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Abstract

In this paper, we propose a novel method for extracting fiducial points (FPs) of the

beats in electrocardiogram (ECG) signals using switching Kalman filter (SKF). In this

method, according to McSharry’s model, ECG waveforms (P-wave, QRS complex and

T-wave) are modeled with Gaussian functions and ECG baselines are modeled with

first order auto regressive models. In the proposed method, a discrete state variable

called “switch” is considered that affects only the observation equations. We denote

a mode as a specific observation equation and switch changes between 7 modes and

corresponds to different segments of an ECG beat. At each time instant, the probability

of each mode is calculated and compared among two consecutive modes and a path is

estimated, which shows the relation of each part of the ECG signal to the mode with the

maximum probability. ECG FPs are found from the estimated path. For performance

evaluation, the Physionet QT database is used and the proposed method is compared

with methods based on wavelet transform, partially collapsed Gibbs sampler (PCGS)

and extended Kalman filter. For our proposed method, the mean error and the root mean

square error across all FPs are 2 ms (i.e. less than one sample) and 14 ms, respectively.

These errors are significantly smaller than those obtained using other methods. The

proposed method achieves lesser RMSE and smaller variability with respect to others.
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Kalman Filter (EKF), Segmentation, Fiducial Point (FP) Extraction.

1. Introduction

An electrocardiogram (ECG) describes the electrical activity of the heart. Onset,

offset and peak location of ECG waves are known as fiducial points (FPs). Up to now,

different methods have been used for detecting the QRS complex. See [1] for a review.

These methods are based on mathematical functions, filtering approaches (digital fil-5

ters [2], adaptive filters [3]), classification methods (neural network approaches [4],

support vector machine (SVM) [5], fuzzy C-means algorithm [6]), wavelet transform [7]

and empirical mode decomposition (EMD) [8]. Low pass differentiation (LPD) [9],

hidden Markov models (HMM) [10, 11, 12, 13, 14], partially collapsed Gibbs sampler

(PCGS) [15], wavelet transform [16, 17, 18], correlation analysis [19, 20] and extended10

Kalman filter (EKF) [21, 22, 23, 24] are also used for ECG FP extraction.

FP extraction has been used as a preprocessing step in several applications such

as detection of fragmented QRS complex [25], mobile health care applications [26],

“Selvester QRS scoring” system [27], ischemia detection [28], ECG-based subject

identification system[29] and biometric recognition based on fusion of ECG and EEG15

signals [30, 31].

Switching state space models are defined as the combination of HMMs and state

space models [32]. When the model is linear and additive Gaussian noise exists, the

switching state space models are known as “Switching Kalman Filter” (SKF) [33, 34].

In the SKF, at each time instance, the states are estimated by several Kalman filters20

(KFs). Furthermore, a hidden discrete state variable called switch is considered whose

status changes over the time according to a Markov model. The switch indicates the

KF which estimates the states better than others.

SKF is used for several applications such as figure tracking [35], acoustic seg-

mentation [36], contour tracking in clutter [37], modeling and detecting motor cortical25

activity [38], prediction and tracking an adaptive meterological sensing network [39],

tracking and event detection at traffic intersections [40], ECG ventricular beat classifi-

cation [41] and finally for apnea bradycardia detection from ECG signals [42].
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Although the methods based on dynamic models (EKF) [24] and sequential meth-

ods (HMM) [14] have been used for ECG FP extraction, the methods based on SKF30

(which is combination of KF and HMM methods) have not been used for this applica-

tion yet. The goal of this paper is showing the ability of SKF-based methods for ECG

FP extraction.

In [21, 22, 23, 24], methods based on EKF have been proposed. The main limitation

of such methods is their sensitivity to the initial location of the Gaussian functions as35

well as initial parameters of EKF, that must be defined by the user. Conversely, one

of the advantages of the proposed SKF model is that it is not sensitive to the initial

location of Gaussian functions and initial parameters of SKF.

According to McSharry’s model [43], ECG waves (P-wave, QRS complex and T-

wave) are modeled with Gaussian functions. Baselines and segments between ECG40

waves are modeled with first order auto regressive (AR) models. In this SKF approach,

a discrete switch affects only the observation equations and switches between 7 differ-

ent values related to the 3 waves and the 4 baseline segments.

The performance of the proposed method is compared with previously published

methods, including Wavelet [17], PCGS [15] and EKF-based method (EKF17) [22].45

We also have a comparison with our previously proposed methods (linear and nonlinear

EKF25 [23, 24]). Validation and comparison are done over Physionet QT database [44,

45].

The paper is organized as follows: ECG dynamical model and details of SKF ap-

proach for ECG FP extraction are described in Section 2. Section 3 presents the exper-50

imental results, and finally section 4 concludes the paper.

2. Methods

In this section, we first present the ECG model we used and then we fully describe

the proposed SKF method.

2.1. ECG Kalman Filtering Framework55

McSharry et al. [43] have proposed a synthetic ECG generator which is based on

a nonlinear dynamic model. Sameni et al. [46] transformed it into polar coordinates
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from Cartesian coordinates and proposed an EKF-based framework which has two

state variables and two corresponding observations. The discrete state-equations of

this model are as follows:
ϕk+1 = (ϕk +ωkδ ) mod(2π)

zk+1 =−∑
i

δ
αikωk

b2
ik

∆θik exp(−∆θ 2
ik

2b2
ik
)+ zk +ηk

(1)

where k denotes the discrete time, ϕk is the phase of ECG and ωk is the beat-to-beat

angular frequency of the RR interval. In this model, zk is a state variable which is

the sum of 5 Gaussian functions (i ∈ {P,Q,R,S,T}) and represents estimated amplitude

of ECG. Each Gaussian function is defined with three parameters: αik, bik and θik,

which correspond to the amplitude, width and location of the Gaussian functions and60

∆θik = (ϕk−θik)mod(2π); δ is the sampling period and ηk models the inaccuracies of

the dynamic model.

2.2. Proposed Dynamic Model

For an ECG beat, we can define seven segments: B1, P, PQ (B2), QRS, ST (B3), T

and B4 which are shown in Fig. 1. In the proposed model, we consider separate states
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Figure 1: Segments of a single ECG beat.

for P-wave, QRS complex and T-wave which are modeled with Gaussian functions.

We also assign a state defined with a first order AR model to each baseline (B1,B2,B3
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and B4). Similar to previous EKF-based models, we also consider the phase of ECG

as a state. Hence, a model with 8 states is generated. In fact, although segments B1

and B4 are almost similar, since we find the fiducial points for each beat separately, we

consider two separate segments B1 and B4. Discrete state and observation equations

of this model are defined in (2) and (3), respectively. We use “C” to denote the QRS

complex. In (2), for simplicity we consider that the coefficients of AR models are equal

to one (aB1 = aB2 = aB3 = aB4 = 1) but in general, other values smaller and very close

to 1 can be examined.

ϕk+1 = (ϕk +ωkδ ) mod(2π)

B1,k+1 = aB1 B1,k +ηB1,k

Pk+1 =−
δαP,kωk

b2
P,k

∆θP,k exp(−
∆θ 2

P,k
2b2

P,k
)+Pk +ηPk

B2,k+1 = aB2B2,k +ηB2,k

Ck+1 =− ∑
i∈ {Q,R,S}

δ
αikωk

b2
ik

∆θik exp(−∆θ 2
ik

2b2
ik
)+Ck +ηCk

B3,k+1 = aB3B3,k +ηB3,k

Tk+1 =−
δαT,kωk

b2
T,k

∆θT,k exp(−
∆θ 2

T,k
2b2

T,k
)+Tk +ηTk

B4,k+1 = aB4B4,k +ηB4,k

(2)

 Φk = ϕk + v1k

zk = B1,k +Pk +B2,k +Ck +B3,k +Tk +B4,k + v2k

(3)

In (2), the first state is the phase of the ECG. States 3, 5 and 7 are distinct ECG

waveforms. The ECG baselines are considered as the 2nd , 4th, 6th and 8th state vari-

ables. The system state and process noise vectors are defined as:

xk = [ϕk,B1,k,Pk,B2,k,Ck,B3,k,Tk,B4,k]
T

wk = [αik ,bik ,θik ,ωk,η jk ]
T

i ∈ {P,Q,R,S,T}, j ∈ {B1,P,B2,C,B3,T,B4}.

(4)

In (3), the first observation is a linearly approximated phase of ECG beat, and zk

is the recorded ECG which can be considered as the sum of B1,k,Pk,B2,k,Ck,B3,k,Tk65

and B4,k states in the model. Observation and measurement noise vectors are defined

respectively as: yk = [Φk,zk]
T and vk = [v1k,v2k]

T .
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2.3. SKF-based ECG model

In our proposed SKF, we assume that the switch only affects the observation equa-

tion. We then denote a mode as a specific observation equation and the switch s is

a discrete state which changes between 7 modes, j = 1,2, . . . ,7. We assume to have

a first order Markov chain whose matrix transition denotes as Z where zi j = P(sk =

j|sk−1 = i). The Markov chain has left-to-right structure i.e. zi j 6= 0 if and only if j = i

or j = i+1 or ( j = 7 and i = 1). Since the model which is defined in (2) is nonlinear,

in order to use a Kalman filter for this system, it is necessary to derive a linear approx-

imation of it near desired reference points (x̂k, w̄k) and (x̂−k , v̄k). This approximation

will lead to the following linear estimate: xk+1 = f (xk,wk,k)≈ f (x̂k, w̄k,k)+Ak(xk− x̂k)+Dk(wk− w̄k)

yk = g(xk,vk,k)≈ g(x̂−k , v̄k,k)+Hk(xk− x̂−k )+Gk(vk− v̄k)
(5)

where
Ak =

∂ f (xk,wk,k)
∂xk

|xk=x̂k,wk=w̄k , Dk =
∂ f (xk,wk,k)

∂wk
|xk=x̂k,wk=w̄k

Hk =
∂g(xk,vk,k)

∂xk
|xk=x̂−k ,vk=v̄k

, Gk =
∂g(xk,vk,k)

∂vk
|xk=x̂−k ,vk=v̄k

(6)

The state and observation equations of the proposed SKF can be written as:

xk+1 = Akxk +Dkwk

yk = H( j)
k xk +Gkv( j)

k

(7)

where H( j)
k and v( j)

k are the observation matrix and observation noise of the jth mode,

respectively. Elements of Ak and Dk matrices are defined in (.1) and (.2), respectively in

Appendix .1. Here, the matrices Ak, Dk and Qk =Cov(wk) are not changed for different

modes. The dimension of H( j)
k is 2×8 and its nonzero elements are defined in (8): H( j)

k (1,1) = 1, j = 1,2, . . . ,7

H( j)
k (2, j+1) = 1, j = 1,2, . . . ,7

(8)

This means that the observation equation has linear dynamics at each time instant but

it is time variant and switches among several linear equations over the time. v( j)
k =70

[v1k,v2k]
T is the observation noise vector. The noise covariance matrix R( j)

k =Cov(v( j)
k )

is defined from the observations of the jth mode. Matrix Gk is constant for the different

values of the switch: Gk = I2 (identity matrix of size 2), Gkv( j)
k = v( j)

k and GkR( j)
k GT

k =

R( j)
k .
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2.4. Procedure of SKF-based FP extraction75

At each time instant k, the probability of each mode is calculated as: K j
k = P(sk =

j|y1:k), j ∈ {1,2, · · · ,7}. If K j
k has the maximum value at time k, the observation at

time k is likely generated by jth mode. Monitoring the value of the parameter K j
k ,

j ∈ {1,2, · · · ,7} for each mode allows us to choose the optimal mode. Therefore in this

work, we perform SKF and monitor K j
k .80

We use 2-fold cross validation [47] for each record (The records which are used in

this paper will be explained in subsection 2.5). Initial values for xi
0, Pi

0, Q0, H( j)
0 , R( j)

0 ,

Ki
0 and Z0 (i, j = 1,2, · · · ,7) are found from train data in the Initialization step. xi

0 is

the initial estimation of state and Pi
0 is its covariance matrix. Q0,H

( j)
0 ,R( j)

0 and Ki
0 are

initial values for Qk,H
( j)
k ,R( j)

k and Ki
k, respectively. Finally, Z0 is the initial value of85

matrix Z where zi j = P(sk = j|sk−1 = i). In [48, 41], the estimation of the covariance

matrix is done by performing a random search on the training data in order to optimize

the covariance matrix parameters. In this work, for defining the initial location of the

Gaussians, we follow the same procedure of Sameni et al. [46]. we choose manually

the initial location of the Gaussians and then doing a curve fitting. For estimation of90

the covariance matrices, we follow the same procedure as [46].

Here, since the matrices Ak,Dk and Qk are not changed for different modes, the

training step includes only the initialization step and no parameter is trained in this step.

After that we perform inference procedure (in one iteration) as shown in Algorithm 1,

below. Functions filter, StatesProbability and Collapse and their parameters are defined95

in Appendix .2.

In the function filter, x−i j
k = E{xk|y1:k−1,sk = j,sk−1 = i} is the prior estimate

of the state vector, in the kth stage, using the past observations y0 to yk−1 and xi j
k =

E{xk|y1:k,sk = j,sk−1 = i} is the posterior estimate of this state vector after adding the

kth observations yk. P−i j
k and Pi j

k are defined in the same manner to be the prior and100

posterior estimates of the covariance matrices, in the kth stage, before and after using

the kth observation, respectively. Li j
k = p(yk|y1:k−1,sk = j,sk−1 = i) is the likelihood of

observing the kth observation yk.

The function StatesProbability, computes the probabilistic parameters K j
k = P(sk =

j|y1:k), gi j
k = P(sk−1 = i|y1:k,sk = j) and Ki j

k = P(sk−1 = i,sk = j|y1:k) = K j
k gi j

k .105
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Finally, the function Collapse approximates mixture of Gaussians as a unique Gaus-

sian by moment matching. The mean vector and covariance matrix of the unique Gaus-

sian are the same as that of the mixture and are computed as: x j
k =E{xk|y1:k,sk = j} and

P j
k =Cov{xk|y1:k,sk = j} from mixture model using an approximation of p(xk|y1:k,sk =

j) = N (x j
k,P

j
k ). More information about SKF functions can be found in [38, 42].

Algorithm 1: SKF: Inference

Inputs: xi
0, Pi

0, Q0, H( j)
0 , R( j)

0 , Ki
0 and Z0, i, j = 1,2, · · · ,7.

Outputs: K j
k

1: for k = 1,2, · · · ,T do

2: Compute Ak and Dk from (.1) and (.2) in Appendix .1.

3: for i, j = 1,2, · · · ,7 do

4: [xi j
k ,P

i j
k ,Li j

k ] = f ilter(xi
k−1,P

i
k−1,Ak,Dk,Qk,H

( j)
k ,R( j)

k )

5: [Ki j
k ,K

j
k ,g

i j
k ] = StatesProbability(Li j

k ,zi j,Ki
k−1)

6: [x j
k,P

j
k ] =Collapse(xi j

k ,P
i j
k ,K j

k ,g
i j
k )

7: end for

8: end for

9: Applying a threshold on K j
k

110

The procedure of finding K j
k is done for each ECG beat, separately. Since each

ECG beat starts with B1 segment, we assume that K1
0 = 1 and Ki

0 = 0, i = 2, · · · ,7.

For each time instant k, K j
k has seven values according to the values which the

switch can obtain. Since switch s has a left-to-right HMM model, we find the optimum

mode between two consecutive modes by:

modeopt = argmax
j

K j
k , j = {kk,kk+1}, kk ∈ {1,2, · · · ,6} (9)

Where kk is the current state. After finding the “modeopt” values, a path is estimated

from these values. The estimated path has seven levels, each one associated to one seg-

ment. Levels 1 to 7 represent the B1, P, B2, QRS, B3, T and B4 segments, respectively115

(like Fig.3). The proposal to find the onset and offset of waves from the estimated path

is as follows:
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• Pon: The point in which the path transits from level 1 to 2

• Po f f : The point in which the path transits from level 2 to 3

• QRSon: The point in which the path transits from level 3 to 4120

• QRSo f f : The point in which the path transits from level 4 to 5

• Ton: The point in which the path transits from level 5 to 6

• To f f : The point in which the path transits from level 6 to 7

Since the peaks can be positive or negative, peak position of waves (Ppeak,Rpeak,Tpeak)

are defined as the maximum of absolute value of signal between onset and offset.125

2.5. Data and Evaluation Metrics

To evaluate the performance of the proposed method in extracting ECG fiducial

points, we need ECG recordings annotated by physicians. Thus, we use records of

Arrhythmia, Normal Sinus Rhythm, ST Change and Supraventricular databases which

are annotated in the Physionet QT database (32 records) [44, 45]. The records are130

sampled at 250 Hz (4 ms between 2 successive samples) and each of them has 30-50

annotated beats. Totally we use 975 annotated beats for evaluation of the performance

of the methods.

We use 2-fold cross validation for each record and the initial parameters of SKF

model are found from train data.135

For quantitative evaluation of a FP extraction method, we calculate the estimation

error defined as time differences between estimated points by proposed method and

cardiologist annotations (considered as ground truth). Quantitative results are reported

using common metrics: mean (m), standard deviation (sd) and root mean square error

(RMSE), defined as follows:

RMSE =
√

MSE =

√
1
N

N

∑
i=1

(ei)2 =
√
(m2 + sd2) (10)

where ei = ŷi− yi is denoted as the ith element of the estimation error vector and N is

the length of error vector. yi and ŷi are the ith cardiologist annotation and estimated

9



point, respectively. m, sd and RMSE are given in ms. Since RMSE considers mean and

standard deviation of error, it is a more relevant parameter for comparing methods.

3. Results140

Fig.2 shows how the estimated path is obtained from comparing the values of K j
k

parameter. In this figure, the upper subfigure shows the calculated K j
k , j = 1, · · · ,7

probabilities for one beat. We can see that for example K1
k has high value on the seg-

ment which is related to B1 segment and has low (almost zero) value in other segments

and so on. By comparing the two consecutive K j
k values by (9), we can obtain the145

modeopt and the estimated path which is plotted in lower subfigure in Fig. 2.
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Figure 2: The k j
k values and estimated path by SKF for record Sel231.

Fig.3 shows the estimated path by the SKF for a small segment of the record 231

of the QT database. The colorful vertical lines show the original location of FPs which

are annotated by a physician and the multilevel path is estimated by the proposed SKF.

This figure is an illustrative example of what the estimated path looks like and clarify150

how the onset and offset of waves can be found from the transition of one level to upper

level in a multi-level estimated path.

10



5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6

−3

−2

−1

0

1

2

3

4

5

6

7

A
m

pl
itu

de
 (

m
V

)

Time (sec)

 

 

ECG Path

Figure 3: Original labels and estimated path by SKF for record Sel231.

Here, we first present the quantitative results of proposed SKF for some records

with different morphologies. Afterthat, we compare the estimation error of SKF and

other methods.155

Fig. 4 shows the original and estimated FPs for sel41 of the QT database. In this

figure, the estimated onset, peak and offset of P- and T-waves are denoted by stars and

original labels of physician are denoted by vertical lines. This record is a sudden death

record and has negative R-peak and broad P- and T-waves. And also the P-wave of one

beat starts suddenly after ending the T-wave of previous beat. We can see that for this160

record, the proposed SKF can estimate the fiducial points accurately.

Fig. 5 shows the original and estimated FPs for sel808 of the QT database. This

record is a supra-ventricular record and has normal P-wave and inverted T-wave. We

can see that SKF has good performance for this record.

Fig. 6 shows the original and estimated FPs for Sel301 of the QT database. This165

record is a ST-change record and has bi-phasic T-wave with negative and positive peaks.

The physician considers the positive peak as the annotated peak. We can see that SKF

estimates the peak and offset of T-waves accurately.

Finally, Fig. 7 shows the original and estimated FPs for Sel233 of the QT database.

This record is an arrhythmia record and has negative T-wave. We can see that the170

proposed SKF has good results for the peak and offset of T-waves.
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Figure 4: Original and estimated onset, peak and offset of P- and T-waves by SKF for record Sel41.

The quantitative results of different methods for ECG FP extraction for 32 records

of QT database are compared in Tables 1 and 2. In Table 1, we compare the proposed

SKF method with other methods of the literature: Wavelet[17], PCGS[15] and EKF-

based method (EKF17)[22]. In Table 2, we compare SKF with our previously proposed175

methods based on EKF: linear and nonlinear EKF25 methods proposed in [23] and

[24]. Most of the records of QT database do not have reference label for Ton. Our

proposed method can estimate the location of Ton but we can not report the results of

estimation error for Ton due to lack of reference labels.

Table 1: Mean ± standard deviation (first line) and RMSE (second line) of error in ms between estimated

FPs and manual annotations for signals of the QT database (fs=250Hz), (N.A.: Not Available)

Method Pon Ppeak Po f f QRSon Rpeak QRSo f f Tpeak To f f

SKF 23.4±15.2 −0.1±1.5 −6.4±20 6.6±10.2 0.01±0.1 −5.7±8.5 −0.01±0.4 0.6±10.8

27.8 1.5 21 12 0.1 10.3 0.4 10.8

Wavelet [17] −2.3±31.6 0.7±25 2.6±15.2 12.4±13.6 1.4±3.6 1.9±13.8 7.5±27.5 7.3±32.2

31.7 25 15.4 18.4 3.8 13.9 28.5 33

PCGS [15] −30±29.4 5.2±8.3 21.1±15.5 N.A N.A N.A 2.6±29.7 27.5±44

42 9.8 26.2 N.A N.A N.A 29.8 51.8

EKF17 [22] −11±28.7 9±19.2 27.4±23.5 −24.5±39.2 4.5±6.4 22.2±40.6 −4.6±34 24.8±44.5

30.7 21.2 36.1 46.2 7.8 46.2 34.3 51
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Figure 5: Original and estimated onset, peak and offset of P- and T-waves by SKF for record Sel808.

According to the results of Table 1, the mean errors of the SKF method for all FPs180

except Pon are smaller than or around two samples (8 ms). The standard deviations are

around four to five samples for the onset and offset of waves and around one sample

for the peak of waves.

In Table 1, the best results of RMSE values among four rows are highlighted as

bold. We observe that the RMSE values of the SKF method for all FPs except Po f f are185

less than other methods, especially for To f f . And also the estimation error by SKF for

Po f f is less than estimation error achieved by PCGS and EKF17.

The mean and standard deviation of estimation error across all FPs are estimated

for SKF, Wavelet, PCGS and EKF17 methods as 2.2± 13.7, 1.9± 26.2, 5.5± 38

and 6± 36.2ms, respectively. RMSE values across all FPs are estimated for above-190

mentioned methods as 14, 23, 35 and 37 ms, respectively. We observe that the standard

deviation and RMSE values for the SKF are smaller than the other methods: it means

that the method presented in this paper can find FPs more accurately than other existing

methods.

We also compared the proposed SKF method with our previously proposed meth-195

ods (linear and nonlinear EKF25 methods) in Table 2. The results show that for all FPs

except Pon, Po f f and QRSo f f , SKF has better results that EKF25 methods.

13



2 2.5 3 3.5 4 4.5

−2

−1

0

1

2

3

4

5

6

7

Original and Estimated Tpeak, Toff

time (sec)

N
or

m
al

iz
ed

 A
m

pl
itu

de

Figure 6: Original and estimated peak and offset of T-waves by SKF for record Sel301.

The simulations were done using a system with Core i3, 2.53 GHz CPU. The run-

time of the SKF method for one second record takes about 3 seconds.

Table 2: Mean ± standard deviation (first line) and RMSE (second line) of error in ms between estimated

FPs and manual annotations for signals of the QT database (fs=250Hz), Methods: SKF, Linear EKF25

(L.EKF25) and Nonlinear EKF25 (N.EKF25)

Method Pon Ppeak Po f f QRSon Rpeak QRSo f f Tpeak To f f

SKF 23.4±15.2 −0.1±1.5 −6.4±20 6.6±10.2 0.01±0.1 −5.7±8.5 −0.01±0.4 0.6±10.8

27.8 1.5 21 12 0.1 10.3 0.4 10.8

L. EKF25 [23] 0.9±14.7 4±10.9 −0.1±11.7 0.55±12.3 1.5±2.7 −2.5±7 −0.6±9.7 0.3±14.7

14.8 11.6 11.7 12.3 3.1 7.3 9.7 14.7

N. EKF25 [24] −1.9±26.7 3.4±15 −1.6±13.4 1±12.7 1.2±5.3 −1.7±7 −1±8.8 −0.4±11.5

26.8 15.4 13.5 12.7 5.5 7.2 8.8 11.5

4. Discussion and Conclusions200

In this paper, a novel method based on SKF for ECG fiducial point extraction is

proposed. Experiments carried out on ECG signals from the QT database show that the

SKF performance is similar or better than the state of the art ECG delineators such as

EKF17, PCGS and Wavelet. For most of FPs, SKF outperforms linear and nonlinear
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Figure 7: Original and estimated peak and offset of T-waves by SKF for record Sel233.

EKF25 methods.205

The main contribution of this paper is proposing a SKF model for ECG FP ex-

traction, which for each ECG wave or segment, a separate state is considered. ECG

waves are modeled as a sum of 5 Gaussian functions and ECG baselines are modeled

with a first order AR model. The switch only affects the observations. We used 2-fold

cross validation and the initial parameters are found from train data. In the test step,210

the probability of K j
k = P(sk = j|y1:k) is compared among all modes and a path is es-

timated, which shows the relation of each part of the ECG signal to the mode with the

maximum probability. FPs are directly found from the obtained path.

EKF-based approaches have been previously used for ECG FP extraction [21, 22,

23, 24]. The main limitation of such methods is their sensitivity to the initial location215

of the Gaussian functions as well as initial parameters of EKF, that must be defined

by the user. HMM-based approaches have also been previously proposed for ECG FP

extraction [10, 11, 12, 13]. In these methods, defining a suitable HMM structure, train-

ing step and finding the HMM parameters are very critical and methods are sensitive

to these points.220

The advantages of the proposed SKF model are: (i) It is sensitive neither to the

initial location of the Gaussian functions nor to the initial parameters of SKF, (ii) It

15



does not require severe training step.

The main goal of this paper, is to show the ability of SKF-based methods for ECG

FP extraction. The complexity analysis and adapting the algorithm for real-time appli-225

cation are not in the scope of the paper and can be considered as future works.
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Appendix .1. EKF matrices derivations

In order to set up an EKF model based on the nonlinear synthetic model of (2), it is

necessary to have a linearized version of the model. Consequently, the state-equation

of (2) requires linearization using (5) and (6). The following equations represent the

linearized model with respect to the state variables (non-zero elements of matrix Ak):

Ak(1,1) = Ak(2,2) = Ak(3,3) = Ak(4,4) = Ak(5,5) = Ak(6,6) = Ak(7,7) = 1

Ak(3,1) =−δ
αP,kωk

b2
P,k

[1−
∆θ 2

P,k
b2

P,k
]exp(−

∆θ 2
P,k

2b2
P,k
)

Ak(5,1) =−∑i∈{Q,R,S} δ
αikωk

b2
ik

[1− ∆θ 2
ik

b2
ik
]exp(−∆θ 2

ik
2b2

ik
)

Ak(7,1) =−δ
αT,kωk

b2
T,k

[1−
∆θ 2

T,k
b2

T,k
]exp(−

∆θ 2
T,k

2b2
T,k

)

(.1)
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Similarly, the linearization of (2) with respect to the process noise components yields

(the non-zero elements of matrix Dk):370

Dk(1,16) = δ ,Dk(2,17) = Dk(4,19) = Dk(6,21) = Dk(8,23) = 1

Dk(3,18) = Dk(5,20) = Dk(7,22) = 1

Dk(3,1) =−δ
ωk∆θP,k

b2
P,k

exp(
−∆θ 2

P,k
2b2

P,k
)
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2b2
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)exp(

−∆θ 2
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2b2
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Appendix .2. Functions of Switching Kalman Filter

1. [xi j
k ,P

i j
k ,Li j

k ] = f ilter(xi
k−1,P

i
k−1,Ak,Dk,Qk,H

( j)
k ,R( j)

k )

In this function at each time k, first a priori estimate and its covariance ma-

trix (x−i j
k and P−i j

k ) are estimated from the previous time k− 1. Then, by using

the estimate x−i j
k and observation yk, the estimate is updated and the posterior

estimate and its covariance (xi j
k and Pi j

k ) are computed. In this function, ek is the

innovation at time k. The likelihood Li j
k is the probability of the observation yk

and can be calculated as a by-product of Kalman filter. Finally, bk is the Kalman

gain matrix. 

x−i j
k = Akxi

k−1

P−i j
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k−1AT
k +DkQkDT

k

ek = yk−H( j)
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k ]
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2. [Ki j
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k ,zi j,Ki
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This function calculates the parameter K j
k for each mode j at time k.



i, j = 1,2, ...,7

Ki j
k =

Li j
k zi j Ki

k−1

∑
i

∑
j

Li j
k zi j Ki

k−1

K j
k = ∑

i
Ki j
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gi j
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Ki j
k

K j
k

(.4)

375

3. [x j
k,P

j
k ] =Collapse(xi j

k ,P
i j
k ,K j

k ,g
i j
k )

This function approximates mixture of Gaussians as one Gaussian by moment

matching.
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i

xi j
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k [P j
k +(xi j

k − x j
k)(x

i j
k − x j

k)
T ]

(.5)

24


	Introduction
	Methods
	ECG Kalman Filtering Framework
	Proposed Dynamic Model
	SKF-based ECG model
	Procedure of SKF-based FP extraction
	Data and Evaluation Metrics

	Results
	Discussion and Conclusions
	EKF matrices derivations
	Functions of Switching Kalman Filter


