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Swegzczenie: Opisano makroskopowy proces quasi-statycznego przeplywu w oérodku zbudo-
wanym ze sziywnej matrycy, kidrg tworzg szezeliny i pory. UZyto metody homogenizacii,
usmozliwiajacej vzyskanie makroskopowego opisu, gdy znany jest proces w skali zardwno por, jak
i szczelin. Opis makroskopowy zalezy od stosunku pomiedzy wielkosciami charakterystycznymi
dla poszczegdlaych skal: I/I' i U'/l", gdzie I, I, I sa dugosciami charakterystycznymi por, szczelin
i ofrodka makroskopowego. W pracy zaloZono, ze I'/I” = O((I/I'}?). Uzyskany opis makrosko-
powy tworza réwnania bilansu masy i klasyczne prawo Darcy’ego. W wyniku przeprowadzonych
badat uzyskano dodatkowy czlon okreslajacy Zrédlo, kidre tlumaczy role zbiornika Scisliwej
cieczy w mikroporach rozpairywanego ofrodka.

Abstract: We investigate the macroscopic quasi-static description of a porous rigid medium with
a double porosity constituted by pores and fractures. We use an homogenization method which
allows the macroscopic modelling from the description at the pore and the fracture scales. The
macroscopic description is strongly dependent upon the ratios between the difierent seales I/V and
P/ where L I, I are characteristic lengths for the pores, the fractures and the macroscopic
medium, respectively. We investigate here the case: I'/}” = O{(I/¥}*). The macroscopic description
which is obtained iz & mass balance eguation with 2 classical Darey’s law. The interest of the
investigation les in the source term that highlights the role of 2 compressible fluid reservoir played
by the microporous medivm.

Pearome: Ormicas MarpOCKONWICCKEE ODOISCC KBACH-CTETHYCCKOTO MPOTEKAHHS B CPEHe, Ho-
CTROCEHOE B3 MECTKOH MATPHEUB, KOTOPYIC o0pasyroT INeNE ¥ mOophl. VICHONE3GBEE WMETOL
TOMOTERA3ALFH, NIOHEH BOSMONEOCTE Oy YCEAS MAEPOCKOIMICCKOTO OINCARES, KOTIA HIBec-
TeR mpouecce B mMaciuTabe Kax mop, Tax B mened. MarpocromzEeckoe ONECSHEE 32BECAT OT
OTHOIICHES MEXIY REIMIEHAME, XapaKTepEuIMA LI OTReNsEsx Macurrabors: /I a I/, roe L I,
¥ aBNSIOTCH RAPEKTEPENME HIFHEME 0P, Iene# B Maxpockormuccoil cpemes. Beuro mpen-
roirowsEs, wro F/F = O{I/F¥). Tlonyucanoe MAKDOCEONATECKOOS OIIACARRE COCTARISIOT YPas-

Ganagee Macchl 7 knaccmzeckmi sevon ldapem. B peayisTate HPOBSHCHERY HCCHEAORaERE
Eonxyien pobapotHef WiEw, OUpPSUSNEIOIEY VMCTOYRAK, XOTODHI BHSCHAST PONE DE3EpBYaD:

F0E CORETRE.
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results. Inertial term
In the second part of the paper, local ¢ qumﬁs that describe the flow and
sstimations 1 “@dﬁi’%ﬁ for homo g@&@a@@ are pﬂ*ﬁ%@m&ﬁ hum@m?atwﬁ is the

subject of the third part. The macroscopic description is obtained in the form of mass
kalance equation with a classical

We consider the small perturbation of an equilibrium state. In the
flow we have the following equations, with: ¢=p in the pores an
fractures.

[ ﬁ
=3 m
g
ey
=
[

Momentum balance

A and yu are viscosities, v is the velocity and P denotes ths pressure. According to the
previous assumptions, inertial terms have been neglected:

r'as, -
pdd, + A+ W7V 5,) - VP, = %uﬁa«m}:@. (1)
Mass balance
9P,
e+ P(p5) = 0. (2)
Gas state equation
We assume that the fluid is linear.
P = AP,. 3
Boundary conditions
On I
d,/r = 0. 4)
Cn I
1
)/ = <i,>o where <5,>, = o g 5,40, (5)
P
P, = P,. (6)

22. DRIVING FORCE

The driving force, which causes the flow, is a macroscopic pressure gradient. Its
order of magnitude is:



VP, = 0(?)

where P is a difference of pressures

applied to the macroscopic boundaries.
According to (1), the pressure force is

balanced by viscous forces:
VP, = O(udd,).
We deduce the following orders of magnitude:

o) o)

2.3. SPACE VARIABLES

Three characteristic length, ie, LI, I”

, allow the introduction of three dimension-
fess variables:

S T B Y]

R x

T
which describe the pores, the fractures and the macroscopic medium, respectively.
The ratios of the variables are very small. Every physical quantity is also a function
of these three variables. We use preferably three physical variables which are as

follows:
VS TTAN
£= 0| —}}3%5” pore describing varigble,

‘\E

//w\_

R = f}g - %" fracture describing variable,

/

AY

X" macroscopic variable.

24, TIME SCALBES AND TIME VARIABLES
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Let us note that the previous choices deter:
and t. Therefore we have adopted a macroscopic point of view for the description o
. d by,

3

the medium [2]. Consequently, dimensionless numbers will be estimated

wadien ] e is £ 47 rnyria ?
ssential role of the varables x
E

e
the characteristic length !” and the characteristic time T.

3. DERIVATION OF THE MACROSCOPIC DESCRIPTION

We investigate the following case:

3.1. SPACE VARIABLES

According to the relationships between the characteristic length, they are
itemized as<follows:

% = ¢ 3% is the pore space variable,

# = g~ 2%" is the fracture space variable,

X" is the macroscopic space variable.

3.2. TIME VARIABLES

t is the fractured medium time variable,
T = &2t is the microporous medium time variable.



3.3. DIMENSIONLESS NUMBERS

Equations (1}+{6) require some dimensionless numbers. According to momentum
balance equation (1), we can introduce:

2
= |pdd,]
Estimation of (7) and use of the characteristic length /" allow us to obtain:
0=0,=0,=0(".
The mass balance equation (2) enables introduction of the Strouhal number:
90,
s at
“ V(a8
According to the results of [5], we investigate the case where:

S=8=5,=0(1).

Taking into account these estimations, the equations describing the flow are written
in the dimensionless normalized form:

In the pores

etuds, + e+ pV(V-3,)-VP, = 0, (10)

%o 4 70,5 = 0, (1)

p, = AP,, (12)

d,/r = 0. (13)

In the fractures

et udi, + e*(A+ p)W(V -5,y - VP, = G, (14). -

%" + Ve (p5;) = 0, (15)

pr = AF;, (16)

Blp = <8, (17

P,=P, on I {18}

34, METHOD

Due to the existence of the small parameter &, we can search for every dimensicn-
less unknown function ¢, in the form [3}:
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‘We then deduce that the expansion of the pore velocity begins in &2 The unknown
quantities are therefore written as follows:

= Po(& &, %, 6, Ty + ePL(#, #, %, 4, T) + *P2&, #, %, 6, T) + ...
= P&, #, 1, T) + eph(®, 2, &', t, T) + 202(%, 2, 7', 6, T} + ...
7, = e*2(%, ¥, %", 6, T) + 33@"”2@5 R T+
P, = PY#,%,t, T)+ P}, %', 1, T) +
pp o= pAE, F, 1, T) + *p}(Z, %', 1, T) + ...
¥, = 0}(&, X", 1, T) + e205(%, %", 1, T) + ...
We have now to introduce these expansions in the dimensionless equations with
taking into account the fact that:
0 . ) d _, 0
dxy ax; 0x; ox;

?_ is mfcen—g—%-gé—
ot W "t ar

In the pores

The first problem: Equation (10) at the order of ¢~ and equation (12) at the
order of &°.



V.PS =0, (21)

_ 4Py, (22)

We deduce
P) = P&, %', 1, T), (23)
1917 = pp(ic’" # 1, T). (24)

The second problem: Equation (10) at the order of ¢~ 2 and equation (12) at the
order of &’

V.P:+V,.PS =0, (25)
= AP!. (26)

We deduce
VP =0, 27
V.PS =0. (28)

Hence:

PS = PY(3", ¢, T), (29)
gy = pp(¥', 1, T), (30)
= Pi(#, ", t, T), (31)
oy = pp(X, %", 1, T). (32)

The thz rd problem: Equation (10) at the order of ¢~* and equation (12) at the
order of &2

VP24 V.PL =10, (33)
= APZ. (34)
In a similar manner, we deduce:
Pl =P, 1 T), (35)
ok = AR, 5 T), (36)
PZ = Pz, %' 1, T), (37)
& = pA2, ¥, T). (38)

The fourth problem: Equation (10} at the order of €%, equation (11) at the order of

¢™! and equation (13) at the order of &%

pA G+ (A+ p)V V68 -F P5— ~V.PY =10, (39}

’:'.sm
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periodicity prope

in which:

1 .
< g = — | -dil. {48)
“ 3%53
We then bhave:
800 L N
w4 7 o< mg] = O (47
in which:
{£2,]
—_ (48)
163,

is the microporous medium porosity, and with:
<> = —K (VP + VP2,

R, = <k>q,
Pl = APS.
The fracture scale equivalent behaviour is also as follows:
5P g o7 5 G 2
=t~ PV [, 7P+ V,.P2)] = 0. (49)

This behaviour is available in £2,. Equation {49) describes the fluid behaviour at the



MICToPOrous mass&f scale. The effective Darcy’s coefficient and the two pressure
gradients are x'- and x"-dependent.

In the fractures
The ?Iirw Hrobiam‘ Eguation (14) at ?h@ order of £ %, equation (16) at the order of

b

and equation (18) at the order of &°.

VoPS =10, (50)
0% =APY, (51)
P} =P% onl'. (52)
Eguation (50) leads to:
P = PX#, 1, T). (53)
We deduce:
p7 = pp(X', 5, T). (54)
Finally eguation {(49) and boundary condition (52) give the following result:
PY = P = P, 1, T). (55)

The second problem: Equation (14) at the order of e~ %, equation (15) at the order

of 7' and equation (17) at the order of £°.

ph 5%~ VP® ~ V. P% =0, (58)
7.9 = 0, (57)
i}?/}*’ = "“<5§>‘”‘9 = 3. (58)

Equations (56), (57), (58) constitute the linear boundary problem in terms of x', which
determines the following {¥-periodic quantities:

fj? = "gfﬁx’tpﬁ, E:SQ}
P = AT ) (60)

order of ¢ and egquation (17) at the order

Py
T\v
k=l
O3y
Ry ¥
s
T i)
)
b
el
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i
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nce mors using (59

s
i

A0
Y - , =¥ 9 7
Wt Ve (PR Vo PO) b <P (0°F]) 0 = O (64)
in which:
is the fracturs :
_’f = (66)
with:
) Loy o) 277y
=, > o "“7;} ﬂgéa i‘@?;
BREE 4
Using boundary condition (62}, we obtain:
o 1 Z 0,52 Lo o N
3% i Fr s 22 N <2
J?a “{p m}}lg = T § » (0°73)d = T e <L B2 > 7dS. {68)
i & lj.—-:
i

After integration of (47) on J;,, we obtain the expression researched:

i;" J o0 < i1dS = n{1 - ﬂf;aé (69)
Now, we are able to write the equivalent macroscopic behaviour. Actually, taking
into account the fact that:

p° = AP°
and integrating (69) into (64), we obtain:

(W + (-7 )n]g—f* xn'(P"ﬁfﬁx.Po) = 0. (70)

Equation (70) describes the fluid behaviour at the macroscopic scale.

4. CONCLUSIONS

The macroscopic description of the porous medium suggests few remarks. The
flow of the fluid proceeds according to classical Darcy’s law for an incompressible
fluid. The fluid flow through the pores is ignored because it is negligible in front of
flow through the fractures. This fact, that has already been demonstrated in [6], is
currently confirmed. The mass balance (70) is nonlinear; this is a classical result. On
the oter hand, the source term in (70) is unusual. This term is connected to the fluid



compressibility md calls out the fluid in the pores, which are therefore playing the
role of a compressible fluid reservoir within the fractures. Finally, let us remind that
the behaviour a@sm?:}wa is the straight consequence of the separation investigated:

r (12N
Leoff)
& .

The entire study of the compressible fluid flow behaviour needs the analysis of the
other possibilities as in [4].
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