
HAL Id: hal-01713329
https://hal.science/hal-01713329v2

Submitted on 19 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantically Acyclic Conjunctive Queries under
Functional Dependencies

Diego Figueira

To cite this version:
Diego Figueira. Semantically Acyclic Conjunctive Queries under Functional Dependencies. Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), Jul 2016, New York, United States.
�10.1145/2933575.2933580�. �hal-01713329v2�

https://hal.science/hal-01713329v2
https://hal.archives-ouvertes.fr

Semantically Acyclic Conjunctive Queries
under Functional Dependencies

Diego Figueira
CNRS, LaBRI

Abstract
The evaluation problem for Conjunctive Queries (CQ) is known to
be NP-complete in combined complexity and W[1]-hard in param-
eterized complexity. However, acyclic CQs and CQs of bounded
tree-width can be evaluated in polynomial time in combined com-
plexity and they are fixed-parameter tractable.

We study the problem of whether a CQ can be rewritten into
an equivalent CQ of bounded tree-width, in the presence of unary
functional dependencies, assuming bounded arity signatures. We
show that this problem is decidable in doubly exponential time,
or in exponential time for a subclass of CQ’s. When it exists, the
algorithm also yields a witness query.

1. Introduction
The class of Conjunctive Queries (CQ) is one of the most studied
database query languages. It corresponds to select-project-join ex-
pressions of the relational algebra, and it is widely used in practice.
The evaluation problem for CQs is the problem of, given a rela-
tional database D, a tuple ā and a conjunctive query Q, whether ā
is in the result set of Q(D) (i.e., of the query Q evaluated in D).

However, the evaluation for CQs is NP-complete [7], it requires
|D|O(|Q|) time. Notice that we consider both the database D and
the query Q as part of the input (this is what is called combined
complexity).1 Further, this exponential dependence of the query
in the database seems unavoidable since the problem is W[1]-
complete in parameterized complexity [19]. When the database is
very big, even with moderately small queries the evaluation may
become infeasible. Ever since this result, there have been efforts
towards finding well-behaved fragments that may lead to a tractable
evaluation problem.

One such fragment is the class of Acyclic Conjunctive Queries,
which corresponds to a syntactic restriction requiring that the hy-

1 When the query is considered to be fixed (this is called data complexity),
the evaluation of CQs are in the tractable class AC0 [15] and thus, in
particular, in LogSpace.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright held by Owner/Author. Publication Rights Licensed to ACM.

Copyright c© ACM [to be supplied]. . . $15.00

pergraph associated to the query be acyclic. Acyclic CQs can be
evaluated in polynomial time, in fact in linear time both in the query
and the database: O(|D| · |Q|) [22]. Polynomial-time tractability
is further extended to queries of bounded tree-width [8, 14]. The
tree-width of a query measures, intuitively, how close the query
is to being acyclic (the smaller the tree-width the closer). What’s
more, testing whether a query has tree-width k can be done very
efficiently [5], which leads to a useful optimization technique.

The class of tree-width k queries corresponds to a syntactic
restrictions on the queries. A generalization of this result consists
in considering CQs that, although they may not be of tree-width k,
they are equivalent to a CQ of tree-width k. This is called Semantic
Acyclicity [3] in the case of equivalence to acyclic CQs, and here
we use the term Semantic Tree-width-k to denote equivalence to a
CQ of tree-width k.2 As pointed out in [3], semantically bounded
tree-width CQs can be evaluated in polynomial time, and verifying
whether a CQ is semantically of tree-width k is NP-complete (for
every k); this stems from results in CSP [9, 11]. Concretely, given
a CQ Q, we can test in NP if Q is equivalent to some query Q′ of
tree-width k; if so, we can evaluate Q in polynomial time. In the
sentence before, the fact that Q is “equivalent” to Q′ means that
Q(D) = Q′(D) for every database D. Our work is motivated by
the following question: Can we extend this result for databases that
verify some integrity constraints?

A very common integrity constraint on databases is the use of
functional dependencies. These constraints capture the most promi-
nent form of data dependency, which are fundamental in modern
database models. A functional dependency states that an attribute
of a relation functionally determines another attribute (e.g., ‘SSN’
determines ‘name’ in the relation ‘Employees’; in other words, ev-
ery two rows with the same ‘SSN’ must have the same ‘name’).

This paper studies the semantic tree-width-k problem under
the presence of functional dependencies. Assuming relations have
bounded arity, this problem generalizes the previous problems dis-
cussed, by making use of the information on data dependencies to
produce a query that can be evaluated efficiently. As we will see,
this makes a difference, as classes of queries which are not seman-
tically of bounded tree-width may become of bounded tree-width
when working under functional dependencies.

Simply put, the contribution of this paper is that the following
problem is decidable:

2 We remark that if we assume that the arities of relations is bounded, with
semantic tree-width-k queries we are in a more general setup. Indeed, for
any bound b on the arity there exists k so that the class of semantic acyclic
queries over relations of arity ≤ b is also semantically of tree-width-k.

Given a CQ Q and a set of unary functional dependencies Σ of
bounded arity, is there a CQ Q′ of tree-width ≤ k so that Q′

and Q are equivalent over databases satisfying Σ?

We show that this problem can be decided in 2ExpTime for
the full class of CQs, or in ExpTime for a fragment thereof; and
that the witness query Q′ can also be provided. Thus, whenever
the answer is positive the algorithm then yields a fixed-parameter
tractable (FPT) evaluation algorithm of complexity f(|Q|)·|D|c for
a constant c and a doubly-exponential function f . In [4], Barceló
et al. show that this problem is undecidable as soon as we consider
more general constraints, namely tgd’s and egd’s, instead of unary
functional dependencies.

2. Preliminaries
LetN = {0, 1, 2, . . . }. We use the bar notation ā to denote a vector
of elements, whose i-th element (i > 0) is denoted by ā[i].

Relational structures A relational vocabulary σ consists of a
collection of relation symbols, each with a specified arity. For
a relation R we write arity(R) ∈ N \ {0} to denote its arity.3

A σ-structure A consists of a universe A, or domain, and an
interpretation which associates to each relation symbol R ∈ σ,
a relation RA ⊆ Aarity(R). For any binary relation R, we say that
a
R−→ b [resp. a R←− b] is an edge of A if (a, b) ∈ RA [resp. (b, a) ∈

RA]. Thus, whenever we say that we ‘add’/‘remove’ an edge a R−→
b to/from A, we refer to the respective operation on (a, b) and the

set RA. We abuse notation writing a
R−→ b

R′−→ c as short for

(a
R−→ b)(b

R′−→ c); a R−→ b
R′←− c as short for (a

R−→ b)(b
R′←− c),

etc. We use A,B,C,A′,B′, . . . to denote relational structures, and
A,B,C,A′, B′, . . . to denote their respective domains. We work
here with finite structures, and henceforward by structure we mean
a finite one. Further, we assume that all relations have bounded
arity, that is, there is a fixed constant n0 ∈ N so that all relations
in the signature have arity bounded by n0.

A graph is a structure G = (V,E), where E is a collection of
subsets of V of size 2. Thus, our graphs are undirected, loopless,
and without parallel edges. The Gaifman graph of a σ-structure A,
denoted by G(A), is the graph whose set of nodes is the universe
of A, and whose set of edges consists of all pairs {a, a′} of distinct
elements of A such that a and a′ appear together in some tuple of
a relation in A.

Given two σ-structures A,B, we say that A is a substructure
of B (noted A ⊆ B) if A ⊆ B, RA ⊆ RB for all R ∈ σ. We say
that A is an induced substructure of B if it is a substructure so
that RA = RB ∩ Aarity(R) for all R ∈ σ. In this case we say that A
is the substructure induced by A and we denote it by B|A.

A homomorphism from a σ-structure A to a σ-structure B is
a mapping h : A → B so that for each relation symbol R ∈ σ,
if (a1, . . . , ar) ∈ RA, then (h(a1), . . . , h(ar)) ∈ RB. We will
sometimes write h(a1, . . . , ar) as short for (h(a1), . . . , h(ar)).
An onto homomorphism is a surjective homomorphism. We write
A → B to denote that there is a homomorphism from A to B, and
we write h : A→ B to denote that h is a homomorphism from A to
B. For h : A → B we write h(A) to denote the structure resulting
from identifying the elements of A with equal h-image (note that
it is isomorphic to a substructure of B). If A ⊆ B, we say that h is
image-identity if for every element x of its image, h(x) = x. If
A→ B and B→ A we say that A and B are hom-equivalent, and
we write it A↔ B. We use ∼= for the isomorphism relation. Given
a σ-structure A there is (up to isomorphism) a unique structure A′
so that

3 In this work we do not consider constants (i.e., 0-arity relations).

• it is hom-equivalent to A, that is there are h : A → A′ and
h′ : A′ → A,

• it has the minimal number of elements.

Such a structure A′ is called the core of A. We write core(A) to
denote the core of A, and we say that A is a core if core(A) ∼= A.
It easy to see that the core of A is, up to isomorphism, a substructure
of A, and that there is always an image-identity h : A → core(A)
(see, e.g., [18]).

Conjunctive Queries One of the most studied fragments of First-
Order logic (FO) in relation to database queries is the fragment of
Conjunctive Queries (also known as Primitive Positive Logic, or
Existential Positive FO). The class of Conjunctive Queries (CQ)
is the fragment of FO corresponding to positive ‘select-project-
join’ queries of the Relational Algebra or to positive ‘select-from-
where’ queries of SQL, where by ‘positive’ we mean that there are
no inequalities in the select [resp. where] conditions (we refer the
reader to [1, §4] for more details). These are FO-formulas of the
form

ϕ = ∃y1, . . . , yn θ, (†)
where θ is a conjunction of atomic formulas. For simplicity, we will
work here with boolean CQs (i.e., formulas with no free variables)
without constants. Every conjunctive query of the form (†) over a
relational vocabulary σ gives rise to a canonical structure (some-
times called tableau) Cϕ with n elements, where the elements of
Cϕ are the variables x1, . . . , xn, and the relations of Cϕ consist of
the tuples of terms in the conjuncts of θ. Given a CQϕ, we write Cϕ
for the canonical structure of ϕ. Likewise, any σ-structure A with
domain A = {x1, . . . , xn} gives rise to a canonical conjunctive
query ϕA where ϕA has a conjunct R(t̄) iff t̄ ∈ RA.

Tree-Width A tree decomposition of a graph G = (V,E) is a
tree (i.e., an acyclic, connected graph) T = (V ′, E′) so that its
vertices, also called bags, are subsets of V , V ′ ⊆ 2V , and

•
⋃
X∈V ′ X = V ;

• for every edge {v, v′} ∈ E there is some X ∈ V ′ so that
{v, v′} ⊆ X;

• for every v ∈ V we have that {X ∈ V ′ | v ∈ X} is a
connected component of T .

The width of the tree decomposition T is defined as

max
X∈V ′

|X| − 1.

The tree-width of G is defined as the minimum width over its tree
decompositions. We denote the tree-width of G as tw(G). Note
that 0 ≤ tw(G) < |V |. The notion of tree-width is generalized to
structures and CQs via canonical structures and Gaifman graphs:
the tree-width tw(A) of a σ-structure A is defined as tw(G(A)), and
that of a CQ ϕ as tw(Cϕ). Let TW≤k denote the set of all structures
with tree-width≤ k, and let CQk be the set of all CQs of tree-width
≤ k. We remind the reader that the main interest of tree-width
for this paper stems from the fact that, although the evaluation of
CQs is an NP-complete problem [7] (in combined complexity), the
evaluation problem for CQk can be done in polynomial time, for
every fixed k. Further, the problem is in the paralellizable class
LogCFL [14].

Functional dependencies A unary functional dependency (hence-
forward just ‘FD’) over a signature σ is a triple (R, i, j), that we
will normally write ‘R[i 7→j]’, whereR ∈ σ, i, j ∈ {1, . . . , arity(R)},
and i 6= j. A σ-structure A is said to satisfy an FD R[i7→j] if for
all ā, b̄ ∈ RA, if ā[i] = b̄[i] then ā[j] = b̄[j]. We normally use the
letter Σ to denote a set of FDs. A structure satisfies Σ if it satisfies

all of its FDs. We write CσΣ for the class of all σ-structures satisfy-
ing Σ. We say that an edge a R−→ b of A is a Σ-edge, if R appears
in Σ.

Given a structure A and a set of FDs Σ we define the Chase
relation [2, 16] between structures A ⇒Σ B, if there is R[i 7→j] ∈
Σ, ā, b̄ ∈ RA with ā[i] = b̄[i] and ā[j] 6= b̄[j], and B is the
result of replacing every b̄[j] with ā[j] in every relation of A and
deleting b̄[j] from the domain of A. It can be seen that ⇒Σ is
terminating and Church-Rosser confluent, up to isomorphism [1].
Let us write⇒∗Σ to denote the reflexive-transitive closure of⇒Σ.
Let us call chaseΣ(A) to the structure B so that A ⇒∗Σ B and B
satisfies Σ (such B is unique, up to isomorphism). We say that B
is a chase, if chaseΣ(B) ∼= B. For A ⇒Σ B, where B is obtained
by replacing a, a′ ∈ A with a in A, we define the provenance
homomorphism of A⇒Σ B as the homomorphism h : A→ B so
that h(a′) = a and h(b) = b for all other b ∈ A \ {a′}. The
provenance homomorphism of A ⇒∗Σ B is the homomorphism
A → B resulting from the stepwise composition of provenance
homomorphisms as just defined.

Lemma 2.1. [2, 7, 16] A boolean CQ ϕ is equivalent to ψ over CσΣ
iff core(chaseΣ(Cϕ)) ∼= core(chaseΣ(Cψ)).

The following lemma is straightforward from the definition of
chaseΣ and the fact that the core is an induced substructure.

Lemma 2.2. For every structure A and set of FDs Σ we have
chaseΣ(core(chaseΣ(A))) = core(chaseΣ(A)).

Semantic bounded tree-width queries The problem we study
here is that of whether one can rewrite a CQ into a an equivalent
one (for structures satisfying a set of FDs Σ) of treewidth at most
k. We call this problem the Semantic Tree-width-k, noted STWk,
and it is formally defined as follows.

Problem: STWk

Input: A CQ ϕ, a set of FDs Σ
Output: ‘Yes’ iff there exists ψ ∈ CQ

so that ϕ ≡Σ ψ and tw(ψ) ≤ k.

3. Restriction to binary queries
Our study of the semantic tree-width problem will be focused on
binary queries, that is, signatures whose relations are of arity at
most 2. However, in this section we show that this restriction is
without loss of generality (with the bounded arity assumption).

Given a σ-structure A and a set of FDs Σ, let AΣ be a structure
over a signature σ′ consisting of:

• a new binary relation RS[i 7→j] for every S[i7→j] ∈ Σ,
• all the unary and binary relations of σ, and
• binary relations S1, . . . , Sk for every k-ary relation S ∈ σ with
k > 2.

The universe of AΣ consists of A plus a new element ‘key(ā)’
for every k-tuple ā appearing in some relation of A for some
k > 2. The interpretation of unary and binary relations is as
in A. For each k-ary relation S ∈ σ with k > 2 we de-
fine (Si)

AΣ = {(key(ā), ā[i]) | ā ∈ SA}. Finally, we define
RAΣ
S[i 7→j] = {(ā[i], ā[j]) | ā ∈ SA}. Let ΓΣ = {Rf [17→2] | f ∈

Σ}. Figure 1 shows an example.

Lemma 3.1. A satisfies Σ iff AΣ satisfies ΓΣ.

Proof. If there are ā, ā′ ∈ SA and S[i 7→j] ∈ Σ so that ā[i] = ā′[i]
and ā[j] 6= ā′[j] (i.e., A does not satisfy Σ), it follows that
(ā[i], ā[j]), (ā′[i], ā′[j]) ∈ RAσ

S[i7→j] and thus AΣ does not satisfy

a1 a2 a3

S

a4

a5 S

⌃ = {S[2 ! 1]}

a1 a2 a3

a4

a5

key(a1, a2, a3)

key(a1, a4, a5)

S1

S2

S3

RS[2!1]

S1 S2 S3

RS[2!1]

�⌃ = {RS[2!1][1 ! 2]}

A A⌃

Figure 1. Example of construction of a binary structure AΣ with
FDs ΓΣ from a structure A with SA = {(a1, a2, a3), (a1, a4, a5)}.

ΓΣ. Conversely, if (a, b), (a, b′) ∈ RAσ
S[i 7→j] with b 6= b′ (i.e.,

AΣ does not satisfy ΓΣ), there must be some ā, ā′ ∈ SA so that
ā[i] = a, ā[j] = b, ā′[i] = a, ā′[j] = b′, which means that A does
not satisfy S[i7→j].

It is also easy to see the following.

Lemma 3.2. chaseΓΣ(AΣ) ∼= (chaseΣ(A))ΓΣ .

Proof. If AΣ ⇒ΓΣ A′ by collapsing two elements a1, a2, it is
because there is some a0 so that (a0, a1) and (a0, a2) are in
the interpretation of RS[i 7→j] in AΣ, which means that there are
tuples ā1, ā2 in SA so that ā1[i] = ā2[i] = a0, ā1[j] = a1 and
ā2[j] = a2. Thus, we can apply ⇒Σ on A for these two tuples
obtaining A′′, the result of collapsing a1, a2. It is not hard to see
that (A′′)ΓΣ = A′.

In a similar way, one can show that if A ⇒Σ A′′ by collapsing
two elements, we can also collapse these elements in AΣ ⇒ΓΣ A′
obtaining A′ = (A′′)ΓΣ .

Since the Chase yields a unique structure up to isomorphism
[1], by iterating the reasoning above the statement follows.

For a CQ ϕ we define ϕΣ as the canonical conjunctive query
corresponding to (Cϕ)Σ.

Lemma 3.3. For every pair of CQs ϕ,ψ, we have ϕ ≡Σ ψ iff
ϕΣ ≡ΓΣ ψΣ.

Proof. Let A = chaseΓΣ((Cϕ)Σ), and B = chaseΓΣ((Cψ)Σ).
For the left-to-right direction, in order to show ϕΣ ≡ΓΣ ψΣ it

suffices to show that A and B are hom-equivalent. By Lemma 3.2
we have that A ∼= (chaseΣ(Cϕ))ΓΣ and B ∼= (chaseΣ(Cψ))ΓΣ .
Since ϕ ≡Σ ψ we have that there is a homomorphism f :
chaseΣ(Cϕ) → chaseΣ(Cψ). Then we simply extend f with
key(ā) 7→ key(f(ā)) for every key(ā) ∈ A obtaining a homo-
morphism f ′ : A → B. The other homomorphism B → A is
obtained in a similar way. Thus, ϕΣ ≡ΓΣ ψΣ.

For the right-to-left direction, suppose we have f : A → B
and g : B → A. Due to Lemma 3.2, we can assume f :
(chaseΣ(Cϕ))ΓΣ → (chaseΣ(Cψ))ΓΣ . It is not hard to see that
f restricted to the universe of Cϕ is a homomorphism from
chaseΣ(Cϕ) to chaseΣ(Cψ). A similar reasoning applies to g
and we thus obtain ϕ ≡Σ ψ.

We also have that these modifications of the structures can only
increase the tree-width in 1. For a structure A, let maxarity(A) be
defined as max{|{a1, . . . , an}| : (a1, . . . , an) ∈ SA for some S}.
Observe that maxarity is a number between 1 and the maxi-
mum arity of the relations in the signature. Further, note that
maxarity(A) ≤ tw(A) + 1.

Lemma 3.4. For every σ-structure A we have

tw(AΣ) ≤ tw(A) + 1.

Proof. We show: tw(AΣ) ≤ max(tw(A),maxarity(A)). Given a
tree decomposition of A, it suffices to add, for each key(a1, . . . , an)
in the universe of AΣ a new leaf with bag

{key(a1, . . . , an), a1, . . . , an}

of cardinality ≤ n + 1 to the tree decomposition, hanging from
any node containing {a1, . . . , an} (note that there must be at least
one).

Since maxarity(A)− 1 ≤ tw(A), the lemma above tells us that
the (·)Σ operation increases the tree-width in 1 at the most.

Lemma 3.5. For every σ-structure A we have

tw(A) ≤ tw(AΣ) + maxarity(A)− 1.

Proof. Given a tree decomposition of AΣ, we obtain a decom-
position of A by replacing, in every bag, key(a1, . . . , an) with
a1, . . . , an. The cardinality of the bags is then increased in at most
maxarity(A)− 1.

In turn, the lemma above is simply stating that the tree-width of
AΣ cannot be much smaller than that of A.

The previous two lemmas imply that we can focus on binary
queries without much loss of generality. This, added to the fact that
the technical contributions are greatly simplified when restricted to
binary signatures (i.e., to edge-labeled graphs), propels us to work
on binary signatures and with sets of FD Σ of the form:

Σ = {R1[1 7→2], . . . , Rl[17→2]} (‡)

for binary relations R1, . . . , Rl ∈ σ. For these reasons, we will
assume the simplified setup of binary signatures and a set of FDs
as shown above for the remaining of this paper.

Restatement in terms of structures To further simplify mat-
ters, we will work only with σ-structures, avoiding dealing with
CQs and having to go back and forth in the CQ/structures dual-
ity. The STWk problem can be cast into the problem of whether,
given a structure A and a set of FDs Σ the following holds:
{B | core(chaseΣ(B)) ∼= A}∩TW≤k 6= ∅. We denote this problem
by “(core-chase)−1 ∩ TW≤k”.

Lemma 3.6. For every fixed k, there is an NP reduction from
STWk into (core-chase)−1 ∩ TW≤k.

Proof. Given a CQ ϕ, one can compute core(chaseΣ(ϕ)) in
NP (the chaseΣ-computation is polynomial [1] and the core-
computation is DP-complete [12]). For A = core(chaseΣ(Cϕ)) we
have that there is a structure B ∈ TW≤k so that core(chaseΣ(B)) ∼=
A iff ϕB is equivalent to ϕ (by Lemma 2.1) and of tree-width
≤ k.

4. Tree-like queries
For queries of tree-width 1 the problem is trivial due to the fact that
both the chase and core are monotone with respect to tree-width 1.

Lemma 4.1. For every structure A ∈ TW≤1, we have

• tw(chaseΣ(A)) ≤ 1, and
• tw(core(A)) ≤ 1.

R

S S

R

A2

R

S S

R

A3

An

R

S

R

R

S S

R

R

S

R

R

S

R

R

S

RR

R

. . .

z }| {

R

S S

R

S

R
R

R

S S
R

R

S

R

R

S

R

R

S

RR

R

. . .

R

S S
R

R

S

R

R

S

R

R

S

RR

R

. . .

. . .

|
{z

}

n

n

Figure 2. Depiction of A2, A3, An.

Proof. Note that the structures of tree-width 1 are those whose
underlying undirected graph is acyclic. Note that identifying any
two nodes at distance 2 of an acyclic graph preserves acyclicity.
Thus,⇒Σ preserves tree-width ≤ 1. On the other hand, since the
core of a structure is isomorphic to a substructure, and acyclicity is
closed under substructures, it follows that the core of a tree-width
1 structure is tree-width ≤ 1.

In light of this, one can already answer the (core-chase)−1 ∩
TW≤k problem for k = 1 in polynomial time: the answer is positive
iff the tree-width of the input is ≤ 1. Since in general testing tree-
width ≤ k (for any fixed k) is in linear time [5], this problem is
linear. Through the reduction of Lemma 3.6 we obtain that STW1

is decidable in NP.

Theorem 4.2. STW1 is in NP.

If the previous lemma was true for every tree-width, this would
imply that STWk is in NP for every k. However, the statement of
Lemma 4.1 above fails for every k > 1 as the following lemma
shows.

Lemma 4.3. For every n ∈ N there is a structure A so that
tw(A) = 2, and tw(chaseΣ(A)) = n.

Proof. Let σ = {R,S} be binary relations and let Σ = {R[1 7→2]}.
For every n ≥ 2, let An be defined as in Figure 2. Let Bn be defined
as an n× n grid:

Bn = {(i, j) | 1 ≤ i, j ≤ n},
SBn = {((i, j), (i+ 1, j)) | 1 ≤ j ≤ n, 1 ≤ i < n},
RBn = {((i, j), (i, j + 1)) | 1 ≤ i ≤ n, 1 ≤ j < n}.

Note that B2
∼= A2. One can see that chaseΣ(An) = Bn,

tw(An) = 2 and tw(Bn) = n for every n.

5. Cyclic queries
For the general case of CQs that can contain cycles, one obvious
idea would be to describe the solutions to the problem with an

.
. . . .n m

Bn,m At

t

Figure 3. Counterexample of Lemma 5.1.

MSO formula. Since MSO is decidable on bounded tree-width
structures [20], we would therefore obtain a decision procedure.
That is, for a given structure A and FDs Σ, we produce an MSO
formula ϕA whose models are {B | core(chaseΣ(B)) = A},
and we test whether ϕA has a model of tree-width k. This would
yield a decision procedure for (core-chase)−1 ∩ TW≤k with input
A,Σ. However, this is in general not possible; the first problem we
encounter is that the preimage of chaseΣ is not MSO-definable, as
the following lemma shows.

Lemma 5.1. Given A, Σ, the set {B | chaseΣ(B) ∼= A} is not
MSO definable in general.

Proof. Let Σ = {R[17→2]} and let At and Bn,m with t, n,m ∈ N
be defined as in Figure 3. That is, Bn,m consists of two nested R-
cycles of size n and m (where n and m refers to the number of
edges), and At is an R-cycle of size t.

Note that for n > m, we have that Bn,m ⇒∗Σ Bn−m,m and
that chaseΣ(Bn,n) = An. Thus, chaseΣ(Bn,m) basically computes
GCD(n,m) through the Euclidean algorithm,

chaseΣ(Bn,m) = AGCD(n,m).

Suppose, by means of contradiction, that there exists an MSO
sentence ϕ of quantifier rank k so that B |= ϕ iff chaseΣ(B) = A1

(note that A1 consists of one element in a reflexive R relation).
Note that the MSO type of rank k of Bn,m is determined by
the MSO type of rank k of An and the MSO type of rank k of
Am. Let pi be the i-th smallest positive prime number, and let
S = {(pi, (pi−1)!) | i ∈ N}. Since there is a finite number of rank
k MSO types, there must be i < j so that the type of Api is equal
to that of Apj and the type of A(pi−1)! is equal to that of A(pj−1)!.
Therefore, Bpj ,(pj−1)! |= ϕ ⇔ Bpi,(pj−1)! |= ϕ,, which is in
contradiction with our assumption since GCD(pj , (pj − 1)!) = 1
but GCD(pi, (pj − 1)!) 6= 1.

Since the chased structures in the proof above are cores, we also
have the following.

Corollary 5.2. Given A, Σ, the set {B | core(chaseΣ(B)) ∼= A} is
not MSO definable.

Instead of attempting to describe all the structures from

{B | core(chaseΣ(B)) = A}
with MSO, we will describe some necessary and sufficient proper-
ties that at least one structure from

{B | core(chaseΣ(B)) = A} ∩ TW≤k

must have, should there be any. These properties can be informally
described as the existence of some paths whose labels form words
from a regular language, and that can be described with MSO.

Structure of the proof
• In Section 6 we show that there is always a tree-width 2 struc-

ture in the chaseΣ-preimage of any rooted structure (i.e., a

structure with a ‘least’ element from which every other element
can be reached) containing only edges from Σ.

• In Section 7 we define, given h : A → C, the h-regular
complex paths of A, as those paths whose h-image belongs to a
regular languageLC which depends on C. The idea is that every
such path of A becomes a path of C once we apply the chase
procedure. We exhibit necessary and sufficient conditions for
A to verify core(chaseΣ(A)) = C in terms of the existence of
h and some h-regular complex paths in A. These conditions
ask for a homomorphism h : A → C and the existence
of a representative element ai in A for every least strongly
connected component Xi of C|Σ (i.e., C restricted to relations
of Σ), and the existence of h-regular complex paths from ai to
an element a in A whenever there is a path from h(ai) to h(a)
in C. This result uses the decomposition of the previous section.
Since these conditions can be encoded in MSO, decidability for
(core-chase)−1 ∩ TW≤k follows.

• Finally, in Section 8, we show that the aforementioned condi-
tions can be encoded in a tree-walking automaton (TWA) of ex-
ponential size, running on a tree-width k decomposition of the
input structure A. In this way, we reduce the (core-chase)−1 ∩
TW≤k problem to the emptiness problem for some TWA of ex-
ponential size. Since the latter problem is in ExpTime, we ob-
tain a 2ExpTime procedure for (core-chase)−1 ∩ TW≤k, and
thus also for STWk. We also identify a class of CQs for which
STWk can be solved in single exponential time.

6. Decomposition of Σ-components
In this section we show how to decompose any rooted structure A
(i.e., one so that there is an element that can reach any other ele-
ment) containing only Σ-edges into a structure A′ so that tw(A′) =
2 and A′ ⇒∗Σ A. To prove this, we show that all simple cycles in
the underlying undirected graph of A can be rearranged in a cac-
tus shape of tree-width 2. The idea is that structures that look like
the left structure of Figure 5 are rearranged to look like the one
on the right. Every such simple cycle is called either a Σ-cycle or
Σ-confluence depending on the shape of the path it induces in A.

Cycles and confluences As before, let us assume Σ of the form
(‡). The Σ-substructure of a σ-structure A, noted A|Σ, is the
substructure induced by the restriction to the relations of Σ. In
a similar way, A|σ\Σ denotes the substructure restricted to the
relations which are not in Σ. A Σ-cycle of a σ-structure A is a
substructure B ⊆ A consisting of a cycle on the relations of Σ.
That is, B is a connected substructure of A, it contains only Σ-
edges, and every element of B has in-degree and out-degree equal
to 1. For a ∈ A, a Σ-confluence rooted at a of A is the union of
two paths of Σ-edges

a1
R1−−→ · · · Rn−−→ an+1 and

a′1
R′1−−→ · · ·

R′m−−→ a′m+1

(?)

so that a = a1 = a′1, an+1 = a′m+1 and (an, Rn, an+1) 6=
(a′m, R

′
m, a

′
m+1). See Figure 4 for an example.

Σ-reachability order For a given structure C, we define the par-
tial order relation �C, where a �C b iff there is a (possibly empty)
directed path from a to b in C|Σ. In particular a �C a for every
a ∈ C. If a �C b and b �C a we write a ≡C b, which means
that a, b belong to the same strongly connected component (SCC)
in C|Σ. If a �C b but b 6�C a, we write a ≺C b. The Σ-rank of
an element c ∈ C is the maximum number n ≥ 0 so that there are
c0, . . . , cn verifying c0 ≺C c1 ≺C · · · ≺C cn = c. The Σ-rank of
a structure C is the maximum among the Σ-ranks of its elements.

R1

R2

S

R2

R2

R1

R1

R2

R2

R1

R2

R2

R1
R1

R2

R2

⌃-cyclea a

a

a

⌃-cycle

⌃
-conf.

Figure 4. A σ-structure, its two Σ-cycles, and a Σ-confluence
rooted at a; for Σ = {R1[1 7→2], R2[17→2]}.

a

R1

R2

R2

R2

R1

a

R1

R2

R2

R1R2

R2

R1

R1

R2

R2

R1 R1

Figure 5. A cactus decomposition of a structure.

For a given SCC X of C|Σ, we say that X is a least SCC if all its
elements are of Σ-rank 0.

The substructure generated by a of A, noted A�a, is the
substructure of A induced by {b ∈ A | a �C b}. The Σ-
substructure generated by a of A, noted A�Σa, is (A�a)Σ (or,
equivalently, (A|Σ)�a).

Cactus decomposition We are now in conditions to show the
main result of this section, namely, that for every structure A and
a ∈ A, the chaseΣ-preimage of A�Σa contains a structure of tree-
width ≤ 2.

Lemma 6.1. For every σ-structure A, set of FDs Σ, and element
a ∈ A there exists a structure B so that tw(B) ≤ 2, and B ⇒∗Σ
A�Σa.

To prove this, we show how to decompose Σ-substructures into
a equivalent structures (modulo⇒∗Σ) whose underlying undirected
graph is a cactus (i.e., whose every edge belongs to at most one
simple cycle), as in Figure 5. Since cacti have tree-width ≤ 2, the
lemma follows.

Proof of Lemma 6.1. Let A be a σ-structure, and a ∈ A. Let B =
A�Σa. Note that every simple cycle in the underlying undirected
graph of B induces a

(a) Σ-cycle; or

(b) the presence of b R−→ c
R′←− b′ in B, for some relations R,R′

and elements b, b′, c so that b 6= b′ or R 6= R′.

In the case (a), suppose B has a Σ-cycle B′ consisting of a1
R1−−→

· · · Rn−−→ an+1 = a1. Let B̂ be the result of removing the edge
an

Rn−−→ an+1 from B, and let B̂′ be the result of renaming every

element ai of B′ with a fresh element bi, for all 2 ≤ i ≤ n (i.e., so
that B̂′ ∼= B′ and the domain of B̂′ is {a1, b2, . . . , bn}). Note that

(i) B̂ and B̂′ have only a1 in common,
(ii) B̂ ∪ B̂′ ⇒∗Σ B,

(iii) (B̂ ∪ B̂′)�Σa = B̂ ∪ B̂′.

In the second case (b), this implies that there is a Σ-confluence
rooted at a with some paths as in (?) so that an = b, a′m = b′,
an+1 = a′m+1 = c, Rn = R and R′m = R′. We can assume,
without any loss of generality, that (a′i, R

′
i, a
′
i+1) 6= (b′, R′, c) for

all i. Let B′ be such Σ-confluence. Let B̂ be the result of removing
the edge b R−→ c from B; and let B̂′ be the result of renaming every
element except a with a fresh element. Note that the properties (i)–
(iii) above continue to hold also in this case.

It is easy to see that by applying iteratively these two operations
eventually we obtain a structure whose underlying undirected graph
is a cactus.

In the light of the lemma above, we call such structure B the
cactus decomposition of A, a.

7. Complex paths
We define a type of paths between vertices of a structure that we
call complex paths. A complex path corresponds, intuitively, to the
path in a structure A induced by a directed path in chaseΣ(A). For
example, in the figure below, the directed path on the right becomes
the complex path on the left.

)⇤
⌃

These paths are of prime importance to our result. In later develop-
ments we show that if a structure A contains elements connected in
a certain way (depending on a structure C) through complex paths,
this implies that chaseΣ(Â) contains C as substructure—where Â is
A extended with the cactus decompositions as defined in Section 6.
Concretely, we give an MSO-definable property ϕ so that

• if A |= ϕ, then core(chaseΣ(A′)) ∼= C for some A′ so that
tw(A′) = tw(A), and

• if core(chaseΣ(A)) ∼= C, then A |= ϕ.

Hence, by testing whether the property has a tree-width k model
(which is decidable for MSO [20]) we obtain a decision procedure
for the semantic tree-width problem.

For defining complex paths, we also need to define what we will
call moving and static paths.

A moving path from a to a′ of A is simply an edge a R−→ a′ of
A, for someR in Σ. A static path of A from a to a′ is a path of the
form

• (a
R←− b)(b R−→ a′), for b R−→ a, b R−→ a′ in A; or

• (a
R←− b) p (b′

R−→ a′) for b R−→ a, b′ R−→ a′ in A, and p a static
path from b to b′; or

• p p′ for p a static path from a to b, and p′ a static path from b to
a′, for some b,

whereR is in Σ. A complex path from a to a′ is either a moving or
static path from a to a′, or the composition of a complex path from

a to b with a complex path from b to a′ for some b. The moving
length of a complex path is the number of moving paths it contains.

Lemma 7.1. Given A ⇒∗Σ A′, the provenance homomorphism
h : A → A′, and a, a′ ∈ A, the following statements are
equivalent:

i. there is a complex path from a to a′ in A of moving length m;
ii. there is a complex path from h(a) to h(a′) in A′ of moving

length m.

Proof. The (i)⇒ (ii) part is straightforward since the homomorphic
image of a complex path is a complex path of equal moving length.
For the (ii)⇒ (i) part, it is not hard to prove the statement for A⇒Σ

A′. By iterating the argument we obtain it for A⇒∗Σ A′.

Note that the set of complex paths of a structure A is not a
regular language but a context-free one. Since our ultimate ob-
jective is to encode the existence of these paths into MSO, this
supposes a problem. However, we will show that for every struc-
ture A we can expand it to some superstructure A ∪ A′ so that
chaseΣ(A∪A′) = chaseΣ(A), tw(A∪A′) = tw(A), and the same
statement as in Lemma 7.1 holds for some simpler “not so com-
plex” paths, which in particular are regular.

Expansion Given σ-structures A,C and a homomorphism h :
A → C we define the expansion of A, as the superstructure
of A resulting from adding, for each a ∈ A, a disjoint copy of
the cactus decomposition of C, h(a) from our previous Section 6,
identifying the cactus element h(a) with a (resulting in the union of
two structures intersecting in one vertex). Note that the expansion
of A has the same tree-width as A (assuming that tw(A) ≥ 2).

Regular Complex Paths Let h : A → C. A regular complex
path of C is just like a complex path but now a static path is
redefined as a regular static path from a to a′, which is a path
of the form

• an empty path, starting and ending in the same node; or

• (a
R←− b) p (b

R−→ a), for b R−→ a, b′ R−→ a′ in C|Σ, p a regular
static path from b to b, and b ≺C a; or

• (a1
R1!1 b1) p1 · · · pn−1 (an

Rn!n bn), where, for every i,
ai

Ri!i bi is either an edge ai
Ri−−→ bi or ai

Ri←−− bi from C|Σ,
pi is a regular static path from bi to ai+1, and ai ≡C bi ≡C a1,
a = a1 = a′ = an.

• p p′ for p a regular static path from a to b, and p′ a regular static
path from b to a′, for some b.

Given h : A→ C, an h-regular complex path of A is a path p so
that h(p) is a regular complex path of C. In this definition, note that
the rule (a

R←− b) p (b
R−→ a) can be nested only a bounded amount

of times (bounded in the size of C). This is, in fact, a generalization
of complex paths.

Lemma 7.2. For core(chaseΣ(A)) = C and h : A→ C, complex
paths of C are in particular regular complex paths; and complex
paths of A are in particular h-regular complex paths.

Proof. We show this by induction. Note that, since C is a chase,
For any static path of C with the form (a

R←− b)p(b
R−→ a) so that

b ≺C a, we can apply the inductive hypothesis on p, obtaining that
p is a regular static path, and by one of the rules of regular static
paths we obtain that (a

R←− b)p(b R−→ a) is a regular static path. For
a path (a

R←− b)(b
R−→ a) with b ≺C a, the reasoning is the same.

On the other hand, for a static path of the form (a
R←− b)p(b R−→ a)

with b ≡C a, we can apply the inductive hypothesis on p, and we
have that both (a

R←− b) and (b
R−→ a) are regular static paths. Thus,

by composition (a
R←− b)p(b R−→ a) is a regular static path. Moving

paths are the same kind of objects, and for general complex paths
we simply apply the inductive hypothesis on the composition.

Any complex path p of A is mapped through h to a complex
path h(p) of C by Lemma 7.1. Applying the previous part of this
lemma we have that h(p) is also a regular complex path, and thus
that p is an h-regular complex path.

The main difference implied by the new definition is that regular
complex paths of A form now a regular language. The size required
by an NFA to describe this language depends on what we call the
tree unravelling of C. The tree unravelling of C is the result of
applying recursively the following rule until it can be no longer
applied. Given an SCC X of C|Σ and two distinct edges a R−→ b,

a′
R′−→ b′ of C|Σ, so that a, a′ ∈ X and b, b′ 6∈ X:

(a) remove a′ R
′
−→ b′ from C;

(b) add a fresh copy of (C|Σ)|↓X with ↓X = {c ∈ C | c �C a
′};

and

(c) add an edge a′′ R′−→ b′, where a′′ is the fresh copy of a′ just
inserted.

Note that the tree unravelling C′ of C contains only Σ-edges,
and that there is a canonical homomorphism htree : C′ → C
associating a an element of C′ with the element that originated it.
Figure 6 contains an example.

Lemma 7.3. There is a regular language LC over the alphabet of
edges of C, consisting in the set of all regular complex paths of C.
Further, an NFA recognizing LC can be built in polynomial time in
the size of the tree unravelling of C.

Proof. The NFA accepting LC works over the alphabet {a R−→
b, b

R←− a | a R−→ b in C}. It is a polynomial union of languages,
each of these being basically described by the tree unravelling C′ of
C and the canonical homomorphism htree : C′ → C. We build one
automaton Aa for each element a of C′. The language L(Aa) of
Aa consists in all regular static paths of C beginning and ending
in htree(a). The automaton Aa for element a is built as having
the elements X = {a′ | a′ �C′ a} of C′ as state space; a as
initial and final state; and a transition (a, htree(a)

R−→ htree(b), b)

and (b, htree(b)
R←− htree(a), a) for every edge a R−→ b in C′|X . It

follows that one can build an NFA for LC in polynomial time in
{Aa | a in C′}.

Note that the tree unravelling of C can be exponential, and in
this case the exponential size description of LC seems unavoidable,
since the description of regular static paths for structures such as
the one of Figure 6 is related to the language LCn = {wwr | w ∈
A≤n, and wr is the reverse of w} for some alphabetA. Notice also
that if the Σ-rank of C is bounded by a constant, the tree unravelling
of C is polynomial, and so is the NFA describing LC.

The interest of these paths is that they allow us to have a result
in the same spirit as Lemma 7.1.

Given structures A,C consider the following conditions:

1. There is an onto homomorphism h : A→ C and C is a core and
a chase (i.e., core(C) = C, chaseΣ(C) = C);

2. h(A)|σ\Σ ∼= C|σ\Σ;

R1

R2

R1

R2

R1

R2

R1

R2

. . .

n

R1

R2

R1

R2

. . .

R1

R2

| {z } . . .

Cn

tree-
unravelling

Figure 6. Example of a structures Cn, Σ =
{R1[1 7→2], R2[1 7→2]}, with its tree unravelling (a complete,
height-n binary tree). For the class of structures {Cn}n we have
that the NFA description of LCn takes exponential space in n.

3. for X1, . . . , Xn the least SCCs of C|Σ, there are ai, ci so that
ci ∈ Xi and h(ai) = ci for every i where the following holds:
For every a ∈ A so that ci ≺C h(a) there is an h-regular
complex path from ai to a in A.

Lemma 7.4. For A,C verifying the conditions 1–3 we have that
core(chaseΣ(Â)) ∼= C, where Â is the expansion of A.

Proof. It is not hard to see that every time we apply one step of
⇒Σ we maintain the invariant of points 1–3. That is, if Â ⇒Σ A′
by a provenance homomorphism f : Â → A′, there must be
a

R−→ b and a R−→ b′ in Â so that b, b′ are identified in A′ (that
is, f(b) = b′ and the identity otherwise). Then it must be that
h(b) = h(b′), as otherwise we would have h(a)

R−→ h(b) and
h(a)

R−→ h(b′) in C where h(b) 6= h(b′) which would mean that C
is not a chase structure. Thus, h is still a homomorphism from A′
to C, where h(A′)|σ\Σ = C|σ\Σ. Finally, every h-regular complex
path p present in Â appears also in A′ as f(p).

Using the properties of the cactus decomposition of the previous
section (Lemma 6.1), one can show by induction that for any h-
regular complex path departing from ai leading to some a in Â,
and the provenance homomorphism f : Â → chaseΣ(Â) one
obtains: chaseΣ(Â)�Σf(ai) ∼= C�Σci and f(a) = h(a) is in
chaseΣ(Â)�Σf(ai). In plain words, after some applications of⇒Σ

we obtain precisely the structure C�Σci, plus perhaps something
else that can be homomorphically mapped to C.

Repeating this argument for each complex path of 1–3, we
obtain that

⋃
i chaseΣ(Â)�Σf(ai) = C|Σ. This, together with

point 2, implies that
⋃
i chaseΣ(Â)�f(ai) = C, and that there-

fore there is a homomorphism C → chaseΣ(Â). Since there is
also a homomorphism chaseΣ(Â) → C by the ⇒Σ-invariance
of 1–3, and since C is a chase and core structure, we have that
core(chaseΣ(Â)) = C.

It is not hard to see that the converse of the previous property
holds without the need of expanded structures, as in the following
lemma.

Lemma 7.5. If core(chaseΣ(A)) = C, conditions 1–3 hold.

Proof. We show that each of the conditions is verified.

1. For the provenance (onto) homomorphism f : A→ chaseΣ(A)
and the image-identity (onto as well) homomorphism g :
chaseΣ(A) → C, it follows that h = f ◦ g is an onto ho-
momorphism A→ C. Further, C is a core and a chase. The fact
that it is a core is straightforward, the fact that it is a chase is a
consequence of Lemma 2.2.

2. On the one hand, it is clear that h(A)|σ\Σ ⊆ Cσ\Σ. On the other
hand, for every A1 ⇒Σ A2 with its provenance homomorphism
f ′ : A1 → A2, it is easy to see that for every a2

S−→ a′2
in A2 with S 6∈ Σ, there are a1, a

′
1 so that h(a1) = a2,

h(a′1) = a′2 and a1
S−→ a′1 in A1. By induction we can show

the same for A1 ⇒∗Σ A2. In a similar way, for a homomorphism
f ′ : A′ → core(A′) we have that c S−→ c′ in core(A′) implies
a

S−→ a′ in A′ for some a, a′ so that f ′(a) = c, f ′(a′) = c′

(remember that the core is isomorphic to a substructure). Putting
these two properties together, we have that c S−→ c′ in C, for
S 6∈ Σ, implies a S−→ a′ in A for a, a′ so that h(a) = c,
h(a′) = c′. Thus, h(A)|σ\Σ = Cσ\Σ.

3. Notice that for every ci �C h(a) there is a complex path (com-
posed of only of moving paths) from ci to h(a). By Lemma 7.1,
there is a complex path from ai to a. By Lemma 7.2, complex
paths of A are in particular h-regular complex paths, thus the
third condition follows.

We therefore have, as a consequence of Lemmas 7.5 and 7.4,
that 1–3 are both sufficient and necessary conditions for A being
a witness of a positive outcome of the (core-chase)−1 ∩ TW≤k
problem on input C,Σ.

Lemma 7.6. The (core-chase)−1 ∩ TW≤k problem holds for a
structure C and set of FDs Σ iff there is a tree-width k structure
A verifying conditions 1–3.

Since the existence of homomorphisms and the existence of
paths from a given regular language are all MSO-definable, 1–3
can be expressed in MSO.

Lemma 7.7. Given Σ,C, the set {A | A,C verify 1–3} is MSO-
definable. A formula recognizing it can be computed.

Proof. The first two conditions are very easy to encode by guess-
ing the homomorphism by partitioning the domain with monadic
predicates {Xc}c∈C , where a ∈ Xc codes h(a) = c. For the
third condition, note that once h and C is fixed, the h-regular com-
plex paths become a regular language depending on C and the
monadic predicates {Xc}c∈C . One can then test the existence of
an h-regular complex path from x to y with an MSO formula using
Lemma 7.3.

We can therefore conclude that the Semantic Tree-width prob-
lem is decidable.

Theorem 7.8. The STWk problem is decidable, for every k.

Proof. By Lemma 3.6 we can reduce STWk to the (core-chase)−1∩
TW≤k problem. Given an input C of the latter, by Lemma 7.7 there
is an MSO formula ϕC whose models are {A | A,C verify 1–3}.
Since MSO is decidable on TW≤k [20], we can decide whether
{A | A,C verify 1–3} ∩ TW≤k is empty, and thus, by Lemma 7.6,
we can decide whether the (core-chase)−1 ∩ TW≤k problem holds
for C.

8. Complexity
In this section we explain how to build a tree-walking automaton
(TWA) of exponential size in a structure C and set of FDs Σ, so that
the automaton is non-empty if, and only if, the (core-chase)−1 ∩
TW≤k problem yields a positive answer on C,Σ. Since the empti-
ness problem for TWA is decidable in exponential time [10, 21],
and there is an NP reduction from STWk to (core-chase)−1 ∩
TW≤k, we obtain that the semantic tree-width problem is in 2Exp-
Time.

Unfortunately, we don’t know how to code condition 3 in TWA
without adding an extra exponential blowup, as it would seem to
require some type of alternation. To sort out this problem, we must
first remark that conditions 1–3 can be weakened while preserving
a similar result to that of Lemma 7.4. Here, condition 3 is replaced
with the following:

3′. For X1, . . . , Xn the least SCCs of C|Σ, there are ai, ci so that
ci ∈ Xi and h(ai) = ci for every i where the following holds:

For every c ∈ C there is some a ∈ h−1(c) so that for every
ci �C c there is an h-regular complex path from ai to a in
A.

For every c S−→ c′ in C with S ∈ σ \ Σ there is a S−→ a′ in
A so that h(a) = c, h(a′) = c′ and for every ci �C c [resp.
ci �C c′] there is an h-regular complex path from ai to a
[resp. from ai to a′] in A.

Notice that the condition above only asks for the existence
of a polynomial number of paths (although the paths involved
have an unbounded number of vertices). It is not hard to see that
these conditions are still sufficient for the positive solution of a
(core-chase)−1 ∩ TW≤k instance.

Lemma 8.1. For every A,C verifying the conditions 1, 2, 3′ we
have that core(chaseΣ(B)) ∼= C, for some B with tw(B) ≤ tw(A).

Proof. The proof is just as the one of Lemma 7.4, but now we con-
sider the substructure A′ of A obtained by taking only the elements
and edges from the (polynomially many) witness vertices described
in 3′ to the ai’s. Applying Lemma 7.4 to A′ we obtain that C is iso-
morphic to core(chaseΣ(Â′)), where Â′ is the expansion of A′.

The TWA verifies conditions 1, 2, 3′ on a width-(k − 1) tree
decomposition of the structure A, which we assume to be binary
for simplicity (and without any loss of generality).

The alphabet of the tree consists in pairs (S, f) where, S is a
σ-structure of at most k elements S, with names taken from the
set S ⊆ {1, . . . , 2k} ∪ C as well as a mapping f : S → C
so that f restricted to C is the identity (remember that C is the
domain of C). The mapping f will represent the homomorphism to
the structure C, and the C elements will be special representatives
for each element of C. Since k and σ are fixed, the alphabet is
of polynomial size. Between parent and child nodes, the elements
of the substructure in the alphabet that they share represent which
ones are the elements in common. An example is given in Figure 7.

A tree walking automaton (TWA) is a sequential device that
can recognize properties of paths of labeled trees. The automaton
is located at a node of a tree, it can perform tests of the form
“is this node a leaf / root / right-child / left-child?”, or “is the
current label a?”. Based on the result of these tests it can accept
or move to a parent or a child with a given state. More formally,
a TWA on a binary finite tree over an alphabet A is given as a
tuple A = 〈Q,A, q0, F, δ〉, where Q is the state space, q0 ∈
Q is the initial state, F ⊆ Q the set of final states, and δ ⊆
Q × Types × A × Q × {parent, left child, right child} the set of
transitions. Transitions of the form (q, t, a, p, c) are interpreted as:
“if the current state is q, the type of the current node is t, and its
label is a, continue the computation in node c with state p”, where
the possible types Types indicate whether the current node has a
parent, a left child or a right child. An accepting run corresponds to
a traversal in the tree, which starts with q0 and ends with a final state
from F . Notice that, in particular, TWA can make DFS traversals
of the tree. We refer the reader to [6, 17] for a formal definition and
more details on this model.

Lemma 8.2. There is a TWA A so that A is non-empty iff there
exists a structure A and a homomorphism h : A → C verifying
conditions 1, 2, 3′. Further, A can be built in polynomial time in
the NFA description of LC.

Proof. The TWA A runs on the tree-width-k decomposition of
A labeled with the alleged homomorphism as in Figure 7. Let

c1

c2

c3

c4

c5

c3

c2

c2

c5

c5

c5
c1 c4

c5

c5
c41 2

3

c2

c5

c5

1

3

4

c2

c5

c53

4 2

c2

c2

c5

1

4

2

c3

c2

c2
4

2

3

h�!

CA

c2

c5
c1 1

2

c1

Figure 7. A structure A—where different shapes of arrow corre-
spond to different relation symbols—, together with a homomor-
phism h to a structure C. The homomorphism A → C is rep-
resented by a label attached to the nodes of A: For example, for
x1, x2, x3 the top elements of A, we have h(x1) = c1, h(x2) = c5,
h(x3) = c4. On the bottom, a tree-width 2 decomposition of A in
our chosen representation. Note that each vertex contains a sub-
structure of A, and the mapping is depicted via the labels attached
to the substructure. Thus, the upper-left vertex is (S, f), where
S = {1, 2, c1} and f(1) = c5, f(2) = c2, f(c1) = c1.

c1, . . . , cn be elements from the n least SCC of C|Σ as described
in 1, 2, 3′. We now list the properties that our automaton A must
verify.

(a) There is a homomorphism A→ C. On the one hand,A verifies
that the mapping is consistent: for every two neighboring nodes
of the tree with labels (S1, f1), (S2, f2) and for every two
vertices of its structures v1 ∈ S1, v2 ∈ S2 we have that if
v1 = v2 ∈ {1, . . . , 2k} then f1(v1) = f2(v2). Besides,
A verifies that every label (S, f) in the tree is so that f is
a homomorphism from S to C. These two verifications imply
that the functions in the vertices can be merged to form a
homomorphism h : A → C from the original structure to C.
Since the alphabet is polynomial,A can perform a tree traversal
making sure that these conditions are met through a polynomial
number of transitions.

(b) For every edge a S−→ b in C with S not in Σ, there exists some
a′

S−→ b′ in A so that the homomorphism above sends a to a′

and b to b′. This is translated asA guessing and finding the pair
of elements inside a label of the tree for each such edge, which
amounts to a polynomial number of transitions.

(c) The C elements are special representatives. For every c ∈ C:
There is a node with a label (S, f) containing c, so that f(c) =
c, and the substructure of the tree that uses the name c forms
a connected component (in other words, c is not “reused”, as
other names from {1, . . . , 2k} may be). Thus, for every c ∈ C
there is an element ac of A that represents c given by the
decomposition, where h(ac) = c.

(d) For every ci �C c there is a h-regular complex path from the
element aci representing ci to the element ac representing c in
A. Notice that this amounts to testing the existence of a path in
the graph encoded in the tree, whose homomorphic image is in
LC as described in Lemma 7.3, which is easy to express using
a TWA. Also, note that there are only a polynomial number of
tests of this kind to be performed.

The automaton A verifying this can be built in polynomial time
in the NFA recognizing LC which can be built in exponential time
due to Lemma 7.3. It is not hard to see that it enforces conditions
1, 2, 3′ in A. Thus, it is non-empty iff the (core-chase)−1 ∩ TW≤k
problem on C,Σ yields a positive answer. Further, the witnessing
tree for its non-emptiness yields a structure A whose expansion Â
is so that core(chaseΣ(Â)) = C and tw(Â) ≤ k.

Since the emptiness problem for TWA is in ExpTime [10, 21],
a doubly exponential time procedure follows.

Theorem 8.3. The STWk problem is decidable in 2ExpTime, for
every k.

Proof. By Lemma 3.6 we can reduce, in NP, the STWk into
(core-chase)−1∩TW≤k. By Lemma 8.2, we can build a TWA test-
ing conditions 1, 2, 3′ in exponential time which, by Lemma 8.1,
yields a non-empty language iff the (core-chase)−1 ∩ TW≤k prob-
lem has a positive answer. Since the emptiness problem for TWA is
ExpTime-complete, it follows that the STWk problem is decidable
in doubly exponential time.

Corollary 8.4. Given a CQ ϕ and a set of FDs Σ one can produce,
in doubly exponential time, a CQ ψ so that tw(ψ) ≤ k and
ϕ ≡Σ ψ, if such query exists.

Σ-rank bounded queries For any fixed r, consider the queries of
semantic Σ-rank r, defined as thoseϕ so that C = core(chaseΣ(Cϕ))
has Σ-rank ≤ r. Since this implies that the tree unravelling of
C is polynomial, by Lemma 7.3 a NFA for LC can be produced
in polynomial time in C, and by Lemma 8.2 a TWA testing
(core-chase)−1 ∩ TW≤k for C can be built in polynomial time,
yielding an exponential-time procedure for the STWk problem.

Corollary 8.5. The STWk problem on semantic Σ-rank r CQs is
decidable in ExpTime, for every k, r.

Note that semantic Σ-rank r does not impose any restrictions on
the substructure of the edges which are not in Σ. Thus, in particular,
it is still a generalization of the Semantic Tree-width-k problem in
the absence of dependencies.

9. Final remarks
We have shown that the Semantic tree-width k problem is decid-
able, and that we can also produce an equivalent query of tree-width
k when it exists. Although in principle the bounded tree-width CQ
Q′ yielded by the algorithm could be doubly exponential in the in-
put queryQ, we couldn’t produce an example witnessing a double-
exponential blowup (in fact, not even for a single-exponential).
Whether our result is amenable to an optimization procedure—
reducing the complexity for the evaluation from |D|O(|Q|) (W[1]-
complete) to f(|Q|) · |D|k (FPT)—will depend, to a large extent,
on this blowup.

We believe that these results can be extended with constants and
free variables, at the expense of slightly more involved definitions.

As mentioned in the introduction, Barceló et al. show that this
problem is undecidable for egd’s [4], which generalizes functional
dependencies. We leave open the question of whether decidability
still holds for arbitrary functional dependencies.

Finally, when the arity of the signature is not fixed, a larger class
of tractable queries can be found by considering classes of CQs of
bounded hypertree-width [13]. It would be interesting to generalize
our result to this setup.

Acknowledgements I am grateful to Pablo Barceló and Miguel
Romero for having introduced me to this subject, and to anonymous
reviewers for helpful comments.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases.

Addison-Wesley Reading, 1995.

[2] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational
databases. ACM Transactions on Database Systems, 4(3):297–314,
1979. doi: 10.1145/320083.320091.

[3] P. Barceló, M. Romero, and M. Y. Vardi. Semantic acyclicity on graph
databases. In Proceedings of the 32nd symposium on Principles of
database systems, pages 237–248. ACM, 2013.

[4] P. Barceló, G. Gottlob, and A. Pieris. Semantic acyclicity under
constraints. In ACM Symposium on Principles of Database Systems
(PODS’16), 2016.

[5] H. L. Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. In Proceedings of the twenty-
fifth annual ACM symposium on Theory of computing, pages 226–234.
ACM, 1993.

[6] M. Bojańczyk. Tree-walking automata. In Language and Automata
Theory and Applications, pages 1–2. Springer, 2008.

[7] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunc-
tive queries in relational data bases. In Proceedings of the ninth annual
ACM symposium on Theory of computing, pages 77–90. ACM, 1977.

[8] C. Chekuri and A. Rajaraman. Conjunctive query containment revis-
ited. In International Conference on Database Theory, pages 56–70.
Springer, 1997.

[9] H. Chen and V. Dalmau. Beyond hypertree width: Decomposition
methods without decompositions. In Principles and Practice of Con-
straint Programming-CP 2005, pages 167–181. Springer, 2005.

[10] S. Cosmadakis, H. Gaifman, P. Kanellakis, and M. Vardi. Decidable
optimization problems for database logic programs. In Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages
477–490. ACM, 1988.

[11] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi. Constraint satisfaction,
bounded treewidth, and finite-variable logics. In Principles and Prac-
tice of Constraint Programming-CP 2002, pages 310–326. Springer,
2002.

[12] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting to the
core. ACM Transactions on Database Systems (TODS), 30(1):174–
210, 2005.

[13] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and
tractable queries. In Proceedings of the eighteenth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages
21–32. ACM, 1999.

[14] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic
conjunctive queries. Journal of the ACM, 48(3):431–498, 2001.

[15] N. Immerman. Expressibility and parallel complexity. SIAM Journal
on Computing, 18(3):625–638, 1989.

[16] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of
data dependencies. ACM Transactions on Database Systems, 4(4):
455–469, 1979. doi: 10.1145/320107.320115.

[17] A. Muscholl, M. Samuelides, and L. Segoufin. Complementing deter-
ministic tree-walking automata. Information processing letters, 99(1):
33–39, 2006.

[18] J. Nešetřil and P. O. de Mendez. Sparsity - Graphs, Structures, and
Algorithms, volume 28 of Algorithms and combinatorics. Springer,
2012. ISBN 978-3-642-27874-7. doi: 10.1007/978-3-642-27875-4.

[19] C. H. Papadimitriou and M. Yannakakis. On the complexity of
database queries. In Proceedings of the sixteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems,
pages 12–19. ACM, 1997.

[20] D. Seese. The structure of the models of decidable monadic theories
of graphs. Annals of pure and applied logic, 53(2):169–195, 1991.

[21] M. Y. Vardi. A note on the reduction of two-way automata to one-way
automata. Information Processing Letters, 30(5):261–264, 1989.

[22] M. Yannakakis. Algorithms for acyclic database schemes. In Pro-
ceedings of the seventh international conference on Very Large Data
Bases-Volume 7, pages 82–94. VLDB Endowment, 1981.

Appendix: Extended proofs

Detailed proof of Lemma 3.3. Let A = chaseΓΣ((Cϕ)Σ), and B =
chaseΓΣ((Cψ)Σ), for Cϕ, Cψ the canonical structures for ϕ,ψ.

For the left-to-right direction, in order to show ϕΣ ≡ΓΣ ψΣ

it suffices to show, due to Lemma 2.1, that A and B are hom-
equivalent: A → B and B → A (having isomorphic cores
is the same as being hom-equivalent). By Lemma 3.2 we have
that A ∼= (chaseΣ(Cϕ))ΓΣ and B ∼= (chaseΣ(Cψ))ΓΣ . Since
ϕ ≡Σ ψ we also have, again by Lemma Lemma 2.1, that there
are homomorphisms f : chaseΣ(Cϕ) → chaseΣ(Cψ), and
g : chaseΣ(Cψ) → chaseΣ(Cϕ), due to hom-equivalence. Then
we simply extend f with key(ā) 7→ key(f(ā)) for every key(ā) ∈
A obtaining a homomorphism f ′ : A → B or, equivalently,
f ′ : (chaseΣ(Cϕ))ΓΣ → (chaseΣ(Cψ))ΓΣ . Indeed, note that
for key(ā), b) ∈ S(chaseΣ(Cϕ))ΓΣ

i we have ā ∈ S(chaseΣ(Cϕ)), thus
f(ā) ∈ S(chaseΣ(Cψ)) hence (key(f(ā)), f(ā[i])) ∈ S(chaseΣ(Cψ))ΓΣ

i .
The other homomorphism B→ A is obtained in a similar way, this
time using g. Thus, ϕΣ ≡ΓΣ ψΣ.

For the right-to-left direction, suppose we have f : A → B
and g : B → A. Due to Lemma 3.2, we can assume f :
(chaseΣ(Cϕ))ΓΣ → (chaseΣ(Cψ))ΓΣ . It is not hard to see that
f restricted to the universe of Cϕ is a homomorphism from
chaseΣ(Cϕ) to chaseΣ(Cψ). Indeed, for every ā ∈ SchaseΣ(Cϕ)

there are (key(ā), ā[i]) ∈ S
(chaseΣ(Cϕ))Σ
i for every 1 ≤ i ≤

arity(S), and thus (f(key(ā)), f(ā[i])) ∈ S
(chaseΣ(Cψ))Σ
i for ev-

ery i, which in turn implies that f(key(ā)) = key(f(ā)) by
definition of (·)Σ (because in any structure CΣ, if an element c
is Si-related to ci for every 1 ≤ i ≤ arity(S), it is because
c = key(c1, . . . , carity(S)). A similar reasoning applies to g and
we thus obtain ϕ ≡Σ ψ.

Detailed Proof of Lemma 3.4. We can actually show:

tw(AΣ) ≤ max(tw(A),maxarity(A)).

Given a tree decomposition T = (V,E) of A, it suffices to add,
for each key(a1, . . . , an) in the universe of AΣ and for some bag
X ∈ V so that {a1, . . . , an} ⊆ X a new leaf with bag X ′ =

{key(a1, . . . , an), a1, . . . , an}
of cardinality≤ n+1 to T , so thatX ′ is a child ofX . Note thatX
always exists because one of the conditions the tree decomposition
imposes is that every hyper-edge must appear in a bag. It is not
hard to see that the resulting tree is a tree decomposition for AΣ.
Since the added bags are of size bounded by maxarity(A) + 1,
in the worst case we are increasing the width of the tree from
maxarity(A)−1 to maxarity(A). Otherwise, if the tree had already
width≥ maxarity(A), notice that the width is not incremented.

Detailed proof of Lemma 3.5. Given a tree decomposition T =
(V,E) of AΣ, we obtain a decomposition of A by replacing, in ev-
ery bag, key(a1, . . . , an) with a1, . . . , an. This is because, for ev-
ery 1 ≤ i ≤ n, the subtree T |X3key(a1,...,an) induced by the bags
containing key(a1, . . . , an) must have non-empty intersection
with the subtree induced by ai. Thus, replacing key(a1, . . . , an)
with a1, . . . , an does not break the connectivity condition of the
decomposition for no ai. The difference is that the resulting decom-
position verifies that every ā ∈ SA is in some bag, and therefore
it is a tree decomposition of A. The cardinality of the bags is then
increased in at most maxarity(A) − 1, as well as the width of the
resulting decomposition.

Detailed proof of Lemma 6.1. Let A be a σ-structure, and a ∈ A.
Let B = A�Σa. Note that every simple cycle in the underlying
undirected graph of B induces a

(a) Σ-cycle; or

(b) the presence of b R−→ c
R′←− b′ in B, for some relations R,R′

and elements b, b′, c so that b 6= b′ or R 6= R′.

In the case (a), suppose B has a Σ-cycle B′ consisting of a1
R1−−→

· · · Rn−−→ an+1 = a1. Let B̂ be the result of removing the edge
an

Rn−−→ an+1 from B, and let B̂′ be the result of renaming every
element ai of B′ with a fresh element bi, for all 2 ≤ i ≤ n (i.e., so
that B̂′ ∼= B′ and the domain of B̂′ is {a1, b2, . . . , bn}). Note that

(i) B̂ and B̂′ have only a1 in common,
(ii) B̂ ∪ B̂′ ⇒∗Σ B,

(iii) (B̂ ∪ B̂′)�Σa = B̂ ∪ B̂′.

On the one hand, (i) and (iii) are immediate. Item (ii) can be shown
by proving, by induction, that in at most i steps of ⇒Σ we can
identify every bj with aj for 2 ≤ j ≤ i. Thus, in ≤ n steps the
substructures B′ and B̂′ are fused together, and we obtain precisely
B. In the second case (b), this implies that there is a Σ-confluence
rooted at a with some paths as in (?) so that an = b, a′m = b′,
an+1 = a′m+1 = c, Rn = R and R′m = R′. We can assume,
without any loss of generality, that (a′i, R

′
i, a
′
i+1) 6= (b′, R′, c) for

all i. Indeed, there are always paths with these properties whenever
b′ is at smaller or equal distance to b from a—distance measured in
minimum number of Σ-edges to reach them from a. Otherwise we
can simply invert the roles of b and b′. Let B′ be such Σ-confluence.
Let B̂ be the result of removing the edge b R−→ c from B; and let
B̂′ be the result of renaming every element except a with a fresh
element. Note that the properties (i)–(iii) above continue to hold
also in this case. As before, (i) is immediate by construction; while
(ii) follows from the fact that in ≤ i steps of ⇒Σ we identify
every aj with 2 ≤ j ≤ i with its copy and in ≤ n + i steps
we identify every a′j with 2 ≤ j ≤ i and every at with 2 ≤ t ≤ n
with its copy. Item (iii) follows from the property above, namely
that (a′i, R

′
i, a
′
i+1) 6= (b′, R′, c) for all i, and thus after removing

b
R−→ c from B we will still have that every element is reachable

from a.
It is easy to see that by applying iteratively these two operations

eventually we obtain a structure whose underlying undirected graph
is a cactus. Note that item (iii) enables us to repeat the operation,
since it tells us that these constructions preserve the “a-rootedness”.

Detailed proof of Lemma 7.1. The (i)⇒ (ii) part is straightforward
since the homomorphic image of a complex path is a complex path
of equal moving length. For the (ii)⇒ (i) part, it is not hard to prove
the statement for A ⇒Σ A′. Indeed, suppose a R−→ b and a R−→ b′

are in A for some R in Σ, and A′ is obtained by identifying b with
b′ with the provenance homomorphism h(b′) = b or the identity
otherwise. For any complex path of A′, either it doesn’t go through
b, in which case the same path exists in A, or it is of the form
p(c

R1!1 b)(b
R2!2 c′)p′ for some paths p, p′ and !1,!2∈

{←,→}. Assume that neither p nor p′ goes through b. Since
complex paths are closed under inserting static paths, it follows that
p(c

R1!1 b)(b
R←− a)(a

R−→ b)(b
R2!2 c

′)p′ is also a complex path
of A′, and that p(c

R1!1 b1)(b1
R←− a)(a

R−→ b2)(b2
R2!2 c

′)p′ is
a complex path of A for some choice b1, b2 ∈ {b, b′}. For the case

where p, p′ have more appearances of b the reasoning is similar. By
iterating the argument we obtain it for A⇒∗Σ A′.

Detailed proof of Lemma 7.3. The NFA accepting LC works over
the alphabet {a R−→ b, b

R←− a | a R−→ b in C}. It is a polynomial
union of languages, each of these being basically described by
the tree unravelling C′ of C and the canonical homomorphism
htree : C′ → C. We build one automaton Aa for each element
a of C′. The language L(Aa) of Aa consists in all regular static
paths of C beginning and ending in htree(a). The automatonAa for
element a is built as having the elements X = {a′ | a′ �C′ a}
of C′ as state space; a as initial and final state; and a transition
(a, htree(a)

R−→ htree(b), b) and (b, htree(b)
R←− htree(a), a) for every

edge a R−→ b in C′|X . We prove thatAa recognizes all regular static
paths starting and ending in a by induction on the Σ-rank of a. For
rank 0, C′|X = C|Σ and htree is the identity, and it follows that
L(Aa) is the set of all regular static paths starting and ending in
a. For higher rank, take a regular static path of C and consider the
first time it applies a rule that decreases the rank:

p(b
R←− c)p′(c R′−→ b)p′′

where b ≺C a. By inductive hypothesis p′ ∈ L(Ac′) for any
c′ ∈ h−1

tree(c). It is easy to see that Aa can accept this path by first
reading p in the SCC of a reaching some b′ ∈ h−1

tree(b), and then
reading (b

R←− c) by going to the SCC corresponding to c, that is,
to some c′ ∈ h−1

tree(c). At this point, the substructure generated by
{c′′ | c′′ �C′ c

′} is isomorphic to that ofAc′ , and hence by induc-
tive hypothesis Aa can read p′ coming back to c′. From this point

it can read (c
R′−→ b) arriving back to b′, and we repeat the same

argument for the remaining path p′′.
On the other hand, it is not hard to see that every word accepted

by Aa is a regular complex path of C. This is because of the func-
tionality of the edges that increase/decrease the rank, forcing the
path to have a correct nesting of the regular static rules of the form
(a

R←− b)p(b
R−→ a). Using these automata one can build a NFA

for LC with an automaton AC having C as transition graph, where
a

R−→ b is replaced with (a, (a
R−→ b), b) and (b, (b

R←− a), a),
and with every node being initial and final. Further, from every
state/vertex a there is an ε-transition from and to the initial/final
state of Aa′ for some a′ ∈ h−1

tree(a). It follows that the resulting
automaton is polynomial in {Aa | a in C′}.

Detailed proof of Lemma 7.4. It is not hard to see that every time
we apply one step of⇒Σ we maintain the invariant of points 1–3.
That is, if Â⇒Σ A′ by a provenance homomorphism f : Â→ A′,
there must be a R−→ b and a R−→ b′ in Â so that b, b′ are identified in
A′ (that is, f(b) = b′ and the identity otherwise). Then it must be
that h(b) = h(b′), as otherwise we would have h(a)

R−→ h(b) and
h(a)

R−→ h(b′) in C where h(b) 6= h(b′) which would mean that C
is not a chase structure. Thus, h is still a homomorphism from A′
to C, where h(A′)|σ\Σ = C|σ\Σ. Finally, every h-regular complex
path p present in Â appears also in A′ as f(p), that is, by applying
f to each element of the path.

Using the properties of the cactus decomposition of the previous
section (Lemma 6.1), one can show by induction that for any h-
regular complex path departing from ai leading to some a in Â,
and the provenance homomorphism f : Â → chaseΣ(Â) one
obtains: chaseΣ(Â)�Σf(ai) ∼= C�Σci and f(a) = h(a) is in
chaseΣ(Â)�Σf(ai). In plain words, after some applications of⇒Σ

we obtain precisely the structure C�Σci, plus perhaps something
else that can be homomorphically mapped to C. Indeed, first note
that since Â is expanded, after some iterations of ⇒Σ we can
obtain the structure A whose every element a′ intersects a copy
of C at h(a′). That is, for every a′ we add a fresh copy of C
and we associate h(a′) of that copy with a′. Let us call A′ to
the structure just described. The fact that Â ⇒∗Σ A′ follows from
Lemma 6.1. Note that, in particular, A′�g(ai) contains C�ci, for g
the provenance homomorphism Â → A′. Consider g(ai) and its
copy of C�ci. Note that any h-regular complex path p of Â from ai
to a induces an h′-regular complex path g(p) of A′ departing from
g(ai) arriving to g(a) for some suitable h′ : A′ → C. It is not hard
to see that if p never decreases the rank then, after some iterations
of ⇒Σ, g(a) (and all the elements of the path) gets ‘glued’ to
the corresponding element from the copy of C�ci hanging from
ai. For rank-decreasing h-regular complex paths such as pl(a

R←−
b)p(b′

R−→ a′)pr , where we have that h(b) = h(b′), one can show
by induction that b, b′ are identified after some iterations of ⇒Σ

and thus so are a, a′ and thus, by induction, after some applications
of chase we arrive to a structure where b, b′ are mapped to the same
element, and we can then apply one more ⇒Σ and have a, a′ be
mapped to the same element. Hence, assuming pl, pr are non rank-
decreasing, we have that plpr is transformed into h(plpr) which
is a regular complex path of the copy of C�ci inside chaseΣ(Â).
Applying the reasoning before a is glued to the corresponding
element of the copy of C�ci hanging from ai.

Repeating this argument for each complex path of 1–3, we
obtain that

⋃
i chaseΣ(Â)�Σf(ai) = C|Σ. This, together with

point 2, implies that
⋃
i chaseΣ(Â)�f(ai) = C, and that there-

fore there is a homomorphism C → chaseΣ(Â). Since there is
also a homomorphism chaseΣ(Â) → C by the ⇒Σ-invariance
of 1–3, and since C is a chase and core structure, we have that
core(chaseΣ(Â)) = C.

	Introduction
	Preliminaries
	Restriction to binary queries
	Tree-like queries
	Cyclic queries
	Decomposition of -components
	Complex paths
	Complexity
	Final remarks

