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Transient Quasi-Static Gas Flow through a Rigid 

Porous Medium with Double Porosity 

PASCALE ROYER and JEAN-LOUIS AURIAULT 
Laboratoire 'Sols, Solides, Structures' Institut de Mécanique de Grenoble, Laboratoire 
associé CNRS, BP 53X, 38041 Grenoble Cedex, France 

Abstract. The highly compressible fluid flow through a three-scales rigid porous medium (pore, 
fracture, macroscopic sample) is investigated using a homogenization method. The macroscopic 
description is strongly dependent on the separation of the different scales, and three cases are 
considered. The pores either play the role of a compressible fluid reservoir, introduce a memory effect, 
or are ignored, respectively. The homogenization result is compared to classical phenomenological 
models that are available in the case of slightly compressible fluids. Pseudo-steady state models are 
shown to give a rough description of the phenomenon. 
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Nomenclature 

Roman Letters 

C* = gas compressibility coefficient. 

f 

F 
h 
I 
k 

kv, fer 
l,l',l" 

m 

n, n' 

n' 

p 

Po 

= subscript for the fractures. 

= nonlinear fonction. 

= positive integer. 

= identity tensor. 

= subscript taking on the values p for the pores and f for the 

fractures. 

= particular solutions for the velocity fields in the pores and the 

fractures, respectively. 

= pore and fracture permeability tensors, respectively. 

= characteristic lengths for the pore scale, the fracture scale and 

the macroscopic medium, respectively. 

= positive integer. 

= pore porosity and fracture porosity, respectively. 

= normal unit vector. 

= subscript for the pores. 

= initial pressure. 



r 

s 

s 

t,T 

Tp,Tf 

x, x', x" 

= pore and fracture pressures, respectively. 

= interporosity flow. 
= dimensionless number. 

= positive integer. 

= characteristic coefficient of a fractured rock. 

= Strouhal number. 

= time variables for the pores and the fractures, respectively. 

= characteristic times for the pores and the fractures, 

respectively. 

= pore and fracture fluid displacements, respectively. 
= pore and fracture fluid velocities, respectively. 

= order of magnitude of Vk, due to the macroscopic pressure 

gradient. 

= order of magnitude of Vk, due to the temporal change of 

pressure. 

= space variables for the pore, fracture and macroscopic scales, 

respectively. 

Greek Letters 

o:, (3, 1 = ratios between the different characteristic lengths. 

r, r' = boundaries of the pores and the fractures, respectively. 

Ll = Laplace operator. 

v' = gradient operator. 

ê 

>., µ 

Po 

Pp,Pf 

r 

w 

n,œ 

= small parameter. 

= fluid viscosities. 

= initial density. 
= pore and fracture densities, respectively. 

= particular solution for the pressure. 

= characteristic times for the pores and the fractures, 

respectively. 

= pulsation. 

= periods at the pore and fracture scales, 

respectively. 
np , n�P' f!t = parts of the period occupied by the pores, the solid plus the 

pores and the fractures. 



Particular Symbols 

(</J)o, (</J)œ = volume averages of the quantity qy on n, n', respectively. 

( </J) eff = particular volume average on n'. 

1. Introduction

A double porosity medium is constituted of two porous systems of distinctly dif
ferent porosity and permeabilities. This concept was introduced by Barenblatt et 

al. (1%0} foI"--the investigation of fissur�d pornus media;-ooo of the.--two porom
structures is associated with the fractures and the other one with the porous matrix. 
The behaviour of such a medium during fluid flow is of interest in many engi
neering fields (for instance, in petroleum engineering and in mining engineering). 
Consequently, it has been the subject of active research. The first investigations 
of double porosity media dealt with fissured reservoirs by means of phenomeno
logical approaches (Barenblatt et al., 1960; Barenblat, 1963; Warren and Root, 
1963). The basic assumption of this kind of model is that each point in space 
is associated with two pressures: the average fluid pressure in the fractures and 
the average fluid pressure in the micropores (Barenblatt et al., 1960). It is also 
assumed that the fluid is slightly compressible. In these models the laws are lin
ear. The Barenblatt-Zheltov model (Barenblatt et al., 1960) shows an important 
characteristic of a double porosity system, the interporosity flow, i.e., the fluid 
exchange between the two constitutive media. As for the Warren and Root model 
(Warren and Root, 1963), it neglects the flow through the matrix block system; 
and the permeability of the matrix is usually considered as negligible compared 
to the fracture system permeability. This simplification is the subject of debate. In 
particular, let us note the works of Chen (1989, 1990), where it is claimed that it is 
necessary to salve the overall Barenblatt-Zheltov model, taking into account the 
flow through the matrix block system. These two theoretical models - the complete 
and the simplified model - have been taken up again by many authors to apply 
them to different domains of reservoir engineering. A state of the art in the knowl
edge of double porosity behaviour investigated with this kind of approach is well 
described by Gringarten (1984). For the particular case of slightly compressible 
fluids in double porosity systems, see Chen (1989). 

On the other band, the homogenization method (Bensoussan et al., 1978, 
Sanchez-Palencia, 1980) is also used for modelling double or single porosity 
media. In the case of sligthly compressible fluids, Arbogast et al. (1990) derive a 
double porosity model by means of the homogenization method, by considering 
Darcy's law at the microscopie level. To highlight the local effects at the pore 
and fracture scales, and the exchanges between the two porous structures, it is 
preferable to consider Navier-Stokes equations within the pore and the fracture 
systems. This is the case in Levy (1990), where the filtration of an incompressible 



fluid in fissured microporous rigid rock is investigated. One relationship between 
the separations of scales was investigated to show the influence of the fissure con

nectivity. As a result, the case of interest is when the pores and the fractures are 

connected. In other respects, compressible fluid flow through a deformable porous 

matrix with a single porosity is studied in a similar way in Auriault et al. (1990). 

It is shown there that there exists a macroscopic equivalent description only if the 

transient inertial term of the Navier-Stokes equations is negligible at the first order. 

Therefore, the behaviour is said to be quasi-static. Moreover, it is shown there that 

the richest macroscopic description is obtained for an 0(1) macroscopic Strouhal 

number. This one is introduced by the mass balance equation. It is defined as the 

ration between the time derivative of the density and the mass flux. 

Double porosity media introduce three separated scales, i.e., three scales with 

very different characteristic lengths: the pore scale, the fracture scale and the macro

scopie scale. The method of asymptotic developments (i.e., the homogenization 

method) is very well adopted to this case; see Auriault and Boutin (1992, 1993, 

1994), where it is applied to an incompressible fluid flow through a deformable 

porous matrix with double porosity, in the quasi-static and acoustic cases. The main 

result in these investigations is the strong dependence of the macroscopic behavior 
on the separations of scales. Here, we will take up again the same formalism and 

apply it in the context of highly compressible fluid flow through a rigid porous 

matrix. 

The aim of the paper is to model very compressible fluid flow through double 
porosity media, and to compare the result to the two-pressure phenomenological 

models, in the case of slightly compressible fluid. In the second part of the paper, 

the physical domain of the study is defined. As in Auriault and Boutin (1992, 1993, 

1994), we consider three cases of different relationships between the three separa

tions of scales. The local equations that describe the flow and estimates required 

for homogenization are presented. Preliminary estimates of the order of magnitude 

of the fracture and pore velocities are then obtained, to simplify the following 

investigation. The three macroscopic behaviours are itemized in the third part of 

the paper. In each case, the macroscopic behaviour is described in the form of mass 

balance equations with Darcy's law. We show there the strong differences between 

the three cases, in particular, for the influence of the pore matrix. Depending on the 

separation of scales, it plays the role of a compressible fluid reservoir, or introduces 
memory effects, or is ignored, at the first order of approximation. The following 

reasoning and results are summarized in Auriault and Royer (1993b). In the fourth 

part, a form of the case II macroscopic description is compared to the Warren Root 
phenomenological approach. This kind of comparison was made in a previous 

paper (Auriault and Royer, 1993a), in the particular and simple case of the heat 

transfer in composites with double conductivity. By transferring these results to our 
problem, the pseudo-steady state phenomenological approaches are shown to give 
an inadequate model of the phenomenon. The homogenization method enables us 
to improve the model by introducing a new derivative term in the interporosity 
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Fig. 1. Representation of the periodic cell at the pore scale. O
p 

is the pore domain, 0, the 
solid domain and r their common boundary. l is the microscopie characteristic length. 

flow. Finally the Zimmerman et al. (1993) model is shown to be an approximation 
for the long-time behaviour of media with well-defined separations of scales (our 
case III). 

2. Problem Formulation

2.1. THE MEDIUM INVESTIGATED

When there is a separation of scales, media with random or periodic thin struc
tures lead to similar macroscopic behaviours (Auriault, 1991 ). Hence, without lost 
of generality, we assume the medium to be doubly periodic. On the pore scale, 
the medium is periodic with the space period D and the characteristic length is 
l. Ds and D

p 
are the domains occupied by the solid and the pores, respectively,

and their common boundary is r (Figure 1). On the fracture scale, a second porous
structure exists of characteristic length l' � l, periodic with the space period D' .D�P
and D� are the domains occupied by the pore matrix block and the fractures, respec
tively, and their common boundary is r' (Figure 2). The pores and the fractures are 
assumed to be connected. Finally, l" � l' � l denotes the characteristic length 
of the macroscopic medium. The macroscopic behaviour appears to be strongly 
dependent upon the different separations of scales: 

Œ = [j[', /3 = l'/l", 'Y= l/l". 

As in Auriault and Boutin (1992, 1993, 1994), we will investigate the three fol
lowing cases: 

case I : /3 = O(a2) = 0(€2), 

case II : Œ = 0(/3) = O(é), 

case III : Œ = 0(/32) = O(E2), 
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Fig. 2. Representation of the periodic cell at the fracture scale. n; is the pore domain, n;
P

the solid domain and r their common boundary. l' is the microscopie characteristic length. 

TABLE I. Three coal systems corresponding 
to cases I, II and III 

l' l" 

Casel 10-3 m 2 X 10-l m 104 m
Case li 10-3 m 2 X 10-l m 40m
Case III 5 X 10-6 m 2 X 10-l m 40m 

where E � 1. 
For a reservoir, l and l' are known. l" is the macroscopic size, i.e., the seam coal 

size, the gas reservoir size, or the distance between gas wells, etc. Let us note that 
l" can also be defined as the excitation characteristic length instead of coming from 
geometric consideration. Characteristic lengths for three different coal systems 
corresponding to the three cases are reported on Table 1. An other example for a 
reservoir, taken from Van Golf-Racht (1982), is given Auriault and Boutin (1993). 

2.2. EQUATIONS 

For the sake of simplicity, we assume the system to be at rest at the initial time: 
velocities are zero-valued and pressure and density are supposed to be constant (Po 

and p0, respectively). We consider the perturbation of this equilibrium state. In the 
case of slow flow, we have the following equations, with k =p in the pores and 
k = fin the fractures. 

Momentum balance 
À and µ are viscosities, v k is the velocity and Pk denotes the increment of pressure. 
According to the previous assumptions, the flow is quasi-static and inertial terms 
are neglected. 



Mass balance 

[OVk ] . ât + ( Vk . V) . Vk = o. 

where po is the initial density and Pk the increment of density. 

Gas state equation 

(1) 

(2) 

For the sake of simplicity we assume the fluid to be linear. We consider the following 
incremental law: 

p k = APk where A is a constant. 

Boundary conditions 

Onï 

On ï' 

(3) 

(4) 

(5) 

The condition (5) is demonstrated in Levy and Sanchez Palencia (1975). In partic
ular, the volume average (v

p
)o is shown to be equal to a surface average. Therefore 

it is a flux. 

Initial conditions 

Vk(t = 0) = 0, 

Pk(t = 0) = 0, 

Pk(t = 0) = O. 

2.3. PRELIMINARY STUDY OF THE ORDER OF MAGNITUDE OF THE VELOCITIES

(6) 

The aim of this section is to determine the relative order of magnitude between V
p 

and Vf. As the ratio v
p
lVf can be measured in é power, we put 

v
p 
/ Vf = 0( Eh), where h is a positive integer. 



The gas is forced through the porous medium by a time-dependent difference of 
the pressure at the boundary of the macroscopic sample. When inertial forces are 
negligible, then the pressure term is balanced by the viscous term in the momentum 
balance 

o"P ( vP ) ( vP ) 
zï, 

= 
0 µ l� 

= 
0 µ l'� ' 

(7) 

where 8" P is a pressure difference applied to the macroscopic boundary and vf is 
the velocity due to the macroscopic pressure gradient. Hence, we have 

vgf vf = O(ci). (8) 

Now, according to the mass balance Equation (2), the medium is also subjected to 
temporal changes of pressure and so 

ÔP ( V�) ( Vi)A ât = 0 Pz = 0 Pzï , 
(9) 

where v! denotes the velocity due to the temporal change of pressure. Hence, we 
deduce 

v�/vf = O(a). (10) 

Now, the study of Vf is made by means of developments in powers of the small
parameter (3 = l' / l", which measures the separation of scale between the fractures
and the macroscopic level. Therefore, the boundary condition (5) on r' imposes 

v
p
/ Vf = 0((3m ), where mis a positive integer. 

Finally, according to Auriault et al. (1990), the homogenizability leads to:

Vf = O(vf) = O(vi). 

Therefore, we deduce from (8), (10), (12): 

vE/v� = O(a). 

(11) 

(12) 

(13) 

Equation (13) means that the pore velocity due to the temporal change of pressure 
is always much greater than the velocity due to the macroscopic pressure gradient. 
Let us now consider the problem without the fractures. The pore velocity has then 
to be studied in the form of a development in powers of, = l / l", which measures 
the separation of scales between the pores and the macroscopic level. Equation (7) 
can be written in the form 

(14)



 A quantity cp is said to be 0,,( 7/J) if 

Adding the fractures does not change (14), since 

8"P/l" = 8'P/l'. 

Consequently, the pore velocity will be v� if, according to (13) and (14) 

a=0,,(1), (15) 

and if the condition (11) is checked, too. This one can be translated as follows: 

- 13m Œ - ' where mis a positive integer. 

Therefore, we deduce the following rule: 

v
p
/ Vf = 0( E h), where the positive integer h is defined as follows 

(16) 

- ifa = 0
,,
(1) and ifa = j3m : E h= a, (17) 

- otherwise : E h 
= EŒ.

Hence, we obtain the following results in the three investigated cases: 

In case I: 

Œ = E, j3 = E 2, Ï = E 3, 
Œ = 0

.,,
(1 ), but Œ -j. 13m, 

=;,- v
p/Vf = O(aE) = 0(E 2). 

In case II: 

Œ = E, j3 = E, Ï = E 2, 
Œ = Üî' 

(1), Œ = j3m, 
=;,- v

p/Vf = O(a) = O(E). 

ln case III: 

Œ = E, j3 = E, Ï = E 3, 
Œ -j. Ü-y

(l ), 
=;,- v

p/Vf = O(aE) = 0(E 3). 

(18) 

(19) 

(20)



2.4. SPACE VARIABLES

The three characteristic lengths allow us to introduce the three following dimen
sionless variables: 

x" x" x" 

l' ZÏ' y,, 

which describe the pore, the fracture, and the macroscopic media, respectively. 
Each physical quantity is a function of these three variables. We use preferably 
three physical variables, which are as follows: 

x = 0( 1-1 )x" for the pore medium, 

x' = 0(/3-1 )x" for the fracture medium,

x" for the macroscopic medium. 

2.5. TIME SCALES AND TIME VARIABLES 

(21) 

The separation of space scales yields a separation of time scales (Auriault and 
Boutin, 1992, 1993, 1994). To highlight them, let us consider two fictitious refer
ence displacement fields, u

p 
and Uf, for the pores and the fractures, respectively, 

and let us assume that: 

U
p
/Uf = 0(1). (22) 

Then, we define the characteristic times, T
p 

and Tf, by: 

Vf = uf/Tf, 

from which: 

(Vp) h Tf/T
p 

= 0 
Vf 

= O(E ). (23) 

From the time variable two dimensionless time variables can be defined: 

t/Tf for the fractures, t/T
p 

for the pores. 

Because of the separation, each quantity is a function of these two times, too. We 
would sooner use the following variables: 

t for the fractured medium, 

Hence, we obtain: 

In case I: 

T = O(Eh)tfor the porous medium. (24) 



In case II: Tr/Tp = O(.s), 

In case III: Tr/Tp = 
O(.s3), 

The previous choices determine an essential role of the variables x" and t; we have 
adopted a macroscopic point of view (Auriault , 1991) for the medium description. 
Consequently, dimensionless numbers will be estimated by means of the charac
teristic length l" and the characteristic time Tc. 

2.6. DIMENSIONLESS NUMBERS

The momentum balance (1) introduces the following dimensionless number: 

Qk has to be estimated as follows: 

811 P / l" 
Qk = µ( uk/Tfl"2). 

Now, according to (7) and (22), we have 

Uk (8"P) 
µ Trl' 2 == O V' 

Therefore: 

Uk ( 
Uk 2) ( 8" p 2) 

µ Tcl" 2 ==O µ Trl'2 (3 ==Ü Tt13 ·

Hence: 

The mass balance equation (2) shows the Strouhal number 

(25) 

According to the results of Auriault et al. (1990), we investigate the case where 

Sc=O(l), (26a) 



and we find 

(26b) 

Taking into account these estimations, the flow equations are written in the dimen
sionless normalized form, as follows: 

j32µD.vk + j32(À + µ)v'(v' · vk) - VA= 0,

8pr 
at 

+ v' ·((Po+ pr)vr) = O inn},

Ôp h a:+ j3- 1
E V· ((po + Pp)vp) = 0 in!ip,

Vp/r =: 0, 

vr/r' == (vp)n,

Pr= P
p 

onr'. 

2.7. HOMOGENIZATION

(27) 

(28a) 

(28b) 

(29) 

(30) 

(31) 

(32) 

To perform the upscaling from the pore and the fracture scales to the macroscopic 
scale, we use a homogenization method. Taking advantage of the small parameter 
E, the velocity, the density and the pressure fields are classically looked for in the 
form of asymptotic expansions. In the pore domain, the pressure and the density 
are of the order of magnitude 0(1 ). By taking into account the above estimations, 
the pore velocity development may start with a Eh term. In the fracture domain all 
fields are of the order 0(1). Hence: 

</>p = <t>g(x, x, x', t, T) + E</>�(x, xx", t, T) + · · ·, </> = P, p,

v - Ehvh(x x' x" t T) + Eh+lvh+1 (x x'x" t T) + .. ·
p - p ' ' ' ' p ' ' ' ' 

</>r = </>�(x', x", t, T) + Er </>''i(x'x", t, T) + E
2r 1>/r (x', x", t, T) + · · ·,

j3 = Er , 1> = v,P,p.

(33) 

We now introduce the expansions (33) in the dimensionless equation set (27-32) 
taking into account that: 

y' x" ÎS WfÎttefl :v' x(' + /3-l y' x' + 1'-l y' Xi, 
t • • 

a a ha

ôt 
becomes : at + E 

âT.



3. The Macroscopic Models

After introduction of the developments in the dimensionless equations, successive 
boundary value problems are obtained at the different orders of é. For the case I, 
the detailed calculus is presented in a previous paper (Royer and Auriault, 1992). 
For the case II, the calculus is itemized in the Appendix. The three distinct derived 
macroscopic behaviours are written as follows: 
Casel 

[ 1 ( ') ] 8P0
(( 0) -T ( ") 0) n + 1 - n n 8t - V x" · Po + P Af X V x"P = 0, 

where J(f is the fracture permeability, 
Po is the intial pressure such as: Po = APo, 

(34) 

po 
= Pg =PP is independent of the local space variables on n�

P

and nf, 
n = /f!p///n�P I and n' = /n1 1//f!'I are the porosities in the pores 

and in the fractures respectively. 

Case II

, âPP (Pg)eff [( o)-T(") o] n 7ft + n 
ât 

- V x" · Po + Pf A f x V x" Pc = 0,

where (Pg)eff = 1//n'I fo:P Pg df!,
PP and P? are independent of the local space variable on nf, 
Pg and pg are independent of the local space variable on np, 
Pg is given by the set: 

n(oPg/ot)- Vx, · [PgR"r(x')Vx,PgJ = 0, 
Pg = P? onr' 
and some given initial condition Pg(x', 0). 
k P is the pore permeability. 

The solution of this set can be put in the form: 

where :F is a nonlinear time-dependent functional exhibiting memory effect. 
Case III

(35) 

(36)



In case I, the macroscopic behaviour (34) is a nonlinear mass balance equation, 
with the classical Darcy's law for the fractures. It resembles single porous medium 
behaviour. The peculiarity of this behaviour lies in the source term [ n' + ( 1 -
n')n]( âP0 / ât), where appears the pore matrix influence. At the first order of 
approximation, the pore flow is taken into account through this term, only. The 
pore matrix plays the role of a compressible fluid flow reservoir. 

In case II, the flow through the pores strongly influences the macroscopic 
behaviour: it imposes memory effects and added strong nonlinearities appear at 
the macroscopic scale. This is the case of the greatest interest, which shows how 
important the local effects can be. 

Finally, in case III, the pores are entirely ignored. It is exactly the result that 
would be obtained by a straightforward homogenization from the fracture scale 
to the macroscopic level. In this case, the medium can be considered as a single 
porosity system, as the first order of approximation. 

The nonlinearities in the three models take their origin in the high compress
ibility of the fluid. They disappear with lower compressibility (see Section 4.4). 

It is interesting to introduce characteristic times Tp and Tf for the changes in the 
pore and the fracture flows, respectively 

Vf = l" /rr, 

In cases I and II, rr/ Tp = 0( 1). Changes in the fracture and in the pore flows 
occur at the same time, as can be seen from (34) and (35), under fully transient 
conditions. As t goes to infinity, case II yields a pseudo-steady-state behaviour 
(Warren and Root, 1963). 

In case III, rr/rp = O(s2). For short times O(rr), as shown by (36), the flow 
occurs in the fractures, only. For longer times 0( Tp), flow appears in the pores and 
the fractures practically work as perfect drains, at nearly constant pressure. The 
flow in the porous matrix occurs under fully transient conditions. The Zimmerman 
et al. model (1993), is an approximation of the long-time behaviour in case III. As 
t goes to infinity, the flows becomes pseudo-static, as in case IL 

4. Comparison with the Phenomenological Pseudo-Steady State Models

A rigorous phenomenological model for highly compressible fluid flow in a double 
porosity medium is not available in the literature, to our knowledge. The existing 
models, for example in Barenblatt et al. (1990), are unreliable because of the 
seepage law the authors are using: as demonstrated in Auriault et al. (1990), 
the seepage law for a compressible fluid is the Darcy law. The rigorous existing 
models, mainly the Barenblatt model (Barenblatt et al. 1960) and the Warren and 
Root model (Warren and Root, 1963), assume that the fluid is slightly compressible. 
Moreover, it is assumed that the interporosity flow q, i.e., the flux of fluid from 



matrix to fractures, occurs in response to the fracture-pore difference of pressure.
This is assumed to describe a pseudo-steady state flow

where s is a characteristic coefficient of the fractured rock proportional to the
specific surface of the block.

We first introduce these models. Then we compare them to the case II model
when t goes to infinity, but in a linearized form and in the case of a slightly
compressible fluid. This comparison will allow us to improve the interporosity
term.

4.1. THE COMPLETE BARENBLATI MODEL

To de scribe a double porosity model, Barenblatt et al. (1960) introduce two pressure
fields at each point of space: Fe and Pp for the fractures and the pores, respectively.
The model applies to the case of a slightly deformable matrix and a slightly
compressible fluid. When the porous matrix is rigid, the model reduces to the two
following equations, with our definitions for the permeabilities

I(f�Pc = n'C* Ô;f - sKp(Pp - Pr),

Kp�Pp = nC* â�p 
+ sKp(Pp - Fe),

(37) 

(38) 

where C* is the gas compressibility coefficient. The permeability tensors are
assumed to be isotropie: kf = KcÏ, f(P = KpÏ, where Ï is the identity tensor.

4.2 THE SIMPLIFIED BARENBLATI MODEL

In the case of a fractured porous medium, Barenblatt theory neglects the fracture
porosity n' and the fluid flow in the porous matrix. Consequently, the pore per
meability takes only place to describe interporosity flow, i.e., the fluid exchange
between the pore matrix and the fractures

Kc�Pc + sKp(Pp - Fe)= 0, (39)

C* âPp ( )n 7ft + sKp Pp - Fe = 0, (40)
Elimination of Pp in (39) and (40) yields

âPc I(f â Kc - - --(�Fe) - -�Pc = O.
ât sKp ât nC* (41)



4.3. THE WARREN AND ROO T MODEL

The double porosity mode! of Warren and Root is also a simplification of the 
complete Barenblatt mode!. The porosity and the compressibility coefficient in the 
fractures are not neglected, but the fluid flow in the pore matrix is neglected in this 
mode! 

Krt::..Pr = n'C*8
;f - sKp(Pp - Pc),

nC* a;P + sKp(Pp - Pr)= 0,

In Fourier space, the system is written as 

Kct::..Pc = iwn'C* Pr - sKp(Pp - Pr),

iwnC* Pp+ sKp(Pp - Fe)= 0, 

where w is the pulsation. 
Elimination of Pp between ( 44) and ( 45) yields 

. , * iwnC* sKp Kft::..Pc = iwn C Pr+ J( . C Pr.s p + iwn * 

4.4. THE LINEARIZED MODEL OBTAINED BY HOMOGENIZATION 

(42) 

(43) 

(44) 

(45) 

(46) 

As shown in Section 3, the pseudo-steady-state corresponds to the long-time 
behaviour in case II. For the comparison to be possible, the case II mode! is 
simplified to slightly compressible fluids. We put 

Po+ Pk = po(l + CPk), k = p, f, (47) 
where: 1 C Pk 1 � 1; C is the compressibility coefficient. We assume the perme-
abilities to be constant and isotropie. The mode! reduces to 

'C*8Pf + C* 8(Pg)eff T.T A pO _ O n 8t n 
8t 

- A fLJ.x" f - , 

Pg is the solution of the following diffusive equation 

• o * aPg R pt::..x,P
p = nC 8t' 

with the boundary condition 
Pg = Pf onr'. 

C* = C/po. (48)



Proceeding by Fourier analysis, we have then to solve 

K
p�x,Pg = nC*iwPg, 

Let us define W by 
Pg=PP+w. 

The boundary-value problem becomes 
K

p�x,W = nC*iw(PP + W), W = 0 onr'. 
The solution is linear with respect to PP 

W(x',x",w) = -k(x',x",w)PP,
where k is complex and w dependent and represents the solution for PP =
Equation ( 48) can then be written as follows in Fourier space: 

J(f�x"PP = [n'C* + n(l - n')C* - nC*(k)eff] iwPp, 

(k)eff = l�'I k:p kdn.

-1.

(49) 

Taking the inverse Fourier transform of ( 49) we obtain the description for a transient 
excitation 

J(f�x"PP = ( n'C* + n(l - n')C*) a;p 

jt A 
E)2p0 

-nC* K(t - r)--f dr 
-(X) ât2 ' (50) 

where ÎC(t) is the inverse Fourier transform of (k)eff/iw and characterizes the 
memory effects induced by the double porosity structure of the medium. The 
memory function Î((t) is similar to the memory function introduced in Auriault 
(1983) and used again in Auriault and Royer (1993a), for transient heat transfer in 
double conductivity composites. In the general case Î( ( t) is a sum of exponential 
terms. An equivalent formulation is obtained by integrating by parts the integral in 
equation (50), noticing that all time derivatives of ÎC(t) are vanishing when t goes 
to infinity: 

],• 0 ( 'C* ( ') *)âPP d a
zpp {f�x"Pf = n + n l - n C 8t - 2 âtZ 

03p0 0np0 
-d3 --f - · · · - d __ f - .. ·. (51) ât3 n Ôtn 

The memory of the past is replaced by the knowledge of all time derivatives 
at the present time. The convolution product represents the interporosity flow. It 
introduces strong difficulties in numerical investigations. Linear memory effects 
were also introduced by Bibby (1981) to describe the mass transport of solutes in 
dual-porosity media. 



4.5 COMPARISON BETWEEN PSEUDO-STEADY-STATE PHENOMENOLOGICAL AND 
HOMOGENIZATION APPROACHES 
For simplicity, we limit the comparison to the Warren and Root model. An anal
ogous investigation is conducted in Auriault and Royer (1993a) for heat transfer 
in composites with double conductivities. The reader is referred to this paper 
for details. We need a long time approximation of the linearized homogenization 
result of (50). The memory fonction Î( can be represented by an infinite sum of 
exponential terms: 

k(t) = L ap e-bpt, b1 < b2 < · . . .

p=l 

The long time behaviour can therefore be approximated by 

Introducing this value into ( 49) gives 

,,, o C* [ , ( ') a1zw ] . 0 Arf1x,,pf = n + n 1 - n - n b . iwPr. t + zw (52) 

Identifying with the Warren and Root model ( 46) yields the impossible identity 

nC*sK
p 

= C* (i _ 1 _ a1iw )C · - n n b1 + ,;w · sK
p 
+ n *iw • (53) 

The approximation (52) can be used to improve the phenomenological model (see 
Auriault and Royer, 1993a). It gives the interporosity flow in the form 

(54) 

where () is a constant. 

4.6. THE ZIMMERMAN et al. MODEL 
Many authors have attempted to improve the interporosity flow term to obtain 
a larger time-scale range of validity. The model introduced by Zimmerman et

al. (1993) concerns slightly compressible fluids. To approximate the interporosity 
flow, the authors assume that the pressure in the fractures changes abruptly at t = 0
and remains positive at all posivite times. They also replace the memory fonction 
by an ad hoc approximation. As a result, the linear memory term is replaced by a 
nonlinear expression - but more convenient for numerical purposes - with respect 



to the pressures in the pores and the fractures. Clearly, such a model will be valid 
if the characteristic times are such as: 

Tf � Tp, 

Hence, the Zimmerman model cannot be compared to cases I and Il This model 
corresponds to case III, where Tf/T

p 
= O(i2), for times of the order of magnitude 

of T
p
, 

At such times, the pressure in the fractures is nearly a constant P0. The flow in 
the pores occurs under fully transient conditions, with a memory function similar 
to the memory function Î( ( t) in case Il This is exactly the situation described by 
Zimmerman et al. Finally, the abrupt change of pressure in the fractures appears 
as an unnecessary assumption. The Zimmerman et al. model applies also to case 
II with fully transient flows in the fractures and the pores. 

5. Conclusion

We have investigated the macroscopic behaviour of compressible fluid flow through 
a rigid porous medium with double porosity. This behaviour is strongly dependent 
upon the relative value of the separations of scales: in the three cases of interest, 
very different macroscopic behaviours are obtained. This was already shown in an 
other context in earlier papers using the same methodology (Auriault and Boutin, 
1992, 1993, 1994). As in those papers, the largest coupled effects between the 
pores and the fractures are obtained in the case II, i.e., for equal separation of 
scales. The fluid compressibility introduces strong nonlinear memory effects. For 
a slightly compressible fluid, pseudo-steady-state phenomenological approaches 
were shown to be a very rough approximation in the case II, when t goes to infinity. 
The phenomenological models were improved by the introduction of new time 
derivative terms in the interporosity flow. Finally, the Zimmerman et al. model was 
shown to belong to the case III. The investigation of porous media with several 
porosities is of the greatest importance for many domains of applications, for 
instance, in petroleum engineering or in mining engineering. The latter concerns in 
particular the study of the coal-gas outbursts, to determine precisely the setting of 
factors that contribute to the occurrence of an outburst (Strzelecki et al., 1993). This 
phenomenon, which impedes coal mining, is the subject of intensive experimental 
and theoretic research. Unless coal-gas outbursts depend on other phenomena such 
as diffusion or surface adsorption and the related solid swelling, the multi-porosity 
structure of the coal plays an important role. In this sense, the above results can be 
considered as a first step in the modelling. 

Appendix: Case II - Homogenization 

In case II, we have: 



a= 0(/3) = O(s), E � 1, 

Œ 

= 
['' 

l' 
/3 = l"' 

l 
1 = 

l
". 

Therefore, the space and time variables are written as 
x = O(s-2)x" 
t, T = Et. 

x" ' 

The dimensionless numbers have the following orders of magnitude from Section 
2.6: 

S = 0(1). 

Finally, the dimensionless equations are as follows: 

s2µb..vk + s2(.X + µ)V(V · vk) - V Pk = O, 
&pk 
8t +V· ((Po+ Pk)vk) = 0, 

Pk = APk, 
V

p
/f = 0, 

vr;r' = (v
p
)o ' 

Pr= Pp 
on r'.

(Al) 

(A2) 

(A3) 
(A4) 

(AS) 

(A6) 
According to the study of the orders of magnitude, Section 2.3, it follows that 

V
p - = O(s). 

Vf 

We must then consider the different fields in the forms 
</>p = </>�(x, x', x", t, T) + s</>�(x, x', x", t, T) + · · ·, </> = P, p,

Vp = sv�(x, x', x", t, T) + s2v�(x, x', x", t, T) + · · ·, 
</>r=</>�(x', x",t,T)+s</>l(x', x",t,T)+s2<t>;(x', x",t,T)+···,
</> = v, P, p.

For the gradient and the temporal derivative, we must tak:e into account that 
\7 x" is written :V x" + s-1v x' + s-2

v x;,
' . ' 

a a & 

&t becomes : at + 
s 8T .

We have now to analyze the boundary-value problem introduced at the different 
orders of E, in the pores and in the fractures. 



A.l. THE PORE SYSTEM

The pressure field at the first order: 

Equation (Al) at the order of E-2 and Equation (A3) at the order of Eo 

yield

pg = Ap�.

From Equations (A 7) and (A8) we deduce 

o o( , ,, T)Pp = Pp X' X ' t , 

The pore filtration velocity at the first order: 

(A7) 

(A8) 

(A9) 

(AlO) 

Equation (Al) at the order of E1 , Equation (A2) at the order of c 1 and Equation 
(A4) at the order of E1 yield 

Vx ·V�= 0, 

1 vp
/r = O, 

where v� and P� and n-periodic. 
This linear boundary-value problem, of variable x, determines 

The pore mass balance: 
Equation (A2) at the order of Eo yields 

(All) 

(A12) 

(A13) 

(Al4) 

(A15) 

âp� 
(( 

0
) 

1
) (( 

0
) 

2 1 1 
ât 

+ Vx1 
• Po+ Pp vp + Vx Po+ Pp vp + ppvp ) = O. (Al6) 

By integration on np , Equation (Al6) leads to the following compatibility condi
tion: 

( â;� + V x' · ( (po + p�)v�)) 
0 

= O. (A17) 



We deduce then the behaviour in 

n�P

or 

where 

n = i�{p// is the pore domain porosity,

and 

K
p 

= (k
p
)ois the pore permeability. 

A.2. THE FRACTURE SYSTEM

The pressure field at the .first order: 

(Al8) 

(Al9) 

Equation (Al) at the order of c 1 and Equation (A3) at the order of .s0 yield 

DÛ_ A 0 ·If - Pc·

From (A20) and (A21), we deduce: 

Pf = PP(x", t, T), 

p� = p�(x", t, T). 

The fracture .filtration velocity at the .first order: 

(A20) 

(A21) 

(A22) 

(A23) 

Equation (Al) at the order of .s0
, Equation (A2) at the order of c 1 and Equation 

(AS) at the order of .s0 yield 

Vx, -vr = O,

0 _ ( 0) _ O
Vc/r' - vP o - ' 

where v� and Pl are n'-periodic. 

(A24) 

(A25) 

(A26) 



This classical boundary-value problem determines 

v? = -kf(x')V x"Pf, 

P/ = Tf(x')V x,,pp + P/(x", t, T). 

The macroscopic mass balance: 

Equation (A2) at the order of .s0 yields 

(A27) 

(A28) 

ô�? 
+ V x" · ( (po + P?)v?) + V x' · ( (Po + P?)vJ + pJv?) = O. (A29)

By integration on n', we obtain 

n1
8:! + Vx" ·((Po+ P?)(v?)o,) + (Vx, · ((po + P?)vi))o, = 0, (A30) 

where 

n' 
= 

1n�1

ID'I 
is the fracture domain porosity, 

Now, according to the boundary condition, 

Integrating equation (A18) on n�
P
' and taking into account that: 

we obtain 

Ir 1 , 1 ôi o (vp)o · n dS = 0 n-8 Pp dD, r Po+ Pf 
t 

O(p 

and therefore 

0 1 ô(p�)eff 
(V x' ·((Po+ pr)vf ))01 = n ôt ,

where 



 

Equation (A30) also becomes: 

, 8p? (p�)eff � [( O)i((")� nO]n 8t + n� - V x". Po+ Pc .L' f X V x"-'f = o. (A31)

Finally, the flow is described as follows: 

, 8PP (Pg)eff [( o) - ( ") o]n 8t + n
Bt - V x" · Po+ Pf Kc X V x"Pf = 0, 

where l( f is the fracture permeability, 

( o) _ 1 r o PP eff - ln'I ln;P PP df!.

Pg is given by the following boundary value problem: 

apg O - I 0 n8t - Vx, · [P
p

Kp(x )V x'P
p

] = 0,

PP= pg onf'. 
It gives: 

Pg = F( Pc°), where Fis a nonlinear time-dependent functional 
exhibiting memory effect. 
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