An Adversarial Regularisation for Semi-Supervised Training of Structured Output Neural Networks
Résumé
We propose a method for semi-supervised training of structured-output neural networks. Inspired by the framework of Generative Adversarial Networks (GAN), we train a discriminator to capture the notion of a 'quality' of network output. To this end, we leverage the qualitative difference between outputs obtained on labelled training data and unannotated data. The discriminator serves as a source of error signal for unlabelled data. Initial experiments in image segmentation demonstrate that including unlabelled data with the proposed loss function into the training procedure enables attaining the same network performance as in a fully supervised scenario, while using two times less annotations.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...