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A Convergent Finite Volume Scheme for
Two-Phase Flows in Porous Media with
Discontinuous Capillary Pressure Field*

K. Brenner, C. Cances and D. Hilhorst

Abstract We consider an immiscible incompressible two-phase flow powus

medium composed of two different rocks. The flows of oil andevare governed
by the Darcy—Muskat law and a capillary pressure law, whesetpillary pressure
field may be discontinuous at the interface between the rdd&img the concept
of multi-valued phase pressures, we introduce a notion @kwsolution for the

flow, and prove the convergence of a finite volume approxionaibwards a weak
solution.
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1 The Continuous Problem

1.1 Multivalued Phase Pressures

Consider a heterogeneous porous medium, represented biygopal domain
Q c RY, built of two homogeneous and isotropic subdomains, remites by polyg-
onal domaing2y, Q> ¢ RY. We assume tha®; UQ, = Q andQ; N Q, = 0, and
we denote by™ the interface between the two rocks, ile.= 0Q; N 3Q,. We
consider two immiscible incompressible phases (e.g. watedroil), whose flows
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within Q; are described by the conservation of mass equations tageitiethe
Darcy—Muskat law:

: (1)
: (@)

wheresdenotes the oil saturation of the fluig,> 0 the porosity of2;, the oil mobil-

ity no;i is a Lipschitz continuous increasing function[@nl] satisfyingne;(0) = 0,
while the water mobilityny,; is Lipschitz continuous, decreasing ffn1] and such
that nwi(1) = 0. The density of the phase (a € {o,w}) is denoted byp,, and

g is the gravity vector. Assume first that both phases coeixésts € (0,1), then
each phase has its own pressure denoteghbylassically, they are supposed to be
linked by the capillary pressure relation

@ds— - (Noi(s)(Opo — Pog))

=0
—@ds—0- (Nwi(s)(Opw—pwg)) =0

Po—Pw= TE(S)v (3)

where the capillary pressure functianis supposed to be increasing and to belong
to ¢%((0,1); R) NL(0,1). Since the equation (1) degenerates, there is no control
on the ail pressurg, on {s= 0} N Q;, excepted that, because of (3), one pas<

pw+ 75(0). Similarly, on{s=1}NQ;, pw < po— 75 (1). In these cases, the pressure
has to be considered as multivalued, i.e.

s=0&po=[-o,pw+7(0)], s=1epy=[-wp-71). (4

We deduce from (4) that the capillary pressure functiphas to be extended into
the monotone grapft, already introduced in [3, 5], defined by

[~ o, 75(0)] if s=0,
i(s) = { Ti(s) it se (0,1), 5)
[15(1), 4] if s=1.

Note that there exists a continuous non-decreasing rezapfenction onR, which
we denote byt 1.
Atthe interfacd™, we prescribe the continuity of the multivalued phase pness

Pa.1M Pa 2 7£ 05 (Cf € {va}) (6)

wherepq i denote the trace of the pressure of the pleasa I” from Q;. It is worth
noticing that the condition (6) is equivalent to the contiyof the mobile phases
prescribed in [8]. The volume conservation of each phaddyie

Z Na,i(S)(OPa, — Pag) - Ni =0, (7)
i=12

wheren; denote the outward normal &Q; w.r.t. Q;. In order to close the problem,
we prescribe the initial condition
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9€L¥(Q), 0<sp<lae.inQ, (8)
and the null-flux boundary condition @Q; N9 Q:

Na,i(S)(0pa,i —Pag) - N = 0. 9)

1.2 Reformulation of the Problem

We define the fractional flow functiofi(s) = ﬁ% We introduce the Kirch-

hoff transform¢; (s) and the global pressufedefined by

#(9 = [ (@@ (@)da (10)
P = pw+Awi(T) = po+ Ao, (1) for somerme 7i(s), (11)

~TT
whereAy;i (1) = / fio 7t (p)d pando, (1) = Awj (71) — 7. Classical computations
(see e.qg. [7]) allow the rewrite the equations (1) as

@ds— - (Noii(s)(HP — pog) + Lgi(s)) =0, 12)
while the sum of the equations (1) and (2) yields
~0- (Mi()0P— &i(s)g) =0, (13)

whereM;(s) = 1o (S) + Nwi(s) > am > 0 and{i(s) = No,i(S)Po + Nwi(S)pw- At the
interface, the relations (6) have to be replaced (see [6]) by

dme ﬁl(Sl) N f[z(Sz) s.t.Pp —Awl(n) =P - sz(ﬂ). (14)

We solve the problem on the domd&h= Q x (0, T) for someT > 0, and we define
Qi = Qi x(0,T).

Definition 1 (weak solution).A pair (s, P) is said to be a weak solution of the prob-
lem if

1.s€ L*(Q) with 0 < s<1la.e.inQ, ¢i(s) andP belong toL?((0,T);H());
2. there exists a measurable functmmapping” x (0,T) to R such that

e i (sy) N n(Sz) andPr — A1 (71) = P2 — Aw2(71);
3. forally € CX(Q x [0,T)),
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// qosdttpdxdt—i-/ PsoW(-,0)dxdt
Q Q
=3[, (0i8OP— po) + D(5)- Opdxat=0, (29
i“T2//Q

//('D(Mi (80P — Zi(8)g) - Dpdxdt= 0. (16)

Because of the choice of the boundary conditions, the glpbedsureP is only
defined up to a constant. In order to eliminate this degreecefdfom, we prescribe
that

/Q P(x.t)dx=0, Vt>0. (17)
The equation (13) can be reformulated as
0-q =0, with g = —M;(s)OP+ ()9, (18)
while (12) can be rewritten under the form
@ds+0-(afi(s)+ v(s)g— Ogi(s)) =0, (19)

with ¥(s) = (Po — Pw) Nwi (9) fi (S)-

2 The Finite Volume Scheme

Since nonlinear test functions are necessary for proviegctimvergence of the
scheme, we must restrict our study to spatial discretinatgatisfying an orthog-
onality condition, as developed in [9].

Definition 2 (admissible discretization ofQ).

1. An admissible discretization d? is given by (.7,&, (X )xe#) where for all
K € .7, K is an open polygonal subset &f such thatK C Q; for somei. We
define.7; = {K C i}, and we assume th&@; = Uy 5 K. ForK,L € .7 with
K # L, then either théd — 1)-Lebesgue measure 6fNL is 0, or there exists
0 € & NéL (denoted byo = K|L) such thatt = KNL. For allK € .7, there
existsék C & such thatdK = (e 0. Moreover,& = Uk 7 k. We define
ér={oceé&:ocCl},&={0ebf:0CQ}andéex={0€&:0CIQ},
and seték r = &k Né&r, ki = ék N 4. The family of points(xk ke # is such
thatxc € K and if 0 = K|L, the straight line(xxx_) is orthogonal too. We
denote bydk | the distance betweeq andx., and bydk o the distance between
xk ando € &. For allK € 7 ando € & we denote byn(K) andm(o) the
corresponding Lebesgue measures.

2. LetN be a positive integer, ardit = T /N; then a uniform discretization 40, T)
is given by the family(t") o _ny, Wheret” = nét.
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3. A discretizationz = (9,5’, (% )ke7 (tM)neqo N}) of Q is said to be admissi-

bleif (7,&, (x )ke~) is an admissible discretization & and(t"), is a uniform
discretization of0, T).

For a given admissible discretization= (7, &, (X )ke 7 (t")nejo....n}) Of Q,
we define the quantities

sizg.7) = }r(nfayxdiam(K), reg(.7) = m%r(nayx( ; %) :
€7 I=heReT \ o=klTes;
and
sizg 7) = max(sizg.7), ot), reg ) =req.7).

Remark 1 The choice of uniform time steps is not necessary, and alrékalts
presented here can be adapted to the case of nonuniformtépee s

ForK € %, we definegk (s) = gi(s) for all functionsg whose definition depends on
the subdomai®;, as for examplen, ¢;, M, fi, .. ..

We propose a fully implicit cell-centered finite volume soteefor the prob-
lem, whose unknowns at each time step @e P )kc.~ and an interface unknown
(T5) g For allo € éi r, we definesg ; = fi.}(m), so that, ifo = K|L, one

directly has that
M5 € Tk (K o) V(S 5)-

The total flux balance equation (18) is discretized by

z m(o)QR 5 =0, vne {1,...,N},VK € 7, (20)
oEdk ’
with
ML) (PR —PI) + 2 (Zx.ois, ) if 0 =KL € &y,
Qo= Vi) (P,g - P,g(,) +% (zK,U;q;,qz’(,) if o€ dir, (21)

|f oc (gaK’e)(t,

whereMk L (s¢.9') = MLk (5, Sk ) is an average d¥ik (sg ) andM_(g'). For exam-
ple, we can suppose, as in [10] that it is given by the harmmian

o MMk (87)dk L
Mk (k. S0) = dL oMk (%) + di, oMk ()

The functionZk  is defined byZk o(s) = {k(S)9- nk.o, Wherenk o denotes the
outward normal tao with respect taK. For a functionf, we denote byZ(f;a,b)
the Riemann solver

) _ [ mingcpap f(c) ifa<b,
#(f;a.b) = { Maxcpq f(C) ifb<a
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The oil-flux balance equation (19) is discretized in the form
ﬂl — qlil n o _
oK —~——m(K) + z m(o)FR s =0, vne{l,...,.N},vVKe .7, (22)
5t oEdk
with
Q&,G fK(SQ,o) +%(Ck,o:%, ) + % if o0 =KJL € &k,

n pr— ' - .
ko= Qo fK($,0)+%’(GK,o:$},§Q’o)+%W if océr, (23
O |f [ONS (O@K,ext,

whereGk ¢(S) = % (9)9- Nk.o andﬁﬂ,o. is the upstream value defined by

s ifQks>0,
Ro=4 8 ifQR,<0ando=KIL € &, (24)
Ko FQRs <0Oando € & r.

The interface vaIueéng, Po P,[“O.) for 0 =K|L € & are defined by the following
nonlinear system:

o — Ak (T5) = Py — AL (T5) . (25)

Qko+ QLo =0, (26)

Feo+R's=0. (27)

Note that since the equations (25) and (26) are linear witheet toP; , and Pﬂa,

one can eliminate these interface values, only keegihg/NVe impose the discrete
counterpart of (17), that is

mK)P? =0,  Vne{l,... N} (28)
Keo

The discrete initial data is given by:
Q=—t_ / s(dx, VK€ .7,
m(K) Jk

sothat0o< < 1.

Proposition 1 (existence of a discrete solutionfor alln € {1,...,N}, there exists

((qg)Key s (Pkes (ng)oeﬁr) satisfying the relation§20)28). Moreover,
0<x <1 VKeJT. (29)

The proof of Proposition 1 will be given in the forthcomingpea [2].
For an admissible discretizatian of Q, we denote by, andP,; the piecewise
constant functions defined almost everywhere by
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sy(xt) =%, Py(xt) =P if (xt) e Kx (t"Lt").

We consider now a sequen¢&m),,., of admissible discretizations @ in the
sense of Definition 2 such that s{z&y) tends to 0 and ré@r,) remains uniformly
bounded asn tends to. We denote by(sy,,, Ps,,),, @ corresponding sequence of

discrete solutions, whose existence has been stated ingttiop 1.

Theorem 1 (main result). There exists a weak solutidg, P) in the sense of Defi-
nition 1 such that, up to a subsequence,

Sy, — Sand a.e. in Q as m» o,

Py, — P weakly in (Q) as m— c.

The proof of Theorem 1 that we will present in the forthconpager [2] is based on
compactness arguments, using the material developed D[9The proof adapts
the steps that are given in [6] for the continuous frame.

3 Numerical Results

We consider a model porous mediuth= (0,1)?> composed of two layer®; =
{xy)eQ|y<TI(x)}andQ; ={(x,y) € Q | y > I(x)}, which have different
capillary pressure laws. The fluid densities are giverppy= 0.81, py = 1, and
g = —9.81e,. We suppose that the porosity is such tgat 1,i € {1,2}, and we
define the oil and water mobilities by

Noi(s) =0.58° and Ny = (1—9)?, i€ {1,2}.
Moreover we suppose that the capillary pressure curvesthaverm
m(s) =s and m&(s) = 0.5+s.
and that the initial saturation is given by

(%) = 0.3 if xe Qy,
SolX) = 0 otherwise

The flow is driven by buoyancy, making the oil move alagguntil it reaches the
interfacel”. Fort < 0.11, oil can not access the domaiy, since the capillary
pressurem(s;) is lower than the threshold value(0) = 0.5, which is callecthe
entry pressureHence the saturation below the interfagéncreases, as well as the
capillary pressuren (s;). As soon as the capillary pressurgs; ) reaches the entry
pressuren(0), oil starts to penetrate in the doma®. Nevertheless, as pointed out
in [1, 4], a finite quantity of oil remains trapped under theleaiscontinuity. This
phenomenon is calledil trapping.



8 K. Brenner, C. Cances and D. Hilhorst

Fig. 2 Capillary pressure far=0.06,t =0.11 andt = 0.6
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