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A Convergent Finite Volume Scheme for
Two-Phase Flows in Porous Media with
Discontinuous Capillary Pressure Field∗

K. Brenner, C. Cancès and D. Hilhorst

Abstract We consider an immiscible incompressible two-phase flow in aporous
medium composed of two different rocks. The flows of oil and water are governed
by the Darcy–Muskat law and a capillary pressure law, where the capillary pressure
field may be discontinuous at the interface between the rocks. Using the concept
of multi-valued phase pressures, we introduce a notion of weak solution for the
flow, and prove the convergence of a finite volume approximation towards a weak
solution.
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1 The Continuous Problem

1.1 Multivalued Phase Pressures

Consider a heterogeneous porous medium, represented by a polygonal domain
Ω ⊂R

d, built of two homogeneous and isotropic subdomains, represented by polyg-
onal domainsΩ1,Ω2 ⊂ R

d. We assume thatΩ1∪Ω2 = Ω andΩ1 ∩Ω2 = /0, and
we denote byΓ the interface between the two rocks, i.e.Γ = ∂Ω1 ∩ ∂Ω2. We
consider two immiscible incompressible phases (e.g. waterand oil), whose flows
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within Ωi are described by the conservation of mass equations together with the
Darcy–Muskat law:

φi∂ts−∇ · (ηo,i(s)(∇po−ρog)) = 0, (1)

−φi∂ts−∇ · (ηw,i(s)(∇pw−ρwg)) = 0, (2)

wheresdenotes the oil saturation of the fluid,φi > 0 the porosity ofΩi , the oil mobil-
ity ηo,i is a Lipschitz continuous increasing function on[0,1] satisfyingηo,i(0) = 0,
while the water mobilityηw,i is Lipschitz continuous, decreasing on[0,1] and such
that ηw,i(1) = 0. The density of the phaseα (α ∈ {o,w}) is denoted byρα , and
g is the gravity vector. Assume first that both phases coexist,i.e. s∈ (0,1), then
each phase has its own pressure denoted bypα . Classically, they are supposed to be
linked by the capillary pressure relation

po− pw = πi(s), (3)

where the capillary pressure functionπi is supposed to be increasing and to belong
to C 1((0,1);R)∩L1(0,1). Since the equation (1) degenerates, there is no control
on the oil pressurepo on {s= 0}∩Ωi , excepted that, because of (3), one haspo ≤
pw+πi(0). Similarly, on{s= 1}∩Ωi , pw ≤ po−πi(1). In these cases, the pressure
has to be considered as multivalued, i.e.

s= 0⇔ po = [−∞, pw + πi(0)], s= 1⇔ pw = [−∞, po−πi(1)]. (4)

We deduce from (4) that the capillary pressure functionπi has to be extended into
the monotone graph̃πi , already introduced in [3, 5], defined by

π̃i(s) =







[−∞,πi(0)] if s= 0,
πi(s) if s∈ (0,1),
[πi(1),+∞] if s= 1.

(5)

Note that there exists a continuous non-decreasing reciprocal function onR, which
we denote bỹπ−1

i .
At the interfaceΓ , we prescribe the continuity of the multivalued phase pressures

pα ,1∩ pα ,2 6= /0, (α ∈ {o,w}) (6)

wherepα ,i denote the trace of the pressure of the phaseα onΓ from Ωi . It is worth
noticing that the condition (6) is equivalent to the continuity of the mobile phases
prescribed in [8]. The volume conservation of each phase yields

∑
i=1,2

ηα ,i(si)(∇pα ,i −ραg) ·ni = 0, (7)

whereni denote the outward normal to∂Ωi w.r.t. Ωi . In order to close the problem,
we prescribe the initial condition
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s0 ∈ L∞(Ω), 0≤ s0 ≤ 1 a.e. inΩ , (8)

and the null-flux boundary condition on∂Ωi ∩∂Ω :

ηα ,i(si)(∇pα ,i −ραg) ·ni = 0. (9)

1.2 Reformulation of the Problem

We define the fractional flow functionfi(s) =
ηo,i(s)

ηo,i(s)+ηw,i(s)
. We introduce the Kirch-

hoff transformϕi(s) and the global pressureP defined by

ϕi(s) =

∫ s

0
fi(a)ηw,i(a)π ′

i (a)da, (10)

P = pw + λw,i(π) = po + λo,i(π) for someπ ∈ π̃i(s), (11)

whereλw,i(π)=

∫ π

0
fi ◦ π̃−1

i (p)dpandλo,i(π)= λw,i(π)−π . Classical computations

(see e.g. [7]) allow the rewrite the equations (1) as

φi∂ts−∇ · (ηo,i(s)(∇P−ρog)+ ∇ϕi(s)) = 0, (12)

while the sum of the equations (1) and (2) yields

−∇ · (Mi(s)∇P− ζi(s)g) = 0, (13)

whereMi(s) = ηo,i(s)+ ηw,i(s) ≥ αM > 0 andζi(s) = ηo,i(s)ρo + ηw,i(s)ρw. At the
interface, the relations (6) have to be replaced (see [6]) by

∃π ∈ π̃1(s1)∩ π̃2(s2) s.t.P1−λw,1(π) = P2−λw,2(π). (14)

We solve the problem on the domainQ= Ω × (0,T) for someT > 0, and we define
Qi = Ωi × (0,T).

Definition 1 (weak solution).A pair (s,P) is said to be a weak solution of the prob-
lem if

1. s∈ L∞(Q) with 0≤ s≤ 1 a.e. inQ, ϕi(s) andP belong toL2((0,T);H1(Ωi));
2. there exists a measurable functionπ mappingΓ × (0,T) to R such that

π ∈ π̃1(s1)∩ π̃2(s2) andP1−λw,1(π) = P2−λw,2(π);

3. for all ψ ∈C∞
c (Ω × [0,T)),
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∫∫

Q
φs∂t ψdxdt+

∫

Ω
φs0ψ(·,0)dxdt

− ∑
i=1,2

∫∫

Qi

(ηo,i(s)(∇P−ρog)+ ∇ϕi(s)) ·∇ψdxdt= 0, (15)

∫∫

Q
(Mi(s)∇P− ζi(s)g) ·∇ψdxdt= 0. (16)

Because of the choice of the boundary conditions, the globalpressureP is only
defined up to a constant. In order to eliminate this degree of freedom, we prescribe
that

∫

Ω
P(x,t)dx= 0, ∀t > 0. (17)

The equation (13) can be reformulated as

∇ ·q = 0, with q = −Mi(s)∇P+ ζi(s)g, (18)

while (12) can be rewritten under the form

φi∂ts+ ∇ · (q fi(s)+ γi(s)g−∇ϕi(s)) = 0, (19)

with γi(s) = (ρo−ρw)ηw,i(s) fi(s).

2 The Finite Volume Scheme

Since nonlinear test functions are necessary for proving the convergence of the
scheme, we must restrict our study to spatial discretizations satisfying an orthog-
onality condition, as developed in [9].

Definition 2 (admissible discretization ofQ).

1. An admissible discretization ofΩ is given by(T ,E ,(xK)K∈T ) where for all
K ∈ T , K is an open polygonal subset ofΩ such thatK ⊂ Ωi for somei. We
defineTi = {K ⊂ Ωi}, and we assume thatΩ i =

⋃

K∈Ti
K. For K,L ∈ T with

K 6= L, then either the(d−1)-Lebesgue measure ofK ∩L is 0, or there exists
σ ∈ EK ∩EL (denoted byσ = K|L) such thatσ = K ∩L. For all K ∈ T , there
existsEK ⊂ E such that∂K =

⋃

σ∈EK
σ . Moreover,E =

⋃

K∈T EK . We define
EΓ = {σ ∈ E : σ ⊂ Γ }, Ei = {σ ∈ E : σ ⊂ Ωi} andEext = {σ ∈ E : σ ⊂ ∂Ω},
and setEK,Γ = EK ∩EΓ , EK,i = EK ∩Ei . The family of points(xK)K∈T is such
that xK ∈ K and if σ = K|L, the straight line(xKxL) is orthogonal toσ . We
denote bydK,L the distance betweenxK andxL, and bydK,σ the distance between
xK andσ ∈ EK . For all K ∈ T andσ ∈ E we denote bym(K) andm(σ) the
corresponding Lebesgue measures.

2. LetN be a positive integer, andδ t = T/N; then a uniform discretization of(0,T)
is given by the family(tn)n∈{0,...,N}, wheretn = nδ t.
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3. A discretizationD =
(

T ,E ,(xK)K∈T ,(tn)n∈{0,...,N}

)

of Q is said to be admissi-
ble if (T ,E ,(xK)K∈T ) is an admissible discretization ofΩ and(tn)n is a uniform
discretization of(0,T).

For a given admissible discretizationD = (T ,E ,(xK)K∈T ,(tn)n∈{0,...,N}) of Q,
we define the quantities

size(T ) = max
K∈T

diam(K), reg(T ) = max
i=1,2

max
K∈T



 ∑
σ=K|L∈EK,i

m(σ)dK,L

m(K)



 ,

and
size(D) = max(size(T ),δ t) , reg(D) = reg(T ).

Remark 1.The choice of uniform time steps is not necessary, and all theresults
presented here can be adapted to the case of nonuniform time steps.

ForK ∈ Ti , we definegK(s) = gi(s) for all functionsg whose definition depends on
the subdomainΩi , as for exampleφi ,ϕi ,Mi , fi , . . . .

We propose a fully implicit cell-centered finite volume scheme for the prob-
lem, whose unknowns at each time step are(sn

K ,Pn
K)K∈T and an interface unknown

(πn
σ )σ∈EΓ

. For all σ ∈ EK,Γ , we definesn
K,σ = π̃−1

K (πn
σ ), so that, ifσ = K|L, one

directly has that
πn

σ ∈ π̃K(sn
K,σ )∩ π̃L(s

n
L,σ ).

The total flux balance equation (18) is discretized by

∑
σ∈EK

m(σ)Qn
K,σ = 0, ∀n∈ {1, . . . ,N},∀K ∈ T , (20)

with

Qn
K,σ =















MK,L(sn
K ,sn

L)
dK,L

(Pn
K −Pn

L )+R (ZK,σ ;sn
K ,sn

L) if σ = K|L ∈ EK,i ,
MK (sn

K)
dK,σ

(

Pn
K −Pn

K,σ

)

+R

(

ZK,σ ;sn
K ,sn

K,σ

)

if σ ∈ EK,Γ ,

0 if σ ∈ EK,ext,

(21)

whereMK,L(sn
K ,sn

L) = ML,K(sn
L,sn

K) is an average ofMK(sn
K) andML(sn

L). For exam-
ple, we can suppose, as in [10] that it is given by the harmonicmean

MK,L(sn
K ,sn

L) =
MK(sn

K)MK(sn
L)dK,L

dL,σ MK(sn
K)+dK,σMK(sn

L)
.

The functionZK,σ is defined byZK,σ (s) = ζK(s)g · nK,σ , wherenK,σ denotes the
outward normal toσ with respect toK. For a functionf , we denote byR( f ;a,b)
the Riemann solver

R( f ;a,b) =

{

minc∈[a,b] f (c) if a≤ b,
maxc∈[b,a] f (c) if b≤ a.
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The oil-flux balance equation (19) is discretized in the form

φK
sn
K −sn−1

K

δ t
m(K)+ ∑

σ∈EK

m(σ)Fn
K,σ = 0, ∀n∈ {1, . . . ,N},∀K ∈ T , (22)

with

Fn
K,σ =















Qn
K,σ fK(sn

K,σ )+R(GK,σ ;sn
K ,sn

L)+
ϕK(sn

K)−ϕK(sn
L)

dK,L
if σ = K|L ∈ EK,i ,

Qn
K,σ fK(sn

K,σ )+R(GK,σ ;sn
K ,sn

K,σ )+
ϕK (sn

K)−ϕK(sn
K,σ )

dK,σ
if σ ∈ EK,Γ ,

0 if σ ∈ EK,ext,

(23)

whereGK,σ (s) = γK(s)g ·nK,σ andsn
K,σ is the upstream value defined by

sn
K,σ =







sn
K if Qn

K,σ ≥ 0,

sn
L if Qn

K,σ < 0 andσ = K|L ∈ EK,i ,

sn
K,σ if Qn

K,σ < 0 andσ ∈ EK,Γ .
(24)

The interface values
(

πn
σ ,Pn

K,σ ,Pn
L,σ

)

for σ = K|L∈ EΓ are defined by the following

nonlinear system:
Pn

K,σ −λw,K (πn
σ ) = Pn

L,σ −λw,L (πn
σ ) . (25)

Qn
K,σ +Qn

L,σ = 0, (26)

Fn
K,σ +Fn

L,σ = 0. (27)

Note that since the equations (25) and (26) are linear with respect toPn
K,σ andPn

L,σ ,
one can eliminate these interface values, only keepingπn

σ . We impose the discrete
counterpart of (17), that is

∑
K∈T

m(K)Pn
K = 0, ∀n∈ {1, . . . ,N}. (28)

The discrete initial data is given by:

s0
K =

1
m(K)

∫

K
s0(x)dx, ∀K ∈ T ,

so that 0≤ s0
K ≤ 1.

Proposition 1 (existence of a discrete solution).For all n∈ {1, . . . ,N}, there exists
(

(sn
K)K∈T

,(Pn
K)K∈T

,(πn
σ )σ∈EΓ

)

satisfying the relations(20)–(28). Moreover,

0≤ sn
K ≤ 1, ∀K ∈ T . (29)

The proof of Proposition 1 will be given in the forthcoming paper [2].
For an admissible discretizationD of Q, we denote bysD andPD the piecewise

constant functions defined almost everywhere by
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sD (x, t) = sn
K , PD(x,t) = Pn

K if (x,t) ∈ K × (tn−1,tn].

We consider now a sequence(Dm)m≥0 of admissible discretizations ofQ in the
sense of Definition 2 such that size(Dm) tends to 0 and reg(Dm) remains uniformly
bounded asm tends to∞. We denote by(sDm,PDm)m a corresponding sequence of
discrete solutions, whose existence has been stated in Proposition 1.

Theorem 1 (main result).There exists a weak solution(s,P) in the sense of Defi-
nition 1 such that, up to a subsequence,

sDm → s and a.e. in Q as m→ ∞,

PDm → P weakly in L2(Q) as m→ ∞.

The proof of Theorem 1 that we will present in the forthcomingpaper [2] is based on
compactness arguments, using the material developed in [9,10]. The proof adapts
the steps that are given in [6] for the continuous frame.

3 Numerical Results

We consider a model porous mediumΩ = (0,1)2 composed of two layersΩ1 =
{(x,y) ∈ Ω | y < Γ (x)} andΩ2 = {(x,y) ∈ Ω | y > Γ (x)}, which have different
capillary pressure laws. The fluid densities are given byρo = 0.81, ρw = 1, and
g = −9.81ey. We suppose that the porosity is such thatφi = 1, i ∈ {1,2}, and we
define the oil and water mobilities by

ηo,i(s) = 0.5s2 and ηw,i = (1−s)2, i ∈ {1,2}.

Moreover we suppose that the capillary pressure curves havethe form

π1(s) = s and π2(s) = 0.5+s.

and that the initial saturation is given by

s0(x) =

{

0.3 if x∈ Ω1,
0 otherwise.

The flow is driven by buoyancy, making the oil move alongey until it reaches the
interfaceΓ . For t ≤ 0.11, oil can not access the domainΩ2, since the capillary
pressureπ1(s1) is lower than the threshold valueπ2(0) = 0.5, which is calledthe
entry pressure. Hence the saturation below the interfaces1 increases, as well as the
capillary pressureπ1(s1). As soon as the capillary pressureπ1(s1) reaches the entry
pressureπ2(0), oil starts to penetrate in the domainΩ2. Nevertheless, as pointed out
in [1, 4], a finite quantity of oil remains trapped under the rock discontinuity. This
phenomenon is calledoil trapping.
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Fig. 1 Saturation fort = 0.06, t = 0.11 andt = 0.6

Fig. 2 Capillary pressure fort = 0.06,t = 0.11 andt = 0.6
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