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Abstract. Recent studies have shown a high flood risk exposure in France. It represents and almost one fourth of the 
total population and a third of jobs.  In this context, a global vulnerability assessment methodology is currently 
elaborated and evaluated in France to bring adequate tools for flood risk management. This study raises the question 
of the quantification, of the qualification and of the choice of these vulnerability indicators for a given territory. This 
work aims to propose a new methodology dedicated for classification, for hierarchization and selection of a set of six 
vulnerability indicators by the means of a statistical analysis including PCA and ANOVA analysis depending of their 
relative impacts and correlation with the estimated risk level on the territory of Chalon-sur-Saône.  

1 Introduction  

This paper investigates the statistical possibility of 
hierarchization, classification and selection of multiple 
pertinent exposition indicators to flood risk.  

 
Recent evaluations of flood risk which emerged in 

application of the 2007 European Directive on the 
Assessment and Management of Floods (Directive 
2007/60/EC) have shown that the national flood risk 
exposure is high in France. Estimations have underlined 
that one fourth of the total population and a third of jobs 
are potentially located in risk areas [8]. In this context, a 
new vulnerability assessment methodology is currently 
being developed in France to elaborate suitable tools to 
evaluate most measurable components of vulnerability. 
One of these tools is list of about 110 vulnerability 
indicators adaptable to spatial scales and local 
specificities to evaluate vulnerability to flood risk [10]. 
This research paper presents an experimental work which 
raises the question of the quantification, of the 
qualification and of the choice of these vulnerability 
indicators for a given territory. This work aims to propose 
a classification of six vulnerability indicators depending 
of their relative impacts on the risk level estimated on the 
given territory of Chalon-sur-Saône crossed by Saône 
river. The goal is to reach a better definition of the nature 
of exposed areas, of the indicators to flood risk 
vulnerability and to reduce the number of calculable 
indicator by pinpointing the most appropriate. This will 
in return be helpful to design an appropriate policy.  

 
Today and despite an abundant literature on the 

subject [6; 3; 13], vulnerability still represent a highly 
complex phenomenon with both biophysical and socio-
economical factors affecting exposure, sensitivity and 
adaptive capacity to flood hazard. 

 
The 2007 European flood Directive underlined the 

necessity to also integrate economic evaluations of 
structural measures for flood protection which has the 
effect to increase the number of tangible indicators. 
Consequently, in France, and from 2009, each programs 
for flood prevention (PAPIa) had to include a cost benefit 
analysis (CBA) by estimating the economic efficiency of 
the planned program. and to consider non-monetary 
damage (human health, employment, environment, 
agriculture), the French government [9] developed a new 
methodology called Multi-criteria analysis (MCA). It 
allows the calculation of new and non monetary 
indicators such as the population exposed to flood or the 
number of employments the program is expected to 
protect etc... It introduces then new indicators dedicated 
to the measurement of the vulnerability on human health 
and security, employments and environment. 

Therefore, the volume of numeric vulnerability 
indicators increased significantly during the last decade 
and it has to be linked with the development of multiple 
national or international initiatives pushed ahead by 
climate change agenda [11]. 

 
Furthermore, in 2011 the French Ministry of Ecology 

has published a national strategy for flood risk 
management [9] driven by three major objectives : 

- to increase the security of vulnerable populations; 
- to stabilize in the short term, and to reduce in the 

medium term floods damage costs; 
- to sharply reduce the recovery time (time to 

regain an acceptable functioning) for a given 
territory. 

                                                 
a Programme d'Action et de Prévention des Inondations 
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 Hence, a global vulnerability assessment 
methodology is currently being developed at the French 
national level to assist this flood prevention strategy. This 
vulnerability assessment consisted in a list of 110 
quantified vulnerability indicators connected with each of 
the objectives of the national strategy previously 
mentioned. They will be organized in a toolbox including 
a methodology to calculate or to estimate each individual 
indicator (flood impacts on population, on jobs, damage 
costs, etc.). 

 In this context, the study also raises the question of 
non tangible damages indicators for a given territory. 
There is actually no methodology which selects relevant 
indicators related to flood risk. This would also be of 
great interest to produce a spatially explicit vulnerability 
index obtained by a combination of selected indicators. 

This is especially the case in the field of socio-
ecological and spatial vulnerability assessments. 
Dedicated maps are encompassing a wide range of 
biophysical and socio-economical aspects by working on 
the definition of an aggregated vulnerability index (AVI) 
which is an aggregation of multiple biophysical and 
socio-ecological indicators of vulnerability. The task is 
gaining more and more interest in the research 
community as they represent strong visual tools in 
environmental policy formulation and in communication 
[12]. The AVI is usually obtained by using holistic 
methods mapping [4; 2].  

The AVI has many other advantages that deserves to 
be underlined. It reduces the amount and the complexity 
of the information that must be communicated to the 
population or to bring adequate tools for policy 
formulation. It also provides an indication of the 
interaction of multiple, spatially homogenous indicators 
through one single index. In the other hand, one of the 
main critics addressed to this AVI is that it represents a 
dimensionless aggregation of several indicators for the 
related phenomena. Such generation of a single 
composite vulnerability index may be problematic 
because potentially important information with respect to 
the relations between the original variables are occulted 
in this resulting  index [2]. Finally proposed AVI 
methodologies are mostly deterministic as they do not 
include any statistical selection process and do not 
consider any possibility to exclude any of the calculated 
indicator. 

However, our approach has mainly focused on the 
better definition of vulnerability components which are 
impacting the territory at both micro scale and macro 
scale levels. Our approach is divided into two main tasks: 
– How to classify and select the relevant vulnerability 

indicators in accordance to their link with hazard 
level?  

– Which ones to choose in a wide range of 
vulnerability and exposition indicators? 

In application of the 2007 European Directive on the 
Assessment and Management of Floods (Directive 

2007/60/EC), France has identified 122 regional areas 
potentially impacted by a significant flood risk. The 
municipalities located in these flood areas are required to 
elaborate a flood risk management strategy by the end of 
2016. Within this frame, this work aims to propose a 
classification, a hierarchy and a selection of the main 
vulnerability factors at a regional scale. To do so, we 
underlined the relationship and the correlation between 
each vulnerability indicator calculated independently, and 
a risk indicator elaborated on the basis of data generated 
by hydrologic and hydraulic numerical models and land 
use characteristics. The classification, the hierarchization 
and the selection of tested vulnerability indicators is then 
proposed by respectively using a simple Pearson 
correlation, a PCA (Principal Component Analysis) and 
an ANOVA (ANalysis Of VAriance). The ANOVA is the 
only methodology which is able to proceed to the 
selection of the most relevant indicators (and 
symmetrically to the statistical exclusion of less relevant 
ones) depending on their relative correlation weight and 
impact on the risk level. 

 Our case study is the city of Chalon-sur-Saône 
including its suburbs (Fig. 1). It represents around 72.2 
km² for which 7 simulated flood scenarios from the most 
(T2) to the least frequent (T1000) were available (T2, T5, 
T10, T20, T50, T100 and T1000). 

Figure 1. Location of the studied area for flood risk evaluation

2 Context and data 

 Chalon is crossed by the Saône and several of its 
tributaries - the Thalie, the Corne  and the Grosne 
responsible for frequent flooding. The dynamics of 
flooding of these rivers is a slow kinetic: floods take 
several days to reach their peak, the decline may take two 
to three weeks which induces particularly long immersion 
times for flooded territories. The damage caused by these 
floods are often important, but they generally do not 
generate casualties. 
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 The Saône reference flood is the flood of November 
1840 (Fig 2). This flood have been generated by major 
precipitation across the basin of the Saône during the 
month of September, coupled with torrential rains on 
southern basin and melting early snow on the reliefs of 
Jura. In the twentieth century, the three floods of 1981, 
1982 and 1983 (Fig. 2), each with a return period of 
between 20 and 50 years, have strongly marked the 
spirits, causing significant damage to cities and industrial 
and agricultural activities. The last significant flood the 
Saône has known is the 2001flood episode (Fig. 2) with a 
time of return between 20 and 30 years. The overall 
economic balance of this flood was evaluated at 280 M€.

Figure 2. Historical floods that have impacted Chalon-sur-
Saône for 200 years.

Data collection consisted in seven flood scenarios 
(T2, T5, T10, T20, T50, T100, T1000) covering the area 
of Chalon-sur-Saône (Fig. 2) including 7 rural cities. 
Flood scenarios have been modelled by the Saône-Doubs 
watershed institute. Each of these scenarios consisted in a 
simulation of the flooded area and water depths given at a 
scale of 1m2 grid (1m x 1m cell size). Two databases 
have been used for the topography, first a LiDAR (1m 
horizontal resolution) with only a cover along the Saône 
river and a DEM (BD Alti from the IGN) with a 25m 
horizontal resolution including all the studied area. 
Finally, we used different land cover data (population, 
houses, agriculture, natural area…) using the BD Topo 
(at building scale), Corine Land Cover (at plot land  
scale) and INSEE database to estimate the flood impacted 
population and goods. 

3 Implemented methods 

In order to perform our statistical analysis of the 
spatial distribution of floods impacts, results of flood 
scenarios from numerical calculations have been 
represented in a 100 m grid cell, which is a good 
compromise comparatively to the size of the total area, 
leading to a total of 7 612 cells (Fig. 3 (a), (b), (c), (d)).  

The methodology applied on the territory of Chalon-sur-
Saône could be divided into two distinct phases: 

1. In a first step we have calculated a synthetic 
variable (the FHI: flood hazard index) grouping all the 
hazard data together (Fig. 3) at the cell grid level and in 
another hand we have calculated and affected in the cell 
grid all the variables of the land use composition (Fig. 
6: population, urban areas, natural areas, etc.). 

2. Secondly, we proposed to use and to compare 
three different statistical methods to classify and 
select the most relevant vulnerability and exposition 
indicators. This is permitted by the mean of a 
statistical crossing of our produced matrices of FHI 
with our vulnerability indicators of land use and 
demographic variables. 

 
Figure 3. Flood scenarios in a 100m grid cell-map by water 

level class. (a) T2 , (b) T50, (c) T1000, (d) T2+T20+T50+Tref.
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3.1 Risk analysis 

3.1.1 Calculation of a Flood Hazard Impact (FHI)

 The calculation of the Flood Hazard Impact (FHI)
synthesize in a single aggregated variable all the flood 
hazard data (probability of occurrence, water levels) for 
four flood scenarios (Fig. 3) we owned on Chalon-sur-
Saône. The Flood Hazard Impact (FHI) can be 
determined by the equation:  

FHI = � [water level × flood probability]  (1) 

 In order to perform a statistical analysis of the spatial 
distribution of floods on the territory, we calculated the 
flood impact in a 100 m grid cell (Fig. 4). The FHI
variable characterize only the natural hazard data and 
does not include any information about the land use 
(population, urban areas, natural areas, etc.).  

 

Figure 4. Method of calculation of the flood hazard impact in a 
100 m grid cell. 

 We observed a logical increase of the FHI as a 
function of the riverbed distance (Fig.4). As illustrated on 
the Figure 5, the more we are close to the riverbed, the 
more likely a frequent flood scenario could impact the 
area and most water levels are high. 

Figure 5. Illustration of the method of calculation of the flood 
hazard impact on 2 fictive points (houses). The point 1 is 

impacted by 3 flood scenarios (T20, T50, T100) and the point 2 
is impacted only by 1 flood (T100), as a consequence, FHI of 

the point 1 is higher than in point 2. In the 2 equations, H is the 
water level for the different flood scenarios. 

First a simple Pearson correlation coefficient was 
calculated for each indicator giving a first indication in 
terms of existing links between indicators and the FHI. 
Then, a principal component analysis (PCA) was applied 
to give a classification of homogeneous groups of 
indicators depending on the sign (positive or negative) of 
the link between FHI and each indicator. These results 
were useful to identify the most relevant vulnerability 
indicators as a function of their flood exposure. These 
statistical analysis aims to highlight the relationship 
between a variable of exposure level (hydrologic impact: 
water levels and flow velocity) with spatial vulnerability 
indicators for each one of our 7 612 cells. 

A PCA helped to give an information about flood 
impact by catching the correlation between FHI and 
altitude.  

Finally, an ANOVA (ANalysis Of VAriance) was 
computed to propose a selection of indicators by 
considering the exclusion of indicators from the final set 
based on statistical rules and a hierarchy of variables 
which have highest positive relations depending on their 
contribution with the FHI. The ANOVA is helpful to 
eliminate non significant indicators from the model and 
to have a scale of comparison for each vulnerability 
indicator in order to know which are the vulnerability 
indicators to be included in or excluded from the model.  

3.1.2 Studied variables 

 Various vulnerability and exposition factors have been 
developed as a rapid and consistent method to characterize 
the relative vulnerability at the cell grid level. Our approach 
consisted in an assessments of the physical vulnerability of 
the area. Hence, we have calculated and studied six 
indicators on the territory (Fig. 6) : (1) Urbanized area 
(m²), (2) Natural areas (m²), (3) Number of houses, (4) 
Population (5) Number of electric transformers and (6) 
Number of companies and services. Hence, we have a 
value for each indicator at the grid cell level. All the 
variables have been compared to the FHI previously 
calculated.
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Figure 6. Spatial distribution of 5 variables on the studied area. 
a) natural areas, b) houses, c) urban areas, d) population e) 

firms, companies and services. 

3.2 Statistical methods 

 To compare variables (vulnerability indices) as a 
function of the water levels and flood hazard impact 
(FHI), we used 3 different statistic methods previously 
described (1) calculation of  correlation coefficient, 2) 
PCA, 3) ANOVA). 

3.2.1 Correlation coefficient 

 The Pearson correlation coefficient gave a 
measurement of the linear correlation between FHI and 
each vulnerability indicator. This coefficient gives a 
value in the range [ -1; +1]. The value of +1 correspond 
to a total positive correlation, �1 is the total negative 
correlation while 0 is the total absence of correlation. 

3.2.2 Principal component analysis (PCA) 

 PCA is a statistical procedure that uses an orthogonal 
transformation to convert a number of potentially 
correlated variables into a set of uncorrelated variables 
called principal components that captures the variability 
in the underlying data. The number of principal 
components is less than or equal to the number of original 
variables. PCA is a non-parametric procedure and is 
therefore independent of any data probability distribution 
hypothesis [1]. PCA uses orthogonal linear 
transformation done in such a way that the first principal 
component has the largest possible variance where the 
total variability within the data is the sum of the variances 
of the observed variables, when each variable has been 
transformed so that it has a mean of zero and a variance 
of one [7]. 

3.2.3 ANOVA 

 The ANOVA allows both a hierarchization and a 
selection of relevant indicators. The selection of variables 
is performed with a stepwise selection to assess 
contributions of each dependant variable on the F-statistic 

e
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(the Fisher statistics gives an indication on the global 
fitness of the model) as they are added to or removed 
from the model. If at a given step of the stepwise method, 
any variable of the model is not significant at the 5% 
level, then the least significant variable is removed from 
the model and the algorithm proceeds to the next step 
(removing next variable if not significant). The statistic 
used for fitting the model is the Schwarz Bayesian 
information Criterion (SBC) known for being quite 
restrictive for variables selection. The SBC statistic is 
given by the following formula:  

��� � ��� ���	� 
 � ���
��

With: n=number of observations, p=number of 
parameters including the intercept, SSR=sum of squared 
residuals.  
 

In addition to the ANOVA, a simple linear regression 
obtained by ordinary least squares regression. In this 
regression the FHI is considered as the dependant 
variable and all indicators selected by the ANOVA as 
explanatory variables. This regression is computed to 
estimate the coefficient as well as the sign of the 
correlation (positive or negative) which is are not given 
by the ANOVA. 

4 Results 

4.1 Comparison of variable as a function of the 
water levels 

 Results (Figure 5) indicate a threshold between the 
T20 scenarios and T50 ones in terms of urban impacts 
induced by flood risk. PCA results discriminates clearly 
between two different category of flood scenarios: the 
most frequents on the one hand (from T2 to T20) and 
then moderate and extreme scenarios on the other hand 
(from T50 to T1000). Nearly 95% of the total variance is 
explained with the two first principal components (Fig. 7-
b)

Figure 7. PCA analysis: altitude impacted by flood scenarios 
a/Variables factor map b/Percentage of variance 

 This result is mainly explained by the territorial 
strategy of mitigation where a proportion of the north 
natural area is devoted to protect the territory for a T20 
flood scenario. Concerning flood exposition to potential 
flood depth, natural areas are concerned by high impact 
of flood hazard from the first scenario which is T2.  

 This could bring very useful information to spatial 
planners and policy managers to implement the right 
strategy which could consist in a restriction of building in 
some areas, to stimulate the deployment of adaptive 
measures or to develop only in the most suitable areas. 

4.2 Comparison of variables as a function of the 
Flood Hazard Impact

4.2.1 Correlation coefficient 

The Pearson correlation is the very first intuitive 
statistical exploitation able to estimate the link between 
risk level and each territorial component taken separately. 
Depending on the nature of the territorial component we 
found three different categories of indicators (Table 1): 

(1) Components which are positively correlated 
with risk level : in our case study "natural areas" 
were the only indicator to be included in this 
category. As previously explained natural areas 
are playing an important role for the mitigation 
of the Grand-Chalon territory. 

(2) Components which are negatively correlated: 
hopefully this is the case of most of the variables 
population ,urban area, houses, companies (i.e., 
Table 1). 

(3) Components for whom we do not find any direct 
correlation with FHI this is the case for electric 
transformers (i.e., Table 1). 

Variable Urban 
area 

Houses Pop. Compani
es 

Electric 
transfor

mers 

Nat. 
areas 

       
Pearson 

correlation 
with flood 

hazard 
indicator 

-0.60 -0.39 -0.35 -0.22 0.00 0.35 

Table 1. Person correlation coefficient

4.2.2 Principal component analysis (PCA) 

 We then used Principal Component Analysis (PCA) 
as a means of classification of vulnerability indices 
(population, urban areas, houses, etc.)) across broad 
spatial scales. The PCA is used here as a descriptive, 
statistical approach to data transformation as a means of 
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overcoming variable incommensurability (Fig. 8). It gave 
a confirmation of our observations made with a simple 
Pearson correlation calculation by discriminating three 
types of exposed indicator (see section 4.2.1). We found 
that around 50% of the total variance is explained with 
the two first principal components.  

Figure 8. PCA. analysis: FHI and vulnerability indicators 

4.2.3 ANOVA and linear regression (OLS) 

 We performed here a linear regression using the 
ordinary least squares (OLS). The endogenous variable 
(��) was the FHI. The exogenous variables (����) were 
selected ones within the vulnerability indicators: The 
main idea was to get the relative contribution to 
emissions of each variable on FHI. Moreover, as we 
wished to have a hierarchy of variables depending on 
their impact on the FHI we have computed an ANOVA 
on our five vulnerability indicators. This step was helpful 
for two reasons: (1) it allowed us to compare the 
influence of each vulnerability indicator relatively to all 
other indicators and to know if it is an important factor to 
be included and kept into the model, (2) it introduced a 
statistical rule to skip non significant variables. The 
results are presented in two distinct parts. First we gave 
the hierarchy of factors (i.e., Table 2) and then the 
selected variables, associated parameters estimates (i.e. 
Table 3) . 

 The selection of variables was performed with a 
stepwise selection to assess contributions of each 
dependant variable on the F-statistic as they were added 
to or removed from the model.  

 The results are presented in two distinct parts. First 
we gave the hierarchy (1 to 5) of factors and the selected 
indicators which indicated the importance of the link in 
absolute value with the flood risk indicator (FHI) (Table 
2). In a second table associated parameters estimates 
which are giving the relative contribution to global risk of 
each variable (Table 3), we therefore gave a hierarchy of 
variables (Table 4) depending on their exposition and 
their vulnerability unless we could not really provide a 
clear interpretation of estimated regression coefficients .

Looking at the results from the entire set of variables 
(Table 2), we can see that the indicator of electric 
transformers (shaded in grey) is not significant in the 
model and was consequently removed from the model. 
Our five other indicators were acceptable according the 
ANOVA and ranked in the model in the following order 
of importance: (1) urbanized area (m²), (2) natural area 
(m²), (3) number of houses, (4) population and (5) 
companies and services. 

 Moreover, these results suggested that the electric 
transformers localization have no additional information 
to bring on the global biophysical vulnerability in 
comparison with all significant variables included in the 
final model (from 1 to 6). This could be explained by the 
fact that we do have only information about the 
exposition of the electric transformers and no information 
was provided about the real impact on the power supply 
and on the power grid.  

Step Variable Sum of 
squares 

SSR BIC 

1 Urbanized 
area (m²) 

6.6505 31.807 471588 

2 Natural area 
(m²) 

1.8885 27.850 470874 

3 Houses 1.2734 26.464 469435 

4 Population 0.4567 25.866 469326 

5 Companies 0.1007 24.358 469122 

6 Electric 
transformer 

0.1300 24.952 469221 

Table 2. ANOVA: selection of variables performed with a 
stepwise selection. SSR (Sum Square Resid) : should be 

minimum for a good fitting. BIC is the objective function of the 
algorithm, and have to be minimized. Electric transformers 

were excluded from the model since it increases the BIC.

Regression Estimate Pr (> �t� ) 

(Intercept) 2.6e-01  <2.00E-16 

Urban area -1.3e-05 <2.00E-16 

Population -3.6e-04 7.07e-07 

Houses -7.4e-03 <2.00E-16 

Natural area 4.4e+00 <2.00E-16 

Companies -3.9e-04 0.0167 

Table 3. Linear regression of FHI and vulnerability indicators. 
The variable is significant in the model at the 5% level  

if the Pr (> �t� ) <0.05. 
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 The estimation of the parameters are giving 
information about the net average correlation with the 
FHI. The final classification of vulnerability indicators is 
given according to their importance in the model 
(ANOVA classification) and of the sign of the 
correlation. In first position we have the most vulnerable 
indicator which is the surface of natural areas, the only 
indicator which is positively correlated with the flood 
hazard. In the last position we can find the least 
vulnerable indicator. Companies and services are in 
average located at higher altitude zones.  

Rank Variable 
  

1 Natural area  

2 Population 

3 Houses 

4 Urbanized urea 

5 Companies and 
services 

Table 4. Final ranking of vulnerability indicators 

The prioritization of vulnerability indicators on 
Chalon-sur-Saône and the identification of variables that 
are statistically located in the most exposed areas are 
then: 
 
• Natural areas: positively correlated with the flood 

hazard impact, natural areas are mobilized for 
mitigation to absorb the impact of the most frequent 
floods (i.e. Figure 7) 

• Population, urbanized areas, houses and companies: 
negatively correlated with risk impact but with 
different levels of correlation (1: population, 2: 
houses, 3: urban areas, 4: companies ). This result 
underlined that policy measures should focus on the 
reduction of vulnerability measures of populations 
and houses located in flood hazard areas.

• Electric transformers: no correlation found with 
exposed areas and risk level. As already explained, 
no information was provided on the impact of any 
flood event on the power grid of Chalon and hence 
only the exposition of electric transformers was 
taken into account.   

 
 

Figure 9. Relation between urban planning and floods 
impact on the territory between T20 and T50.

 
 Statistical analysis made on flood event data (PCA 
results) have showed a threshold between the T20 and 
T50 scenarios in terms of urban impacts induced by flood 
risk which enlighten our understanding of natural areas 
indicator classification. A previous study on Chalon-sur-
Saône has already shown the gap in flood impact between 
these two flood scenarios T20 and T50 [5] (Fig. 9). This 
result emphasizes the necessity and the importance of the 
relation between urban planning and floods impact on the 
territory and to bring adequate policy measures of 
vulnerability reduction on the T50 flood scenario 
prevention. 
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5 Conclusion 

 There are likely to be multiple types of vulnerability 
occurring simultaneously over a complex territory. In 
response to this complexity it is often argued that in order 
to provide policy relevant research one should quantify 
vulnerability in relation to a single, clearly identified 
issue. It therefore presupposes that the most important 
sources of vulnerability within the system were already 
known. 

 Our methodological approach appeared helpful for 
the hierarchization and the classification of relevant 
vulnerability indicator. The statistical analysis was 
helpful to precise which components of vulnerability 
were impacting the territory of Chalon sur Saône. 
Comparing to the simple Pearson correlation calculation, 
or even to the PCA (Principal Component Analysis), the 
ANOVA (ANalysis Of VAriance) allowed us t to proceed 
to the selection of the most relevant indicators (and 
symmetrically to the statistical exclusion of less relevant 
ones) depending on their relative correlation weight and 
impact on the risk level. In our case study the ANOVA 
was able to: 

1. give a classification of vulnerability indicators 
according to their importance in the model (ANOVA 
classification) and of the sign of the correlation given 
by a simple OLS statistical regression which has also 
taken into account cross-correlation effects between 
other indicators which is not the case with the 
Pearson correlation coefficient. 

2. exclude the indicator of electric transformers 
localization. We have to underline that no 
information was provided about the real impact on 
the power supply and on the power grid. Therefore, 
the lack of data on the vulnerability of the power grid 
could have played a role in favor of the exclusion of 
the variable in the global model. 

The presented methodology has the advantage to 
hierarchy, to classify and to select relevant and usable 
vulnerability indicators by the means of statistical tools. 
Nevertheless some further improvements of the method 
will be considered in the future. Some of these 
improvements are 1) the inclusion of additional indicators 
of vulnerability and exposition to flood (damages, 
agriculture, networks, energy supply…), 2) to test the 
method on more experimental sites with different socio-
economic context and 3) finally to introduce the 
computation of partial least-square regression (PLS) to 
obtain predictions on vulnerability indicators for 
unmodelled flood scenarios which would be of a great 
interest for territories that have lacks of modeled flood 
scenarios.  
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