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Double conductivity media: a comparison between phenomenological and homogenization approaches

The heat lransfer mode) for the double conductivity medium is investigated. The medium is composed of two homogeneous materials which differ considerably in their conductivity characteristics. The aim of this paper is to compare the descriptions obtained by a phenomenological and a homogenization approach. The first one, which introduces two temperature fields, is shown to be inefficient for a large range of the phenomena. The latter gives the rigorous description. The study enables us to improve the phenomenological description. It provides an approximation which is valid for the quasi-static conditions.

INTRODUCTION

WE CONSIDER a two-constituent medium characterized by the conductivities which differ considerably, and we investigate transient heat transfers. For the sake of simplicity the two constituents will be assumed to be homogeneous. The modelling of such a medium at the scale of the heterogeneities îs totally inefficient because of the high number of heterogeneities in macroscopic samples, that renders the calculations intractable. A classical idea is to replace the medium by a continuous one which is equivalent from the macroscopic point of view. We focus here on two different approaches.

On the one hand, the modelling of such media with double-conductivity has been investigated directly at the macroscopic scale, by using a phenomenological approach (I-3]. Two temperature fields are assumed, i.e. one for each constituent. Similar approaches have also been carried out for other diffusive processes, such as diffusion [START_REF] Aifanlis | On the problem or diff usion in solids[END_REF][START_REF] Aifantis | On the theory of diffusion in media with double dilfusivity 1. Basic mathematical results, Q11arterly[END_REF], or flow through double porosity porous media [START_REF] Barenblatt | Basic concepts in the theory of seepage ofhornogeneous liquids in fissured rocks[END_REF][START_REF] Barenblatt | On certain boundary-value problems for the equations of seepage of a liquid in fissured rocks[END_REF][START_REF] Barenblatt | Theorr of F/11/d Flow,; through Natural Rocks[END_REF][START_REF] Warren | The behaviour of naturally fractured reservoîrs[END_REF][START_REF] Van Golf-Racht | F1111dame11tals of Fractured Res ervoir Engineering[END_REF].

On the other hand, an effective macroscopic description for transient heat transfer in periodic com posites with double-conductivity was obtained [START_REF] Auriault | Effective macroscopic description for heat conduction in periodic composites. !nt[END_REF] by an homogenization technique using asymptotic devel opments. The method is based on the passage from the microscopie description-the heterogeneity scale-to the macroscopic one by using the small parameter s, which is the ratio between the two scale characteristic lengths. The method gïves the exact macroscopic description, within an approximation O(s).

Although the homogenization leads to the right answer, the modelling which is obtained appears to be a little more complex than the phenomenological one. And the latter is often considered as a good approximation for weakly transient processes. lt is therefore of interest to investigate the links between them. The problem was already partially addressed in ref. (12] where the two descriptions were shown to lead to similar boundary value problems from the mathematical point of view.

At fi rst, in Section 2, we present the phenom enological approach for the modelling of heat trans fers in media with double conductivity.

In Section 3 the results are recalled obtained in ref. [START_REF] Auriault | Effective macroscopic description for heat conduction in periodic composites. !nt[END_REF] with an homogenization technique. The reason ing follows a more recent forrnalism [START_REF] Auriault | Heterogeneous medium. Is an equivalent macroscopic description possible? lut[END_REF].

Then, Section 4 is devoted to the comparison between the two descriptions. lt is shown that they are equivalent only in a particular case, for a given pulsation of the excitation. The phenomenological approach is shown to be inefficient for a large range of the phenomena.

Finally, based on the application of the homo genization approach, the phenomenological point of view is improved in Section 5 and a correct approxi mation for the quasi-static behaviour is provided.

PHENOMENOLOGICAL APPROACH

When considering double-conductivity media, the phenomenological reasoning is characterized by the introduction of two temperature fields, i.e. one tem perature for each constituent(!]. These temperatures are defi ned at a macroscopic scale, directly, and the description is assumed to be continuous.

Because of the two different temperatures, a heat flux between the two constituents appears. Using this point of view, Rubinshtein [l] and Aifantis and Beskos [START_REF] Aifantis | Heat extraction rrom hot dry rocks[END_REF] introduce an interconstituent heat transfer to be proportional to the temperature difference between the constituents. The composite material is made of two homogeneous constituents, one of them, denoted 1, being much more conductive than the other, denoted 2. The two constituents are occupying, .i low space variable

)'
fast space variable (pc) effective value of pc for the homogenizalion approach ( p c)u, average of pc in the medium i for the phenomenological approach.

respectively, the volumes n 1 and n 2 . Two temperature fi elds, t I and t 1 , are defined in each point as the average of the temperatures in the corresponding constituent, respectively. Corresponding are two heat fluxes ij 1 and ij 2 per unit surface which are again defi ned at each point. At each point the quantity Q 1 is a!so defined as the quantity of heat in a volume Q, of the medium i, Î= 1,2. The heat equation in the medium i is then written

dQ ; dt Î V(I 1 V1;) dv+ Î 'P 1 d1•

Jn, Jn.

where I; denotes the macroscopic thermal con ductivity of the medium i, t is time and i/1 1 an internai production term, the interconstituent heat transfer. It is often supposed that this latter can be considered in a linearized form. Therefore, 'P 1 (which is defined as the heat transfer from medium 2 to medium 1 ) can be put in the form '111 =cx(/1 12)

where r:1. is a negative constant and denotes the transfer particular solution for T ' f ' ;

term of heat transfer between the two constituents of the composite for the phenomenological approach w pulsation Q spatial period Qi volume occupied by medium i.

X 1 is supposed negligible with respect to I 1 • Then, the phenomenological approach for the conduction phenomenon in a composite composed of two materials very different in their conductivities, leads to the two following coupled equations In medium 2, the macroscopic thermie conductivity Proceeding by Fourier's analvsis, we study the sys-tem response to a harmonie perturbation of the pul sation w ti = Ti e'""

where T i and T ::. are the complex numbers.

Then, eliminating T ::. between ( 1) and ( 2) leads to

V(X 1 VT 1 ) =
-cw1"11 2 (p 2 c ::. f +icx 1 w((l-n)p 1 ci +np::.c 2 )

+iw 3 11"(l -11)p 1C1 (P2C2) 2 ----- cx -2 � + -w ___, 2 c -- n -o-2 - (p - 1 - c _ 2 _ f �----T ,. (3) 
Equation ( 3) represents the phenomenological description of the transient heat transfer process at the constant pulsation. Thus, the phenomenological description of the problem is governed by the tem perature of the more conductive constituent. Note that the conductivity of the second constituent has been neglected and that it seems to be difficult to give a physical interpretation of the temperature field T 2 •

APPLICATION OF THE HQMOGENIZATION METHOO

Unlike the phenomenological approach, the homo genization method is based on the passage from the microscopie description to the macroscopic one. The main idea of this method is to define, if possible, a fictitious homogeneous medium, that will be hereafter referred to as the homogeneous medium or the equi valent macroscopic medium. Il will behave as the com posite medium when submitted to the same external constraints. The description of this medium must be intrinsic to the material and the phenomenon con sidered. In particular, it should not depend on the macroscopic boundary conditions.

An effective macroscopic description for transient heat conduction in periodic composites has been already derived by Auriault [START_REF] Auriault | Effective macroscopic description for heat conduction in periodic composites. !nt[END_REF]. In this paper we follow the hornogenization process which was pre sented in ref. [START_REF] Auriault | Heterogeneous medium. Is an equivalent macroscopic description possible? lut[END_REF]. Consîder a two-constituent com posite medium, with heterogeneity sizes 0(/) and a large volume of this material of a dimension L. Assume a good separatîon of scales e l -« I L

The composite is periodic with a period Q = 0(/). The period is composed of two parts Q I and Q 2 , occupied by the constituents I and 2, respectively (Fig. 1 ).

At the initial time, the medium is in thermal equi librium and the temperature has a constant value throughout the period. Consider a perturbation of this equilibrium, with the pulsation w, in such a way that the wavelength is large compared to the charac teristic length / of the period. The temperature per turbation is given by

T(.i) é"'

where T is a fonction or the space coordinates

The determination of the macroscopic laws by the homogenization method is based on the use of an asymptotic expansion of T in powers of the small parameter e and including a double scale with charac teristic lengths / and L. Due to the separation of scales, the temperature T can be written as a function of two space variables T(.i,_r).

The variable .i is the macroscopic space variable and y (.i /f.) is the microscopie one. describing the small heterogeneities.

The ternperature T is looked for in the form T(. i,.r) = T 0 (. i,fl+eT 1 (. i,f)+e 2 T 2 (. i,fl+ • •• where the T' are periodic with respect to J', with a period f.l* fi.je. For the sake of simplicity, Q* will be denoted Qin that which follows. The method consists of incorporating such an expansion into the set of equations which describes the phenomenon at the local scale and in identifying the powers of e, while keeping in mind that .i and _v should be considered as independent variables. The homogenization process gives a set of equations sat isfied by T 0 , which in fact represents the macroscopic behaviour within an approximation O(e).

Let 1. 1 and ). V 1 .(À.2 V,.k) P2C 2 iw(k-l) in il 2 k = 0 on r.

(14) The equations which govern the problem at the local Putting scale are V(,1.

1 VT 1 ) fJ 1 C1 iWT 1 inil 1 V(). zVTi) = f)2C 2 iWT 2 in n 2 [TJr 0 [,1.VTJr•n = o (5) (6) (7) (8)
in which ii denotes a unit vector, normal to r. We aim at discovering the equivalent macroscopic description. The non-dimensionalizing of equations ( 5)-( 8) intro duces the following dimensionless numbers

V À1 �Il. = p,C i WL 2
We will assume that We now make dimensionless the set ofequations (5) [START_REF] Barenblatt | Theorr of F/11/d Flow,; through Natural Rocks[END_REF]. For the sake of simplicity, we use the same notations for nondimensional quantities. Therefore, the dimensionless equations for the local description are as follows

V(). 1 VT,) P 1 C 1 iWT1 V(e 2 l 2VT2 ) = p 2 c2iwT2
in the media n 1 and il 2 , respectively, and Ti T1 on r )./JT1 •,î 1 =e 2 Â2VT 1 •ii, onr. where .K(t) is the inverse Fourier transform of (k)/iw K(t) ;p• 1 c�)

= l� I I [ r (/Jp dn ] 2 exp(-, 1).

up=I Jn, P2l2

Note that in the general case, K(t) is a sum of expon ential terms. It represents a memory function which gives the behaviour at time t depending on the history of the second time derivative of the temperature. An equivalent formulation is obtained by integrating by parts the integral in equation ( 16) and noticing that ail the time derivatives of K(t) are vanishing when t goes to infinity

The memory of the past is replaced by the knowledge of ail the time derivatives at the present time.

COMPARISON BETWEEN THE TWO DESCRIPTIONS

The comparison between the phenomenological and the homogenization results is conducted by fol lowing two different ways. Firstly, we consider har monie excitations and we show that, under certain conditions, both are equivalent for a given pulsation. Secondly, we investigate transient heat transfers. The phenomenological approach then appears as a more or Jess rough approximation of the quasi-static behav iour. Finally, a bilaminated composite is studied as an example. Although the significances of the tem peratures which are introduced by the two approaches to describe constituent 2 do not coincide, the com parison appears to be possible because X 1 and T 1 , which were introduced by the phenomenological approach, can be identifi ed with À. cil' and T 0 , respec tively.

Harmonie excitations

Following the above remark, equations ( 3) and ( 13) will coïncide when their right-hand members are equal

-,xc.o 2 n 2 (p 2C2 f + ù:x 2 w((l -n)p I C 1 +np 2 c 2 ) + iw 3 n 2 ( 1-n)p 1 c 1 (p 2 c 2 ) 2
This enables us to introduce a (k), which is denoted (k) p h for the phenomenological approach. Let us put The general curve behaviours (Fig. 2) and the above results are quite similar to those obtained in ref. [START_REF] Auriault | Effective macroscopic description for heat conduction in periodic composites. !nt[END_REF] where it is shown that ( k) 1 and (k) 2 are, respectively, even and odd, and that when w -. 0 (k) 1 = O(w 2 ), ( k) i = 0(1).

(()

The behaviours of (k) i p h and (k) 2 p h for a large pulsation are also the same when ��>l ph

-+ l n , (J)-+00.
-> 0, n Let us now compare more precisely the two approaches. To ensure that the two descriptions are equivalent, equations ( 19) and ( 20) must be sim- Therefore, from the general behaviours of (k) 1 and (k) 2 , as shown in Fig. 2, the above equalities will be verified, when it is possible, for a small value of the pulsation. This will be illustrated by the example of Section 4.3.

As can be seen from the general behaviours of the curves et 1 (w), cx 2 (w) and oc 3 (w), this is only possible if or if

[(k�,1i 2 � [<k>2J W =0 W w-0

Transient heat transfer

From equations ( 19) and (20), the phenom enological approach introduces a (k), which will be denoted (k) p h, given by We compare this result to the one in equation ( 17), obtained from the homogenization process

K(t )= 1 ! 1 f[f r/> P d Q J 2 exp(-µP.t). (17) u p� 1

Jn,

P2l2

One possible way to proceed is to approximate equation ( 17) by the first exponential p 1, i.e. to limit ourselves to quasi-static excitations. Equating now the exponents, gives But in general, the coefficients standing by the exponentials cannot be identified Therefore, the phenomenological approach gives a bad approximation for quasi-static excitations.

Bilaminated composite

Let us consider the particular composite consisting of two homogeneous media, 1 and 2, occupying layers of respective thickness (1-n)h/e and nh/e, measured with the space variable f (Fig. 3). For numerical purpose, we consider an academic example where medium I and medium 2 are composed of iron and cernent, respectively. Their characteristics are as follows

2 1 = 80.2W m-1 K-1 p 1 = 7870 kg m-3 c 1 = 447 J kg-1 K-1 1 2 = 0.72 W m-1 K-1 p 2 = 1860 kg m-3 C2 = 780 J kg-1 K -1 h = 1 m.
When applied to this composite, ref. [START_REF] Auriault | Effective macroscopic description for heat conduction in periodic composites. !nt[END_REF], the homo genization technique leads to and the corresponding memory fonction is written in the form

-• "° exp[-(2p+l) 2 n: 2 r/4] K(t) = 8n L (2 1)2 2 p-o p+ n 4l 2t r ---� -P2C2n 2 h 2 •
One way to compare the two approaches is to ident ify the memory functions. The phenomenological coefficient oe• is no longer a constant and becomes a function of the time t, in contradiction with the phenomenological theory. Figure 4 shows the dimen sionless heat transfer coefficient â. with respect to the

-(1 -n) h / C 0 nhlt Y1 FIG. 3. Bilaminated composite.
dimensionless time t. As , is approaching infi nity, i tends to a constant. This fact will permit the derivation of the approximation presented in Section 5.

Firstly, we consider harmonie excitations. The heat transfer coefficients x 1 • x 2 and x 3 are ploued in Fig. 5 against the pulsation w for n 0.5. The two approaches are equivalent for w � 9 x 10-6 • On the contrary. for n 0.8. there is no possible equivalence. as can be seen in Fig. 6.

Secondly, let us consider quasi-static transient heat transfers. We obtain and we verify that the coefficients standing by the exponentials are not equal

Sn * n.
Although the discrepancy is small for the considcred composite, it is easy to check that it can become large for different geometries.

AN APPROXIMATION FOR QUASI-STATIC EXCITATIONS

The phenomenological approach was shown in Sec 7 for n = 0.8. The value of the heat transfer coefficient a was determined from its asymp totic value, see Fig. 4.

By introducing higher derivatives of 1 1 in the heat transfer term, we would have obtained a still better approximation. In the limiting case, where ail deriva tives are taken into consideration, the phenom enological approach leads to a similar result to the one given by the homogenization process.

With a view to comparing the three modellings, In Fig. 8. where w îs very small (üi = 0.02) the dis crepancy between the three modellings is negligible: the heat flux is almost permanent and the conductivity of medium 2 is ignored. As cv is increased and reaches the value for the maximum of <k) 2• âi = 1, Fig. 9, the homogenization approach and the presented approxi mation lead to an identical behaviour, which is dilfer ent from the phenomenological one. If w is further increased, Fig. 10 with w 4, the discrepancy between ail the thrcc modellings is noticed. Nevertheless the approximation modelling still gives a better fit. Finally, as cois increasing to infinity (sec Fig. 11 with = 400) the phenomenological curve tends to the homogenization one, whereas the approximation modelling curve remains apart. Notice, however. that high values of w correspond to nonhomogenizable situations without separation of scales and equivalent macroscopic continuous description.

CONCLUSION

We have investigated the heat transfer process in double-conductivîty media by phenomenological and homogenization approaches. The first one, which introduces two temperature fields, leads to a descrip tion governed by the temperature of the most con ductive constituent. lt represents two important dis advantages: the conductivity of the Jess conductive constituent is neglected and is not taken into account in the macroscopic mode!, and the corresponding tem perature field has no real physical interpretation. The second one gives the rigorous effective macroscopic description but the macroscopic mode! appears to be less simple. These two approaches have been compared. Firstly, by considering harmonie exci tations we have shown that, under certain restrictions, both are equivalent for a given small pulsation. Sec ondly, investigating transient heat transfer bas dis played the phenomenological description as a rough approximation for quasi-static excitations. These conclusions were confirmed by a numerical example. Finally, the phenomenological mode! was improved by introducing a new derivative term in the inter constituent heat transfer. It results in an estimation for the quasi-static behaviour. The approximation would be further improved by introducing higher deri va ti ves.

It is clear that the above analysis can be {pplied to other diffusive phenomena in double-dilfusivity media, like double-diffusion, double-porosity or double-resistivity media subjecte<l to Fick, Darcy or Ohm ftows, respectively. The comparison between the homogenization and the phenomenological approaches would make it possible to show the range of validity of the phenomenological modellings and also to improve them.
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 2 for media I and 2, respectively; p 1 and l'; denote the density and the specific mass capacity of the con stituent i. (pc) 0 represents the average of pc in the medium i. Let �s define the partial volume of con stituent 2 by n where coefficient expressed in W m-3 K -1 • Consequently, We have 'P 1 characterizes the heat transfer from medium I to {pc)n, = (l-n)p 1 c 1 { pc) n, n p 1c2. medium 2 and is written 'P 2 = -' P , = -rx.(t,-l i) .

  FIG. 1. Macroscopic and microscopie view of the composite.
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  1 = O(T 2 ) C 1 1. = 0(I ). Taking (4) into account, yields = O(e 2 ).

  the homogenization process (see ref.[l l]). The equivalent macroscopic behaviour is expressed by V,(Â.rrVxT 0) = (P 1 C 1 (l-n)+P 2 C 2 n-p2C 2 (k))iwT 0 (13)where k is the solution of the following boundary value problem it is shown in ref. [11] that O:;-;;(k),:;-;;n, O:;-;;(k) 2 :,;;n. (15) Equation (13) represents the description obtained by the homogenization technique. Notice the rote of the coefficient (k). We aim at comparing this result with the phenomenological one. We will therefore need more insight into this description. A way to detennine the coefficient (k) follows. Considering equation ( 14), we first look for the eigenvalues µ" and the associated eigenfunctions <1\ of the Laplacian operator with the above boundary conditions v .. (Â.2 v,.<f>k> -µ.<f>k, <no summation on k) <P k O on r <l> k n periodic. It leads to a discrete spectrum and the eigenfunctions are orthogonal L, <l>k<I> 1 dil = 0 if k # 1.We assume the eigenfunctions to be normalized Now, looking for k in the form we obtain Thus, the coefficient (k) is expressed by For a transient excitation, the description is obtained by taking the inverse Fourier transfonn of equation[START_REF] Auriault | Heterogeneous medium. Is an equivalent macroscopic description possible? lut[END_REF] 
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 2 (k) p h = (k) 1ph + i (k) 2ph• Identifying the real and imaginary parts gives the two following equations w 2 n 3 (p 2 c 2 ) 2 0: 2 + w 2 n\p2c2) 2 (k) _ _ o: wn 2 p 2 c 2 2pho: 2 +w 2 n 2 (P 2 C2) 2 . Let us introduce the dimensionless pulsation y Then, equations (19) and (20) become < k >,ph <') _ L n y -I +î' k) 1 p h /n and (k) 2 p h /n can be written as a fonc tion depending on the dimensionless pulsation y only. They are shown in Fig. 2. Note that when y goes to zero and (k) 1pn = O( }'") n (k )2ph = O(y).
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 2 FIG. 2. Memory function: <k) 1ph /n and <k) 2ph /n with respect to the dimensionless pulsation.

  ( k) p h = ----iw Taking the inverse Fourier transform, we obtain (21)

FIG. 4 .

 4 FIG.4. Identification of the memory functions of the phenomenological and the homogenization approaches: the dimensionless heat transfer coefficient w against the dimensionless lime r.
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