t) -ϕ i (v)(x, t)) + ∂ x ξ ε (x)dxdt ≥ 0. Let t ∈]0, T [. Taking ψ(x) = (1 -ξ ε (x)), θ t (s) = χ [0,t] (s) in [21]
, and letting ε tend to 0 gives:

i=1,2 Ωi φ i (u(x, t) -v(x, t)) + dx ≤ i=1,2 Ωi φ i (u 0 (x) -v 0 (x)) + dx.
Similar calculations leads to the same inequality with (•) -instead of (•) + .

Convergence to the unique SOLA

The goal of this part is to get the convergence of the whole sequence of discrete solutions despite u 0 "only" belongs to L ∞ (Ω).

Definition 5.1 (SOLA to the problem) A function u is said to be a SOLA if it fulfils:

u is a weak solution in the sense of definition 1.1, -there exists a sequence (u n ) n∈N of bounded flux solutions such that

u n → u in C([0, T ]; L 1 (Ω)), as n → +∞.
Theorem 5.1 (Convergence to the unique SOLA) Let u 0 ∈ L ∞ (Ω), 0 ≤ u 0 ≤ 1, and q ∈ BV (0, T ), g ∈ L ∞ (0, T ), 0 ≤ g ≤ q. There exists a unique SOLA u in the sense of definition 5.1. Let (M p ) p , (N p ) p be two sequences of positive integers tending to +∞, and let (u Dp ) p be the sequence of the inducted discrete solutions. Then the whole sequence (u Dp ) p converges to the unique SOLA u in L r (Ω × (0, T )), r ∈ [1, +∞[ as p tends to +∞.

Sketch of the proof of theorem 5.1

Let (u 0,ν ) ν∈N be a sequence of approximate initial data such that: for all ν ∈ N, (u 0,ν , q, g) fulfils assumptions 1, and lim ν→+∞ u 0,ν -u 0 L 1 (Ω) = 0. Let (u ν ) ν be the inducted sequence of bounded flux solutions. The L 1 -contraction principle stated in theorem 4.1 allows us to claim that (u ν ) ν is a Cauchy sequence in C([0, T ]; L 1 (Ω)). It is then easy to check that u is a weak solution, so it is a SOLA. The L 1 -contraction principle still holds for the SOLAs, which is thus unique.

Let (M p ) p , (N p ) p be two sequences of positive integers tending to +∞, (u Dp ) p (resp.(u ν,Dp ) p ) be the sequence of the inducted discrete solutions for u 0 (resp. u 0,ν ) as initial data. From [14], we obtain: Letting ν tend to +∞ shows that u is a SOLA in the sense of definition 5.1.

  Furthermore, (a, b) → c and (a, b) → d are continuous and non-decreasing w.r.t. each one of their arguments.

i=1, 2

 2 Ωi

φ

  i |u Dp (x, t) -u ν,Dp (x, t)|dx ≤ i=1,2 Ωi φ i |u 0,Dp (x) -u 0,ν,Dp (x)|dx.Letting p tend to +∞, u Dp (x, t) tends to a weak solution u thanks to proposition 2.3. u ν,Dp tends to a bounded flux solution u ν thanks to proposition 3.2, and so:i=1,2 Ωi φ i |u(x, t) -u ν (x, t)|dx ≤ i=1,2 Ωiφ i |u 0 (x) -u 0,ν (x)|dx.