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Abstract

Audit mechanisms frequently take place in the context of repeated relationships be-
tween auditor and auditee. This paper focuses attention on the insurance fraud problem
in a setting where insurers repeatedly verify claims satisfied by service providers (e.g., af-
filiated car repairers or members of managed care networks). We highlight a learning bias
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1 Introduction

Claim fraud represents a serious threat to insurance markets: by artificially inflating the fre-
quency and the cost of reported losses, defrauders lead to higher insurance premiums and they
contribute to jeopardizing the efficiency of risk sharing mechanisms. Besides the free-riding
problem that it poses, large scale fraud may even endanger the sustainability of the insurance
markets that are prone to fraud.

Insurance claim fraud is sometimes referred to as a form of ex-post moral hazard in that it
occurs after an (alleged) accident, for example when policyholders build up their claim or when
they announce accidents that never actually happened. It essentially differs from ex-ante moral
hazard through the associated timing (before/after the accident) and the modus operandi of
addressing these inefficiencies: while principals tend to rely on a contract design approach to
distort the agent’s incentives in an ex-ante context (without being able to monitor the agent’s
effort), the ex-post situation is usually addressed through costly auditing in order to check what
actually occurred.

The economic literature has mainly examined these issues through the lens of the costly
state verification approach, whose foundations were laid by the seminal papers of Townsend
(1979) and Gale & Hellwig (1985). Within this setting, it is assumed that the insurer can verify
the true value of claims by incurring an audit cost.1 The audit may be either deterministic,
random or guided by signals perceived by the insurer. In particular, Mookherjee & Png (1989)
establish that random auditing dominates deterministic auditing, while Dionne et al. (2008)
build a scoring methodology to show how audits are triggered by signals observed by the insurer.
In one way or another, an optimal claim monitoring strategy achieves a trade-off between the
additional costs of more frequent audits and the advantages of a more efficient fraud detection.
The deterrence effect highlighted by Dionne et al. (2008) is an example of such an advantage:
they consider a setting where more frequent audits reduce the frequency of fraud, and they show
that some individually unprofitable audits should be performed because of this deterrence effect.

Audit may also play an important role for gathering evidence about the auditee (e.g., does
he seem to have a penchant for dishonest behavior?), an information that may be useful at
later stages. Indeed, claimants (or service providers with whom they collude) may have some
intrinsic and hard to observe characteristics that affect their propensity to defraud. Audit may
help the insurer to mitigate this informational asymmetry about claimants’ type.2

The learning dimension is particularly relevant when it comes to repeated audits. Consider
for instance the health insurance fraud case when there is a third party involved beside the
insurer and the policyholders. Health service providers (doctors, opticians, pharmacists, etc.)
play a central role since collusion between providers and policyholders is usually a necessary
condition for fraud to take place. Furthermore, health care providers interact on a regular basis
with the insurer, as they provide services to many policyholders and during several periods.
Because of this repeated interaction, health insurers’ anti-fraud efforts often focus on service
providers as much as on policyholders. The same logic applies to property insurance, when
insurers interact with car repairers or construction companies, sometimes within a network of
affiliated service providers.

The purpose of the present paper is to investigate how such repeated interactions affect the
optimal audit strategy. We will show that the insurer may find it optimal to perform unprof-

1Bond & Crocker (1997), develop the costly state falsification approach, where it is the defrauder who may
incur some expenses to misrepresent her loss.

2Dionne et al. (2008) introduce this hidden heterogeneity under the form of a cost reflecting the policyholder’s
moral sense that affects the probability of defrauding. Still, this cost remains unobservable by the insurer and
does not come into play to assess the probability of a claim being fraudulent.

2



itable audits, because of a learning effect. In short, auditing is a way to gather information that
can be used at later stages of the auditor-auditee interaction. This learning dimension may
lead the insurer to perform audits beyond what would be optimal from a purely instantaneous
standpoint. To highlight this effect, we will rely on a simple model with two types of service
providers (honest and dishonest) who may collude with policyholders in order to defraud. The
insurer has beliefs about the type of each service provider. His decision consists in choosing
the probability with which he audits each provider over the course of two consecutive periods.

We find that, at the first period, the insurer has an incentive to perform some unprofitable
audits, in order to improve his information about the service providers’ type, and this additional
information will allow him to more efficiently focus his auditing strategy at the second period.
Ultimately, deviating from a strategy that would be guided by instantaneous expected gains,
proves to be profitable. It corresponds to insisting on preliminary investigations early in the
relationship to better monitor the agents later on.

This conclusion reveals an exploration/exploitation dilemma analogous to the multi-armed
bandit problem in machine learning3. In this approach, a player is repeatedly facing a slot
machine with multiple arms. He must choose an arm at each period, each arm providing a
random payoff with imperfectly known stationary distribution. The player faces a trade-off
between playing the most profitable arm according to early beliefs, and playing different arms
in order to refine his beliefs. Exploring new arms induces an opportunity cost of not exploiting
the arm that is the most profitable according to the current information, but this may allow
the player to discover that other arms are in fact more profitable. Similarly, in our model, by
trading current revenue for information, the better informed insurer gets a higher future payoff
that compensates the initial loss.

The rest of the paper is organized as follows. In Section 2, as a preliminary stage, we consider
a single period model where audit is not repeated and we characterize the corresponding optimal
auditing strategy. In Section 3, we extend our model to account for repeated audits. We
exhibit the competing roles of auditing as sources of revenue and information, and we define
the insurer’s dynamic optimization problem that will be solved by backward induction. Hence,
we start by characterizing how available information is used at the second period and, in a
second stage, we deduce how the first period audit should be performed. We show that the
learning effect leads the insurer to audit more at the beginning of the relationship, with the
magnitude depending on the informativeness of the audit and on the degree of short-sightedness
of the insurer. In Sections 2 and 3, we restrain ourselves to a simple model where all claims
have the same value. Section 4 extends our results to a more general setting with variable claim
values. The final section concludes. Proofs are in the Appendix.

2 Single Period Auditing

2.1 Setting

Let us start by considering an insurer who interacts with a population of service providers
(SPs) during a single period. SPs are mandatory intermediaries between insurer and insured.
In particular, they certify the claims filed by policyholders, which means that they attest that
the claims actually correspond to the value of the services paid by the policyholders following
the event covered by the insurance policy. Each SP transmits exactly one claim with value
normalized to 1 to the insurer, with the claim being either valid or invalid. Invalid claims

3See Sutton (1992) and Bergemann & Valimaki (2006).
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should not lead to insurance payments. They may be transmitted either in good faith (for
instance because the SP makes an error due to imperfect information about the circumstances
of the loss) or in bad faith with the intention of defrauding.

SPs are heterogeneous when it comes to their propensity to transmit invalid claims. There
are many possible determinants of this propensity, among which the sense of moral values,
which is negatively correlated with the propensity to defraud, or the ability to build complex
defrauding schemes.4 Hereafter, we consider that each SP may be either honest (H) or dishonest
(D). Honest SPs only transmit invalid claims by error (they are always in good faith), while
dishonest SPs may transmit invalid claims either by error or intentionally (they may be in bad
faith). Hence a type H is less likely to transmit invalid claims than a type D. We include this
aspect by defining probabilities P(Inv|H) = pH and P(Inv|D) = pD of submitting an invalid
claim by type H and type D, respectively, such that pH < pD.

There is a continuum of SPs with mass 1 and the insurer has initial belief π ∈ [0, 1] for each
SP that represents the a priori probability that the SP is of type D. The prior π is distributed
in [0, 1] with density f(π) and c.d.f F (π) in the population of SPs. While we consider this prior
as given, we may consider that it has been induced by signals (including the outcome of audits)
that have been previously perceived by the insurer about each SP. These beliefs may be biased
or not among SPs, i.e., the expected value

∫ 1

0
πf(π)dπ may or may not be equal to the true

proportion of dishonest SPs in the continuum.
Each claim may be audited and, in that case, the insurer observes whether it is valid or

invalid. The audit is costly and represents the fundamental constraint that the insurer faces
when it comes to choosing audit targets. It costs c to investigate a claim, with pH < c < pD.

Claims found to be invalid are not paid, inducing a net proceed of 1 − c. No penalty is
paid to the insurer by SPs whose invalid claims are detected by the audit. Hence, auditing
a claim is profitable (in expected terms) only when it has been certified by a dishonest SP.
From the insurer’s point of view, an SP with prior π transmits invalid claims with probability
p̄(π) = pDπ + pH(1− π) and the corresponding expected net proceed of auditing is p̄(π)− c.

2.2 Auditing Strategy, Objective Function and Optimization Prob-
lem

For each SP, the insurer must decide whether an audit will be performed or not. We define
an auditing strategy as a function x(·) : [0, 1] → [0, 1] that assigns a probability x(π) of being
audited to each SP with belief π. For a given auditing strategy, the net expected proceed of
audits is written as:

Ω(x(·)) =

∫ 1

0

[
p̄(π)− c

]
x(π)f(π)dπ. (1)

The optimization problem of the insurer is written as:

max
x(·)

Ω(x(·))

s.t. 0 ≤x(π) ≤ 1 ∀π ∈ [0, 1].

4While defrauding in plain sight may occur (hoping for inattention of the insurer), it usually takes some
effort to construct a defrauding scheme. For example, some opticians may provide sunglasses to their clients,
but they certify that they have delivered regular glasses.
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2.3 Single Period Optimal Auditing

Lemma 1. The single period optimal auditing strategy x∗(π) consists in auditing all claims
transmitted by SPs with associated beliefs π ≥ π∗ and not auditing claims when π < π∗, i.e.,

x∗(π) =

{
1 if π ∈ [π∗, 1]
0 if π ∈ [0, π∗)

}
= 1{π≥π∗},

where the threshold π∗ is

π∗ =
c− pH
pD − pH

with p̄(π∗)− c = 0.

Figure 1: Single Period Optimal Auditing Strategy

Lemma 1 is unsurprising: one should only perform audits that are individually profitable,
which amounts to focusing audits on SPs with π such that p̄(π) − c ≥ 0. Figure 1 illustrates
the single period auditing strategy.

3 Two-Period Auditing: The Learning Effect

Because SPs take care of many policyholders, they repeatedly interact with the insurer. For
the sake of simplicity, we assume that this interaction takes place during two consecutive
periods i = 0, 1. There are different beliefs at the beginning of each period and the insurer’s
strategy is based on these beliefs. From now on, variables of interest will be indexed by the
corresponding periods (πi, xi,Ωi)i∈{0,1}. The insurer’s inter-temporal objective function depends
on both period specific objective functions Ω0 and Ω1, the latter being weighted by γ > 0.5 His
optimization problem is written as:

max
x0(·),x1(·)

Ω0 + γE0[Ω1]

s.t. 0 ≤ x0(π0) ≤ 1 ∀π0 ∈ [0, 1],

s.t. 0 ≤ x1(π1) ≤ 1 ∀π1 ∈ [0, 1],

where E0 corresponds to the expected value operator at the beginning of period 0, i.e., before
performing audit during this period.

5If γ ∈ (0, 1) it can be simply interpreted as a discount factor. Period 1 can also be viewed as the aggregation
of all future proceeds without restriction about the value of γ.
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3.1 Auditing as a Source of Information

Period 0 audits allow the insurer to update his belief at the beginning of period 1. Depending
on whether an audit has been performed and, if it has been, whether it is successful or not, the
updated beliefs π̃1 are deduced from initial beliefs π0 through Bayes’ Law:

π̃1 =



A(π0) = pDπ0

p̄(π0)
if a period 0 audit revealed an invalid claim,

B(π0) = (1−pD)π0

1−p̄(π0)
if a period 0 audit revealed a valid claim,

π0 if no audit was performed at period 0,

(2)

with:

B(π0) < π0 < A(π0),

A′ > 0, A′′ < 0,

B′ > 0, B′′ > 0.

In particular, an invalid claim detected by audit leads the insurer to increase his beliefs that
the SP is dishonest, i.e., A(π0) > π0, and it is the other way around if audit reveals that the
claim was valid, i.e., B(π0) < π0. Of course, beliefs are unchanged if there is no audit.

Figure 2: Updating Priors According to the Auditing Status (pD = 0.9, pH = 0.1)

For illustrative purposes, Figures 2 and 3 describe the degree of informativeness of an audit
as a function of parameters pH and pD. In Figure 2, the graphs of functions A(·) and B(·)
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are symmetric on each side of the 45◦ line. This is due to the specific condition pH + pD = 1.
Maintaining this assumption, Figure 3a shows that bringing pH and pD closer makes both
learning curves less concave/convex and closer to the 45◦ line, underlining the fact that the
audit is less informative in this case. Figures 3b and 3c illustrate the extreme case where
the audit is respectively totally informative (pH = 0 and pD = 1) and not informative at all
(pH = pD, both types behave the same way). Relaxing the pH + pD = 1 assumption, Figures
3d, 3e and 3f exemplify the asymmetry of informativeness between invalidity and validity of a
claim: in 3d, both probabilities of defrauding are rather low, so stumbling upon a valid claim
does not say much, while finding a claim to be invalid induces a stronger change in the belief.
The opposite happens in 3e where both types defraud often, with the validity status becoming
more informative.

(a) pD = 0.6, pH = 0.4 (b) pD = 1, pH = 0 (c) pD = pH

(d) pD = 0.12, pH = 0.08 (e) pD = 0.92, pH = 0.88 (f) pD = 0.98, pH = 0.88

Figure 3: Updating functions for different parameters

This aspect of auditing suggests some influence of period 0 auditing outcomes on period 1
auditing decisions. The information revealed at period 0 may lead to an expected efficiency

gain at period 1. To express this idea, let us denote ω(π1, x1) =
[
p̄(π1) − c

]
x1 the expected

gain of an audit performed at period 1 with probability x1 under belief π1.
Let π̃1 be the updated belief. This is a random variable defined by equation (2) whose

distribution depends on initial beliefs π0 and on the period 0 auditing probability x0(π0).

Proposition 1. The optimal period 1 optimal audit strategy x∗1(·) is such that:

E0[ω(π̃1, x
∗
1(π̃1))|π0, x0(π0)] ≥ ω(π0, x

∗
1(π0)) ∀π0 ∈ [0, 1]

with a strict inequality if there exists π1 ∈ [0, 1] such that x∗1(π1) 6= x∗1(π0) and P(π̃1 = π1|π0) >
0.

Proposition 1 implies that period 0 auditing increases the insurer’s period 1 expected payoff
if it affects the period 1 auditing strategy: its informational value translates into an increase
in period 1 net proceeds, besides its period 0 income maximization value.

3.2 Inter-temporal Optimization Problem

Period 0 expected auditing profit is written as:

Ω0(x0(·)) =

∫ 1

0

[
p̄(π0)− c

]
x0(π0)f0(π0)dπ0,
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where f0(π0) is the density of prior beliefs.
The updating process corresponds to a mapping of period 0 beliefs into period 1 beliefs,

thus changing the latter’s distribution depending on the chosen period 0 strategy. Let f1(·) be
the density of period 1 updated beliefs. It depends on period 0 auditing strategy and then it is
written as f1(π1|x0(·)). Period 1 expected auditing profit is written as:

Ω1(x0(·), x1(·)) =

∫ 1

0

[
p̄(π1)− c

]
x1(π1)f1(π1|x0(.))dπ1.

The inter-temporal optimal auditing strategy of the insurer can now be characterized by
backward induction. At period 1, the insurer follows the optimal single period strategy x∗1(·)
characterized by Lemma 1. Hence the optimal period 1 expected net proceed of auditing
Ω∗1(x0(·)) = Ω1(x0(·), x∗1(·)) is written as

Ω∗1(x0(·)) =

∫ 1

0

[
p̄(π1)− c

]
1{π≥π∗}f1(π1|x0(.))dπ1

=

∫ 1

π∗

[
p̄(π1)− c

]
f1(π1|x0(.))dπ1.

Given this period 1 optimal strategy, the period 0 optimal strategy x∗0(·) is an optimal
solution to

max
x0(·)

Ω0(x0(·)) + γE0[Ω∗1(x0(·))]

s.t. 0 ≤ x0(π0) ≤ 1 ∀π0 ∈ [0, 1].

3.3 Effect of period 0 audit on the audit decision at period 1

In order to show how period 0 audit affects the decision to audit at period 1, let us define πa
and πb by

A(πa) = π∗, πa =
π∗pH

π∗pH + (1− π∗)pD
,

B(πb) = π∗, πb =
π∗(1− pH)

π∗(1− pH) + (1− π∗)(1− pD)
.

One easily checks that:
0 < πa < π∗ < πb < 1.

We have A(π) ≥ π∗ if and only if π ≥ πa and B(π) ≥ π∗ if and only if π ≥ πb. Hence, πa is
the lowest belief such that, if found invalid at period 0, the SP will be audited at period 1 and
πb is the highest belief such that, if found valid at period 0, the SP will be not be audited at
period 1.

These thresholds lead us to Lemma 2 in which we express the probability of auditing at
period 1 as a function of the period 0 belief and auditing outcomes.

Lemma 2. The effect of period 0 audit on the audit decision x1 at period 1 is characterized by
Table 1
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π0 ∈ [0, πa) [πa, π
∗) [π∗, πb) [πb, 1]

Audit and Valid 0 0 0 1

No Audit 0 0 1 1

Audit and Invalid 0 1 1 1

Table 1: Period 1 audit given period 0 beliefs and audit outcomes

Figure 4: Period 0 priors and period 1 auditing

Figures 4 and 5 illustrates this relationship between the outcomes of the period 0 audit and
the obtained posteriors.

Lemma 3 deduces the probability of being audited at period 1 conditionally on π0 and
x0(π0):

Lemma 3. The probability of being audited in period 1 conditionally on the prior π0 and the
auditing strategy x0(·) is

P(π1 ≥ π∗|π0 ∈ [0, πa)) = 0,

P(π1 ≥ π∗|π0 ∈ [πa, π
∗)) = p̄(π0)x0(π0),

P(π1 ≥ π∗|π0 ∈ [π∗, πb)) = p̄(π0)x0(π0) + 1− x0(π0),

P(π1 ≥ π∗|π0 ∈ [πb, 1]) = p̄(π0)x0(π0) + 1− x0(π0) + (1− p̄(π0))x0(π0) = 1.

For instance, when π0 ∈ [π∗, πb), there will be an audit at period 1 either if, at period
0, an audit revealed an invalid claim or if there was no audit, which occurs with probability
p̄(π0)x0(π0) and 1− x0(π0) respectively. Other cases in Lemma 3 can be interpreted similarly.
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Figure 5: Period 1 beliefs as a consequence of Period 0 audit outcomes

Lemma 4. Using Lemmas 2 and 3, the inter-temporal objective function can be rewritten as

Ω0(x0(·)) + γE0[Ω∗1(x0(·))] =

∫ 1

0

[
C(π0) +K(π0)x0(π0)

]
f0(π0)dπ0,

where
K(π0) = p̄(π0)− c+ γH(π0),

and functions C(·) and H(·) are defined in Table 2.

π0 C(π0) H(π0)

[0, πa) 0 0

[πa, π
∗) 0 p2

Dπ0 + p2
H(1− π0)− p̄(π0)c

[π∗, πb) γ
[
p̄(π0)− c

]
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c− [p̄(π0)− c]

[πb, 1] γ
[
p̄(π0)− c

]
0

Table 2: Definition of C(·) and H(·).

Lemma 4 decomposes the inter-temporal objective function into components that explicit
the impact of x0(·) on current and future audit proceeds. C(π0) represents the proceeds of
period 1 audits when the SP is not audited at period 0, and thus this term is not affected by
x0(π0). Beliefs π0 in [0, πa) and [πa, π

∗) are smaller than π∗, and thus, if the corresponding
SPs are not audited at period 0, neither will they be at period 1. Hence, any benefit/loss from
these beliefs is necessarily the consequence of being audited at period 0, which gives C(π0) = 0.
This is different for beliefs in [π∗, πb) and [πb, 1] because they correspond to cases where initial
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beliefs π0 are higher than π∗. Consequently, the SPs will be audited at period 1 and there are
some proceeds from period 1 that do not depend on x0(·), hence the presence of γ in C(·).

K(π0) represents the proceeds over the two periods that are affected by period 0 audit.
p̄(π0)− c in equation (4) represents the period 0 proceeds resulting from being audited at that
period, while H(π0) corresponds to the period 1 proceeds that are affected by period 0 audits
through the belief updating process. For instance, an SP with π0 ∈ [πa, π

∗) will be audited at
period 1 if an audit revealed an invalid claim at period 0 (because π1 ≥ π∗ in that case) and
the term p2

Dπ0 + p2
H(1 − π0) − p̄(π0)c corresponds to the expected net proceeds. H(π0) = 0

in [0, πa) and [πb, 1], although for different reasons: in [0, πa), regardless of the outcome of the
audit, updated beliefs will remain below π∗ and will never be audited at period 1, while in
[πb, 1], whatever happens at period 0, all beliefs remain above π∗ and the claim will always be
audited at period 1. Lemma 5 characterizes function K(π0) and leads to Figure 6.

Lemma 5. K(·) is a continuous piecewise linear function such that

K(0) < 0,

K(πa) < 0,

K(π∗) > 0,

K(πb) > 0,

K(1) > 0,

with

K(π0) = p̄(π0)− c ∀π0 ∈ (0, πa),

K(π0) > p̄(π0)− c ∀π0 ∈ (πa, π
∗),

K(π0) > p̄(π0)− c ∀π0 ∈ (π∗, πb),

K(π0) = p̄(π0)− c ∀π0 ∈ (πb, 1).

Figure 6: K(π0) for (pD = 0.9, pH = 0.1, c = 0.5, γ = 1)
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3.4 Inter-temporal Optimal Auditing Strategy

Proposition 2. An optimal period 0 strategy x∗0(·) is characterized by π∗∗ ∈ (πa, π
∗) such that

x∗0(π0) = 0 if π0 ∈ [0, π∗∗),

x∗0(π0) ∈ [0, 1] if π0 = π∗∗,

x∗0(π0) = 1 if π0 ∈ (π∗∗, 1].

The threshold π∗∗ is given by

π∗∗ = π∗
1 + γpH

1 + γpH + γ(pD − c)
< π∗,

and is such that
K(π∗∗) = 0 and p̄(π0)− c < 0 ∀π0 ∈ [π∗∗, π∗). (3)

Proposition 2 shows that, accounting for the impact of period 0 auditing on period 1,
posterior beliefs lead the insurer to audit a higher number of SPs at period 0 than in the
instantaneous audit problem analyzed in Section 2. The belief threshold above which claims
should be audited is now π∗∗ instead π∗, with π∗∗ < π∗. An interesting aspect is that these
additional auditees π0 ∈ [π∗∗, π∗) are such that the corresponding individual expect net proceeds
of audit are negative (equation (3)): in other words, in spite of the negative impact on period
0 audit proceeds, the information gathered generates enough (discounted) profit at period
1 to compensate this initial loss. Figure 7 illustrates this deviation from the single period
myopic auditing and Figure 8 shows in orange the additional period 1 positive net proceeds
γ
∫
H(π0)f0(π0)dπ0 that come from auditing down to π∗∗.6

(a) Learning Effect at t = 0 (b) Myopic at t = 0

Figure 7: Learning vs Myopic

The extent of the informational value of auditing is illustrated by the comparative statics
properties of π∗∗. If γ = 0, i.e., if the insurer at time 0 does not care about period 1, then
π∗∗ = π∗ since the informational value of auditing at t = 0 serves no purpose. If γ → +∞,
i.e., if the insurer only cares about period 1 profit, then π∗∗ → πa and he seeks to get the
maximum information from period 0. Of course, there’s no point in having π∗∗ lower than πa
as the additional information would not be useful at period 1. The new auditing limit, like the
myopic one, also depends on c: if c = pH then π∗∗ = π∗ = 0 and if c = pD then π∗∗ = π∗ = 1,
as in both case there is no more trade-off between information and revenue. Finally, if we write
c = αpD + (1 − α)pH with α ∈ (0, 1), then π∗ = α and π∗∗ → π∗ when pD −→ pH . When pD
comes closer to pH , the separating power of the audit decreases until it becomes uninformative,
and at the limit pD = pH there is no more distinction between types D and H.

6This result shows some similarity with the analysis of the deterrence effect by Dionne et al. (2008). They
show that some claim should be audited although the corresponding expected gain is negative. This is due to
the deterrence effect of auditing: more intense monitoring discourages fraud and it should lead the insurer to
audit below the individual claim profitability threshold.
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Figure 8: x0(π0)K(π0) for (pD = 0.9, pH = 0.1, c = 0.5, γ = 1)

4 Variable Claim Value

A large part of the economic analysis of insurance fraud has focused attention on optimal
auditing strategies when policyholders may file smaller or larger claims, and on the way the
insurer’s audit strategy depends on the size of the claim.7 Let us consider how this approach
may be affected by the learning mechanism.

4.1 Deterministic Value

As a preliminary step, let us consider the case where the size of all claims takes some arbitrary
value ` ∈ R+. This size is still fixed, but not necessarily equal to 1. The belief threshold π∗

now depends on ` and is defined by

π∗ = 1 if ` ≤ c

pD
,

p̄(π∗)`− c = 0 if
c

pD
< ` <

c

pH
,

π∗ = 0 if
c

pH
≤ `.

Therefore

π∗(`) = max

{
0,min

{
1,
c/`− pH
pD − pH

}}
.

7See Picard (2013) for a survey.
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Equivalently we may define a threshold `∗ for the claim size

`∗(π) =
c

pH + (pD − pH)π
=

c

p̄(π)
∀π ∈ [0, 1],

and, for beliefs π, auditing is profitable if ` ≥ `∗(π).
A straightforward extension of the results of Section 3, with the same claim size ` at each

period, shows that the first period optimal auditing threshold becomes

π∗∗(`) = π∗(`)× 1 + γpH
1 + γpH + γ(pD − c/`)

.

As π∗∗(·) is strictly decreasing from ( c
pD
, c
pH

) to (0, 1), we can also define a function `∗∗(·) as

`∗∗(·) = (π∗∗)−1(·),

which means that in the two period setting, a claim ` certified by an SP with associated belief
π0 will be audited if ` ≥ `∗∗(π0).

The set of claims ∆∗ for which audit is profitable within a single period setting (with belief
π and claim size `) is defined by

∆∗ = {(π, `)|π∗(`) ≤ π ≤ 1} = {(π, `)|`∗(π) ≤ `}.

In a two period setting, with claim size ` at both periods, claims should be audited at period
0 if (π0, `) ∈ ∆∗∗, where

∆∗∗ = {(π0, `)|π∗∗(`) ≤ π0 ≤ 1} = {(π0, `)|`∗∗(π0) ≤ `},

with ∆∗ ⊂ ∆∗∗.

Figure 9: Auditing thresholds π∗(`) and π∗∗(`) with a variable claim value `
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4.2 Random Homogeneous Value

Let us move on now to the more interesting case where the size of the claims is a random
variable drawn from a known distribution at the beginning of each period. Let ˜̀i denote this
random variable with density gi(·) and c.d.f. Gi(·) on [0, Li] for i = 0, 1. For simplicity, we

assume that ˜̀i has the same probability distribution for both types of SPs, and thus ˜̀i and π0

are independently distributed. The value of a claim is observed at each period before deciding
to audit or not. Now, an audit strategy is written as xi(πi, `i) at period i = 0, 1.

Lemma 6. The inter-temporal objective function can be written as

Ω0(x0(·, ·)) + γE0

[
Ω∗1(x0(·, ·))

]
=

∫ ∫
(π0,`0)∈∆

[
C(π0) +K(π0, `0)x0(π0, `0)

]
g0(`0)f0(π0)dπ0d`0, (4)

where

K(π0, `0) = p̄(π0)`0 − c+ γH(π0),

H(π0) = p̄(π0)Φ(A(π0)) + (1− p̄(π0))Φ(B(π0))− Φ(π0),

C(π0) = γΦ(π0),

with H(π0) > 0 if π0 ∈ (0, 1) and H(0) = H(1) = 0,
and

Φ(π) =

∫ L1

`∗(π)

[
p̄(π)`1 − c

]
g1(`1)d`1,

where `∗(π) = c
p̄(π)

.

Lemma 4 and Lemma 6 are similar and can be interpreted the same way. In particular, the
two terms in the integral of formula (4) correspond to the parts of cumulated expected proceeds
according to whether they are affected by period 0 audit or not .

Proposition 3. The optimal period 0 auditing strategy x∗0(π0, `0) is such that

x∗0(π0, l0) = 1 if π0 > π∗∗(`0),

where π∗∗(·) : [0, L] −→ [0, 1], with π∗∗(`0) < π∗(`0) for all `0 ∈ [0, L].8

Proposition 3 extends Proposition 2 to the case of claims with variable size, and its interpre-
tation is similar. In an instantaneous setting, where learning effects would be ignored, an audit
should be performed if the belief π0 is larger than π∗(π0). The threshold is decreasing with `0

because the larger the claim, the larger the potential gain from auditing. When learning effects
are taken into account, the threshold decreases. Claim (π0, `0) should be audited at period 0
when π∗∗(`0) < π0 < π∗(`0) although such audit is not profitable in expected terms.

8Proposition 3 only states that π∗∗(`0) < π∗(`0) for all `0. Additional assumptions would allow us to show
that K(π0) is monotonous and thus that claims should not be audited when π0 < π∗∗(`0).
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5 Conclusion

This article aimed at characterizing the learning dimension of auditing when there is a repeated
interaction between auditor and auditee. The insurance claim fraud problem with potentially
dishonest service providers was an application example, but the same question arises in many
other settings, such as tax audits and, more generally, the verification of compliance with law.
On our model, the insurer has imperfect information about the service providers’ type, and, as
in the machine learning multi-armed bandit approach, he extends his audit activity beyond the
desire for immediate short-term gain. Compared to a myopic strategy only focusing on short
term profit, the longsighted insurer faces an inter-temporal trade-off between the immediate
gain from fraud detection, and the future profit made possible by more intense auditing. This
learning effect leads the longsighted insurer to increase his monitoring efforts and to put some
individually unprofitable claims under scrutiny. This result remains valid when the setting is
extended to a more general framework with claims of varying size: the learning effect shifts the
frontier in the belief-claim size space, beyond which an audit should be performed.
These results may be extended in many directions that would be worth exploring. Firstly, we
have limited ourselves to a simple two-period model. Extending our analysis to an arbitrary
number of periods would allow us to take into account the possibility to exclude and replace
service providers when their dishonesty becomes very probable, and also to analyze the con-
vergence features of our model when the number of periods is large. Another interesting issue
would consist in considering the case where service providers are concerned by multiple claims
at each period. The auditing strategy would have to specify how many claims will be monitored.
More importantly, our model postulates an exogenous fraud rate reflected in the frequency of
invalid claims for honest and dishonest service providers. Endogenizing the frequency of in-
valid claims would be of particular interest, in order to study the strategic interaction between
insurers and service providers, in a setting where learning and deterrence effects would coexist.
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Appendix

Proof of Lemma 1. Let us write the expected profit from the auditing strategy x(.) at a single
period

Ω =

∫ 1

0

[
p̄(π)− c

]
x(π)f(π)dπ.

The corresponding problem has a point-wise maximization structure, therefore:

x(π) = 1 if π > π∗,

x(π) ∈ [0, 1] if π = π∗,

x(π) = 0 if π < π∗,

where

π∗ =
c− pH
pD − pH

.

Proof of Proposition 1. Let π̃1(π0) be the period 1 belief as a function of prior belief π0. It is
a random variable defined by

π̃1(π0) =


π1a = A(π0) with probability qa = x0(π0)p̄(π0),
π1b = B(π0) with probability qb = x0(π0)(1− p̄(π0)),
π1c = π0 with probability qc = 1− x0(π0),

with E0[π̃1(π0)] = qaπ1a + qbπb + qcπ1c = π0.
By a point-wise maximization argument, for all π1, the optimal auditing strategy x∗1(π1)

maximizes

x1[p(π1)− c]
s.t. 0 ≤ x1 ≤ 1,

and thus we have

x∗1(π1i)[p(π1i)− c] ≥ x∗1(π0)[p(π1i)− c] for i = a, b, c.

Therefore

E0[ω(π̃1, x
∗
1(·))|π0] =

∑
i=a,b,c

qix
∗
1(π1i)[p(π1i)− c]

≥ x∗1(π0)
∑
i=a,b,c

qi[p(π1i)− c]

= x∗1(π0)
[
p
( ∑
i=a,b,c

qiπ1i

)
− c
]

= x∗1(π0)[p(π0)− c]
= ω(π0, x

∗
1(π0)).

This inequality is strict if x∗1(π1i) 6= x∗1(π0) for some i = a and/or i = b.
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Proof of Lemma 2. We have π1 ∈ {B(π0), π0, A(π0)} depending on the period 0 scenario.

1. If 0 ≤ π0 < πa

(a) In all cases: B(π0) ≤ π0 ≤ A(π0) < A(πa) = π∗ =⇒ π1 < π∗.

2. If πa ≤ π0 < π∗

(a) Invalid claim: π1 = A(π0) ≥ A(πa) = π∗ =⇒ π1 ≥ π∗.

(b) Valid or No Audit

i. π1 = B(π0) < π0 < π∗ =⇒ π1 < π∗.

ii. π1 = π0 < π∗ =⇒ π1 < π∗.

3. If π∗ ≤ π0 < πb

(a) Invalid or No Audit

i. π1 = A(π0) > π0 ≥ π∗ =⇒ π1 ≥ π∗.

ii. π1 = π0 ≥ π∗ =⇒ π1 ≥ π∗.

(b) Valid claim:

i. π1 = B(π0) < B(πb) = π∗ =⇒ π1 < π∗.

4. If πb ≤ π0 ≤ 1

(a) In all cases: B(πb) = π∗ ≤ B(π0) ≤ π0 ≤ A(π0) =⇒ π1 ≥ π∗.

The period 1 audit decision represented in Table 1 follows from the fact that there is an audit
at period 1 if and only if π1 ≥ π∗.

Proof of Lemma 3. Lemma 3 is a straightforward consequence of Lemma 2.

Proof of Lemma 4. Let Π0(π0) be the expected inter-temporal net proceeds of auditing an SP
of type π0. Let (the random variable) π̃1 be the updated belief at period 1. We have

Π0(π0) = x0(π0)
[
p̄(π0)− c

]
+ γE0

[
x∗1(π̃1)

(
p̄(π̃1)− c

)
|π0

]
= x0(π0)

[
p̄(π0)− c

]
+ γE0

[
1{π̃1≥π∗}

(
p̄(π̃1)− c

)
|π0

]
.

If π0 ∈ [0, πa), we always have π̃1 < π∗ and

Π0(π0) = x0(π0)
[
p̄(π0)− c

]
.

If π0 ∈ [πa, π
∗), then π̃1 ≥ π∗ if audit reveals an invalid claim (i.e., π̃1(π0) = A(π0)), which

happens with probability p̄(π0)x0(π0). Thus, in that case we have

Π0(π0) = x0(π0)
[
p̄(π0)− c

]
+ γp̄(π0)x0(π0)

[
p̄(A(π0))− c

]
= x0(π0)

[
p̄(π0)− c

]
+ γp̄(π0)x0(π0)

[
p2
D

π0

p̄(π0)
+ p2

H

1− π0

p̄(π0)
− c
]

= x0(π0)
[
p̄(π0)− c

]
+ γx0(π0)

[
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c
]

= x0(π0)

[
p̄(π0)− c+ γ

[
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c
]]
.
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If π0 ∈ [π∗, πb), then π̃1 ≥ π∗ if audit reveals an invalid claim (i.e., π̃1(π0) = A(π0) with
probability p̄(π0)x0(π0)) or if there is no audit (i.e., π̃1(π0) = π0 with probability 1 − x0(π0)).
Hence

Π0(π0) = x0(π0)
[
p̄(π0)− c

]
+ γ

[
p̄(π0)x0(π0)

[
p̄(A(π0))− c

]
+ (1− x0(π0))

[
p̄(π0)− c

]]
= x0(π0)

[
p̄(π0)− c

]
+ γ
[
p̄(π0)− c

]
+ γx0(π0)

[
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c− p̄(π0) + c
]

= γ
[
p̄(π0)− c

]
+ x0(π0)

(
p̄(π0)− c+ γ

[
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c− p̄(π0) + c
])
.

If π0 ∈ [πb, 1], then we always have π̃1 ≥ π∗, and thus

Π0(π0) = γ
[
p̄(π0)− c

]
+ x0(π0)

[
p̄(π0)− c

]
.

The expected net proceeds for an SP of type π0 can therefore be written as:

Π0(π0) = C(π0) + x0(π0)K(π0),

where
K(π0) = p̄(π0)− c+ γH(π0),

and functions C(·) and H(·) are given in Table 3.

π0 C(π0) H(π0)

[0, πa) 0 0

[πa, π
∗) 0 p2

Dπ0 + p2
H(1− π0)− p̄(π0)c

[π∗, πb) γ
[
p̄(π0)− c

]
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c− [p̄(π0)− c]

[πb, 1] γ
[
p̄(π0)− c

]
0

Table 3: Definition of C(·) and H(·).

We obtain

Ω0(x0(·)) + γΩ∗1(x0(·)) =

∫ 1

0

Π0(π0)f0(π0)dπ0

=

∫ 1

0

[
C(π0) +K(π0)x0(π0)

]
f0(π0)dπ0.
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Proof of Lemma 5. The piecewise linearity comes from the fact that p̄(π0) is linear in π0. In
addition,

H(πa) = p2
Dπa + p2

H(1− πa)− p̄(πa)c

= p̄(πa)
[
p̄(A(πa))− c

]
= p̄(πa)

[
p̄(π∗)− c

]
= 0.

Thus

K(πa) = p̄(πa)− c = lim
π→π−

a

K(π).

Notice also that

K(π∗) = p2
Dπ
∗ + p2

H(1− π∗)− p̄(π∗)c− [p̄(π∗)− c]
= p2

Dπ
∗ + p2

H(1− π∗)− p̄(π∗)c
= lim

π→π∗−
K(π).

Finally, by definition of π∗ = B(πb)

c = p̄(B(πb))

= pD
(1− pD)πb
1− p̄(πb)

+ pH

(
1− (1− pD)πb

1− p̄(πb)

)
,

and

p2
Dπb + p2

H(1− πb)− p̄(πb)c = (p̄(πb)− c).

This implies

K(πb) = p̄(πb)− c = lim
π→π−

b

K(π),

which proves that K(·) is continuous. Finally, from the definition of K(·)

∀π0 ∈ [0, 1] K(π0) = p̄(π0)− c+ γH(π0)

≥ p̄(π0)− c.

We also have

∀π0 ≥ π∗ K(π0) ≥ p̄(π0)− c ≥ 0,

and

∀π0 ≤ πa K(π0) = p̄(π0)− c ≤ 0.
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Proof of Proposition 2. Point-wise maximization yields

x∗0(π0) = 0 if K(π0) < 0,

x∗0(π0) ∈ [0, 1] if K(π0) = 0,

x∗0(π0) = 1 if K(π0) > 0.

Therefore, the threshold π∗∗ ∈ [πa, π
∗) satisfies K(π∗∗) = 0 and

K(π∗∗) = p̄(π∗∗)− c+ γH(π∗∗)

=
(

1 + γ(pD + pH − c)
)

(pD − pH)π∗∗ + (pH − c)
(

1 + γpH

)
.

Using K(π∗∗) = 0 gives

π∗∗ = π∗
1 + γpH

1 + γpH + γ(pD − c)
< π∗.

Proof of Lemma 6. Let ∆ = [0, 1]×[0, L1]. The optimal strategy at period 1 defined by x∗1(·, ·) :
∆ −→ [0, 1] is such that

x∗(π1, `1) =

{
1 if (π1, `1) ∈ ∆∗,
0 otherwise.

The associated period 1 objective function is

Ω1(x0(·, ·), x∗1(·, ·)) = Ω∗1(x0(·, ·)),

and thus the inter-temporal objective is written as a function of x0(·, ·)

Ω0(x0(·, ·)) + γE0

[
Ω∗1(x0(·, ·))

]
.

Since the random variable ˜̀i is independent of the type, we may write

Ω0(x0(·, ·)) =

∫ ∫
(π0,`0)∈∆

[
p̄(π0)`0 − c

]
x0(π0, l0)f0(π0)g0(`0)d`0dπ0.

There is an audit at period 1 if (π1, `1) ∈ ∆∗, and thus we have

Ω∗1(x0(·, ·)) =

∫ ∫
(π1,`1)∈∆

[
p̄(π1)`1 − c

]
x∗(π1, `1)g1(`1)f1(π1|x0(·, ·))dπ1d`1

=

∫
π1∈[0,1]

∫ L1

`∗(π1)

[
p̄(π1)`1 − c

]
g1(`1)f1(π1|x0(·, ·))d`1dπ1

=

∫
π1∈[0,1]

Φ(π1)f1(π1|x0(·, ·))dπ1,

where `∗(π1) = c/p̄(π1) and

Φ(π1) =

∫ L1

`∗(π1)

[
p̄(π1)`1 − c

]
g1(`1)d`1.
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Note that Φ(π1) is the expected net proceeds at period 1 of auditing an SP with belief π1.
Therefore, by analogy with Section 3 and using a point-wise maximization argument, the inter-
temporal expected net proceeds of an SP characterized by (π0, `0) are written as

Π0(π0, `0) = x0(π0, `0)
[
p̄(π0)`0 − c

]
+ γ
[
x0(π0, `0)p̄(π0)Φ(A(π0))...

...+x0(π0, `0)(1− p̄(π0))Φ(B(π0))...

...+(1− x0(π0))Φ(π0)
]
.

Rearranging the terms in Π0(π0, `0) yields

Π0(π0, `0) = C(π0) +K(π0, `0)x0(π0, `0),

where

K(π0, `0) = p̄(π0)`0 − c+ γH(π0),

H(π0) = p̄(π0)Φ(A(π0)) + (1− p̄(π0))Φ(B(π0))− Φ(π0),

C(π0) = γΦ(π0).

Simple calculations give

Φ′(π1) = (pD − pH)

∫ L1

c
p̄(π1)

`1g1(`1)d`1 > 0,

and

Φ′′(π1) = (pD − pH)2 c2

p̄(π1)3
g1

( c

p̄(π1)

)
> 0.

Thus, Φ(·) is increasing and convex. Using p̄(π0)A(π0)+(1− p̄(π0))B(π0) = π0 gives H(π0) > 0
if π0 ∈ (0, 1). In addition, A(1) = B(1) = 1 and A(0) = B(0) = 0 imply H(0) = H(1) = 0.

Proof of Proposition 3. Lemma 6 shows that x0(π0, `0) = 1 ifK(π0, `0) > 0 and that x∗0(π0, `0) =
0 if K(π0, `0) < 0. Since H(π0) > 0 and p̄(π0)`0− c ≥ 0 for any π0 ≥ π∗(`0), and H(1) = 0 and
p̄(1)`0 − c > 0, we have

K(π0, `0) > 0 ∀π0 > π∗(`0).

This implies that ∆∗ is included in the optimal auditing set at period 0. In addition, K(π∗(`0), `0) >
0 and K(0, `0) = p̄(0)`0 − c < 0 imply, by continuity of K(·), that there exists π∗∗(`0) smaller
than π∗(`0) such that

K(π∗∗(`0), `0) = 0,

K(π0, `0) > 0 ∀π0 ∈ [π∗∗(`0), π∗(`0)].

We deduce that

x∗0(π0, l0) = 1 if π0 > π∗∗(`0).
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