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Nonlinear Parabolic Equations with Spatial
Discontinuities

Clément Cancès ∗

Abstract

We consider a two phase flow involving no capillary barriers in a hetero-
geneous porous media, composed by an apposition of several homogeneous
porous media. We prove the existence of a weak solution for such a flow
using the convergence of a finite volume approximation. Then under the as-
sumption that the equations governing the flows in each homogeneous porous
media degenerate in not too different ways, we prove the uniqueness of the
weak solution, using a doubling variable method. We also prove that such a
solution belongs to C([0, T ], Lp(Ω)) for any p ∈ [1, +∞).

Keywords. finite volume methods, porous media flow, spatial discontinuity.

AMS subject classification. 35B05, 35K65, 35R05, 65M12

1 Presentation of the problem and main results

1.1 Presentation of the problem
In this paper, we are interested by the parabolic equation obtained by modeling
a two phase flow in a heterogeneous porous media. Let Ω be an open polygonal
subset of Rd (d ≤ 3), let T > 0. One assumes that there exists a finite number of
polygonal open subsets Ωi ⊂ Ω , i ∈ {1, ..., N} such that:⋃

i

Ωi = Ω and Ωi ∩ Ωj = ∅ if i 6= j. (1)

For all (i, j) ∈ {1, ..., N}2, i 6= j, one defines Γi,j the subset of Ω given by Γi,j =
Ωi ∩ Ωj .
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Each Ωi will represent a porous media with its own physical characteristics,
u will represent the saturation of the oily phase. We aim to solve the problem:

∂tu− div(λi(u)∇πi(u)) = 0 in Ωi × (0, T ),
πi(u) = πj(u) on Γi,j × (0, T ),

λi(u)∇πi(u) · ni + λj(u)∇πj(u) · nj = 0 on Γi,j × (0, T ),
λi(u)∇πi(u) · ni = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(2)

where πi is an increasing Lipschitz continuous function associated to Ωi, λi is a
non negative continuous function with λi|]0,1[ > 0, the initial data u0 ∈ L∞(Ω)
with 0 ≤ u0 ≤ 1 a.e. in Ω.

Remark 1.1 We choose to consider only homogeneous Neumann boundary condi-
tions on ∂Ω, but this work can be easily generalized for non-homogeneous Dirichlet
condition, the same way as in [5, 7].

1.2 Mathematical definition of the problem
In this part, one defines all the functions necessary to explicit the problem (2) and
the notion of weak solution.

Particularly, one can associate to each Ωi two functions, the capillary pressure
πi and the global mobility λi, on which we do the following assumptions:

Assumption 1

1. For all i ∈ {1, ..., N}, the function πi : R → R is continuous and satisfies:

• ∀s ≤ 0, πi(s) = πi(0)

• ∀s ≥ 1, πi(s) = πi(1)

• πi|[0,1] ∈ C1([0, 1],R) is an increasing function

• ∀(i, j) ∈ {1, ..., N}2, πi(0) = πj(0)

• ∀(i, j) ∈ {1, ..., N}2, πi(1) = πj(1).

Let m0 ≥ 1. For all i ∈ {1, ..., N}, for all s ∈ [0, 1], we might choose πi(s) =
βis

m0 + (1− βi)smi for any βi ∈]0, 1] and any mi > m0.

2. For all i ∈ {1, ...N}, the function λi : R → R+ is continuous and satisfies:

• ∀s ≤ 0, λi(s) = λi(0)

• ∀s ≥ 1, λi(s) = λi(1)

• ∀s ∈]0, 1[, λi(s) > 0.
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One can now define a function λ :
⋃

i Ωi × R → R+ by (x, s) 7→ λi(s), for
all x ∈ Ωi, for all s ∈ R. One denotes Cλ = maxi(sups∈R(|λi(s)|)).
A classical choice for λi is: ∀i ∈ {1, ..., N},∀s ∈ [0, 1], λi(s) = αis(1 − s)
with αi > 0.

We can now define the functions ϕi and Πi, i ∈ {1, ..., N}.

Definition 1.1 Under Assumptions 1, for all i ∈ {1, ..., N}, we define:

ϕi :
{

R → R+

s 7→
∫ s

0
λi(a)π′i(a)da

(3)

• ∀i ∈ {1, ..., N}, ϕi|[0,1] is a derivable increasing function

• ∀s ≤ 0, ϕi(s) = ϕi(0) = 0

• ∀s ≥ 1, ϕi(s) = ϕi(1).

We denote by Lϕ a Lipschitz constant for all ϕi, i ∈ {1, ..., N}.
We also define the function Πi:

Πi :


R → R+

s 7→
∫ πi(s)

πi(0)

√
min

j∈{1,...,N}
(λj ◦ π(−1)

j (a))da
(4)

• ∀i ∈ {1, ..., N}, Πi|[0,1] is a derivable increasing function

• ∀s ≤ 0, Πi(s) = Πi(0) = 0

• ∀s ≥ 1, Πi(s) = Πi(1)

• ∀(i, j) ∈ {1, ..., N}, ∀(si, sj) ∈ R, πi(si) = πj(sj) ⇔ Πi(si) = Πj(sj).

We denote by Π(s, x) = Πi(s) and ϕ(s, x) = ϕi(s) if x ∈ Ωi.

Remark 1.2 The last point seen in the previous definition allows us to connect
Πi and Πj instead of πi and πj on Γi,j.

The definition of ϕi implies that ∂tu−∆ϕi(u) = 0 in Ωi, and we can rewrite the
transmission conditions on Γi,j : πi(u) = πj(u) and ∇ϕi(u) · ni +∇ϕj(u) · nj = 0,
where ni represents the outward normal to Ωi. We can now define the notion of
weak solution for the problem (2):

Definition 1.2 (weak solution) Under assumptions 1, a function u is said to
be a weak solution to problem (2) if it satisfies:

1. u ∈ L∞(Ω× (0, T )), 0 ≤ u ≤ 1 a.e. in Ω× (0, T ),
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2. ∀i ∈ {1, ..., N}, ϕi(u) ∈ L2(0, T ;H1(Ωi)),

3. Π(u, ·) ∈ L2(0, T ;H1(Ω)),

4. for all ψ ∈ D(Ω× [0, T )),∫
Ω

∫ T

0

u(x, t)∂tψ(x, t)dxdt+
∫

Ω

u0(x)ψ(x, 0)dx

−
N∑

i=1

∫
Ωi

∫ T

0

∇ϕi(u(x, t)) · ∇ψ(x, t)dxdt = 0. (5)

Remark 1.3 The transmission condition πi(u) = πj(u) on the interface Γi,j is
now replaced by the point 3 in the previous definition. Because of the lack of reg-
ularity on the solution, we cannot write ∇ϕi(u) · ni +∇ϕj(u) · nj = 0 on Γi,j in
a strong sense. But it is easy to check that, if u is a regular enough weak solution
of (2), this condition is imposed by point 4 of the previous definition.

1.3 Finite volume approximation and main convergence re-
sult

Let us first define space and time discretization of Ω× (0, T ).

Definition 1.3 (Admissible mesh of Ω) An admissible mesh of Ω is given by
a set T of open bounded convex subsets of Ω called control volumes, a family E of
subsets of Ω contained in hyperplanes of Rd with strictly positive measure, and a
family of points (xK)K∈T (the “centers” of control volumes) satisfying the following
properties:

1. ∃i ∈ {1, ..., N}, K ⊂ Ωi. We denote by Ti = {K ∈ T /K ⊂ Ωi}.

2.
⋃

K∈Ti
K = Ωi. Thus,

⋃
K∈T K = Ω.

3. For any K ∈ T , there exists a subset EK of E such that ∂K = K\ =
⋃

σ∈EK
σ.

Furthermore, E =
⋃

K∈T EK .

4. For any (K,L) ∈ T 2 with K 6= L, either the “length” (i.e. the (d−1) Lebesgue
measure) of K ∩ L is 0 or K ∩ L = σ for some σ ∈ E. In the latter case, we
shall write σ = K|L, and

• Ei = {σ ∈ E , ∃(K,L) ∈ T 2
i , σ = K|L}

• Eext = {σ ∈ E , σ ⊂ ∂Ω}, Eext,i = {σ ∈ E , σ ⊂ ∂Ωi ∩ ∂Ω}
• EΓi,j

= {σ ∈ E , ∃(K,L) ∈ Ti × Tj , σ = K|L}
• F =

⋃
i,j EΓi,j .

For any i ∈ {1, ..., N}, for any K ∈ Ti, we shall denote by:
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• NK = {L ∈ T , ∃σ ∈ E , σ = K|L}
• NK,i = {L ∈ Ti, ∃σ ∈ Ei, σ = K|L}
• FK = {L ∈ T , ∃j 6= i, ∃σ ∈ EΓi,j

, σ = K|L}
• EK,i = EK ∩ Ei

• EK,ext = EK ∩ Eext.

5. The family of points (xK)K∈T is such that xK ∈ K (for all K ∈ T ) and, if
σ = K|L, it is assumed that the straight line (xK , xL) is orthogonal to σ.

For a control volume K ∈ T , we will denote by m(K) its measure and Eext,K =
EK ∩ ∂Ω. For all σ ∈ E,we denote by m(σ) the (d − 1)-Lebesgue measure of σ.
If σ ∈ EK , we denote by τK,σ the transmissibility of K through σ, defined by
τK,σ = m(σ)

d(xK ,σ) . We also define τK|L = m(σ)
d(xK ,xL) . The size of the mesh is defined

by:
size(T ) = max

K∈T
diam(K),

and a geometrical factor, linked with the regularity of the mesh, is defined by

reg(T ) = max
K∈T

(card(EK), max
σ∈EK

diam(K)
d(xK , σ)

).

Remark 1.4 For all σ ∈ E,
1

τK|L
=

1
τK,σ

+
1
τL,σ

.

Definition 1.4 (Uniform time discretization of (0, T )) A uniform time dis-
cretization of (0, T ) is given by an integer value M and a sequence of real values
(tn)n=0,...,M+1. We define δt = T

M+1 and, ∀n ∈ {0, ...,M}, tn = nδt. Thus we
have t0 = 0 and tM+1 = T .

Remark 1.5 We can easily prove all the results of this paper for a general time
discretization, but for the sake of simplicity, we choose to consider only uniform
time discretization.

Definition 1.5 (Space-time discretization of Ω× (0, T )) A finite volume dis-
cretization D of Ω× (0, T ) is the family

D = (T , E , (xK)K∈T , N, (tn)n∈{0,...,M}),

where (T , E , (xK)K∈T ) is an admissible mesh of Ω in the sense of Definition 1.3
and (N, (tn)n∈{0,...,M}) is a discretization of (0, T ) in the sense of Definition 1.4.
For a given mesh D, one defines:

size(D) = max(size(T ), δt), and reg(D) = reg(T ).
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We may now define the finite volume discretization of problem (2). Let D
be a finite volume discretization of Ω × (0, T ) in the sense of Definition 1.5. The
initial condition is discretized by:

U0
K =

1
m(K)

∫
K

u0(x)dx, ∀K ∈ T . (6)

An implicit finite volume scheme for the discretization of problem (2) is given
by the following set of nonlinear equations, whose discrete unknowns are U =
(Un+1

K )K∈T ,n∈{0,...,M}: ∀K ∈ T ,∀n ∈ {0, ...,M}

m(K)
Un+1

K − Un
K

δt
+
∑

σ∈EK,i

τK,σ(ϕ(Un+1
K , xK)− ϕ(Un+1

K,σ , xK))

+
∑

σ∈FK

τK,σ(ϕ(Un+1
K , xK)− ϕ(Un+1

K,σ , xK)) = 0.
(7)

where ∀L ∈ NK , U
n+1
K,K|L, U

n+1
L,K|L are the only values in [0, 1] that satisfy the

transmission conditions:
τK,σ(ϕ(Un+1

K , xK)− ϕ(Un+1
K,σ , xK))

+τL,σ(ϕ(Un+1
L , xL)− ϕ(Un+1

L,σ , xL)) = 0
Π(Un+1

K,σ , xK) = Π(Un+1
L,σ , xL).

(8)

Definition 1.6 Let D be an admissible discretization of Ω × (0, T ) in the sense
of Definition 1.5. The approximate solution of problem (2) associated to the dis-
cretization D is defined almost everywhere in Ω× (0, T ) by:

∀x ∈ K, ∀t ∈ (tn, tn+1), ∀K ∈ T , ∀n ∈ {0, ...,M},

uD(x, t) = Un+1
K , (9)

where (Un+1
K )K∈T ,n∈{0,...,M} is the unique solution to (7).

We will now state an assumption which will be useful to prove the uniqueness
of the weak-solution in section 3.

Assumption 2 For all i ∈ {1, ..., N}, (ϕi ◦ Π(−1)
i )′ is a Lipschitz continuous

function on [0, 1].

We will now state our main result:

Theorem 1.1 (Convergence to the weak solution) Let ξ ∈ R, consider a
family of admissible discretizations of Ω × (0, T ) in the sense of Definition 1.5
such that, for all D in the family, one has ξ ≥ reg(D). For a given admissible
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discretization D of this family, let uD denote the associated approximate solution
as defined in Definition 1.6. Then, under assumptions 1-2:

uD → u ∈ Lp(Ω× (0, T )) as size(D) → 0, ∀p ∈ [1,+∞)

where u is the unique weak solution to problem (2) in the sense of Definition 1.2.
Furthermore, we have the following regularity result:

u ∈ C0([0, T ], Lp(Ω)), ∀p ∈ [1,+∞)

All this paper will be devoted to the proof of Theorem 1.1. First, we will use
the work of [3] to prove the existence of a weak-solution. Then, in subsection 2.5, we
will prove the existence of a time continuous solution, applying Ascoli theorem to
a family of approximate solutions for a regular enough initial data. The uniqueness
of the weak solution will be proven in the section 3 by using a doubling variable
method inspired from [2, 6, 8].

2 Existence of a weak solution
The main work of this section has already been done in [3]. We only need to get
enough results to prove the time-continuity in section 2.5. This proof will need
estimates obtained by working on the scheme, so we prefer to give the whole
proof of convergence. In this whole part, any sequence (Dm)m∈N of admissible
discretizations of Ω× (0, T ) in the sense of Definition 1.5 will be supposed to have
a bounded regularity.

∃ζ ∈ R, ∀m ∈ N, ζ ≥ reg(Dm). (10)

2.1 Existence, uniqueness of the approximate solution
We state here the properties and estimates which are satisfied by the scheme (7)
which we introduced in the previous section and prove existence and uniqueness of
the solution to this scheme. First, we will take some notations for the convenience
of the reader:

Notations 1 for all K ∈ T , for all σ ∈ EK ∩ FK , for all n ∈ {0, ...,M + 1},

ϕn
K = ϕ(Un

K , xK),
ϕn

K,σ = ϕ(Un
K,σ, xK),

Πn
K = Π(Un

K , xK),
Πn

K,σ = Π(Un
K,σ, xK),

πn
K = π(Un

K , xK),
πn

K,σ = π(Un
K,σ, xK).

We will need the following lemma:
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Lemma 2.1 For all K ∈ T , for all L ∈ NK , for all n ∈ {0, ...,M}, for all
(Un+1

K , Un+1
L ) ∈ R2, there exists an unique (Un+1

K,σ , U
n+1
L,σ ) ∈ [0, 1]2 solution of (8).

Proof
Suppose that there exists i ∈ {1, ..., N} such that (xK , xL) ∈ Ω2

i . Then (8) can be
written: {

τK,σ

(
ϕn+1

K − ϕn+1
K,σ

)
+ τL,σ

(
ϕn+1

L − ϕn+1
L,σ

)
= 0

Un+1
K,σ = Un+1

L,σ

which leads to {
Un+1

K,σ = Un+1
L,σ

ϕn+1
K,σ = 1

τK,σ+τL,σ

(
τK,σϕ

n+1
K + τL,σϕ

n+1
L

)
and 1

τK,σ+τL,σ

(
τK,σϕ

n+1
K + τL,σϕ

n+1
L

)
admits an unique antecedent through ϕi in

[0, 1].
Let us now suppose that (xK , xL) ∈ Ωi × Ωj with j 6= i

(8) ⇔

{
Un+1

K,σ = π−1
i (πn+1

L,σ )

τK,σ

(
ϕn+1

K − ϕi(π−1
i (πn+1

L,σ ))
)

+ τL,σ

(
ϕn+1

L − ϕn+1
L,σ

)
= 0

then {
Un+1

K,σ = π−1
i (πn+1

L,σ )
τK,σϕi(π−1

i (πn+1
L,σ )) + τL,σϕ

n+1
L,σ = τK,σϕ

n+1
K + τL,σϕ

n+1
L .

Since πi(0) = πj(0) and πi(1) = πj(1) (Assumption 1), then:

∀Un+1
L,σ ∈ [0, 1], Un+1

K,σ ∈ [0, 1].

The application θ : z 7→ τK,σϕi(π−1
i (πj(z))) + τL,σϕj(z) is increasing on [0, 1],

ensuring this way the uniqueness of the solution of (8). Furthermore, it satisfies:{
θ(0) = 0
θ(1) = τK,σϕi(1) + τL,σϕj(1).

We conclude the proof by obtaining the existence of the solution by using the
intermediate value theorem. �

L∞-stability of the scheme
One assumes u0 ∈ L∞(Ω), 0 ≤ u0 ≤ 1 a.e in Ω, then for all K ∈ T , U0

K ∈ [0, 1]
where U0

K is given by (6).

Proposition 2.2 Let D an admissible discretization of Ω× (0, T ) in the sense of
Definition 1.5, let (Un+1

K )K∈T ,n∈{0,...,M} be a solution of the scheme (7), then for
all K ∈ T , for all n ∈ {0, ...,M}:
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0 ≤ Un+1
K ≤ 1. (11)

Proof
Let us first remark that the scheme can be written:

Un+1
K − Un

K

δt
m(K) +

∑
L∈NK,i

τK|L(ϕn+1
K − ϕn+1

L )

+
∑

σ∈FK

τK,σ(ϕn+1
K − ϕn+1

K,σ ) = 0,

with τK|L = m(K|L)
d(xK ,xL) . Let us now rewrite it once again. ∀K ∈ T i, ∀n ∈ {0, ...,M}:

Un+1
K = HK

(
Un

K , (U
n+1
L )L∈T

)
with:

HK

(
a, (aL)L∈T

)
=
a+ λKaK + δt

m(K)

[ ∑
L∈NK,i

τK|L(ϕi(aL)− ϕi(aK))
+
∑

σ∈FK
τK,σ(ϕi(aK,σ)− ϕi(aK))

]
1 + λK

where λK is given by:

λK =
δtLϕ

m(K)

( ∑
L∈NK,i

τK|L +
∑

σ∈FK

τK,σ

)
and Lϕ is a Lipschitz constant for all ϕi. However, aK,σ = g(aK , aL) where g is a
non-decreasing function. We deduce from it that HK is a nondecreasing function
of all its arguments.

Let n ∈ {0, ...,M}, let us assume 0 ≤ Un
K ≤ 1, ∀K ∈ T . Let us assume that

there exists Kmax ∈ T such that:

Un+1
Kmax

= max
K∈T

(Un+1
K ) > 1,

then:

1 < Un+1
Kmax

≤ HK

(
1, (Un+1

Kmax
)L∈T

)
=

1 + λKU
n+1
Kmax

1 + λK
< Un+1

Kmax
,

a contradiction. Therefore:
Un+1

Kmax
≤ 1.

We can prove exactly in the same way that

Un+1
Kmin

= min
K∈T

(Un+1
K ) ≥ 0.

�
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Proposition 2.3 Let D be an admissible discretization of Ω× (0, T ) in the sense
of Definition 1.5. There exists a unique solution to the scheme (7).

Proof
Existence of the discrete solution

Let n ∈ {0, ...,M} Since (Un+1
K,σ )σ∈E in a function of (Un+1

L )L∈T , we shall see
the scheme as a non linear system of equations only depending on (Un+1

L )L∈T .

Let us consider the application Ψ :

{
R]T × [0, 1] → R]T(

(Un+1
K )K∈T , λ

)
7→ (VK)K∈T

where:

VK =
Un+1

K − λUn
K

δt
m(K) + λ

∑
L∈NK,i

τK|L(ϕn+1
K − ϕn+1

L )

+λ
∑

σ∈FK

τK,σ(ϕn+1
K − ϕn+1

K,σ )

The linear system of equation Ψ
(
(Un+1

K )K∈T , 0
)

= (0)K∈T admits a unique trivial
solution. The continuity of λ 7→ Ψ(·, λ) and the L∞-estimate (11) allows us to use
a topological degree argument, insuring the existence of a solution for λ = 1.
Uniqueness of the discrete solution

Assume that, for a given value of n, there exist two solutions to the scheme (7),
(Un+1

K )K∈T and (V n+1
K )K∈T . Then, for all K ∈ T , using the monotony of HK :

max(Un+1
K , V n+1

K ) ≤ HK(Un
K , (max(Un+1

L , V n+1
L ))L∈T ), (12)

min(Un+1
K , V n+1

K ) ≤ HK(Un
K , (min(Un+1

L , V n+1
L ))L∈T ). (13)

One multiplies (12) and (13) by (1 + λK)m(K), substracts (13) to (12) and sum
on K ∈ T . Remarking that all the exchange terms between neighboring control
volume disappear, we get:∑

K∈T
|Un+1

K − V n+1
K |m(K) ≤ 0.

�

2.2 Discrete L2(0, T ; H1(Ω)) estimates
In this section, we will prove some estimates on the approximate solution. We first
have to define the space X (D) the solution belongs to.

Definition 2.1 Let D be an admissible discretization of Ω× (0, T ) in the sense of
the Definition 1.5. We denote by X (D) the functional space:

X (D) =
{
v ∈ L∞(Ω× (0, T )),∀K ∈ T , ∀n ∈ {0, ...,M},
∃V n+1

K , v(x, t) = V n+1
K a.e. in K × (tn, tn+1)

}
.
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Definition 2.2 (Discrete L2(0, T ;H1(Ωi)) semi-norm) We define the discrete
L2(0, T ;H1(Ωi)) semi norm on X (D) by:

|v|21,D,i =
M∑

n=0

δt
∑

K|L∈Ei

τK,σ(V n+1
K − V n+1

L )2.

We will need the following lemma:

Lemma 2.4 Let D be an admissible discretization of Ω × (0, T ) in the sense of
the Definition 1.5. Let uD be the discrete solution to (7). Let σ ∈ Γi,j for some
i, j ∈ {1, ..., N}2, σ = K|L,K ∈ Ti, L ∈ Tj. Then:

0 ≤ (ϕn+1
K − ϕn+1

K,σ )(πn+1
K − πn+1

K,σ ) ≤ (ϕn+1
K − ϕn+1

K,σ )(πn+1
K − πn+1

L ), (14)

0 ≤ (ϕn+1
K − ϕn+1

K,σ )(Πn+1
K −Πn+1

K,σ ) ≤ (ϕn+1
K − ϕn+1

K,σ )(Πn+1
K −Πn+1

L ). (15)

Proof
∀K ∈ T , ϕ(·, xK), and π(·, xK) are increasing functions on [0, 1], thus

(ϕn+1
K − ϕn+1

K,σ )(πn+1
K − πn+1

K,σ ) ≥ 0.

Furthermore, (πn+1
K − πn+1

L ) = (πn+1
K − πn+1

K,σ + πn+1
L,σ − πn+1

L ) then:

(ϕn+1
K − ϕn+1

K,σ )(πn+1
K − πn+1

L ) = (ϕn+1
K − ϕn+1

K,σ )(πn+1
K − πn+1

K,σ )

+(ϕn+1
K − ϕn+1

K,σ )(πn+1
L − πn+1

L,σ )

= (ϕn+1
K − ϕn+1

K,σ )(πn+1
K − πn+1

K,σ )

+
τL,σ

τK,σ
(ϕn+1

L − ϕn+1
L,σ )(πn+1

L − πn+1
L,σ )

≥ (ϕn+1
K − ϕn+1

K,σ )(πn+1
K − πn+1

K,σ ).

This proof is also true with Π instead of π. �
One introduces the function

ηi : s 7→
∫ s

0

√
λi(a)π′i(a)da,

which fulfills thanks to Cauchy-Schwarz inequality, for all (a, b) ∈ [0, 1]2, for all
i ∈ [[1,N]],

(ηi(a)− ηi(b))2 ≤ (ϕi(a)− ϕi(b))(πi(a)− πi(b)). (16)

Proposition 2.5 (Discrete L2(0, T ;H1(Ωi)) estimate) Under Assumption 1,
let D be an admissible discretization of Ω × (0, T ) in the sense of Definition 1.5,
let uD be the solution of the scheme (7). Then there exists C only depending on
πi, Ωi, i ∈ {1, ..., N} such that:

11



N∑
i=1

|ηi(uD)|21,D,i ≤ C. (17)

0 ≤
M∑

n=0

δt
∑
σ ∈ F
σ = K|L

τK,σ(ϕn+1
K − ϕn+1

K,σ )(πn+1
K − πn+1

L ) ≤ C (18)

Proof
Accumulation term:
Let us multiply the equations (7) by δtπn+1

K and sum on K ∈ T , n ∈ {0, ...,M}.
We get:

M∑
n=0

∑
K∈T

 (
m(K)(Un+1

K − Un
K) + δt

∑
L∈NK,i

τK|L(ϕn+1
K − ϕn+1

L )+∑
s∈FK

τK,σ(ϕn+1
K − ϕn+1

K,σ )
)
πn+1

K

 = 0.

Let i belong to {1, ..., N}, let K ∈ T i. Since πi is an increasing function,
gi : s 7→

∫ s

0
πi(a)da is a convex function. Then:

(Un+1
K − Un

K)πn+1
K ≥ gi(Un+1

K )− gi(Un
K).

Thus:

M∑
n=0

∑
K∈T

m(K)(Un+1
K − Un

K)πn+1
K ≥

∑
K∈T

m(K)(gi(UM+1
K )− gi(U0

K))

≥ −m(Ω)
∫ 1

0

max
i∈{1,...,N}

|πi(a)|da.

Diffusion term:
One gets, thanks to (16)

M∑
n=0

δt
N∑

i=1

∑
K|L∈Ei

[
τK|L(ϕn+1

K − ϕn+1
L )(πn+1

K − πn+1
L )

]
≥

M∑
n=0

δt
N∑

i=1

∑
K|L∈Ei

τK|L(ηn+1
K − ηn+1

L )2,

where ηn+1
K denotes ηi(Un+1

K ) if K ⊂ Ωi. Furthermore, for all σ = K|L ∈ F ,
Lemma 2.4 implies:

(ϕn+1
K − ϕn+1

K,σ )(πn+1
K − πn+1

L ) ≥ 0,

12



then, we have the following estimates:

N∑
i=1

|ηi(uD)|21,D,i ≤ m(Ω)
∫ 1

0

max
i∈{1,...,N}

|πi(a)|da,

0 ≤
M∑

n=0

δt
∑

σ=K|L∈F

(ϕn+1
K − ϕn+1

K,σ )(πn+1
K − πn+1

L ) ≤ m(Ω)
∫ 1

0

max
i∈{1,...,N}

|πi(a)|da.

�

Definition 2.3 (Discrete L2(0, T ;H1(Ω)) semi-norm) Let D be an admissible
discretization of Ω × (0, T ) in the sense of the Definition 1.5. One defines the
discrete L2(0, T ;H1(Ω)) semi norm of v ∈ X (D) by:

|v|21,D =
N∑

i=1

|v|21,D,i +
∑

σ=K|L∈F

[
τK|L(v(xK , t

n+1)− v(xL, t
n+1))2

]
.

We will need the following lemma:

Lemma 2.6 Under assumptions 1, for all i in {1, ..., N}, the function
Πi ◦ η(−1)

i admits 1 as Lipschitz constant.

Proof
Let i ∈ {1, ..., N}, let a ∈]0, ϕi(1)[, let b ∈]0, ηi(1)[ with b 6= a.
We set A = η

(−1)
i (a) and B = η

(−1)
i (b). One has:

πi ◦ η(−1)
i (b)− πi ◦ η(−1)

i (a)
b− a

=
πi(B)− πi(A)
ηi(B)− ηi(A)

.

One denote by I(A,B) the interval [A,B] if B ≥ A, and [B,A] if A ≥ B. The
definition of the function ηi implies:

min
C∈I(A,B)

√
λi(C)(πi(B)−πi(A)) ≤ ηi(B)−ηi(A) ≤ max

C∈I(A,B)

√
λi(C)(πi(B)−πi(A)).

Then, there exists C ∈ I(A,B) such that:

ηi(B)− ηi(A) =
√
λi(C)(πi(B)− πi(A)).

So one gets:
πi ◦ η(−1)

i (b)− πi ◦ η(−1)
i (a)

b− a
=

1√
λi(C)

.

13



Letting b tend to a, we get, using the continuity of η(−1)
i :

(πi ◦ η(−1)
i )′(a) =

1√
λi ◦ η(−1)

i (a)
.

Remarking that Πi = Ψ ◦ πi with

Ψ :

 [πi(0), πi(1)] → R+

p 7→
∫ p

πi(0)
minj∈{1,...,N}

(√
λj ◦ π(−1)

j (a)
)
da

we may obtain:

(Πi ◦ η(−1)
i )′(a) = Ψ′(πi ◦ η(−1)

i (a))(πi ◦ η(−1)
i )′(a) =

Ψ′(πi ◦ η(−1)
i (a))√

λi ◦ η(−1)
i (a)

.

Remarking that the definition of Ψ implies Ψ′(πi(y)) ≤
√
λi(y), we get that

(Πi ◦ η(−1)
i )′(a) ≤ 1.

�

Proposition 2.7 (Discrete L2(0, T ;H1(Ω)) estimate) Let D be an admissible
discretization of Ω × (0, T ) in the sense of Definition 1.5, let uD ∈ X (D) be the
approximate solution given by the scheme (7). There exists a constant C only
depending on Ω, πi,∀i ∈ {1, ..., N} such that:

|Π(uD, ·)|21,D ≤ C.

Proof
Using inequality (17) proven in Proposition 2.5 and Lemma 2.6, we immediately
get that:

N∑
i=1

|Πi(uD)|21,D,i ≤ C.

Let us now consider the case σ = K|L ∈ F . Using πn+1
K,σ = πn+1

L,σ , inequal-
ity (18) together with (8) leads to:

M∑
n=0

δt
∑

σ=K|L∈F

[
τK,σ(ϕn+1

K − ϕn+1
K,σ )(πn+1

K − πn+1
K,σ )+

τL,σ(ϕn+1
L − ϕn+1

L,σ )(πn+1
L − πn+1

L,σ )

]
≤ C. (19)

For all σ ∈ F , for all K such that σ ∈ EK , we have thanks to (16):

(ηn+1
K − ηn+1

K,σ )2 ≤ (ϕn+1
K − ϕn+1

K,σ )(πn+1
K − πn+1

K,σ ).

14



Lemma 2.6 implies:

(Πn+1
K −Πn+1

K,σ )2 ≤ (ηn+1
K − ηn+1

K,σ )2

and
(Πn+1

L −Πn+1
L,σ )2 ≤ (ηn+1

L − ηn+1
L,σ )2,

thus (19) leads to

M∑
n=0

δt
∑

σ=K|L∈F

[
τK,σ(Πn+1

K −Πn+1
K,σ )2 + τL,σ(Πn+1

L −Πn+1
L,σ )2

]
≤ C. (20)

The convexity of the function x 7→ x2 together with the relation
1

τK|L
= 1

τK,σ
+ 1

τL,σ
leads to:

M∑
n=0

δt
∑

σ=K|L∈F

τK|L(Πn+1
K −Πn+1

L )2 ≤ C.

�

2.3 Some compactness results
We aim in this section to get enough compactness results to be able to let size(D)
tend to 0. Proposition 2.2 insures that, up to a subsequence, ∃u ∈ L∞(Ω× (0, T ))
such that uD ⇀ u in the L∞(Ω× (0, T ))-weak ? topology.

Let us now turn to the Kolmogorov compactness criterion (see e.g. [1]) which
will allow us to pass to the limit in the nonlinear second order terms.

Theorem 2.8 (Kolmogorov) Let Q be an open bounded subset of Rk, and (vn)n

be a bounded sequence in L2(Rk) such that:

lim
δ→0

[sup
n∈N

‖vn(·+ δ)− vn(·)] = 0,

then there exists v ∈ L2(Q) such that, up to a subsequence,

vn → v in L2(Q) as n→∞.

Let us now show that we are in position to apply the Kolmogorov compactness cri-
terion to (ηi(uDm

))m∈N where (Dm)m∈N is a sequence of admissible discretization
of Ω× (0, T ), with limm→∞ size(Dm) = 0.

Space translates estimates
We will now state a proposition proven in [3], which is a consequence of

Proposition 2.5.

15



Proposition 2.9 Let D be an admissible discretization of Ω×(0, T ) in the sense of
Definition 1.5, let uD ∈ X (D) be the approximate solution given by the scheme (7),
let i ∈ {1, ..., N}, let ξ ∈ Rd, and Ωi,ξ the open subset of Ωi defined by:

Ωi,ξ = {x ∈ Ωi / [x, x+ ξ] ⊂ Ωi}.

Then there exists C only depending on Ωi such that:∫ T

0

∫
Ωi,ξ

|ηi(uD(x+ ξ, t)− ηi(uD(x, t)|2dxdt ≤ |ξ|(|ξ|+ Csize(D))|ηi(uD)|1,D,i.

(21)

Time translates estimates
We state here a first result on the time translates of ϕi(u), already proven

in [3].

Proposition 2.10 Let D be an admissible discretization of Ω× (0, T ). Let uD ∈
X (D) be the approximate solution obtained with the scheme (7). Let ωi ⊂ ωi ⊂ Ωi

be an open subset of Ωi. We assume that size(T ) is small enough to ensure that:

ωi ⊂ Ωi,size(T ) = {x ∈ Ωi / B(x, size(T )) ⊂ Ωi}.

We set:
ηD,ωi

=
{
ηi(uD) on ωi × (0, T )
0 on Rd+1\(ωi × (0, T ))

then, for all τ ∈ R, we get the following inequality:

‖ηD,ωi
(·, ·+ τ)− ηD,ωi

‖2 ≤ Cτ, (22)

where C is a constant which only depends on T,Ω, d, ϕi, πi,Θi.

Thus we can apply the Kolmogorov compactness criterion, and claim that there
exists a function f such that, up to a subsequence, η(uD, ·) converges to f in
L2(Ω × (0, T )) as size(D) tends to 0. Furthermore, letting size(D) tend to 0 in
estimates (21) ensures that f ∈ L2(0, T ;H1(Ωi)) for all i ∈ {1, ..., N}. The same
way, we can prove that Π(uD, ·) converges to some g ∈ L2(0, T ;H1(Ω)) in the
L2(Ω× (0, T ))-topology.

Remark 2.1 Since the functions ηi ◦ ϕi
(−1) are Lipschitz continuous, estimates

(21) and (22) still hold with ϕi instead of ηi. Then ϕ(uD, ·) also converges to a
function h in L2(Ω× (0, T )).
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2.4 Convergence to a weak solution
In this section, we aim to prove that, for an admissible sequence (Dm) of discetiza-
tion of Ω× (0, T ) in the sense of the Definition 1.5, with limm→+∞ size(Dm) = 0
the solution of the scheme uD tends to a weak solution of the problem (2).

We have proven in the previous section that ϕ(uDm
, ·) (resp. Π(uDm

, ·)) con-
verges in L2(Ω × (0, T )) to a function f (resp. g). Proposition 2.2 allows us to
assume that uDm

converges to u in L∞(Ω × (0, T )) for the weak ? topology. Us-
ing Minty Lemma, stated below, let us show that f = η(u, ·), g = Π(u, ·) and
h = ϕ(u, ·).

Lemma 2.11 (Minty lemma) Let Ω be an open subset of Rk, let Ψ : R → R be
a monotonous continuous function. Let (un)n∈N such that:{

un ⇀ u in L∞(Ω) weak− ?
Ψ(un) → f in L1(Ω)

then
Ψ(u) = f.

From the Lemma 2.11, we can deduce that, for all i ∈ {1, ..., N}:

ηi(uD) → ηi(u) in L1(Ωi × (0, T )),

thus:
η(uD, ·) → η(u, ·) in L1(Ω× (0, T )).

The same way, ϕ(uD, ·) and Π(uD, ·) converge in L2(Ω × (0, T )) to ϕ(u, ·) and
Π(u, ·), respectively. Estimate (21) insures that, for all i ∈ {1, ..., N}, ηi(u) be-
longs to L2(0, T ;H1(Ωi)), and thus ϕi(u) too. A straightforward adaptation of
Lemma 2.9 with Π(uD, ·) instead of ηi(uD) allows us to claim that Π(u, ·) belongs
to L2(0, T ;H1(Ω)).

Proposition 2.12 (Convergence to a weak solution) Under assumption 1,
let (Dm) be a sequence of admissible discretizations in the sense of Definition 1.5
which fulfill the assumption (10) and such that size(Dm) → 0. Let (uDm

) be the
sequence of approximate solutions given by the scheme (7). Then there exists a
subsequence of approximate solutions still denoted (uDm

) which converges to u
in Lq(Ω × (0, T )) for all q ∈ [1,+∞). Furthermore, u is a weak solution to the
problem (2) in the sense of Definition 1.2.

The proof of this proposition is a straightforward adaptation of the proof stated
in [3].
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2.5 Time continuity of the approximation limit
The aim of this section is to prove the existence of a time continuous solution.
This result will be fundamental to prove the uniqueness of the weak solution to
the problem (2).

In order to prove the continuity of a time continuous solution to the problem
(2), we will apply the Ascoli theorem on a family of approximate solutions obtained
through the scheme (7). We need a classical CFL assumption on the family of
space-time discretizations.

Assumption 3 Let (Dm)m∈N be an admissible space-time discretization of Ω ×
(0, T ) in the sense of Definition 1.5. In all this subsection, we furthermore assume
that there exists S1 > 0 which does not depend on m such that:

max
m

δtm
(size(Tm))2

≤ S1.

Remark 2.2 Assumption 3 and (10) ensure us that the quantity
maxK∈T (maxL∈NK,i

( δtτK|L
m(K) )) stays bounded as m tends to +∞. The assumption 3

is not hard to fulfill in the theorical framework. One just has to choose a conve-
nient time step. Nevertheless, this assumption is very demanding in the numerical
framework, but we will be able to relax it in the sequel of this work.

We also need to make an assumption on the rgularity of the initial data,
but once again this assumption will be relaxed in the sequel, thanks to a density
argument.

Assumption 4 The initial data u0 belongs to L∞(Ω), 0 ≤ u0 ≤ 1, and further-
more fulfills: ϕ(u0) is a piecewise Lipschitz function.

We will first need the following lemmas:

Lemma 2.13 (Discrete H1(0, T ;L2(ωi)) estimate) Let (Dm)m∈N be a sequence
of admissible discretizations of Ω × (0, T ) fulfilling assumption 3. Let (uDm

) the
sequence of approximate solutions given by the scheme (7). Let Oi be an open
subset of Ωi such that ϕi(u0)|Oi

is a Lipschitz continuous function. Let ωi be
an open subset of Oi, with ωi ⊂ Oi. Then there exists C only depending on
Oi, ωi, λi, πi, u0, S1, ζ such that:

M∑
n=0

∑
K ∈ T
K ⊂ ωi

m(K)(ϕi(uDm
(xK , t

n+1))− ϕi(uDm
(xK , t

n)))2 ≤ Cδt.
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Proof
We use the following notations:

EOi = {σ ∈ Ei, σ = K|L/ K ⊂ Oi, L ⊂ Oi},

Eωi
= {σ ∈ Ei, σ = K|L/ K ⊂ ωi, L ⊂ ωi}.

Let Θi ∈ C∞c (Ω) such that supp(Θi) ⊂ Oi, Θi|ωi
= 1, 1 ≥ Θi ≥ 0. For all K ∈ T ,

we denote Θi,K = Θi(xK). We multiply the scheme (7) by
(ϕn+1

K − ϕn
K)Θi,K

2δt:

Un+1
K − Un

K

δt
m(K)(ϕn+1

K − ϕn
K)Θi,K

2 +
∑

L∈NK,i

[
τK|L(ϕn+1

K − ϕn+1
L )

(ϕn+1
K − ϕn

K)Θi,K
2

]
= 0,

thus:

m(K)(ϕn+1
K − ϕn

K)2Θi,K
2 ≤ Lϕiδt

∑
L∈NK,i

τK|L(ϕn+1
L − ϕn+1

K )(ϕn+1
K − ϕn

K)Θi,K
2.

Let M1 ∈ {0, ...,M}. We sum on K ∈ T and on n ∈ {0,M1}:

M1∑
n=0

∑
K∈T

m(K)(ϕn+1
K − ϕn

K)2Θi,K
2

≤ Lϕi

M1∑
n=0

δt
∑

K|L∈Ei

[
τK|L(ϕn+1

L − ϕn+1
K )

((ϕn+1
K − ϕn

K)Θi,K
2 − (ϕn+1

L − ϕn
L)Θi,L

2)

]

≤


Lϕi

M1∑
n=0

δt
∑

K|L∈Ei

[
τK|L(ϕn+1

L − ϕn+1
K )

(
Θi,K

2+Θi,L
2

2

)
((ϕn

L − ϕn
K)− (ϕn+1

L − ϕn+1
K ))

]

+
Lϕi

2

M1∑
n=0

δt
∑

K|L∈Ei

[
τK|L(ϕn+1

L − ϕn+1
K )(Θi,L

2 −Θi,K
2)

((ϕn+1
K − ϕn

K) + (ϕn+1
L − ϕn

L))

]


M1∑
n=0

∑
K∈T

m(K)(ϕn+1
K − ϕn

K)2Θi,K
2 ≤ A1 +A2, (23)

with 
A1 = Lϕi

M1∑
n=0

δt
∑

K|L∈Ei

[
τK|L(ϕn+1

L − ϕn+1
K )

(
Θi,K

2+Θi,L
2

2

)
((ϕn

L − ϕn
K)− (ϕn+1

L − ϕn+1
K ))

]

A2 =
Lϕi

2

M1∑
n=0

δt
∑

K|L∈Ei

[
τK|L(ϕn+1

L − ϕn+1
K )(Θi,L

2 −Θi,K
2)

((ϕn+1
K − ϕn

K) + (ϕn+1
L − ϕn

L))

]
.
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Using xy ≤ 1
2 (x2 + y2) in A1 leads to:

A1 ≤ Lϕiδt

2

M1∑
n=0

∑
K|L∈Ei

[
τK|L

Θi,K
2+Θi,L

2

2

((ϕn
K − ϕn

L)2 − (ϕn+1
K − ϕn+1

L )2)

]
(24)

≤ Lϕi
δt

2

∑
K|L∈EOi

τK|L(ϕ0
K − ϕ0

L)2. (25)

Since ϕi(u0) is a continuous Lipschitz function on Oi, there exists COi,u0 ,
which does not depend on the mesh such that:

|ϕ0
K − ϕ0

L| ≤ COi,u0d(xK , xL). (26)

Thus, using (26) in inequality (25) leads to:

A1 ≤
COi,u0dm(Oi)Lϕi

2
δt. (27)

We will now prove a similar estimate for A2:

A2 =
δtLϕi

2

M1∑
n=0

∑
K|L∈Ei

[
τK|L(ϕn+1

L − ϕn+1
K )(Θi,K + Θi,L)(Θi,L −Θi,K)(

(ϕn+1
K + ϕn+1

L )− (ϕn
K + ϕn

L)
) ]

.

For all α > 0, we deduce from Young inequality that:

A2 ≤ αδtLϕi

M1∑
n=0

∑
K|L∈Ei

[
τK|L(Θi,K + Θi,L)2(

(ϕn+1
K + ϕn+1

L )− (ϕn
K + ϕn

L)
)2 ]

+
Lϕiδt

4α

M1∑
n=0

∑
K|L∈Ei

τK|L(ϕn+1
L − ϕn+1

K )2(Θi,L −Θi,K)2 = A21 +A22.

Since for all (x, y) ∈ R2, (x+ y)2 ≤ 2x2 + 2y2, we can write:

A21 ≤ 2αδtLϕi

M1∑
n=0

∑
K|L∈Ei

[
τK|L(Θi,K + Θi,L)2(

(ϕn+1
K − ϕn

K)2 + (ϕn+1
L − ϕn

L)2
) ]

≤ 2αδtLϕi

M1∑
n=0

∑
K∈T

∑
L∈NK,i

τK|L(Θi,K + Θi,L)2(ϕn+1
K − ϕn

K)2

≤ 2αLϕi

M1∑
n=0

∑
K∈T

∑
L∈NK,i

[
τK|Lδt

m(K) m(K)(ϕn+1
K − ϕn

K)2

(2Θi,K + (Θi,L −Θi,K))2

]
.

The Remark 2.2 allows us to take a constant S2 not depending on m such that,
for all K ∈ T , for all L ∈ NK,i:

τK|Lδt

m(K)
≤ S2,
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thus, using once again (x + y)2 ≤ 2x2 + 2y2, and that the number of edges of K
is not bigger than reg(T ):

A21 ≤ 16αLϕi
reg(T )S2

M1∑
n=0

∑
K∈T

m(K)(ϕn+1
K − ϕn

K)2Θi,K
2

+4αLϕi

M1∑
n=0

∑
K|L∈Ei

τK|L(Θi,L −Θi,K)2(ϕn+1
K − ϕn

K)2.
(28)

One applies exactly the same method with a regular function Ψi instead of Θi,
with supp(Ψi) ⊂ Oi, ∃ε > 0, Ψi|supp(Θi)+ε = 1, Ψi ≥ 0, where:

supp(Θi) + ε = {x ∈ Ωi/ d(x, supp(Θi)) < ε}

Then, for size(T ) small enough, we obtain that there exists H > 0 such that :
M1∑
n=0

∑
K⊂(supp(Θi)+ε)

m(K)(ϕn+1
K − ϕn

K)2 ≤
M1∑
n=0

∑
K∈T

m(K)(ϕn+1
K − ϕn

K)2Ψ2
K ≤ H.

(29)
Denoting by CΘi

the Lipschitz constant of the function Θi, using (29) in (28) and
Remark 2.2, one gets:

A21 ≤ 16αLϕi
reg(T )S2

M1∑
n=0

∑
K∈T

m(K)(ϕn+1
K − ϕn

K)2Θi,K
2

+4αLϕi(reg(D))2C2
Θi
HS2(size(T ))2.

(30)

A similar estimate on A22 is obvious.

A22 ≤
(
Lϕi

C2
Θi

4α
|ϕi(uD)|1,D,i

)
(reg(D))2(size(T ))2.

Assumption 3 ensures that there exist constants C1, C
′, C21, C22 such that:

A1 ≤ C1δt,

A21 ≤ αC ′
M1∑
n=0

∑
K∈T

m(K)(ϕn+1
K − ϕn

K)2Θi,K
2 + αC21δt,

A22 ≤
C22

α
δt.

(31)

We can now choose α = 1
2C′ and claim that inequalities (31) together with (23)

lead to the existence of a constant C such that
M1∑
n=0

∑
K ∈ T
K ⊂ ωi

m(K)(ϕn+1
K − ϕn

K)2 ≤
M1∑
n=0

∑
K∈T

m(K)(ϕn+1
K − ϕn

K)2Θi,K
2 ≤ Cδt.

(32)
�
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Lemma 2.14 (Discrete L∞(0, T,H1(ωi)) estimate) With the same assump-
tions and notations as in Lemma 2.13, there exists C such that:

sup
m∈N

( sup
t∈[0,T ]

(|ϕi(uDm)(·, t)|1,Tm,ωi)) ≤ C,

where:

|ϕi(uDm)(·, t)|21,Tm,ωi
=

∑
K|L⊂ωi

τK|L (ϕi(uDm)(xK , t)− ϕi(uDm)(xL, t))
2
.

Proof
Keeping the notations of the previous proof, inequality (24) leads to:

A1 ≤
Lϕi

δt

2

 ∑
K|L∈EOi

τK|L(ϕ0
K − ϕ0

L)2 −
∑

K|L∈Eωi

τK|L(ϕM1+1
K − ϕM1+1

L )2

 .
So we can deduce from (32) the following estimate:

M1∑
n=0

∑
K ∈ T
K ⊂ ωi

m(K)(ϕn+1
K − ϕn

K)2 +
Lϕi

δt

2

∑
K|L∈Eωi

τK|L(ϕM1+1
K − ϕM1+1

L )2 ≤ Cδt.

(33)
Dividing by δt leads to:

Lϕi

2

∑
K|L∈Eωi

τK|L(ϕM1+1
K − ϕM1+1

L )2 ≤ C.

This estimates holds for any M1 ∈ {0, ..,M} and also for M1 = −1 because of
assumption 4. �

Proposition 2.15 (time continuity of a weak solution) One supposes that
assumptions 1 and 4 is fulfilled. Then there exists a weak solution to the prob-
lem (2) in the sense of Definition 5 satisfying:

∀p ∈ [1,+∞), u ∈ C([0, T ], Lp(Ω)).

Proof
Let (Dm) be a sequence of admissible discretizations of Ω× (0, T ) in the sense of
Definition 1.5 fulfilling assumption 3. We will apply Ascoli theorem to the family
of approximate solutions obtained through the scheme (7). We will first build
another sequence of approximate solutions (vm)m, whose terms will be continuous
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in respect to the time variable. We denote by vm the function defined almost
everywhere in Ω for all t ∈ [0, T ] by:

vm(x, t) =
tn+1 − t

δt
(ϕn

K − ϕn+1
K ) + ϕn+1

K if (x, t) ∈ K × [tn, tn+1].

Let i ∈ {1, ..., N}. Let Oi be an open subset of Ωi such that ϕi(u0) is a
Lipschitz continuous function on Oi. Let Ui be an open subset of Ωi such that
U i ⊂ Oi. Let ωi be an open subset of Ωi such that ωi ⊂ Ui. Let Θi ∈ D(Ui) such
that Θiωi

= 1 and 0 ≤ Θi ≤ 1. We suppose that m is large enough to ensure that:

• size(Tm) < d(Ui, ∂Oi),

• size(Tm) < d(supp(Θi), ∂Ui).

We denote by EUi
= {σ ∈ E , σ = K|L / K ⊂ Ui, L ⊂ Ui}.

Then, for all t ∈ [0, T ]:

‖vm(·, t)− ϕi(uDm
(·, t))‖2L2(ωi)

≤
∫

Oi

Θi(x)(vm(x, t)− ϕi(uDm(x, t)))2dx

≤ (tn+1 − t)2

δt2

∑
K∈T

Θi,Km(K)(ϕn+1
K − ϕn

K)2

≤ (tn+1 − t)2

δt2
Lϕi

∑
K∈T

Θi,Km(K)(ϕn+1
K − ϕn

K)(Un+1
K − Un

K)

≤ (tn+1 − t)2

δt
Lϕi

∑
K∈T

∑
L∈NK,i

Θi,K(ϕn+1
K − ϕn

K)τK|L(ϕn+1
K − ϕn+1

L )

≤ (tn+1 − t)2

δt
Lϕi

∑
K|L∈EUi

[
(Θi,K(ϕn+1

K − ϕn
K)−Θi,L(ϕn+1

L − ϕn
L))

τK|L(ϕn+1
K − ϕn+1

L )

]
,

then we have:

‖vm(·, t)− ϕi(uDm
(·, t))‖2L2(ωi)

≤ A1(t) +A0(t),

with
A0(t) =

(tn+1 − t)2

2δt
Lϕi

∑
K|L∈EUi

[
τK|L(ϕn+1

K − ϕn+1
L )(Θi,K + Θi,L)

(ϕn+1
K − ϕn

K − ϕn+1
L + ϕn

L)

]
,

A1(t) =
(tn+1 − t)2

2δt
Lϕi

∑
K|L∈EUi

[
τK|L(ϕn+1

K − ϕn+1
L )(Θi,K −Θi,L)

(ϕn+1
K − ϕn

K + ϕn+1
L − ϕn

L)

]
.
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We apply Cauchy-Schwarz on A1, so we get:

|A1(t)| ≤ δtϕi(1)Lϕi


(∑

K|L∈EUi
τK|L(Θi,K −Θi,L)2

)1/2

(∑
K|L∈EUi

τK|L(ϕn+1
K − ϕn+1

L )2
)1/2

 .
Using Lemma 2.14, we can claim that there exists C1 only depending on the data
and on the regularity of the mesh such that, for all t ∈ [0, T ],

|A1(t)| ≤ C1δt.

Let us now have a look on A0.

|A0(t)| ≤ Lϕi
δt

∑
K|L∈EUi

τK|L|ϕn+1
K − ϕn+1

L |(|ϕn+1
K − ϕn

K |+ |ϕn+1
L − ϕn

L|)

≤ δt

√ ∑
K|L∈EUi

τK|L(ϕn+1
K − ϕn+1

L )2


√ ∑

K|L∈EUi

τK|L(ϕn+1
K − ϕn

K)2

+
√ ∑

K|L∈EUi

τK|L(ϕn+1
L − ϕn

L)2

 .
Using Remark 2.2 and lemmas 2.13 and 2.14, we can find C0, not depending on
m such that:

|A0(t)| ≤ C0δt.

So, we have shown that there exists C, only depending on the data and the regu-
larity of the mesh, such that:

∀m ∈ N, ∀t ∈ [0, T ], ‖vm(·, t)− ϕi(uDm(·, t))‖2L2(ωi)
≤ Cδt. (34)

We are now able to prove the relative compactness of the family (vm)m∈N in
C([0, T ];L2(ωi)).

Uniform equicontinuity: Let ε > 0, let m ∈ N, let t ∈ [0, T ), let τ ∈
(0, T − t). We denote N1 =

⌈
t
δt

⌉
, N2 =

⌈
t+τ
δt

⌉
.

‖vm(·, t+ τ)− vm(·, t)‖L2(ωi) ≤ ‖vm(·, t+ τ)− ϕi(uDm
(·, t+ τ))‖L2(ωi)

+‖vm(·, t)− ϕi(uDm
(·, t))‖L2(ωi)

+‖ϕi(uDm
(·, t+ τ))− ϕi(uDm

(·, t))‖L2(ωi).

Using estimate (34), we can choose m1 ∈ N large enough so that:

∀m ≥ m1, ∀t ∈ [0, T ), ‖vm(·, t)− ϕi(uDm(·, t))‖L2(ωi) ≤ ε/3. (35)

There exists m2 ∈ N such that, for all m ≥ m2, size(Dm) ≤ d(ωi, ∂Ui). Then, for
all m ≥ m2, one has:

‖ϕi(uDm(·, t+ τ))− ϕi(uDm(·, t))‖2L2(ωi)
≤

∑
K⊂Ui

m(K)(ϕN2
K − ϕN1

K )2

≤
∑

K⊂Ui

m(K)

(
N2−1∑
n=N1

(ϕn+1
K − ϕn

K)

)2
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≤ (N2 −N1)
∑

K⊂Ui

m(K)
N2−1∑
n=N1

(ϕn+1
K − ϕn

K)2.

Lemma 2.13 ensures that there exists C, not depending on m, such that:

∑
K⊂Ui

m(K)
N2−1∑
n=N1

(ϕn+1
K − ϕn

K)2 ≤ Cδt,

thus
‖ϕi(uDm(·, t+ τ))− ϕi(uDm(·, t))‖2L2(ωi)

≤ C(N2 −N1)δt.

The definition of N1 and N2 implies that (N2 −N1)δt ≤ τ + dt. So we can claim
that: ∀ε > 0, ∃m3 ∈ N, ∃α > 0, ∀t ∈ [0, T − α], ∀τ ∈ (0, α), ∀m ≥ m3,

‖vm(·, t+ τ)− vm(·, t)‖L2(ωi) ≤ ε.

Local relative compactness: We state the following lemma which is a
straightforward generalization of Lemma 3.3 of [4] together with Lemma 2.14.

Lemma 2.16 Let (Dm)m∈N be a sequence of admissible discretizations of Ω ×
(0, T ) fulfilling assumption 3. Let (uDm) the sequence of approximate solutions
given by the scheme (7). Let Oi be an open subset of Ωi such that ϕi(u0)|Oi

is a
Lipschitz continuous function. Let ωi be an open subset of Oi, with ωi ⊂ Oi. Then
there exist C1, C2 and an integer m0 such that, for all m ≥ m0, for all t ∈ [0, T [,
for all η ∈ Rd such that |η| ≤ 1

2d(ωi, ∂Oi):

‖ϕi(uDm(x+ η, t))− ϕi(uDm(x, t))‖L2(ωi) ≤ C1|η|(|η|+ C2size(T ))

where C1 only depends on Oi, ωi, u0, ζ, S1, λi, πi for all i ∈ {1, ..., N}, and C2 only
depends on Ω.

It is easy to check that, for all t > 0:

‖vm(x+ η, t)− vm(x, t)‖L2(ωi) ≤ ‖ϕi(uDm
(x+ η, t))− ϕi(uDm

(x, t))‖L2(ωi)

+‖ϕi(uDm(x+ η, t− δt))− ϕi(uDm(x, t− δt))‖L2(ωi)

with the convention ϕi(uDm
(x, t)) = ϕi(uDm

(x, 0)) if t < 0. Then using lemma 2.16

‖vm(x+ η, t)− vm(x, t)‖L2(ωi) ≤ 2C1|η|(|η|+ C2size(T )).

Then we can apply Theorem 2.8 to state that, for all t ≥ 0, (vm(·, t))m is relatively
compact in L2(ωi).

Ascoli theorem implies that the sequence (vm)m is relatively compact in
C([0, T ], L2(ωi)), so, up to a subsequence, it converges to v ∈ C([0, T ], L2(ωi)).
It is now obvious that ϕi(u)|ωi×[0,T ] = v. Thus ϕi(u) ∈ C([0, T ];L1(ωi)) for all
ωi ⊂ ωi ⊂ Oi, then ϕi(u) belongs to C([0, T ];L1(Oi)).
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Assumption 4 implies that, for all i ∈ {1, ..., N}, there exists a family (Oi,j)j

of open subsets of Ωi such that Ωi =
⋃

j Oi,j . So ϕi(u) ∈ C([0, T ];L1(Ωi)), and:

ϕi(u) ∈ C([0, T ];L1(Ω)). (36)

We deduce from (36) that, for almost every x ∈ Ω, for all t ∈ [0, T ]:

lim
τ→0

ϕ(u(x, t+ τ), x) = ϕ(u(x, t), x).

The continuity of ϕi
−1 for all i ∈ {1, ..., N} leads to: for all t ∈ [0, T ], for almost

every x ∈ Ω,
lim
τ→0

|u(x, t+ τ)− u(x, t)| = 0.

Let p ∈ [1,+∞). The continuity of s 7→ sp leads to: for all t ∈ [0, T ], for almost
every x ∈ Ω,

lim
τ→0

|u(x, t+ τ)− u(x, t)|p = 0.

Since |u(x, t+ τ)−u(x, t)|p ≤ 1 a.e. x ∈ Ω, ∀t ∈ [0, T ], the dominated convergence
theorem leads to:

u ∈ C([0, T ];Lp(Ω)).

�

3 Uniqueness of the weak solution
In this section, we aim to prove the following L1-contraction principle, which di-
rectly implies the uniqueness of the weak solution to the problem (2) under As-
sumption 2. The method is inspired from [2, 6, 8].

Theorem 3.1 Let u0, v0 belong to L∞(Ω), 0 ≤ u0, v0 ≤ 1, and let u, v be weak
solutions associated to the initial data u0, v0. Then under assumptions 1 and 2, u
and v belong to C([0, T ], Lp(Ω)) for all p ∈ [1,+∞[. Furthermore, for all t ∈ [0, T ],∫

Ω

|u(x, t)− v(x, t)|±dxdt ≤
∫

Ω

|u0(x)− v0(x)|±dx

where | · |+ (resp. | · |−) denotes the positive (resp. negative) part.

Proof
Let u be a weak solution to the problem (2) in the sense of Definition 1.2. It is
easy to check that ∂tu ∈ L2(0, T ; (H1(Ω))′), and that for any θ ∈ L2(0, T ;H1(Ω)),∫ T

0

〈
∂tu(·, t), θ(·, t)

〉
dt = −

N∑
i=1

∫ T

0

∫
Ωi

∇ϕi(u(x, t)) · ∇θ(x, t)dxdt. (37)
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Let S±n be a Lipschitz continuous non-decreasing functions fulfilling:

S+
n (a) =

{
0 if a < 0,
1 if a > 1

n ,
S−n (a) = −S+

n (−a) (38)

Let κ(x) such that Π(κ(x), x) ∈ H1(Ω), then for almost every x ∈ Ω, the functions
a 7→ S±n (Π(a, x)−Π(κ(x), x)) is non-decreasing, and so µ±n,x : a 7→

∫ a

0
S±n (Π(s, x)−

Π(κ(x), x))ds is convex. One defines for u(x, t) = u0(x) if t < 0, then for almost
every (x, t) ∈ Ω× (0, T ), for almost every τ > 0,

µ±n,x(u(x, t))−µ±n,x(u(x, t−τ))≤S±n (Π(u(x, t), x)−Π(κ(x), x))(u(x, t)−u(x, t−τ))

One multiplies the previous inequality by ψ(x, t) ≥ 0, with ψ ∈ D+(Ω × [0, T )),
one divides by τ , on integrates on Ωi × (0, T ) and sums for i ∈ [[1,N]], so one gets:

1
τ

N∑
i=1

∫ T

T−τ

∫
Ωi

µ±n,x(u(x, t))ψ(x, t)dxdt

−1
τ

N∑
i=1

∫ τ

0

∫
Ωi

µ±n,x(u0(x))ψ(x, t)dxdt

+
1
τ

N∑
i=1

∫ T

0

∫
Ωi

µ±n,x(u(x, t− τ))(ψ(x, t− τ)− ψ(x, t))dxdt

≤ 1
τ

N∑
i=1

∫ T

0

∫
Ωi

[
S±n (Πi(u(x, t))−Πi(κ(x)))

(u(x, t)− u(x, t− τ))

]
ψ(x, t)dxdt.

(39)

One can let τ tend to 0. Since (x, t) 7→ S±n (Π(u(x, t), x) − Π(κ(x), x)) belongs to
L2(0, T ;H1(Ω)), one gets:

N∑
i=1

∫
Ωi

µ±n,x(u0(x))ψ(x, 0)dx+
N∑

i=1

∫ T

0

∫
Ωi

µ±n,x(u(x, t))∂tψ(x, t)dxdt

≥ −
∫ T

0

〈
∂tu(·, t), S±n (Π(u(x, t), x)−Π(κ(x), x))ψ(x, t)

〉
dt.

(40)

Thus using (37) in (40) leads to:

N∑
i=1

∫
Ωi

µ±n,x(u0(x))ψ(x, 0)dx+
N∑

i=1

∫ T

0

∫
Ωi

µ±n,x(u(x, t))∂tψ(x, t)dxdt

−
N∑

i=1

∫ T

0

∫
Ωi

S±n (Πi(u(x, t))−Πi(κ(x)))∇ϕi(u(x, t)) · ∇ψ(x, t)dxdt

−
N∑

i=1

∫ T

0

∫
Ωi

[
S±n

′(Πi(u(x, t))−Πi(κ(x)))
∇ϕi(u(x, t)) · ∇(Πi(u(x, t))−Πi(κ(x)))

]
ψ(x, t)dxdt ≥ 0.

(41)

27



Let ξ belong to D+(Ω×[0, T )×(0, T )). Let v be a weak solution for the problem (2)
for an initial data v0 regular enough to insure v ∈ C([0, T ];L1(Ω)). For almost
every s ∈ (0, T ), one has Π(v(x, s), x) ∈ H1(Ω), and so we can substitute v(x, s)
to κ(x) in (41), and integrate for s ∈ (0, T ).∫ T

0

N∑
i=1

∫
Ωi

(∫ u0(x)

0

S±n (Πi(a)−Πi(v(x, s)))da

)
ξ(x, 0, s)dxds

+
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

(∫ u(x,t)

0

S±n (Πi(a)−Πi(v(x, s)))da

)
∂tξ(x, t, s)dxdtds

−
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

[
S±n (Πi(u(x, t))−Πi(v(x, s)))
∇ϕi(u(x, t)) · ∇ξ(x, t, s)

]
dxdtds

−
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

 S±n
′(Πi(u(x, t))−Πi(v(x, s)))

∇(Πi(u(x, t))−Πi(v(x, s)))·
∇ϕi(u(x, t))ξ(x, t, s)

 dxdtds ≥ 0.

(42)

Inverting the roles of u(x, t) and v(x, s), using ξ(·, ·, 0) = 0, one gets:

N∑
i=1

∫ T

0

∫ T

0

∫
Ωi

(∫ v(x,s)

0

S∓n (Πi(a)−Πi(u(x, t)))da

)
∂sξ(x, t, s)dxdtds

−
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

[
S∓n (Πi(v(x, s))−Πi(u(x, t)))
∇ϕi(v(x, s)) · ∇ξ(x, t, s)

]
dxdtds

−
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

 S∓n
′(Πi(v(x, s))−Πi(u(x, t)))

∇(Πi(v(x, s))−Πi(u(x, t)))·
∇ϕi(v(x, s))ξ(x, t, s)

 dxdtds ≥ 0.

(43)

Adding (42) and (43), and using (38), we get:∫ T

0

N∑
i=1

∫
Ωi

(∫ u0(x)

0

S±n (Πi(a)−Πi(v(x, s)))da

)
ξ(x, 0, s)dxds

+
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

(∫ u(x,t)

0

S±n (Πi(a)−Πi(v(x, s)))da

)
∂tξ(x, t, s)dxdtds

+
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

(∫ v(x,s)

0

S∓n (Πi(a)−Πi(u(x, t)))da

)
∂sξ(x, t, s)dxdtds

−
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

[
S±n (Πi(u(x, t))−Πi(v(x, s)))
∇(ϕi(u(x, t))− ϕi(v(x, s)))

]
· ∇ξ(x, t, s)dxdtds

−
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

 S±n
′(Πi(u(x, t))−Πi(v(x, s)))

∇(ϕi(u(x, t))− ϕi(v(x, s)))·
∇(Πi(v(x, s))−Πi(u(x, t)))

 ξ(x, t, s)dxdtds ≥ 0.
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Let us rewrite it An
1 +An

2 +An
3 +An

4 ≥ 0, with:

An
1 =

∫ T

0

N∑
i=1

∫
Ωi

(∫ u0(x)

0

S±n (Πi(a)−Πi(v(x, s)))da

)
ξ(x, 0, s)dxds,

An
2 =

N∑
i=1

∫ T

0

∫ T

0

∫
Ωi

(∫ u(x,t)

0

S±n (Πi(a)−Πi(v(x, s)))da

)
∂tξ(x, t, s)dxdtds

+
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

(∫ v(x,s)

0

S∓n (Πi(a)−Πi(u(x, t)))da

)
∂sξ(x, t, s)dxdtds,

An
3 = −

N∑
i=1

∫ T

0

∫ T

0

∫
Ωi

[
S±n (Πi(u(x, t))−Πi(v(x, s)))
∇(ϕi(u(x, t))− ϕi(v(x, s)))

]
· ∇ξ(x, t, s)dxdtds,

An
4 = −

N∑
i=1

∫ T

0

∫ T

0

∫
Ωi

 S±n
′(Πi(u(x, t))−Πi(v(x, s)))

∇(ϕi(u(x, t))− ϕi(v(x, s)))·
∇(Πi(v(x, s))−Πi(u(x, t)))

 ξ(x, t, s)dxdtds.
Now, we let n tend to +∞, then, using the dominated convergence theorem and
the fact that Πi is strictly increasing,

lim
n→+∞

An
1 =

∫ T

0

N∑
i=1

∫
Ωi

|u0(x)− v(x, s)|±ξ(x, 0, s)dxds. (44)

The same way, remarking that

Sign+(Πi(u)−Πi(v)) = Sign+(u− v) = −Sign−(v − u),

lim
n→+∞

An
2 =

∫ T

0

∫ T

0

N∑
i=1

∫
Ωi

|u(x, t)−v(x, s)|±(∂tξ(x, t, s)+∂sξ(x, t, s))dxds, (45)

lim
n→+∞

An
3 = −

N∑
i=1

∫ T

0

∫ T

0

∫
Ωi

∇|ϕi(u(x, t))− ϕi(v(x, s))|± · ∇ξ(x, t, s)dxdtds.

(46)
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An
4 = −

N∑
i=1

∫ T

0

∫ T

0

∫
Ωi

 S±n
′(Πi(u(x, t))−Πi(v(x, s)))

∇(ϕi ◦Π−1
i (Πi(u(x, t)))− ϕi ◦Π−1

i (Πi(v(x, s))))·
∇(Πi(v(x, s))−Πi(u(x, t)))ξ(x, t, s)

dxdtds
= −

N∑
i=1

∫ T

0

∫ T

0

∫
Ωi

 S±n
′(Πi(u(x, t))−Πi(v(x, s)))
(ϕi ◦Π−1

i )′(Πi(u(x, t)))
|∇(Πi(v(x, s))−Πi(u(x, t)))|2ξ(x, t, s)

dxdtds

+
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi


S±n

′(Πi(u(x, t))−Πi(v(x, s)))
∇(Πi(u(x, t))−Πi(v(x, s)))·

∇Πi(v(x, s))ξ(x, t, s)[
(ϕi ◦Π−1

i )′(Πi(v(x, s)))
−(ϕi ◦Π−1

i )′(Πi(u(x, t)))

]
dxdtds

≤
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

 S±n
′(Πi(u(x, t))−Πi(v(x, s)))

((ϕi ◦Π−1
i )′(Πi(v(x, s)))− (ϕi ◦Π−1

i )′(Πi(u(x, t))))
∇(Πi(u(x, t))−Πi(v(x, s))) · ∇Πi(v(x, s))ξ(x, t, s)

dxdtds
≤

N∑
i=1

∫ T

0

∫ T

0

∫
Ωi

 S±n
′(Πi(u(x, t))−Πi(v(x, s)))

Mi|Πi(u(x, t))−Πi(v(x, s))||∇Πi(v(x, s))|·
|∇(Πi(u(x, t))−Πi(v(x, s)))|ξ(x, t, s)

 dxdtds,
where Mi denotes a Lipschitz constant for the function (ϕi◦Π−1

i )′. Such a constant
exists thanks to Assumption 2. Let us now define a partition of Ωi×(0, T )×(0, T ):

• E1 = {(x, t, s) ∈ Ω× (0, T )× (0, T ),Πi(u)(x, t) = Πi(v)(x, s)},

• E2 = {(x, t, s) ∈ Ω× (0, T )× (0, T ),Πi(u)(x, t) 6= Πi(v)(x, s)}.
Then

for almost every (x, t, s) ∈ E1, ∇(Πi(u)−Πi(v)) = 0,

for all (x, t, s) ∈ E2, lim
n→∞

S±n
′(Πi(u)−Πi(v)) = 0.

Thus for almost every (x, t, s) ∈ Ω× (0, T )× (0, T ):

lim
n→∞

S±n
′(Πi(u)−Πi(v))∇(Πi(u)−Πi(v)) = 0.

Furthermore, (x, t, s) 7→ S±n
′(Πi(u)−Πi(v))Mi|Πi(u)−Πi(v)||∇Πi(v)||∇(Πi(u)−

Πi(v))| is integrable on Ωi× (0, T )× (0, T ), thus, using the dominated convergence
theorem, we can claim that:

lim inf
n→∞

An
4 ≤ 0. (47)

So (44)-(45)-(46)-(47) implies:∫ T

0

N∑
i=1

∫
Ωi

|u0(x)− v(x, s)|±ξ(x, 0, s)dxds

+
∫ T

0

∫ T

0

N∑
i=1

∫
Ωi

|u(x, t)− v(x, s)|±(∂tξ(x, t, s) + ∂sξ(x, t, s))dxds

−
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

∇|ϕi(u(x, t))− ϕi(v(x, s))|± · ∇ξ(x, t, s)dxdtds ≥ 0.

(48)
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Let ψ ∈ D+(Ω × [0, T )), let ρ belong to D+(R), with supp(ρ) ⊂ [−1, 0]
and

∫
R ρ(s)ds = 1. For n ≥ 1, one sets ρn(s) = nρ(ns). One sets ξ(x, t, s) =

ψ(x, t)ρn(t− s), so that ξ belongs to D+(Ω× [0, T )× (0, T )). One has:

∂tξ(x, t, s) + ∂sξ(x, t, s) = ∂tψ(x, t)ρn(t− s),

and then inequality (48) can be rewritten:∫ T

0

N∑
i=1

∫
Ωi

|u0(x)− v(x, s)|±ψ(x, 0)ρn(−s)dxds

+
∫ T

0

∫ T

0

N∑
i=1

∫
Ωi

|u(x, t)− v(x, s)|±∂tψ(x, t)ρn(t− s)dxds

−
N∑

i=1

∫ T

0

∫ T

0

∫
Ωi

∇|ϕi(u(x, t))− ϕi(v(x, s))|± · ∇ψ(x, t)ρn(t− s)dxdtds ≥ 0.

(49)
The weak solution v has been chosen in C([0, T ], L1(Ω)), (such a solution exists for
regular enough initial data v0, i.e. v0 ∈W 1∞

pw (Ω), as exposed in Proposition 2.15).
We can apply the theorem of continuity in mean to let tend n to +∞ in inequal-
ity (49), thus we get, for all ψ ∈ D+(Ω× [0, T )),∫ T

0

∫
Ω

|u(x, t)− v(x, t)|±∂tψ(x, t)dxdt+
∫

Ω

|u0(x)− v0(x)|±ψ(x, 0)dx

−
N∑

i=1

∫ T

0

∫
Ωi

∇|ϕi(u(x, t))− ϕi(v(x, t))|±∇ψ(x, t)dxdt ≥ 0.
(50)

The inequality (50) still holds for any ψ ∈ W 1,1(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω))
with ψ(·, T ) = 0, and so for ψ(x, t) = (T − t). In this case, we get the following
comparison principle:∫ T

0

∫
Ω

|u(x, t)− v(x, t)|±dxdt ≤ T

∫
Ω

|u0(x)− v0(x)|±dx. (51)

This particularly insures the uniqueness of the solution, and its time-continuity, if
ϕi(u0) belongs to W 1,∞(Ωi). Moreover, we can state the following L1-contraction
principle in this case: ∀t ∈ [0, T ],∫

Ω

|u(x, t)− v(x, t)|±dxdt ≤
∫

Ω

|u0(x)− v0(x)|±dx. (52)

If u0 belongs to L∞(Ω), 0 ≤ u0 ≤ 1, there exists a sequence (u0,n)n≥1 of
approximated initial data fulfilling:

• ∀n ≥ 1, ϕi(u0,n) ∈W 1,∞(Ωi),
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• ‖u0,n − u0‖L1(Ω) → 0 as n→ +∞.

Let un be the unique solution associated to initial data u0,n. Then for all t ∈ [0, T ],
the sequence (un(·, t))n is a Cauchy sequence thanks to (52), and so it converges
to u(·, t) thanks to (51).

Let v0 ∈ L∞(Ω). Let (v0,n)n such that, for all n ∈ N, ϕi(v0,n) ∈ W 1,∞(Ωi)
and v0,n → v0 in the L1(Ω)-topology. Then, thanks to (52),∫

Ω

|un(x, t)− vn(x, t)|±dxdt ≤
∫

Ω

|u0,n(x)− v0,n(x)|±dx (53)

where vn is the unique weak solution associated to the initial data v0,n. We can now
let tend n to +∞. Thanks to the short discussion stated above, for all t ∈ [0, T ],
vn(·, t) tends to v(·, t) in the L1(Ω)-topology. Then we deduce from (53) that for
any u0, v0 ∈ L∞(Ω), 0 ≤ u0, v0 ≤ 1, for any t ∈ [0, T ], one has the following
L1-contraction principle:∫

Ω

|u(x, t)− v(x, t)|±dxdt ≤
∫

Ω

|u0(x)− v0(x)|±dx. (54)

Let t ∈ [0, T ], τ ∈]0, T − t[. For all n ≥ 1, one has, using (54)∫
Ω

|u(x, t+ τ)− u(x, t)|±dx ≤
∫

Ω

 |u(x, t+ τ)− un(x, t+ τ)|±
+ |un(x, t+ τ)− un(x, t)|±
+ |u(x, t)− un(x, t)|±

 dx
≤

∫
Ω

[
2|u0(x)− u0,n(x)|±

+ |un(x, t+ τ)− un(x, t)|±
]
dx

Since un ∈ C([0, T ];L1(Ω)), one gets, for all n ≥ 1,

lim
τ→0

∫
Ω

|u(x, t+ τ)− u(x, t)|±dx ≤ 2
∫

Ω

|u0(x)− u0,n(x)|±dx.

Letting n tend to +∞ gives the time-continuity of u.
�

The proof of Theorem 3.1 completes the proof of Theorem 1.1.
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