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The highly compressible fl uid fl ow through a three-scales rigid porous medium (pore, fracture, macroscopic sample) is investigated using a homogenization method. The macroscopic description is strongly dependent on the separation of the different scales, and three cases are considered. The pores either play the role of a compressible fluid reservoir, introduce a memory effect, or are ignored, respectively. The homogenization result is compared to classical phenomenological models that are available in the case of slightly compressible fl uids. Pseudo-steady state models are shown to give a rough description of the phenomenon.

Nomenclature

= pore and fracture permeability tensors, respectively. = characteristic lengths for the pore scale, the fracture scale and the macroscopic medium, respectively.

= positive integer.

= pore porosity and fracture porosity, respectively. = normal unit vector.

= subscript for the pores. = initial pressure. x, x', x"

= pore and fracture pressures, respectively.

= interporosity fl ow.

= dimensionless number. = positive integer.

= characteristic coeffi cient of a fractured rock.

= Strouhal number. = time variables for the pores and the fractures, respectively. = characteristic times for the pores and the fractures, respectively. = pore and fracture fl uid displacements, respectively.

= pore and fracture fluid velocities, respectively. = order of magnitude of Vk, due to the macroscopic pressure gradient.

= order of magnitude of Vk, due to the temporal change of pressure.

= space variables for the pore, fracture and macroscopic scales, respectively. = initial density.

Greek

= pore and fracture densities, respectively. = particular solution for the pressure.

= characteristic times for the pores and the fractures, respectively. = pulsation.

Introduction

A double porosity medium is constituted of two porous systems of distinctly dif ferent porosity and permeabilities. This concept was introduced by Barenblatt et al. (1%0} foI"--the investigation of fissur�d pornus media;-ooo of the.--two porom structures is associated with the fractures and the other one with the porous matrix. The behaviour of such a medium during fluid flow is of interest in many engi neering fields (for instance, in petroleum engineering and in mining engineering). Consequently, it has been the subject of active research. The fi rst investigations of double porosity media dealt with fi ssured reservoirs by means of phenomeno logical approaches [START_REF] Barenblatt | Basic concept in the theory of seepage of homogeneous liquids in fi ssured rocks[END_REF]Barenblat, 1963;[START_REF] Warren | The behaviour ofnaturally fractured reservoirs[END_REF]. The basic assumption of this kind of model is that each point in space is associated with two pressures: the average fluid pressure in the fractures and the average fluid pressure in the micropores [START_REF] Barenblatt | Basic concept in the theory of seepage of homogeneous liquids in fi ssured rocks[END_REF]. It is also assumed that the fluid is slightly compressible. In these models the laws are lin ear. The Barenblatt-Zheltov model [START_REF] Barenblatt | Basic concept in the theory of seepage of homogeneous liquids in fi ssured rocks[END_REF] shows an important characteristic of a double porosity system, the interporosity fl ow, i.e., the fluid exchange between the two constitutive media. As for the Warren and Root model [START_REF] Warren | The behaviour ofnaturally fractured reservoirs[END_REF], it neglects the fl ow through the matrix block system; and the permeability of the matrix is usually considered as negligible compared to the fracture system permeability. This simplification is the subject of debate. In particular, let us note the works of [START_REF]Transient flow of slightly compressible fl uids through double-porosity, double permeability systems -A state of the art review[END_REF][START_REF] Chen | Analytical solutions for the double-porosity, double-permeability and layered systems[END_REF], where it is claimed that it is necessary to salve the overall Barenblatt-Zheltov model, taking into account the flow through the matrix block system. These two theoretical models -the complete and the simplified model -have been taken up again by many authors to apply them to different domains of reservoir engineering. A state of the art in the knowl edge of double porosity behaviour investigated with this kind of approach is well described by [START_REF] Gringarten | Interpretation of tests in fi ssured and multilayered reservoirs with double porosity behavior: theory and practice[END_REF]. For the particular case of slightly compressible fl uids in double porosity systems, see [START_REF]Transient flow of slightly compressible fl uids through double-porosity, double permeability systems -A state of the art review[END_REF].

On the other band, the homogenization method [START_REF] Bensoussan | Asymptotic Analysis for Periodic Struc tures[END_REF], Sanchez-Palencia, 1980) is also used for modelling double or single porosity media. In the case of sligthly compressible fluids, Arbogast et al. (1990) derive a double porosity model by means of the homogenization method, by considering Darcy's law at the microscopie level. To highlight the local effects at the pore and fracture scales, and the exchanges between the two porous structures, it is preferable to consider Navier-Stokes equations within the pore and the fracture systems. This is the case in [START_REF] Levy | Filtration in a porous fissured rock. Infl uence of the fissure connexity[END_REF], where the filtration of an incompressible fl uid in fi ssured microporous rigid rock is investigated. One relationship between the separations of scales was investigated to show the infl uence of the fissure con nectivity. As a result, the case of interest is when the pores and the fractures are connected. In other respects, compressible fl uid fl ow through a deformable porous matrix with a single porosity is studied in a similar way in [START_REF] Auriault | Porous deformable media saturated by a very compressible fl uids: Quasi-statics[END_REF]. It is shown there that there exists a macroscopic equivalent description only if the transient inertial term of the Navier-Stokes equations is negligible at the first order. Therefore, the behaviour is said to be quasi-static. Moreover, it is shown there that the richest macroscopic description is obtained for an 0(1) macroscopic Strouhal number. This one is introduced by the mass balance equation. It is defi ned as the ration between the time derivative of the density and the mass fl ux. Double porosity media introduce three separated scales, i.e., three scales with very different characteristic lengths: the pore scale, the fracture scale and the macro scopie scale. The method of asymptotic developments (i.e., the homogenization method) is very well adopted to this case; see Auriault and Boutin (1992, 1993[START_REF] Auriault | Deformable porous media with double porosity[END_REF], where it is applied to an incompressible fluid fl ow through a deformable porous matrix with double porosity, in the quasi-static and acoustic cases. The main result in these investigations is the strong dependence of the macroscopic behavior on the separations of scales. Here, we will take up again the same formalism and apply it in the context of highly compressible fluid fl ow through a rigid porous matrix.

The aim of the paper is to model very compressible fl uid fl ow through double porosity media, and to compare the result to the two-pressure phenomenological models, in the case of slightly compressible fl uid. In the second part of the paper, the physical domain of the study is defined. As in Auriault and Boutin (1992, 1993[START_REF] Auriault | Deformable porous media with double porosity[END_REF], we consider three cases of different relationships between the three separa tions of scales. The local equations that describe the flow and estimates required for homogenization are presented. Preliminary estimates of the order of magnitude of the fracture and pore velocities are then obtained, to simplify the following investigation. The three macroscopic behaviours are itemized in the third part of the paper. In each case, the macroscopic behaviour is described in the form of mass balance equations with Darcy's law. We show there the strong differences between the three cases, in particular, for the infl uence of the pore matrix. Depending on the separation of scales, it plays the role of a compressible fluid reservoir, or introduces memory effects, or is ignored, at the first order of approximation. The following reasoning and results are summarized in Auriault and Royer (1993b). In the fourth part, a form of the case II macroscopic description is compared to the Warren Root phenomenological approach. This kind of comparison was made in a previous paper (Auriault and Royer, 1993a), in the particular and simple case of the heat transfer in composites with double conductivity. By transferring these results to our problem, the pseudo-steady state phenomenological approaches are shown to give an inadequate model of the phenomenon. The homogenization method enables us to improve the model by introducing a new derivative term in the interporosity flow. Finally the [START_REF] Zimmerman | A numerical dual-porosity mode! with semianalytical treatment of fracture/matrix flow[END_REF] model is shown to be an approximation for the long-time behaviour of media with well-defi ned separations of scales (our case III).

Problem Formulation

THE MEDIUM INVESTIGATED

When there is a separation of scales, media with random or periodic thin struc tures lead to similar macroscopic behaviours [START_REF] Auriault | Heterogeneous medium. Is an Equivalent macroscopic description possible? !nt[END_REF]. Hence, without lost of generality, we assume the medium to be doubly periodic. On the pore scale, the medium is periodic with the space period D and the characteristic length is l. Ds and D p are the domains occupied by the solid and the pores, respectively, and their common boundary is r (Figure 1). On the fracture scale, a second porous structure exists of characteristic length l' � l, periodic with the space period D' .D� P and D� are the domains occupied by the pore matrix block and the fractures, respec tively, and their common boundary is r' (Figure 2). The pores and the fractures are assumed to be connected. Finally, l" � l' � l denotes the characteristic length of the macroscopic medium. The macroscopic behaviour appears to be strongly dependent upon the different separations of scales:

OE = [j[', /3 = l'/l", 'Y= l/l".
As in Auriault and Boutin (1992, 1993[START_REF] Auriault | Deformable porous media with double porosity[END_REF], we will investigate the three fol lowing cases: case I

: where E � 1.

/3 = O(a 2 ) = 0(€ 2 ), case II : OE = 0(/3) = O(é), case III : OE = 0(/3 2 ) = O(E 2 ),
For a reservoir, l and l' are known. l" is the macroscopic size, i.e., the seam coal size, the gas reservoir size, or the distance between gas wells, etc. Let us note that l" can also be defined as the excitation characteristic length instead of coming from geometric consideration. Characteristic lengths for three different coal systems corresponding to the three cases are reported on Table 1. An other example for a reservoir, taken from [START_REF] Van Golf-Racht | Fundamentals of FracturedReservoir Engineering[END_REF], is given Auriault and Boutin (1993).

EQUATIONS

For the sake of simplicity, we assume the system to be at rest at the initial time: velocities are zero-valued and pressure and density are supposed to be constant (Po and p0, respectively). We consider the perturbation of this equilibrium state. In the case of slow flow, we have the following equations, with k =p in the pores and k = fin the fractures.

Momentum balance

À and µ are viscosities, v k is the velocity and Pk denotes the increment of pressure. According to the previous assumptions, the flow is quasi-static and inertial terms are neglected.

Mass balance

[OVk ] . ât + ( Vk . V) . Vk = o.
where po is the initial density and Pk the increment of density.

Gas state equation (1)

(2)

For the sake of simplicity we assume the fluid to be linear. We consider the following incremental law:

p k = APk where A is a constant.

Boundary conditions Onï

On ï'

(3) (4) (5)
The condition ( 5) is demonstrated in [START_REF] Levy | On boundary conditions for fluid flow in porous media, /nt[END_REF]. In partic ular, the volume average (v p )o is shown to be equal to a surface average. Therefore it is a flux.

Initial conditions

Vk(t = 0) = 0, Pk(t = 0) = 0, Pk(t = 0) = O.

PRELIMINARY STUDY OF THE ORDER OF MAGNITUDE OF THE VELOCITIES (6)

The aim of this section is to determine the relative order of magnitude between V p and Vf. As the ratio v p lVf can be measured in é power, we put v p / Vf = 0( E h ), where h is a positive integer.

The gas is forced through the porous medium by a time-dependent difference of the pressure at the boundary of the macroscopic sample. When inertial forces are negligible, then the pressure term is balanced by the viscous term in the momentum balance o"P

( v P ) ( v P ) zï, = 0 µ l� = 0 µ l'� ' (7) 
where 8" P is a pressure difference applied to the macroscopic boundary and vf is the velocity due to the macroscopic pressure gradient. Hence, we have

vgf vf = O(ci). (8)
Now, according to the mass balance Equation ( 2), the medium is also subjected to temporal changes of pressure and so

ÔP ( V� ) ( Vi ) A ât = 0 P z = 0 P zï , (9) 
where v! denotes the velocity due to the temporal change of pressure. Hence, we deduce v�/vf = O(a). ( 10)

Now, the study of Vf is made by means of developments in powers of the small parameter (3 = l' / l", which measures the separation of scale between the fractures and the macroscopic level. Therefore, the boundary condition (5) on r' imposes v p / Vf = 0((3 m ), where mis a positive integer.

Finally, according to Auriault et al. (1990), the homogenizability leads to:

Vf = O(vf) = O(vi).
Therefore, we deduce from ( 8), ( 10), ( 12):

vE/v� = O(a). (11) 
(12) (13) Equation ( 13) means that the pore velocity due to the temporal change of pressure is always much greater than the velocity due to the macroscopic pressure gradient.

Let us now consider the problem without the fractures. The pore velocity has then to be studied in the form of a development in powers of, = l / l", which measures the separation of scales between the pores and the macroscopic level. Equation ( 7) can be written in the form

(14)
Adding the fractures does not change ( 14), since 8"P/l" = 8'P/l'.

Consequently, the pore velocity will be v� if, according to ( 13) and ( 14) a=0, ,(1),

and if the condition ( 11) is checked, too. This one can be translated as follows:

-13m

OE -'

where mis a positive integer.

Therefore, we deduce the following rule:

v p / Vf = 0( E h )
, where the positive integer h is defined as follows (16)

-ifa = 0 ,, (1) and ifa = j3 m : E h = a,

-otherwise : E h = EOE.

Hence, we obtain the following results in the three investigated cases:

In case I:

OE = E, j3 = E 2 , Ï = E 3 , OE = 0 .,, (1 ) 
, but OE -j. 13 m , =;,-v p /Vf = O (aE) = 0(E 2 ).
In case II:

OE = E, j3 = E, Ï = E 2 , OE = Ü î' (1), OE = j3 m , =;,-v p /Vf = O (a) = O(E).
ln case III:

OE = E, j3 = E, Ï = E 3 , OE -j. Ü -y ( l ), =;,-v p /Vf = O (aE) = 0(E 3 ). (18) (19) 
(20)

SPACE VARIABLES

The three characteristic lengths allow us to introduce the three following dimen sionless variables:

x"

x"

x" l'

ZÏ'
y,, which describe the pore, the fracture, and the macroscopic media, respectively. Each physical quantity is a function of these three variables. We use preferably three physical variables, which are as follows:

x = 0( 1 -1 )x" for the pore medium, x' = 0(/3-1 )x" for the fracture medium,

x" for the macroscopic medium.

TIME SCALES AND TIME VARIABLES

(21)

The separation of space scales yields a separation of time scales (Auriault and Boutin, 1992, 1993[START_REF] Auriault | Deformable porous media with double porosity[END_REF]. To highlight them, let us consider two fictitious refer ence displacement fields, u p and Uf, for the pores and the fractures, respectively, and let us assume that:

U p /Uf = 0(1).

(

) 22 
Then, we define the characteristic times, T p and Tf, by: Vf = uf/Tf, from which:

(Vp) h Tf/T p = 0 Vf = O(E ). ( 23 
)
From the time variable two dimensionless time variables can be defined:

t/Tf for the fractures, t/T p for the pores.

Because of the separation, each quantity is a function of these two times, too. We would sooner use the following variables:

t for the fractured medium, Hence, we obtain:

In case I:

T = O(E h
)tfor the porous medium. ( 24)

In case II: Tr/T p = O(.s),

In case III: Tr/T p = O(.s 3 ),

The previous choices determine an essential role of the variables x" and t; we have adopted a macroscopic point of view [START_REF] Auriault | Heterogeneous medium. Is an Equivalent macroscopic description possible? !nt[END_REF] for the medium description. Consequently, dimensionless numbers will be estimated by means of the charac teristic length l" and the characteristic time T c .

DIMENSIONLESS NUMBERS

The momentum balance (1) introduces the following dimensionless number:

Q k has to be estimated as follows:

8 11 P / l" Q k = µ( uk/T f l" 2 ) .
Now, according to ( 7) and ( 22), we have Uk (8"P) 

µ T r l' 2 == O V' Therefore: Uk ( Uk 2) ( 8" p 2) µ T c l" 2 == O µ T
To perform the upscaling from the pore and the fracture scales to the macroscopic scale, we use a homogenization method. Taking advantage of the small parameter E , the velocity, the density and the pressure fi elds are classically looked for in the form of asymptotic expansions. In the pore domain, the pressure and the density are of the order of magnitude 0(1 ). By taking into account the above estimations, the pore velocity development may start with a E h term. In the fracture domain all fi elds are of the order 0(1). Hence:

</> p = <t>g(x, x, x', t, T) + E</>� (x, xx", t, T) + • • •, </> = P, p, v -E h v h (x x' x" t T) + E h +lv h +1 (x x'x" t T ) + .. • p - p ' ' ' ' p ' ' ' '
</>r = </>�(x', x", t, T) + E r </>''i(x'x", t, T) + E 2r 1>/ r (x', x", t, T) + • • •, j 3 = E r , 1> = v,P,p.

(33)

We now introduce the expansions (33) in the dimensionless equation set (27-32) taking into account that: y' x" ÎS WfÎttefl : v' x(' + /3-l y' x' + 1'-l y' Xi, 

The Macroscopic Models

After introduction of the developments in the dimensionless equations, successive boundary value problems are obtained at the different orders of é. For the case I, the detailed calculus is presented in a previous paper [START_REF] Royer | Very compressible fluid flow through a porous rigid medium with double porosity[END_REF].

For the case II, the calculus is itemized in the Appendix. The three distinct derived macroscopic behaviours are written as follows:

Casel [ 1 ( ' ) ] 8P 0 (( 0) -T ( ") 0) n + 1 -n n 8t -V x" • P o + P Af X V x"P = 0,
where J( f is the fracture permeability, P o is the intial pressure such as:

P o = AP o , (34) 
p o = Pg =PP is independent of the local space variables on n� P and nf, n = /f! p ///n� P I and n' = /n 1 1//f!'I are the porosities in the pores and in the fractures respectively.

Case II , âPP ( Pg )e ff [( o ) -T ( " ) o ] n 7ft + n ât -V x" • Po + P f A f x V x" Pc = 0,
where ( Pg )eff = 1//n'I fo: P Pg df!, PP and P? are independent of the local space variable on nf, Pg and pg are independent of the local space variable on n p , Pg is given by the set: n(oPg/ot)-V x , • [ PgR" r(x')V x ,PgJ = 0, Pg = P? onr' and some given initial condition P g (x', 0). k P is the pore permeability.

The solution of this set can be put in the form:

where :F is a nonlinear time-dependent functional exhibiting memory effect.

Case III (35) (36)
In case I, the macroscopic behaviour ( 34) is a nonlinear mass balance equation, with the classical Darcy's law for the fractures. It resembles single porous medium behaviour. The peculiarity of this behaviour lies in the source term [ n' + ( 1n')n]( âP 0 / ât), where appears the pore matrix influence. At the first order of approximation, the pore flow is taken into account through this term, only. The pore matrix plays the role of a compressible fl uid fl ow reservoir.

In case II, the flow through the pores strongly infl uences the macroscopic behaviour: it imposes memory effects and added strong nonlinearities appear at the macroscopic scale. This is the case of the greatest interest, which shows how important the local effects can be.

Finally, in case III, the pores are entirely ignored. It is exactly the result that would be obtained by a straightforward homogenization from the fracture scale to the macroscopic level. In this case, the medium can be considered as a single porosity system, as the first order of approximation.

The nonlinearities in the three models take their origin in the high compress ibility of the fl uid. They disappear with lower compressibility (see Section 4.4).

It is interesting to introduce characteristic times Tp and Tf for the changes in the pore and the fracture flows, respectively Vf = l" /rr, In cases I and II, rr/ Tp = 0( 1). Changes in the fracture and in the pore fl ows occur at the same time, as can be seen from ( 34) and ( 35), under fully transient conditions. As t goes to infinity, case II yields a pseudo-steady-state behaviour [START_REF] Warren | The behaviour ofnaturally fractured reservoirs[END_REF].

In case III, rr/rp = O(s 2 ). For short times O(rr), as shown by ( 36), the flow occurs in the fractures, only. For longer times 0( Tp), flow appears in the pores and the fractures practically work as perfect drains, at nearly constant pressure. The flow in the porous matrix occurs under fully transient conditions. The Zimmerman et al. model (1993), is an approximation of the long-time behaviour in case III. As t goes to infi nity, the fl ows becomes pseudo-static, as in case IL

Comparison with the Phenomenological Pseudo-Steady State Models

A rigorous phenomenological model for highly compressible fl uid flow in a double porosity medium is not available in the literature, to our knowledge. The existing models, for example in [START_REF] Barenblatt | Theory of Fluid Flows through Natural Rocks[END_REF], are unreliable because of the seepage law the authors are using: as demonstrated in [START_REF] Auriault | Porous deformable media saturated by a very compressible fl uids: Quasi-statics[END_REF], the seepage law for a compressible fl uid is the Darcy law. The rigorous existing models, mainly the Barenblatt model [START_REF] Barenblatt | Basic concept in the theory of seepage of homogeneous liquids in fi ssured rocks[END_REF]) and the Warren and Root model [START_REF] Warren | The behaviour ofnaturally fractured reservoirs[END_REF], assume that the fluid is slightly compressible. Moreover, it is assumed that the interporosity fl ow q, i.e., the flux of fl uid from matrix to fractures, occurs in response to the fracture-pore difference of pressure. This is assumed to describe a pseudo-steady state flow where s is a characteristic coefficient of the fractured rock proportional to the specific surface of the block.

We fi rst introduce these models. Then we compare them to the case II model when t goes to infinity, but in a linearized form and in the case of a slightly compressible fluid. This comparison will allow us to improve the interporosity term.

THE COMPLETE BARENBLATI MODEL

To de scribe a double porosity model, [START_REF] Barenblatt | Basic concept in the theory of seepage of homogeneous liquids in fi ssured rocks[END_REF] introduce two pressure fi elds at each point of space: Fe and P p for the fractures and the pores, respectively. The model applies to the case of a slightly deformable matrix and a slightly compressible fluid. When the porous matrix is rigid, the model reduces to the two following equations, with our defi nitions for the permeabilities

I( f � Pc = n'C* Ô; f -sK p (P p -Pr), K p �P p = nC* â � p + sK p (P p -Fe), (37) 
(38)
where C* is the gas compressibility coefficient. The permeability tensors are assumed to be isotropie: kf = KcÏ, f( P = K p Ï, where Ï is the identity tensor.

THE SIMPLIFIED BARENBLATI MODEL

In the case of a fractured porous medium, Barenblatt theory neglects the fracture porosity n' and the fluid flow in the porous matrix. Consequently, the pore per meability takes only place to describe interporosity flow, i.e., the fluid exchange between the pore matrix and the fractures Kc�Pc + sK p (P p -Fe)= 0, As shown in Section 3, the pseudo-steady-state corresponds to the long-time behaviour in case II. For the comparison to be possible, the case II mode! is simplifi ed to slightly compressible fl uids. We put

Po+ Pk = po(l + CP k), k = p, f, (47) 
where: 1 C P k 1 � 1; C is the compressibility coefficient. We assume the permeabilities to be constant and isotropie. The mode! reduces to

' C* 8Pf + C* 8 ( Pg )eff T.T A pO _ O n 8t n 8t -A fLJ.x" f -,
Pg is the solution of the following diffusive equation The boundary-value problem becomes

K p � x ,W = nC*iw(PP + W), W = 0 onr'.
The solution is linear with respect to PP W( x ' ,x", w) = -k(x',x",w)PP, where k is complex and w dependent and represents the solution for PP = Equation ( 48) can then be written as follows in Fourier space:

J(f� x "PP = [n'C* + n(l -n')C* -nC*(k) eff] iwP p , (k)eff = l�'I k:p k dn.
-1.

(49)

Taking the inverse Fourier transform of ( 49) we obtain the description for a transient excitation

J(f � x" PP = ( n'C* + n( l -n')C * ) a ; p jt A E)2p0 -nC* K(t -r)--f dr -(X) ât 2 ' ( 50 
)
where ÎC(t) is the inverse Fourier transform of (k)eff /i w and characterizes the memory effects induced by the double porosity structure of the medium. 

= n + n l -n C 8t -2 ât Z 03 p0 0 np0 -d 3 --f -• • • -d __ f -.. •. (51) ât 3 n Ô t n
The memory of the past is replaced by the knowledge of all time derivatives at the present time. The convolution product represents the interporosity flow. It introduces strong diffi culties in numerical investigations. Linear memory effects were also introduced by [START_REF] Bibby | Mass transport of solutes in dual-porosity media[END_REF] to describe the mass transport of solutes in dual-porosity media.

COMPARISON BETWEEN PSEUDO-STEADY-STATE PHENOMENOLOGICAL AND HOMOGENIZATION APPROACHES

For simplicity, we limit the comparison to the Warren and Root model. An anal ogous investigation is conducted in Auriault and Royer (1993a) for heat transfer in composites with double conductivities. The reader is referred to this paper for details. We need a long time approximation of the linearized homogenization result of (50). The memory fonction Î( can be represented by an infinite sum of exponential terms: The approximation (52) can be used to improve the phenomenological model (see Auriault and Royer, 1993a). It gives the interporosity flow in the form (1993) concerns slightly compressible fluids. To approximate the interporosity flow, the authors assume that the pressure in the fractures changes abruptly at t = 0 and remains positive at all posivite times. They also replace the memory fonction by an ad hoc approximation. As a result, the linear memory term is replaced by a nonlinear expression -but more convenient for numerical purposes -with respect to the pressures in the pores and the fractures. Clearly, such a model will be valid if the characteristic times are such as: Tf � Tp, Hence, the Zimmerman model cannot be compared to cases I and Il This model corresponds to case III, where Tf/T p = O(i 2 ), for times of the order of magnitude of T p , At such times, the pressure in the fractures is nearly a constant P 0 . The flow in the pores occurs under fully transient conditions, with a memory function similar to the memory function Î( ( t) in case Il This is exactly the situation described by 

Conclusion

We have investigated the macroscopic behaviour of compressible fluid flow through a rigid porous medium with double porosity. This behaviour is strongly dependent upon the relative value of the separations of scales: in the three cases of interest, very different macroscopic behaviours are obtained. This was already shown in an other context in earlier papers using the same methodology (Auriault and Boutin, 1992, 1993[START_REF] Auriault | Deformable porous media with double porosity[END_REF]. As in those papers, the largest coupled effects between the pores and the fractures are obtained in the case II, i.e., for equal separation of scales. The fluid compressibility introduces strong nonlinear memory effects. For a slightly compressible fl uid, pseudo-steady-state phenomenological approaches were shown to be a very rough approximation in the case II, when t goes to infinity. The phenomenological models were improved by the introduction of new time derivative terms in the interporosity flow. Finally, the Zimmerman et al. model was shown to belong to the case III. The investigation of porous media with several porosities is of the greatest importance for many domains of applications, for instance, in petroleum engineering or in mining engineering. The latter concerns in particular the study of the coal-gas outbursts, to determine precisely the setting of factors that contribute to the occurrence of an outburst [START_REF] Strzelecki | Constitutive equations of a gas-filled two phase medium[END_REF]. This phenomenon, which impedes coal mining, is the subject of intensive experimental and theoretic research. Unless coal-gas outbursts depend on other phenomena such as diffusion or surface adsorption and the related solid swelling, the multi-porosity structure of the coal plays an important role. In this sense, the above results can be considered as a first step in the modelling.

=

  subscript for the fractures. = nonlinear fonction. = positive integer. = identity tensor. = subscript taking on the values p for the pores and f for the fractures. = particular solutions for the velocity fi elds in the pores and the fractures, respectively.
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  Fig. 1. Representation of the periodic cell at the pore scale. O p is the pore domain, 0, the solid domain and r their common boundary. l is the microscopie characteristic length.

Fig. 2 .

 2 Fig. 2. Representation of the periodic cell at the fracture scale. n; is the pore domain, n; P the solid domain and r their common boundary. l' is the microscopie characteristic length.

  r l' 2 (3 ==Ü Tt 13 • Hence: The mass balance equation (2) shows the Strouhal number (25) According to the results of Auriault et al. (1990), we investigate the case where Sc=O(l), these estimations, the flow equations are written in the dimen sionless normalized form, as follows: j3 2 µD.vk + j3 2 (À + µ)v'(v' • vk) -VA= 0, 8pr at + v' • (( Po+ pr ) vr ) = O inn}, Ôp ha:+ j3-1 E V• ((po P p )v p ) = 0 in!i p ,

  sK p P p -Fe = 0, (40) Elimination of P p in (39) and (40) yields âPc I(f â Kc ----( �Fe) --�Pc = O. ât sK p ât nC* (41) 4.3. THE WARREN AND ROO T MODEL The double porosity mode! of Warren and Root is also a simplifi cation of the complete Barenblatt mode!. The porosity and the compressibility coefficient in the fractures are not neglected, but the fl uid fl ow in the pore matrix is neglected in this mode! Krt::..Pr = n'C* 8 ;f -sK p (P p -Pc), nC* a;P + sK p (P p -Pr)= 0,In Fourier space, the system is written as K c t::..Pc = iwn'C* Pr -sK p (Pp -Pr), iwnC* P p + sK p (Pp -Fe)= 0, where w is the pulsation. Elimination of P p between (44) and (45

R

  p t::..x,P p = nC 8t' with the boundary condition Pg = Pf onr'. C* = C/p o .

  Proceeding by Fourier analysis, we have then to solve K p � x ,Pg = nC*iwPg, Let us define W by Pg=PP+w.

k

  (t) = L a p e-bp t , b1 < b2 < • .. . p= lThe long time behaviour can therefore be approximated by Introducing this value into ( 49) gives

  THE ZIMMERMAN et al. MODEL Many authors have attempted to improve the interporosity flow term to obtain a larger time-scale range of validity. The model introduced by Zimmerman et al.

Zimmerman

  et al. Finally, the abrupt change of pressure in the fractures appears as an unnecessary assumption. The Zimmerman et al. model applies also to case II with fully transient flows in the fractures and the pores.

&&t becomes : at + s 8T .We have now to analyze the boundary-value problem introduced at the different orders of E, in the pores and in the fractures .
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Appendix: Case II -Homogenization

In case II, we have:

Therefore, the space and time variables are written as x = O(s-2 )x" t , T = Et.

x" '

The dimensionless numbers have the following orders of magnitude from Section 2.6: S = 0(1).

Finally, the dimensionless equations are as follows:

According to the study of the orders of magnitude, Section 2.3, it follows that V p -= O(s).

Vf

We must then consider the different fields in the forms </> p = </>�(x, x', x", t, T) + s</>�(x, x', x", t, T)

For the gradient and the temporal derivative, we must tak:e into account that \7 x" is written :

The pressure field at the first order:

Equation (Al) at the order of E-2 and Equation (A3) at the order of E o yield pg = A p �.

From Equations (A 7) and (A8) we deduce o o ( , ,, T )

The pore filtration velocity at the first order:

Equation (Al) at the order of E 1 , Equation (A2) at the order of c 1 and Equation (A4) at the order of E 1 yield

where v � and P� and n-periodic. This linear boundary-value problem, of variable x, determines

The pore mass balance:

By integration on n p , Equation (Al6) leads to the following compatibility condi tion:

We deduce then the behaviour in n� P or where n = i�{p/ / is the pore domain porosity, and K p = (k p )ois the pore permeability.

A.2. THE FRACTURE SYSTEM

The pressure field at the .first order:

Equation (Al) at the order of c 1 and Equation (A3) at the order of .s 0 yield

From (A20) and (A21), we deduce: Pf = P P( x", t, T), p� = p� ( x", t, T). This classical boundary-value problem determines v ? = -kf(x' )V x"Pf, P/ = Tf(x')V x,,pp + P/(x", t, T).

The macroscopic mass balance: Equation (A2) at the order of .s 0 yields (A27)

By integration on n', we obtain 

Finally, the flow is described as follows:

where l( f is the fracture permeability,