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Abstract
In the context of statistical databases, the release of accurate statistical information about the
collected data often puts at risk the privacy of the individual contributors. The goal of differential
privacy is to maximise the utility of a query while protecting the individual records in the database.
A natural way to achieve differential privacy is to add statistical noise to the result of the query.
In this context, a mechanism for releasing statistical information is thus a trade-off between
utility and privacy. In order to balance these two “conflicting” requirements, privacy preserving
mechanisms calibrate the added noise to the so-called sensitivity of the query, and thus a precise
estimate of the sensitivity of the query is necessary to determine the amplitude of the noise to
be added.

In this paper, we initiate a systematic study of sensitivity of counting queries over relational
databases. We first observe that the sensitivity of a Relational Algebra query with counting is
not computable in general, and that while the sensitivity of Conjunctive Queries with counting
is computable, it becomes unbounded as soon as the query includes a join. We then consider
restricted classes of databases (databases with constraints), and study the problem of computing
the sensitivity of a query given such constraints. We are able to establish bounds on the sensitivity
of counting conjunctive queries over constrained databases. The kind of constraints studied here
are: functional dependencies and cardinality dependencies. The latter is a natural generalisation
of functional dependencies that allows us to provide tight bounds on the sensitivity of counting
conjunctive queries.

1 Introduction

With the emergence of new systems and services such as eHealth, electronic tickets (e.g.,
London Oyster card), mobile phones, or social networks, important amounts of information
concerning our everyday activities are collected in various databases. Statistical analysis of
such datasets could be very useful for improving services, or enabling research and market
studies for example. But at the same time, the collection and storage of all this data puts at
risk our individual privacy. A solution to address this problem is not to release the exact
result of any query on a sensitive dataset, but rather to perturb the released results by adding
some noise. Differential privacy [3, 10] precisely characterises the level of privacy provided by
such randomized mechanisms. It offers a worst-case statistical guarantee on the increase in
harm that an individual can be exposed to, if deciding to contribute her data to the dataset.

The concept of differential privacy is rooted in the notion of neighboring databases, that
is, databases that differ in the presence or not of the information regarding one participant.
More precisely, a mechanismM is ε-differentially private, for ε ≥ 0 if for any two neighboring
databases D and D′ and for any subset S ⊆ R of possible outputs we have:

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S].

That is, the probability thatM releases an element of S on D is almost the same as the
probability thatM releases an element of S on D′. In the definition of differential privacy
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the parameter ε plays a central role. It gives the concrete bound on the increase in harm
that an individual I can be exposed to, by contributing her data to the database.

Several mechanisms have been proposed to turn a deterministic query into a differentially
private one, like the Laplace mechanism, the exponential mechanism, the Gaussian mechanism,
etc. An extended introduction to these and other mechanisms (and more generally to
differential privacy) is the recent monograph by Dwork and Roth [11]. In order to provide a
good balance between privacy and utility, such ε-differential private mechanisms calibrate the
added noise to the so-called sensitivity of the query. The sensitivity of a query Q captures
the influence that an individual’s data can have on the output of the query. More precisely,
let us denote by D ∼ D′ the fact that two databases D and D′ are neighbors. The sensitivity
of a numeric query Q is then

max
D∼D′

|Q(D)−Q(D′)|.

This measure is generally referred to as the global sensitivity of the query to distinguish it
from other notions of local or smooth sensitivity [25].

To avoid adding too much noise and thus sacrificing too much utility to achieve the
intended level of differential privacy, the sensitivity of the query needs to be computed as
accurately as possible. However, this problem is undecidable in general as we shall see. In
this paper we propose algorithms for computing upper bounds of the sensitivity of queries.
Our results hold in a rather general setting: we consider counting conjunctive queries over
multi-table databases. Further, our results are not tied to any particular neighboring relation,
but hold for any relation of bounded order. This work is a first step towards understanding
the class of queries and neighboring relations that are amenable to differential privacy.

Relational databases. Most of the works on differential privacy assume the simplified
situation where the database is a monolithic table [11]. However, real life databases consist
of not one, but many tables containing the information scattered. Of course, one could
build a unique table from all these tables, by simply producing the cartesian product of
all the tables in the database. Nevertheless, this immediately raises two problems. First,
materialising the cartesian product of many—possibly big—tables is impractical, and often
plain impossible due to space and time requirements. Second, the notion of neighboring
databases now becomes unbounded which makes queries have unbounded sensitivity, and
thus not amenable to differential privacy mechanisms. For example, given two tables (T1, T2)
and a neighbor T ′1 = T1 \ {t̄} of T1 for some record t̄ ∈ T1, we have that, whereas (T ′1, T2) is
the neighbor of (T1, T2) resulting from removing one record, T1 × T2 differs from T ′1 × T2 in
a number of records equal to |T2|. This in general makes it impossible for non-trivial queries
to have bounded sensitivity, unless further restrictions on the databases are assumed.

Neighboring relation. Most works on differential privacy define neighboring databases
as those that that differ in exactly one record. This corresponds to assuming that each
individual contributes at most one record in the database. However, as pointed out in [29]
this assumption does not hold for many applications such as social networks or tabular data.
So the definition of neighboring databases needs to be tailored to the application at hand
with privacy in mind. Indeed, neighboring databases should, strictly speaking, differ in the
complete set of information pertaining to one individual, which could mean more than one
record. Alternative definitions of neighboring have been proposed [29, 8]. In particular, our
results are not tied to any particular definition of the neighboring relation.

SQL. SQL is arguably the prevalent query language for relational databases. It is
equivalent to first order logic (FO) over relational structures and to Relational Algebra (RA).
Here, we focus on SQL with aggregation, and study the static analysis problem of computing
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the sensitivity of SQL queries. As a first step in the larger programme of studying aggregate
queries, we study the counting operator. We concentrate our investigation on one of the most
prominent fragments of SQL, namely the Conjunctive Queries, corresponding to positive
“select-from-where” queries [1].

Contributions. We first establish, in Section 2, that finding the sensitivity of a SQL
query with counting is not computable in general. In the remaining sections we restrict our
study to counting Conjunctive Queries. Section 3 shows that the sensitivity for this fragment
is computable, although the characterisation shows that sensitivity becomes unbounded as
soon as we have a ‘non-trivial’ join.

Now, in most scenarios the class of databases of interest for the application at hand
are restricted (or constrained), and oftentimes the sensitivity of a query Q restricted to a
constrained class of databases can become bounded. Following this idea, we then study the
problem of computing global sensitivity restricted to databases from a constrained class. In
Section 4, we focus on Functional Dependencies (FD), that allow constraining databases by
rules of the form “in the table T , the i-th column determines the j-th column”, in other
words, “there are no 2 rows of T with the same datum in the i-th column but distinct data
in their j-th columns”. Further, in Section 5 we study Cardinality Dependencies, which
are a generalisation of FDs, with rules of the form “there are no more than k rows of T
with the same datum in the i-th column but pairwise distinct data in their j-th columns”.
Finally, Section 6 concludes and discusses future work. Due to space limitation, all proofs
are contained in the appendix.

Related work. Several works have studied methods for computing the sensitivity of
a given query or program. The work most related to ours is the one of Palamidessi and
Stronati [26]. They study the problem of computing the sensitivity of queries in relational
algebra. Their approach is based on the use of constraints on attributes: every attribute
comes with a bounded range, e.g. 0 ≤ age ≤ 100. They are able to provide tight bounds on
the sensitivity of the query Q. This approach can be applied to general SQL queries but
it has the drawback that it requires to constrain the ranges for all the attributes. In this
paper, instead, we focus on counting queries and on more lax semantic restrictions, namely
functional dependencies and cardinality dependencies.

Pierce and Reed [27] and Gaboardi et al. [14] use relational algebra operations with a
fixed, predetermined sensitivity, and a linear type system to track the use of the data in
programs. This combination permits to have sensitivity analyses that extend, beyond SQL,
to a full functional programming language. Their approach can provide “bad” estimates on
the sensitivity of given queries due to the use of fixed sensitivity for relational operations.
Our approach could provide a kernel query language providing more precise estimates that
could be then combined with their type systems.

Chaudhuri et al. in [7] study automatic program analyses that provide bounds on the
sensitivity of numerical imperative programs. Their approach is not directly related to
specific query languages but our work could, in principle, be combined with their techniques
to design a general purpose programming language for differential privacy.

Several works have pointed out and studied the problem of providing a bound to the
sensitivity of queries in disconnected structures. McSherry [22], in the setting of tabular data,
considers a restricted form of join where the data of the two tables are grouped by their join
keys, and then groups are joined using their group keys. The same solution has been used also
in [27, 14]. A similar approach, with different restrictions, has also been used by Palamidessi
and Stronati in [26]. This approach limits the situations where differential privacy can be
used with a good utility. To overcome this problem, several approaches considered alternative
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notions of sensitivity such as local sensitivity [25] or emprirical sensitivity [8].

2 Preliminaries

Let N = {0, 1, 2, . . . } and let n = {1, . . . n} for every n ∈ N. We write ā to denote a vector
of elements, whose i-th element is denoted by ā[i]. We write A∗ [resp. A+, An] for the set of
strings [resp. non-empty strings, length-n strings] over A, and ε for the empty string.

2.1 Relational structures
A relational vocabulary σ = (K,R) consists of a collection K of constants (usually
denoted by c1, c2, . . . ), and a collection R of relation symbols, each with a specified arity.
By σn we denote a vocabulary σn = (K,R) where K = {c1, . . . , cn}. For a relation R we write
arity(R) ∈ N to denote its arity; and we sometimes write R(r) to specify that R has arity r.
A σ-structure A consists of a universe A containing K, or domain, and an interpretation
which associates to each relation symbol R ∈ R, a relation RA ⊆ Aarity(R), and for each
constant c ∈ K, cA = c. An isolated element of A is an element a ∈ A which does not
appear in any interpretation. Let STR be the set of all finite structures (we write STR[σ]
to make explicit the vocabulary). We use A,B,C,A′,B′, . . . to denote relational structures
from STR, and A,B,C,A′, B′, . . . to denote their respective domains. In the context of a
signature (K,R) we will refer to a relation R ∈ σ and an index i ∈ arity(R) with “R[i]”.

I Example 1. As our running example, we will consider a database of patients, doctors and
hospitals, with tables

Hos(id, loc), containing the hospitals with its location,
Pat(id, sex, hos), listing the patients with an identifier, gender and the hospital where
they are being treated,
Doc(id, specialty, hos), listing the doctors with their identifier, their specialty and the
hospital where they practice,
PatDoc(pat, doc), containing each patient and its current attending doctor.

Such a database can be described over the vocabulary σ = (K,R) containing relations
R = {Hos(2),Pat(3),Doc(3),PatDoc(2)} and some constants such as K = {cF, cO}.

A graph is a structure G = (V,E), where E is a binary relation that is symmetric
and irreflexive. Thus, our graphs are undirected, loopless, and without parallel edges. The
Gaifman graph of a σ-structure A, denoted by G(A), is the (undirected) graph whose set
of nodes is the universe of A, and whose set of edges consists of all pairs (a, a′) of distinct
elements of A such that a and a′ appear together in some tuple of a relation in A. Recall that
the distance between two vertices u, v of a graph is the length of the shortest path from u

to v. We define the distance between two elements a, b of a structure A as their distance in
G(A), which we denote by distA(a, b). We write A tB for the disjoint union of A and B.

A homomorphism from a (K,R)-structure A and a (K′,R′)-structure B of so that
K ⊆ K′ and R ⊆ R′ is a mapping h : A → B so that for each relation symbol R ∈ R, if
(a1, . . . , ar) ∈ RA, then (h(a1), . . . , h(ar)) ∈ RB, and for every constant c ∈ K, h(c) = c.
We will sometimes write h(a1, . . . , ar) as short for (h(a1), . . . , h(ar)). We write A→ B to
denote that there is a homomorphism from A to B, and we write h : A → B to denote
that h is a homomorphism from A to B. If A → B and B → A we say that A and B are
hom-equivalent. We use ∼= for the isomorphism relation. Given a σ-structure A and a set
B ⊆ A there is (up to isomorphism) a unique structure A′ so that

it is hom-equivalent to A, that is, there are h : A→ A′ and h′ : A′ → A,
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h(a) = h′(a) = a for all a ∈ B,
it has the minimal number of elements.

Such a structure A′ is called the core preserving B (or simply core if B = ∅). We write
core(A, B) [resp. core(A)] to denote the core of A preserving B [resp. the core of A].

2.2 Logic
Let V be a collection of first-order variables equipped with a linear order <. Let σ be a
relational vocabulary. A term is either a first order variable x ∈ V or a constant from σ. The
atomic formulas of σ are those of the form R(t1, . . . , tn), where R ∈ σ is a relation symbol
of arity r, and t1, . . . , tr are terms. Formulas of the form t = t′ are also atomic formulas, and
we refer to them as equalities. The collection of first-order formulas (FO formulas) is
obtained by closing the atomic formulas under negation, conjunction, disjunction, universal
and existential first-order quantification. The semantics of first-order logic is standard. The
set of variables of ϕ is denoted by var(ϕ), and the set of free variables by free(ϕ). We
often write ϕ(x1, . . . , xn) where {x1, . . . , xn} = free(ϕ) and x1 < · · · < xn, to stress the free
variables. If A is a σ-structure and ϕ(x̄) is a first-order formula, we use the notation A |= ϕ[ā]
to denote the fact that ϕ is true in A when its free variables x̄ are interpreted by the tuple
of elements ā. When ϕ contains no free variables, we say that it is a sentence, and in this
case we simply write A |= ϕ. For any formula ϕ(x1, . . . , xn) and structure A, we write ϕ(A)
to denote {(a1, . . . , an) ∈ An | A |= ϕ[a1, . . . , an]}. We use ‘()’ to denote the 0-ary tuple of
elements. Hence, if ϕ has no free variables we interpret ϕ(A) as {()} if A |= ϕ or ∅ otherwise.
Note that, in this case, |ϕ(A)| = 1 iff A |= ϕ. We use ≡ for the logical equivalence relation
and ≡C for the equivalence relation restricted to a class of structures C.

Given a class of FO formulas L, by L# we denote the class of counting queries
{#ϕ | ϕ ∈ L}. The evaluation of #ϕ in A, denoted #ϕ(A), is defined as |ϕ(A)|, that is, as
the number of distinct tuples making ϕ true in A.

I Example 2. Continuing our running example, we consider the query that counts the
number of oncology doctors that are treating female patients in the same hospital as they
practice:

SELECT count distinct Doc.id
FROM Pat, Doc, PatDoc
WHERE Doc.specialty = ’O’ and

Pat.sex = ’F’ and
Pat.hos = Doc.hos and
PatDoc.pat = Pat.id and
PatDoc.doc = Doc.id

This can be equivalently expressed with the formula #ϕ, where

ϕ(xdoc) =∃xpat, xhos . Doc(xdoc, cO, xhos) ∧ Pat(xpat, cF, xhos) ∧ PatDoc(xpat, xdoc)

2.3 Global sensitivity
In its standard formulation, Differential Privacy requires the privacy bound to be valid
for every pair of structures that differ in one record. However, it is possible that an
individual contributes more than a single record to the database. Further it may be that
the database contains tables with public information. For this reason we do not set for our
study a particular neighboring relation. Our results hold for any neighboring relation
N ⊆ STR[σ]× STR[σ].

Having said that, a specific neighboring relation, called 1-neighboring, will be partic-
ularily useful for our proofs. Given two σ-structures A,B with σ = (K,R), we say that A
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is a substructure of B (noted A ⊆ B) if A ⊆ B, and RA ⊆ RB for all R ∈ σ. We write
A ≺ A′ if A ( A′ and there is no B so that A ( B ( A′. We say that A,B are 1-neighboring
structures, noted A ∼1 B, if A ≺ B or B ≺ A. In other words, A ∼1 B if A can be obtained
from B (and B from A) by removing/adding a tuple or an isolated noted.

We say that the neighboring relation N is of order k ∈ N, if any two neighboring
relational structures differ in at most k elements. More formally, N is of order k if for any
(A,B) ∈ N , there exist A0, . . . ,A` such that ` ≤ k, A = A0, B = A` and Ai−1 ∼1 Ai for all
i ∈ `. We say that the neighboring relation is unbounded if no such k exists.

The global sensitivity of a function f : STR→ N over a class of models C ⊆ STR with
respect to a neighboring relation N ⊆ C × C is:

GSNC (f) def= max
(A,A′)∈N

|f(A)− f(A′)|.

I Example 3. Suppose now that we want to find out the number of oncological patients in
the state of New York with the query

ϕ(xpat) = ∃xpat, xhos, xdoc, xsex .

Doc(xdoc, cO, xhos) ∧ Pat(xpat, xsex, xhos) ∧ PatDoc(xpat, xdoc) ∧Hos(xhos, xloc)

It is not hard to see that this query has unbounded global sensitivity when all relations are
considered sensitive, and thus all databases that differ in any one element are neighbors.
Indeed changing the location of a hospital from Indiana to New-York can increase the number
of ontological patients in the state of New York by any number.

I Observation 1. For any neighboring relation N of order k and any class of databases C,
the global sensitivity of a query Q is bounded with respect to N over C iff it is bounded
with respect to ∼1 over C. Further, the global sensitivity with respect to N and relative
to the class C is bounded by k · GS∼1

C (Q). So in the remaining of the paper we focus on
1-neighboring.

We will study the following problem, given a query language L, and a class of relational
structures C

Problem: GlobalSensitivity(L, C)
Input: Q ∈ L

Output: GS∼1
C (Q)

Unfortunately, this problem is undecidable already for counting first-order logic (and
therefore for counting Relational Algebra [1]).

I Theorem 4. GlobalSensitivity(FO#, STR) is non-computable.

The fact that the global sensitivity problem for FO is undecidable is not really surprising
since most static analysis problems for FO on unrestricted structures are undecidable. This
is why in the next sections we will focus on Conjunctive Queries.

3 Conjunctive queries

One of the most studied fragments of FO in relation to database queries is the fragment
of Conjunctive Queries (CQ). We now, and for the rest of the paper, restrict our study to
counting conjunctive queries, and show that sensitivity for this fragment is computable.
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The class of Conjunctive Queries (also known as Primitive Positive Logic, or Existential
Positive FO) is the fragment of FO corresponding to positive ’select-project-join’ queries of
the Relational Algebra or to positive ’select-from-where’ queries of SQL, where by ’positive’
we mean that there are no inequalities in the select [resp. where] conditions (we refer the
reader to [1, §4] for more details). These are formulae of the form

ϕ(x1, . . . , xn) = ∃y1, . . . , ym θ, (†)

where θ is a conjunction of atomic formulae. Since we deal with constants, and, in future
sections, with constrained databases, a conjunctive query can also be false (noted ⊥).
However, all the results that we show will assume that the input formula is not equivalent to
⊥ (i.e., that it is satisfiable, which can be checked in polynomial time)—for the particular
case where formulae are unsatisfiable all the results are trivial, and this will avoid lengthy
statements. For simplicity, and without any loss of generality, we assume that the formulae
do not contain equalities.1

Every conjunctive query of the form (†) over a relational vocabulary σk gives rise to
a canonical structure (sometimes called tableau) Cϕ with n + m + k elements, where
the elements of Cϕ are the variables x1, . . . , xn, y1, . . . , ym plus the constants c1, . . . , ck,
the relations of Cϕ consist of the tuples of terms in the conjuncts of θ. Given a CQ ϕ,
we write Cϕ for the canonical structure of ϕ, and Cϕ for its domain (i.e., the variables
x1, . . . , xn, y1, . . . , ym and constants c1, . . . , ck). We also define C−ϕ as the result of removing
all isolated constants from Cϕ (note that C−ϕ may not necessarily be a structure over the
same vocabulary of ϕ due to the absence of some constants). Likewise, any σk-structure
A with domain A = {x1, . . . , xn} ∪ {c1, . . . , ck} gives rise to a canonical CQ ϕ(x1, . . . , xn)
where var(ϕ) = free(ϕ) = {x1, . . . , xn}, and ϕ has a conjunct R(t̄) iff t̄ ∈ RA. Note that for
every σk-structure A there is A′ ∼= A and ϕ so that ϕ is the canonical query of A′.

A CQ ϕ is acyclic if G(Cϕ) is acyclic. We say that a CQ ϕ is connected if G(C−ϕ ) is
connected, otherwise it is disconnected. Note that every disconnected CQ ϕ so that G(Cϕ)
has n connected components can be equivalently written in the form ϕ =

∧
i∈n ψi(x̄i) so

that ψi(x̄i) is a connected CQ for every i, and for all i 6= j, x̄i and x̄j have no variables in
common. We say that ψi is a connected conjunct of ϕ, and we say that ψi is a sentential
connected conjunct if it is a sentence (i.e., x̄i = ()). Given ϕ =

∧
i∈n ψi(x̄i) a disconnected

CQ with each ψi being a connected conjunct, we further define ϕj as the conjunction of all
the ψs’s but ψj .

I Example 5 (Cont. from Ex. 2). The canonical σ-structure Cϕ has universe {xpat, xhos, xdoc, cO, cF}
and relations (shown in Figure 1):

DocCϕ = {(xdoc, cO, xhos)}, PatCϕ = {(xpat, cF, xhos)}, PatDocCϕ = {(xpat, xdoc)}.

Core of CQ’s. For a CQ query ϕ(x̄) = ∃ȳ.θ over σk we define core(ϕ) as the CQ
query ϕ′(x̄) = ∃ȳ′.θ′ where θ′ is the canonical query of core(Cϕ, x̄) and ȳ′ is the set of all
non-constant elements of core(Cϕ, x̄) that are not in x̄. Note that Ccore(ϕ) ∼= core(Cϕ, x̄).
We say that ϕ(x̄) is a core-CQ if Ccore(ϕ) ∼= core(Cϕ), and we write CQcore for the class of
all core-CQ’s. We define core(#ϕ) as #core(ϕ) for every CQ ϕ.

1 Observe that for every CQ using equalities, there is an equivalent CQ that does not use equalities,
computable in polynomial time.
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PatDoc
Pat

Doc

G(C')C'
xdoc cO xhos

xpat cF

xdoc cO xhos

xpat cF

Figure 1 Depiction of the canonical structure of ϕ as defined in Example 2 as well as its Gaifman
graph. Square vertices denote free variables and triangle vertices denote constants.
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Figure 2 Core of CQ’s.

I Example 6. Given ϕ(x1, x2) = ∃y1, y2.S(x1, x1)∧ S(x1, y2) ∧R(x1, y1) ∧R(x2, y1), whose
canonical structure is depicted in Figure 2, we have that core(ϕ) ≡ ∃y1.S(x1, x1)∧R(x1, y1)∧
R(x2, y1), and that ϕ is not a core-CQ since core(Cϕ, {x1, x2}) is not isomorphic to core(Cϕ),
as shown in the figure below.

Given a connected CQ ϕ, let us define

∆STR(#ϕ) =
{
∞ if ∃x ∈ free(ϕ). ∃R ∈ R. ∃ā ∈ Rcore(ϕ). x 6∈ ā
1 otherwise

I Proposition 1. For every connected CQ# Q, we have GS∼1
STR(Q) = ∆STR(Q).

I Example 7 (Cont. from Ex. 5). Note that we have ∆STR(#ϕ) =∞ since core(ϕ) = ϕ and
xdoc is not in the tuple (xpat, cF, xhos) of the relation PatCϕ , and thus that GS∼1

STR(Q) =∞.

We extend the definition of ∆STR to disconnected CQ# as follows. For any ϕ =
∧
i∈n ϕi

disconnected CQ so that each ϕi is a connected conjunct, we define

∆STR(#ϕ) =
{

∆STR(#ϕk) if ∃k ∈ n. free(ϕ) = free(ϕk) ∧ Cϕk → Cϕk

∞ otherwise

I Theorem 8. For every CQ# Q, we have GS∼1
STR(Q) = ∆STR(Q).

The above characterization shows that, even when we deal with connected CQ’s (arguably
the most common), we obtain unbounded sensitivity very easily. Indeed, as soon as one
has a ’join’ with a free variable which is not the joining attribute, such as #ϕ(x) =
# ∃y, z . R(x, y) ∧ S(y, z) the global sensitivity is unbounded. Although this means that for
every N ∈ N there are structures A ∼1 A′ so that #ϕ(A) −#ϕ(A′) > N , it may be that
A,A′ do not correspond to databases that could arise in the domain of application at hand.
However, when restricting the set of considered structures to ones satisfying some constraints,
it may well be that the sensitivity becomes bounded. The next two sections will focus on
evaluating sensitivity of queries over constrained structures.

4 Functional Dependencies

In this section we show bounds for the sensitivity of queries in the presence of what are
called functional dependencies.
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Figure 3 A path in a structure.

I Example 9 (Cont. from Ex. 2). Note that, the global sensitivity of #ϕ is unbounded.
Indeed, this is a consequence of the possibility of having patients with unbounded number
of attending doctors and doctors working in any number of hospitals. However, this does
not correspond to databases that could occur in practice, since patients have normally one
attending doctor and doctors work in at most one hospital. This is why the use of database
constraints becomes useful, to restrict the collection of databases we are interested in, and
thus to improve the bounds of the sensitivity of queries.

We write R[i→ j] to denote a functional dependency of a relation R of arity n

between components i ∈ n and j ∈ n. A structure A satisfies a functional dependency
(henceforth “FD”) R[i→ j] if maxa∈A(|{b̄[j] | b̄ ∈ RA, b̄[i] = a}|) ≤ 1. We use the symbol Σ
to denote a set of FDs, and we write #ΣR[i→ j] to denote 1 if R[i→ j] ∈ Σ, or ∞ otherwise.
We write CΣ for the class of all relational structures satisfying all FDs in Σ.

Given a CQ query ϕ and a set of FDs Σ we define the Σ-chase [21, 2] of ϕ, noted
chaseΣ(ϕ), as the closure of the application of the following rule:

For every R[i→ j] ∈ Σ and every pair of conjuncts R(t̄) and R(s̄) of ϕ so that t̄[i] = s̄[i]
and t̄[j] 6= s̄[j],

if s̄[j] is a variable, replace every occurrence of s̄[j] with t̄[j];
if s̄[j] and t̄[j] are constants, output ⊥.

It can be seen that the application of these rules is terminating and Church-Rosser confluent,
up to renaming of variables [1].

The following result shows that, as soon as we have a disconnected query, the sensitivity
is likely to be unbounded.

I Proposition 2. For every disconnected CQ query ϕ containing a conjunct without constants
and at least one free variable, and for every set Σ of FD’s, we have GS∼1

CΣ (#ϕ) =∞.

Paths. A path of a (K,R)-structure A between an element a ∈ A and b ∈ A, is a string

p = (R1, i1, a1, j1, b1) · · · (Rn, in, an, jn, bn) ∈ (R×N×A×N×A)∗ (?)

so that either p = ε and a = b (i.e., the empty path); or a1 = a, bn = b, ai = bi−1 for all
1 < i ≤ n, and for every ` ∈ n we have i`, j` ∈ arity(Ri) and there is ā ∈ RA

` so that ā[i`] = a`
and ā[j`] = b`. A path of the form (?) is simple if ai 6= bi 6= bj for all 1 ≤ i < j ≤ n. Note
that in particular the empty path ε is simple. We write p : A1  A A2 to denote that p is a
simple path of A from an element of A1 ⊆ A to an element of A2 ⊆ A. We write a  A b,
A1  A b, a A A2 as short for {a} A {b}, A1  A {b}, {a} A A2 respectively.

I Example 10. For a structure A with relations RA = {(a1, a2, a3), (a1, a4, a6)}, SA =
{(a5, a6)}, and TA = {(a3, a5, a4)}, we have that p : a1  A a4 for p = (R, 1, a1, 3, a3)
(T, 1, a3, 2, a5) (S, 1, a5, 2, a6) (R, 3, a6, 2, a4), as depicted in Figure 3
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Figure 4 Structures of Example 12. Square vertices denote free variables.

Given a vocabulary σ = (K,R) and a path p of the form (?), let m ∈ n be the greatest
index m so that bm ∈ K, or 0 otherwise. We define the cardinality of path p as

#Σ(p) def=
∏

m<`≤n

#ΣR`[i` → j`] (1)

where as usual the product of the empty sequence is 1, and ∞ is absorbing wrt the product
(∞ ·N = N · ∞ =∞). Note that #Σ(ε) = 1. The intuition is that #Σ(p) gives a bound on
how many different elements b can be reached from a through p on any structure A ∈ CΣ
(i.e., so that p : a A b).

Let Q = #ψ(x1, . . . , xn) be a connected CQ# over a vocabulary σ = (K,R), and let
ϕ = core(chaseΣ(ψ)). We define

∆+
Σ(Q) def= max

R∈R

∑
ā∈RCϕ

max
i∈n

(
min

pi:ā Cϕxi

#Σ(pi)
)

∆−Σ(Q) def= max
R∈R

max
ā∈RCϕ

max
i∈n

(
min

pi:ā Cϕxi

#Σ(pi)
)
.

I Observation 2. Note that ∆−Σ(Q) is either 1 or ∞ and that ∆−Σ(Q) =∞ iff ∆+
Σ(Q) =∞.

Further, observe that ∆+
Σ(Q) − ∆−Σ(Q) ≤ nQ − 1, where nQ is the maximum number of

elements in a relation of the canonical structure of core(chaseΣ(ψ)), assuming Q = #ψ.

I Theorem 11. Given a set Σ of functional dependencies and a connected CQ# query Q,
we have that GS∼1

CΣ (Q) ≤ ∆+
Σ(Q). Further, if Q ∈ CQ#

core, we have GS∼1
CΣ (Q) ≥ ∆−Σ(Q).

I Example 12. Take for instance the CQ with one free variable of Figure 4. Observe that,
for Σ = {R[1→ 2], R[2→ 1]}, we have that GS∼1

CΣ (#ϕ) ≤ ∆+
Σ(#ϕ) = 4, which is tight since

#ϕ(A) = 4, and #ϕ(A′) = 0. Further, this example can be easily generalized, obtaining that
for every n ∈ N there is a CQ Q so that GS∼1

CΣ (Q) = n = ∆+
Σ(Q).

I Example 13 (Cont. from Ex. 2). As noted in Example 9, #ϕ has unbounded global
sensitivity. However, if every patient has no more than one attending doctor, the sensitivity
of #ϕ becomes bounded. Indeed, if Σ = {PatDoc[1→ 2]}, then

∆−Σ(#ϕ) ≤ GS∼1
CΣ (#ϕ) ≤ ∆+

Σ(#ϕ)

by Theorem 11—observe that ϕ ∈ CQcore since it is unary, cf. Lemma 23. Since ∆−Σ(#ϕ) =
∆+

Σ(#ϕ) = 1, it thus follows that GS∼1
CΣ (#ϕ) = 1.

As we have shown, adding functional dependencies immediately improves the global
sensitivity of queries. However, functional dependencies are often very restrictive, and it may
not always be possible to impose such restrictions. This leads to a more general notion of
dependencies, that we call cardinality dependencies. These dependencies bound the number
of elements associated with component i of a relation R for each fixed element of a component
j. This will be the object of study of our next section.
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5 Cardinality Dependencies

While functionality constraints are a very natural restriction of databases, there are many
scenarios in which, although we don’t have an attribute i functionally determining an attribute
j in a relation, we have a cardinality dependency nonetheless. This is a dependency
of the form “there are at most n different attributes j sharing the same attribute i in the
relation R”—functional dependencies being the special case when n = 1.

These dependencies arise naturally when modelling relations between entities (such as in
ER modelling [17]). For example, the business rules underlying a company database may
allow that an employee has more than one manager, but no more than 2. Another example
is for bounded domain attributes: whereas the name of a person does not determine the
gender, there cannot be more than two possibilities of gender for any given name. As we
will see next, cardinality dependencies provide further means to give tighter bounds for the
global sensitivity of CQ’s.

I Example 14 (Cont. from Ex. 13). We already noticed that constraining each patient to
have at most one attending doctor, brings the sensitivity of #ϕ down to 1. However, it
may be that a patient can have more than one attending doctor, although it can’t have an
unbounded number of attending doctors. For example, a scenario in which a patient has at
most 3 attending doctors.

More formally, we write R[i k−→ j] to denote a k-cardinality dependency of a relation
R of arity n between components i ∈ n and j ∈ n. A structure A satisfies a cardinality
dependency (henceforth “CD”) R[i k−→ j] if maxa∈A(|{b̄[j] | b̄ ∈ RA, b̄[i] = a}|) ≤ k. For the
particular case where k = 1, note that R[i k−→ j] is a functional dependency. We use the
symbol Σ to denote a set of CD’s, and we write #ΣR[i→ j] to denote the minimum k so that
R[i k−→ j] ∈ Σ, or ∞ otherwise. As before, we write CΣ for the class of all relational structures
satisfying all CDs in Σ. We define the cardinality of a path #Σ(p) as in (1), where now Σ is
a set of CD’s, and in the definition #ΣR[i→ j] is interpreted as defined above, over CD’s.

Upper bound. Given a connected CQ# query Q over a vocabulary σ = (R,K) so that
core(Q) = #ϕ(x1, . . . , xn), let us define

∆+
Σ(Q) def= max

R∈R

 ∑
ā∈RCϕ

 min
p1,...,pn s.t.

pi:ā Cϕxi for i ∈ n

(∏
i

#Σ(pi)
) .

I Theorem 15. Given a set of cardinality dependencies Σ, for all connected CQ# queries Q
we have GS∼1

CΣ (Q) ≤ ∆+
Σ(Q).

I Example 16 (Cont. from Ex. 14). If every patient has at most 3 attending doctors, the
sensitivity of #ϕ becomes bounded. Indeed, if Σ = {PatDoc[1 3−→ 2]}, then GSRCΣ(#ϕ) ≤
∆+
R,Σ(#ϕ) = 3 by Theorem 15.

Lower bound. Let us now define

∆−Σ(Q) def= max
R∈R,ā∈RCϕ

 min
p1,...,pn s.t.

pi:ā Cϕxi for i ∈ n

(∏
i

#Σ(pi)
)

We use the symbol π to denote permutations π : n → n, and given ā ∈ An we write
āπ ∈ An to denote the vector whose i-th element is ā[π(i)].
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Let us say that a CQ# query Q = #ϕ(x̄) has no repeated joins if for every binary
relation R ∈ R, any variable or constant appears in at most one record ā ∈ RCϕ .

I Theorem 17. For all acyclic connected CQ# queries Q with no repeated joins and with
all relations of arity ≤ 2, we have that ∆−Σ(Q) ≤ GS∼1

CΣ (Q).

6 Conclusion

We have given bounds for the global sensitivity of counting Conjunctive Queries under the
functionality or cardinality constraints. These bounds can be used to turn those queries in
differentially private ones by using mechanisms like the Laplacian or the Gaussian mechanisms
without adding too much noise.

There are several interesting directions that we will pursue in future work. We will
study other aggregation operations already present in SQL such as average or sum. We will
also investigate sensitivity of queries with negation, where one can ask for example for the
number of patients that are not treated by a given doctor. Further, we have focused here
on global sensitivity but there are other notions of sensitivity that have been proposed. In
particular, the so-called local sensitivity is studied in [25]. The local sensitivity is defined by
quantifying not over all possible databases but only over the ones in the neighborhood of
the particular database under analysis. The local sensitivity is often lower than the global
sensitivity, but adding noise proportional to the local sensitivity does not ensure differential
privacy. Nevertheless, adding the noise proportional to a smooth approximation of the local
sensitivity permits to recover differential privacy.
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A Proofs of Section 2

We show that the problem of computing the sensitivity of an FO query is, in general,
undecidable. In fact, we show that this is already true for ∼1. Our proof relies on a reduction
from the satisfiability problem for first-order logic, via the contingency problem.

I Observation 3. For every pair of finite structures A,A′ differing in relations S, there is
n ∈ N and structures B1, . . . ,Bn so that B1 = A, Bn = A′ and Bi ∼S Bi+1 for all 1 ≤ i < n.
Thus, for any property P of structures, if there is one structure A verifying P and some other
structure A′ not verifying P , there must be necessarily two such structures so that A ∼S A′.

We say that a sentence ϕ of FO is a contingency if ϕ is satisfiable but not valid. That
is, there are structures A,A′ so that A |= ϕ and A′ 6|= ϕ. The contingency problem is the
problem of determining, given an FO sentence ϕ, whether it is a contingency or not.

I Lemma 18. The contingency problem for FO is undecidable.

Proof of Theorem 4. Let ψ be a sentence of FO and P be a monadic predicate not used in
ψ. Consider the formula

ϕψ(x) = ψP ∨ P (x),

where ψP is the relativization of ψ to elements verifying P , that is, the result from replacing
every occurrence of ∃y ψ′ with ∃y (P (y)∧ψ′) and every occurrence of ∀y ψ′ with ∀y (P (y)→
ψ′) in ψ, for every possible y, ψ′. Let Qψ ∈ FO# be the query that counts elements verifying
ϕψ, that is, Qψ = #ϕψ(x). We show that

GS∼1
STR(Qψ) =

{
∞ if ψ is a contingency, or
1 otherwise.

Note that if ψ is unsatisfiable, then ϕψ(x) ≡ P (x), and it is easy to see that it has
sensitivity of 1. If ¬ψ is unsatisfiable, then ϕψ(x) ≡ >, which also has sensitivity of 1.

Suppose then that ψ is a contingency. Then, there are structures A,A′ so that A |= ψP

and A′ 6|= ψP . Further, by Observation 3, we can assume that A ∼1 A′. Let Bn be the
structure consisting of n elements in no relations. Define Cn = AtBn and C′n = A′tBn. It is
easy to see that Cn ∼1 C′n, Cn |= ψP , and C′n 6|= ψP for every n. Therefore, Qψ(Cn) = |A|+n,
and 0 ≤ Qψ(C′n) ≤ |A′|, and hence

n− k ≤ |Qψ(Cn)−Qψ(C′n)| ≤ n+ k

where k = max(|A|, |A′|). Thus, limn→∞ |Qψ(Cn)−Qψ(C′n)| =∞ and therefore

GS∼1
STR(Qψ) =∞.

Hence, ψ is a contingency iff GS∼1
STR(Qψ) =∞. Since the contingency problem for FO is

undecidable by Lemma 18, the statement follows. J

B Proofs of Section 3

It is known that the semantics of CQs can be described in terms of homomorphisms, as the
following result evidences.

I Lemma 19 (Chandra-Merlin [5]). For every finite structure A, n ∈ N, b1, . . . , bn ∈ A and
conjunctive query ϕ(x1, . . . , xn), the following are equivalent
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A |= ϕ[b̄],
there is a homomorphism h : Cϕ → A so that h(xi) = bi for every i ∈ n.

The following results are simple (but useful) consequences of the lemma above.

I Lemma 20. For every CQ ϕ and A ⊆ B we have ϕ(A) ⊆ ϕ(B).

Proof. Immediate from Lemma 19 and the fact that A→ B. J

I Lemma 21. Given a CQ# query Q = #
∧
i∈n ϕi so that every ϕi is a connected conjunct,

and given a structure A, we have

Q(A) =
∏
i∈n

#ϕi(A).

Proof. Let ϕ =
∧
i∈n ϕi(x̄i) and note that C−ϕ = tiC−ϕi

. Hence,

#ϕ(A) = |{(h(x̄1), . . . , h(x̄n)) | h : Cϕ → A}| (by Lemma 19)
= |{(h(x̄1), . . . , h(x̄n)) | h : C−ϕ → A}|
= |{h1(x̄1), . . . , hn(x̄n) | hi : C−ϕi

→ A for all i ∈ n}|
= |{h1(x̄1), . . . , hn(x̄n) | hi : Cϕi

→ A for all i ∈ n}|

=
∏
i∈n

#ϕi(A)

which concludes the proof. J

I Lemma 22. For every CQ# query Q over σk we have GS∼1
STR(Q) ≥ 1.

Proof. This is a consequence of the more general Lemma 36 shown in the next section. J

I Lemma 23. Every CQ query ϕ with at most one free variable is a core-CQ.

Proof. This is because core(A) ∼= core(A, {a}), for any singleton {a}. J

The following are well-known properties of cores.

I Lemma 24 ([5, 9]). For all ϕ,ψ ∈ CQ,

1. ϕ ≡ core(ϕ);
2. ϕ ≡ ψ iff core(ϕ) ≡ core(ψ) iff Ccore(ϕ) ∼= Ccore(ψ) iff #ϕ ≡ #ψ.

Proof of Proposition 1. Let Q = #ϕ. We first show ∆STR(Q) ≤ GS∼1
STR(Q). Suppose first

that ∆STR(Q) = ∞. Let A = core(Cϕ). By construction, there exists a homomorphism
h : Cϕ → core(Cϕ). Let x ∈ free(ϕ) and t̄ ∈ TA so that h(x) 6∈ t̄. Since ϕ is connected, there
must be relations R,S of arity nR and nS respectively so that for some i, j ∈ nS , j′ ∈ nR,
r̄ ∈ RA, s̄ ∈ SA we have s̄[i] = h(x), s̄[j] = r̄[j′], and h(x) 6∈ r̄.

Let An be the structure resulting from adding n new elements a1, . . . , an to the domain
of A and the following new tuples to SAs̄1, . . . , s̄n

∣∣∣∣∣∣
∀i ∈ n. ∀j ∈ arity(S)
s̄i[j] = ai if s̄[j] = h(x) and
s̄i[j] = s̄[j] otherwise


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Informally, the s̄i’s are obtained by replacing in s̄ all the occurences of h(x) by ai. It then
follows that Q(An) > n.

Let A′n be the result of removing r̄ from RAn in An, and let A′ be the result of removing
r̄ from RA in A. Note that An ∼1 A′n. We now show that Q(A′n) = 0. Note first that
A′n → A′. Therefore, Q(A′n) > 0 implies Q(A′) > 0, which is not true because A is a core
and A′ ( A and thus Cϕ 6→ A′ by the minimality condition of cores. Thus, GS∼1

STR(Q) =∞
since limn→∞Q(An)−Q(A′n) =∞.

Since GS∼1
STR(Q) ≥ 1 by Lemma 22, we conclude ∆STR(Q) ≤ GS∼1

STR(Q).
On the other hand, the fact that ∆STR(Q) ≥ GS∼1

STR(Q) follows from Lemma 37 that we
will show in the next section. J

I Lemma 25. Let Q = #ϕ ∈ CQ#. If Q has no free variables, then GS∼1
STR(#ϕ) = 1.

Proof. For any A, Q(A) ∈ {0, 1}. Thus for any A ∼1 A′, |Q(A)−Q(A′)| ∈ {0, 1}. Now by
Lemma 22 we know that GS∼1

STR(#ϕ) ≥ 1, which implies that GS∼1
STR(#ϕ) = 1. J

I Lemma 26. Let ϕ =
∧
i∈n ϕi be a disconnected CQ with the ϕi’s being its connected

conjuncts. If there are x, y ∈ free(ϕ) and kx, ky ∈ n so that kx 6= ky, x ∈ free(ϕkx
), and

y ∈ free(ϕky ), then GS∼1
STR(#ϕ) =∞.

Proof. Let Q = #ϕ and A = core(C−ϕ1
) t · · · t core(C−ϕn

), and let hi : C−ϕi
→ core(C−ϕi

) for
i ∈ n. By construction there exists h : C−ϕ → A. Now note that it must either be that y is
an isolated element in C−ϕky

and hky
(y) = y; or that y appears in a tuple of Cϕky

and thus
hky

(y) appears in a tuple of core(C−ϕky
). Let Am be the structure resulting from adding m

fresh elements a1, . . . , am to the domain of A, and for all R ∈ R adding the following set of
tuples to RA,r̄1, . . . , r̄m

∣∣∣∣∣∣
∃s̄ ∈ RA. ∀i ∈ m. ∀j ∈ arity(R)
r̄i[j] = ai if s̄[j] = hkx

(x) and
r̄i[j] = s̄[j] otherwise


Informally, the r̄i’s are obtained by replacing in s̄ all the occurences of hkx(x) by ai. It
then follows by construction that Q(Am) ≥ m. Indeed, there are at least m distinct
homomorphisms h1, . . . , hm : A → Am such that hi(y) = hky

(y) and hi(x) = ai for i ∈ m,
and thus m distinct homomorphisms g1, . . . , gm : C−ϕ → Am. More precisely we consider
gi = hi ◦ h for i ∈ m. We now need to distinguish two cases.

Case y is isolated in C−ϕky
. We consider the structure A′m resulting from removing

hky (y) = y from the domain of Am. Note that A′m ∼1 Am, and that by construction, for any
f : C−ϕ → Am with f(a) = y for some element a in the domain of ϕ, then f : C−ϕ 6→ A′m. But
we just saw that there are at least m distinct such homomorphisms. Thus, by Lemma 20 we
can conclude that Q(A′m) ≤ Q(Am)−m, and thus that Q(Am)−Q(A′m) ≥ m

Case y appears in a tuple ā in C−ϕky
. In that case there exists a relation R ∈ R such

that ā ∈ RC−ϕky . We consider the structure A′m with the same domain as Am and resulting
from removing hky (ā) from RAm . Note that A′m ∼1 Am, and that by construction, for any
g : C−ϕ → Am with g(b̄) = hky

(ā) for some tuple b̄ in RC−ϕ , g : C−ϕ 6→ A′m, which in turn
implies that for any g : C−ϕ 6→ A′m, g(y) 6= hky

(y). But we just saw that hi(y) = hky
(y) for

i ∈ {0, . . . ,m}. Thus, by Lemma 20 we can conclude that Q(A′m) ≤ Q(Am)−m, and thus
that Q(Am)−Q(A′m) ≥ m.
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We can finally conclude our proof of GS∼1
STR(Q) =∞ since limm→∞Q(Am)−Q(A′m) =

∞. J

I Lemma 27. Let ϕ =
∧
i∈n ϕi be a disconnected CQ with the ϕi’s being its connected

conjuncts. If ϕ has at least one free variable x, and there exists k ∈ n so that for all
y ∈ free(ϕ), y ∈ free(ϕk) and Cϕk 6→ Cϕk

, then GS∼1
STR(#ϕ) =∞.

Proof. Let Q = #ϕ and A = core(C−
ϕk ) t core(C−ϕk

), and let hk : C−
ϕk → core(C−

ϕk ) and
hk : C−ϕk

→ core(C−ϕk
). By construction there exists h : C−ϕ → A. Let Am be the structure

resulting from adding m fresh elements a1, . . . , am to the domain of A, and for all R ∈ R
adding the following set of tuples to RA,r̄1, . . . , r̄m

∣∣∣∣∣∣
∃s̄ ∈ RA. ∀i ∈ m. ∀j ∈ arity(R)
r̄i[j] = ai if s̄[j] = hk(x) and
r̄i[j] = s̄[j] otherwise


Informally, the r̄i’s are obtained by replacing in s̄ all the occurences of hk(x) by ai. It
then follows by construction that Q(Am) ≥ m. Indeed, there are at least m distinct
homomorphisms h1, . . . , hm : A→ Am such that and hi(x) = ai and hi(y) = y for any y 6= x

and i ∈ m, and thus m distinct homomorphisms g1, . . . , gm : C−ϕ → Am. More precisely we
consider gi = hi ◦ h for i ∈ m. We now need to distinguish two cases.

Case core(C−
ϕk ) is an isolated element. This case cannot occur, as it would either be

a constant but this contradicts the definition of C−ϕk
; or there would be a homomorphism

g : core(C−
ϕk )→ core(C−ϕk

) which contradicts our hypothesis that Cϕk → Cϕk
.

Case there is a tuple s̄ in core(C−
ϕk ). In that case, there exists j ∈ n, j 6= k such that

C−ϕj
6→ C−ϕk

, and with t̄ in RC−ϕj and hk(t̄) ∈ RC−
ϕk . We consider the structure A′m with the

same domain as Am and resulting from removing h(t̄) from R
C−

ϕk . Note that A′m ∼1 Am,
and that by construction, for any g : C−ϕ → Am with g(t̄) = h(t̄), g : C−ϕ 6→ A′m, which in
turn implies that gi : C−ϕ 6→ A′m for i ∈ m, and thus that Q(A′) = 0. We can now conclude
that Q(Am)−Q(A′m) ≥ m. J

I Lemma 28. Let ϕ =
∧
i∈n ϕi be a disconnected CQ# with the ϕi’s being its connected

conjuncts. If there exists k ∈ n so that for all x ∈ free(ϕ), x ∈ free(ϕk) and Cϕk → Cϕk
,

then GS∼1
STR(#ϕ) = GS∼1

STR(#ϕk).

Proof. Let h : Cϕk → Cϕk
, and A any structure. For any g : Cϕ → A, we define g as follows:

g(a) =
{
g(a) if a ∈ domain Cϕk

g ◦ h(a) otherwise

By construction, we have that g : Cϕk
→ A with g(a) = g(a) if a ∈ domain Cϕk

. But then it
is necessarily the case that #ϕ(A) = #ϕk(A). Finally, for any A ∼1 A′, |#ϕ(A)−#ϕ(A′)| =
|#ϕk(A)−#ϕk(A)|, which implies that GS∼1

STR(#ϕ) = GS∼1
STR(#ϕk). J

I Theorem 29. For every CQ# Q we have GS∼1
STR(Q) = ∆STR(Q).

Proof of Theorem 8. The proof derives immediately from Proposition 1 and Lemmas 25, 26, 27,
ans 28, that handle the five possibilities for Q separately. J
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C Proofs of Section 4

I Lemma 30. For any set of FDs Σ, CΣ is closed under taking substructures and disjoint
unions.

Proof. Given structures A,A′ with disjoint set of constants, note that if A t A′ does not
satisfy an FD R[i→ j], then there must be a connected component that does not satisfy it.
This means that either A or A′ does not satisfy R[i→ j]. Therefore, A t A′ ∈ CΣ provided
A,A′ ∈ CΣ.

Given structures A ⊆ A′ so that A′ ∈ CΣ note that, for every element a ∈ A and relation
R, we have

|{b̄[j] | b̄ ∈ RA, b̄[i] = a}| ≤ |{b̄[j] | b̄ ∈ RA′ , b̄[i] = a}|
≤ 1

and thus A ∈ CΣ. J

I Lemma 31. #chaseΣ(ϕ) ≡CΣ #ϕ.

Proof. First note that chaseΣ(ϕ) and ϕ may not be equivalent. For example, for ϕ(x, y, z) =
R(x, y) ∧R(x, z) and Σ = {R[1→ 2]}, we have chaseΣ(ϕ) = R(x, y) which has only two free
variables as opposed to ϕ. However, note that any application of the rule of chase, preserves
the number of solutions since we are replacing a variable x with another variable y that must
be mapped to the same element for any homomorphism to a structure of CΣ. We therefore
have that #chaseΣ(ϕ) ≡CΣ #ϕ. J

I Lemma 32. For every CQ ϕ there is a homomorphism Cϕ → CchaseΣ(ϕ).

Proof. Remember that we assuming that ϕ is satisfiable in CΣ (see note in §Preliminaries)
and thus that chaseΣ(ϕ) 6= ⊥. Note that any application of a rule of chase to ϕ resulting in
ϕ′, corresponds to identifying two elements a, a′ in Cϕ. Thus, the function h(a′) = a and
h(a′′) = a′′ for any a′′ 6= a′ in Cϕ is in fact a homomorphism from Cϕ to C′ϕ. By transitivity
of homomorphisms, we obtain that there must be a homomorphism Cϕ → CchaseΣ(ϕ). J

I Lemma 33. CchaseΣ(ϕ) ∈ CΣ.

Proof. Remember that we assume that ϕ is satisfiable over CΣ (see note in §Preliminaries),
and thus that chaseΣ(ϕ) 6= ⊥. If CchaseΣ(ϕ) does not satisfy a FD R[i→ j] in Σ, then there
must be two tuples t̄, s̄ ∈ RCchaseΣ(ϕ) so that t̄[i] = s̄[i] but t̄[j] 6= s̄[j]. But this means
that there is a conjunct R(t̄) and another one R(s̄) with the same properties, which means
that chaseΣ(ϕ) is not saturated by the rules of chase, which is a contradiction. Thus,
CchaseΣ(ϕ) ∈ CΣ. J

I Lemma 34. chaseΣ(core(chaseΣ(ϕ))) = core(chaseΣ(ϕ)).

Proof. If there would be a pair of conjuncts R(t̄) and R(s̄) in core(chaseΣ(ϕ)) so that
t̄[i] = s̄[i] and s̄[j] 6= s̄[j], this would mean that there are such conjuncts in chaseΣ(ϕ) (since
the core is isomorphic to a substructure). This cannot be because chaseΣ(ϕ) is saturated
by the rules of chase, and thus we must have that there is no chase rule applicable to
core(chaseΣ(ϕ)). Hence, chaseΣ(core(chaseΣ(ϕ))) = core(chaseΣ(ϕ)). J
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I Lemma 35. core(core(ϕ)) = core(ϕ).

Proof. By minimality of core, it is idempotent. J

I Lemma 36. For every CQ query Q over σk and set of FD’s Σ, we have GS∼1
CΣ (Q) > 0.

Further, there are σk-structures A,A′ ∈ CΣ so that A ∼1 A′, A′ ⊆ A, Q(A) > 0 and
Q(A′) = 0.

Proof. Let Q = #ϕ. Note that Cϕ → CchaseΣ(ϕ) by Lemma 32 and Cϕ 6→ Bk, where Bk is
the structure with just constants {c1, . . . , ck} and no relations. Further, CchaseΣ(ϕ) ∈ CΣ by
Lemma 33, Bk ⊆ CchaseΣ(ϕ) and therefore Bk ∈ CΣ by Lemma 30. Thus, by Observation 3,
there must be some A ∼1 A′ so that Cϕ → A and Cϕ 6→ A′. Further, it is easy to see that
there are such structures so that A,A′ ∈ CΣ. J

Proof of Proposition 2. Let ϕ =
∧
i∈n ψi(x̄i) so that each ψi is a connected conjunct

and assume x̄1 6= (). Let A,A′ ∈ CΣ be so that A ∼1 A′, A′ ⊆ A, #(
∧

2≤i≤n ψi)(A) −
#(
∧

2≤i≤n ψi)(A′) > 0; by Lemma 36 these structures exist. Let AN = C−chaseΣ(ψ1) t · · · t C−chaseΣ(ψ1)︸ ︷︷ ︸
N times

and let BN = ANtA, B′N = ANtA′. Note that BN ,B′N ∈ CΣ (as a consequence of Lemmas 30
and 33) and that BN ∼1 B′N . Since each ψi is connected, we have #ψi(BN ) = #ψi(AN ) +
#ψi(A) and #ψi(B′N ) = #ψi(AN )+#ψi(A′). Let fi(N) def= #ψi(AN ) = N ·#ψi(C−chaseΣ(ψ1))

(since ψi is connected), Mi
def= #ψi(A), M ′i

def= #ψi(A′) for i ∈ 2. Then,

#ϕ(BN )−#ϕ(B′N ) =

=
∏
i∈n

#ψi(BN )−
∏
i∈n

#ψi(B′N ) (by Lemma 21)

=
∏
i∈n

(#ψi(AN ) + #ψi(A))−
∏
i∈n

(#ψi(AN ) + #ψi(A′))

=
∏
i∈n

(fi(N) +Mi)−
∏
i∈n

(fi(N) +M ′i)

Since Mi,M
′
i do not depend on N , and since

for every i, fi is non-decreasing by Lemma 20,
for every i, Mi ≥M ′i by Lemma 20,
there is some i ∈ n, i > 1 so that Mi > M ′i since otherwise we would have

#(
∧

2≤i≤n
ψi)(A)−#(

∧
2≤i≤n

ψi)(A′) = 0,

contradicting our hypothesis,
we obtain that

g(N) def=
∏

2≤i≤n
(fi(N) +Mi) >

∏
2≤i≤n

(fi(N) +M ′i)

def= g′(N)
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for every N . Note that f1 is strictly increasing since C−ψ1
→ C−chaseΣ(ψ1) (as a consequence of

Lemma 32) and ψ1 has free variables. Therefore, we have

lim
N→∞

#ϕ(BN )−#ϕ(B′N )

= lim
N→∞

(f1(N) +M1) · g(N)− (f1(N) +M ′1) · g′(N)

≥ lim
N→∞

(f1(N) +M1) · g(N)− (f1(N) +M1) · g′(N) (since M1 ≥M ′1)

= lim
N→∞

(f1(N) +M1) · (g(N)− g′(N))

=∞ (since limN→∞ f1(N) =∞ and g(N)− g′(N) > 0)

and thus GS∼1
CΣ (#ϕ) =∞. J

Proof of Theorem 11. This theorem is the immediate consequence of Lemmas 37 and 39
below. J

I Lemma 37. Given a set Σ of functional dependencies and a CQ# connected query Q, we
have that

GS∼1
CΣ (Q) ≤ ∆+

Σ(Q).

Proof. Let Q = #ϕ(x̄) be a connected CQ# query, for x̄ = (x1, . . . , xn). By Lemmas 24
and 31 we can assume that ϕ = core(chaseΣ(ψ)) where we can further assume that ψ = ϕ

by Lemmas 34 and 35.
Let 1 < GS∼1

CΣ (Q) (otherwise the statement is trivial). Thus, there are A ∼1 A′ so
that Q(A) − Q(A′) = N > 1. Note that this means that there are N homomorphisms
h1, . . . , hN : Cϕ → A so that |{hi(x̄) | i ∈ N}| = N and hi : Cϕ 6→ A′ for all i ∈ N .
• If A = A′ t {a}, then N ≤ 1, because every h : Cϕ → A so that h : Cϕ 6→ A′ verifies

h(x̄) = (a, . . . , a), as a consequence of ϕ being connected. This is in contradiction with our
assumption N > 1.
• Then, it must be that A = A′ where for some R, b̄ we have RA = RA′t{b̄} and SA = SA′

for every other relational symbol S 6= R.
Given ā ∈ RCϕ and pj : ā  Cϕ

xj for all j ∈ n, note that there cannot be more than
maxj #Σ(pj) distinct hi’s so that hi(ā) = b̄, as otherwise A would not satisfy Σ. Therefore
we obtain

|{i | hi(ā) = b̄}| ≤ max
j∈n

min
pj :ā Cϕxj

#Σ(pj). (2)

Summing over all possible ā we obtain

N ≤
∑
ā∈RCϕ

|{i | hi(ā) = b̄}|

≤
∑
ā∈RCϕ

max
i∈n

(
min

pi:ā Cϕxi

#Σ(pi)
)

(by (2))

≤ ∆+
Σ(Q).

Thus, GS∼1
CΣ (Q) ≤ ∆+

Σ(Q). J
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I Corollary 38. For Σ = ∅, the above Lemma 37 implies that ∆STR(Q) ≥ ∆+
Σ(Q) ≥

GS∼1
STR(Q), concluding the proof of Theorem 1.

I Lemma 39. Given a set Σ of functional dependencies and a connected CQ#
core query Q,

we have that

∆−Σ(Q) ≤ GS∼1
CΣ (Q).

Proof. Let Q = #ϕ(x̄) be a connected CQ#
core query, for x̄ = (x1, . . . , xn), over a vocabulary

σk. By Lemma 36, Q has global sensitivity of at least 1. Hence, since ∆−Σ(Q) ∈ {1,∞}, let
us suppose that ∆−Σ(Q) =∞ and let us show that GS∼1

CΣ (Q) =∞. Due to Lemmas 24 and
31, we can assume that ϕ = core(chaseΣ(ψ)), so that ψ = ϕ by Lemmas 34 and 35, and so
that Cϕ ∼= core(Cϕ), since ϕ ∈ CQcore. Note that since CchaseΣ(ϕ) ∈ CΣ by Lemma 33 and
Ccore(chaseΣ(ϕ)) ⊆ CchaseΣ(ϕ), we have Ccore(chaseΣ(ϕ)) = Cϕ ∈ CΣ by Lemma 30.

We show that for any given N ∈ N, GS∼1
CΣ (Q) ≥ N . Let R and ā ∈ RCϕ be as in the

definition of ∆−Σ(Q). Let xj be so that every path p : ā Cϕ
xj is so that #Σ(p) =∞. For

each such path p let tp be the maximum index verifying p[tp] = (S, i, a, i′, b) where
b is not a constant, and for every t′ > tp, p[t′] contains no constants, and
#ΣS[i→ i′] =∞;

by definition of #Σ(p) =∞ such tp must exist. Let

K = {(S, i, i′, b̄) | p : ā Cϕ xj ,

p[tp] = (S, i, b̄[i], i′, b̄[i′]), b̄ ∈ SCϕ}.

Note that K is a cut-set of edges that induces a partition of Cϕ = A tA′ —in the sense
that if we remove all tuples in K from Cϕ we obtain a connected component induced by A—
so that ā ∩A 6= ∅ and xj ∈ A′.

Let B = Cϕ|A, B′ = Cϕ|A′ , B′N = B′ t · · · t B′︸ ︷︷ ︸
N times

. Note that, by construction, B′ contains

no constants and thus B′N is a well-defined σk-structure. We build A as the minimal model
so that

it contains B t B′N as a substructure
for every (S, i, i′, b̄) ∈ K and t ∈ N we have b̄t ∈ SA, where

b̄t[i] =
{
b̄[i] from B if b̄[i] ∈ A,
b̄[i] from the t-th copy of B′ if b̄[i] ∈ A′.

Note that, in particular, b̄t[i′] is in the t-th copy of B′, and b̄t[i] is in the B component of
A.

Figure 5 depicts the definitions of K, B, B′ and A in an example.
I Claim 1. A ∈ CΣ.

Proof. The fact that B t B′N ∈ CΣ is a direct consequence of Cϕ ∈ CΣ and Lemma 30. Note
that if there is a violation of some S[i→ i′] ∈ Σ by the presence of some b̄, b̄′ ∈ SA so that
b̄[i] = b̄′[i] and b̄[i′] 6= b̄′[i′], then either

b̄, b̄′ were already in Cϕ which is not possible since Cϕ ∈ CΣ, or
b̄[i] ∈ A belongs to the B component of A and b̄[i′], b̄′[i′] ∈ A′ belong to the B′N component
of A. In this case, there must be elements (S, i, i′, b̄) and (S, i, i′, b̄′) in K which implies
that #ΣS[i → i′] = ∞ and thus S[i→ i′] 6∈ Σ, which is in contradiction with our
hypothesis.
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xj

ā B

B0C' K

A

Figure 5 Example of construction of B,B′,A, assuming that the query uses only one binary
relation R, the set of functional dependencies is Σ = {R[1→ 2]} and N = 2. Square vertices represent
free variables, rounded vertices bound variables and triangles constants.

Hence, there are no such b̄, b̄′, and thus A ∈ CΣ. J

I Claim 2. Q(A) ≥ N .

Proof. Note that if ϕ(A) must contain one answer in which the j-th component is in each of
the copies of Cϕ|A2 . Since there are N copies in A, |ϕ(A)| ≥ N . J

Let A′ be the result of removing ā from RA in A. Note that A′ ∈ CΣ by Lemma 30 since
A ∈ CΣ.

I Claim 3. A ∼1 A′

I Claim 4. Q(A′) = 0.

Proof. This is because
Cϕ ∼= core(Cϕ),
A′ → C−ϕ

where C−ϕ is the result of removing ā from RCϕ in Cϕ. Note that Cϕ → A′ would imply
Cϕ ∼= core(Cϕ)→ C−ϕ , and since C−ϕ ( Cϕ (and thus C−ϕ → Cϕ), this would mean that Cϕ
is not a core. Since this contradicts with our assumptions, we obtain Cϕ 6→ A′. J

Therefore, Q(A)−Q(A′) = N . J

D Proofs of Section 5

We say that A is an induced S-substructure of B if it is an S-substructure so that
SA = SB ∩ Aarity(S) for all S ∈ S. In this case we say that A is the S-substructure
induced by A and we denote it by B|A. It easy to see that the core of A is isomorphic to
an induced substructure of A.2

I Lemma 40. For any set of CD’s Σ, CΣ is closed under taking substructures and disjoint
unions.

2 For more details about the properties of cores, we refer the reader to [24].
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Proof. By Lemmas 35 and 24 let us assume that Q = #ϕ(x̄) so that core(ϕ) = ϕ, and let
x̄ = (x1, . . . , xn). Given A ∼1 A′ with A,A′ ∈ CΣ, we show that Q(A)−Q(A′) ≤ ∆+

Σ(Q).

• Suppose first that A = A′ t {a}. By definition of ∼1, it follows that a is in no relation
in A′. This, plus the fact that ϕ is connected, implies that every homomorphism h : Cϕ → A
verifies h−1(a) = ∅. Thus, #ϕ(A) = #ϕ(A′) and #ϕ(A′)−#ϕ(A) = 0 ≤ ∆+

Σ(Q).

• If A = A′, then there must be R ∈ R and ā so that RA = RA′ t {ā}, and SA = SA′ for
any other S ∈ R \ {R}. Let Q(A)−Q(A′) = N > 0. In particular, this means that there are
N homomorphisms h1, . . . , hN : Cϕ → A so that |{hi(x̄) | i ∈ N}| = N and hi : Cϕ 6→ A′.

Given ȳ ∈ RCϕ , let p1, . . . , pn be so that pj : ȳ  Cϕ xj for all j ∈ n. This implies that
there cannot be more than

∏
i∈n #Σ(pi) distinct hi’s so that h(ȳ) = ā. Applying this for all

possible p̂1, . . . , p̂n we obtain that there are no more than

min
p1,...,pn s.t.

pi:ā Cϕxi for i ∈ n

(∏
i

#Σ(pi)
)

hi’s so that hi(ȳ) = ā. Note that for every hi there must be some ȳ ∈ RCϕ so that hi(ȳ) = ā,
as otherwise we would have hi : Cϕ → A′. Therefore,

N ≤
∑
ā∈RCϕ

 min
p1,...,pn s.t.

pi:ā Cϕh(xi) for i ∈ n

(∏
i

#Σ(pi)
)

≤ ∆+
Σ(Q).

Thus, GS∼1
CΣ (Q) ≤ ∆+

Σ(Q). J

Proof of Theorem 17. We show ∆−Σ(Q) ≤ GS∼1
CΣ (Q). To this end, we show that there are

A,A′ ∈ CΣ so that A ∼1 A′ and |Q(A)−Q(A′)| ≥ ∆−Σ(Q).
For any structure A and a ∈ A we define the expansion at a of A, denoted by exp(A, a),

as the structure with domain dom(exp(A, a)) equal to

{(ε, a)} ∪ {(w, b) ∈ N+ ×A | p : a A b, |p| = |w|,
and for all ` ∈ |w| we have

1 ≤ w[`] ≤ #ΣT [i→ j] for
p[`] = (T, i, c, j, c′)}

and with an interpretation for T ∈ σ

T exp(A,a) =


{(w, b) | b ∈ TA} if T is unary,
{((w, b), (w′, b′)) |

(b, b′) ∈ TA ∧
(w ∼1 w

′ ∨ w = w′)} if T is binary,

where w ∼1 w
′ if for some t ∈ N we have w = w′ · t or w · t = w′. See Figure 6-(b) and -(c)

for an example.
Let R, ā, p1, . . . , pn be the witnesses of the max’s and min in the definition of ∆−Σ(Q).

Let us assume that R is binary and that

ā[1] 6= ā[2] (3)
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Figure 6 Example of construction of A,A′, assuming R = R1, ā = (x4, x3) and Σ = {R1[1 1−→ 2],
R1[2 1−→ 1], R3[1 2−→ 2], R3[2 1−→ 1], R4[1 1−→ 2], R4[2 2−→ 1], R5[1 2−→ 2], R5[2 1−→ 1]}, and ϕ(x1, x2) =
∃x3, x4, x5 . R2(x4, x4) ∧R1(x4, x3) ∧R5(x4, x1) ∧R3(x4, x2) ∧R4(x5, x2) ∧ T1(x3) ∧ T2(x5).

since the cases where this does not hold are only easier. Let C′ϕ ∼1 Cϕ be the result of
removing ā from RCϕ in Cϕ. Let A′ = exp(C′ϕ, ā[1]) ∪ exp(C′ϕ, ā[2]) and let A be the result
of adding ((ε, ā[1]), (ε, ā[2])) to RA′ . Figure 6 contains an example.

I Observation 4. Note that A ∼1 A′.

I Observation 5. For every (w, a), (w′, a′) ∈ A so that a = a′ we have |w| = |w′|.

I Claim 5. A,A′ ∈ CΣ.

Proof. By Lemma 40, it suffices to show that A ∈ CΣ since A′ ⊆ A.
Let T [i→ j]k ∈ Σ and let (w, b) be an element of A. We show that

|{b̄[j] | b̄ ∈ TA, b̄[i] = (w, b)}| ≤ k. (4)

Wlog let us fix i = 1 and j = 2. By definition of A it follows

{b̄[j] | b̄ ∈ TA, b̄[i] = (w, b)} =
{(w′, b′) | (b, b′) ∈ TCϕ ∧ (w ∼1 w

′ ∨ w = w′)}. (5)

Let us define types of binary relations:

(a) the one contaning all non-looping relations of C′ϕ (i.e., {S | ∃a ∈ Cϕ, π : 2→ 2 s.t. a 6=
b ∧ (a, b)π ∈ SC′ϕ});

(b) the one contaning all looping relations of Cϕ (i.e., {S | (b, b) ∈ SC′ϕ}); and
(c) {R | ā[1] = b ∨ ā[2] = b}.
By the no repeated joins assumption, these three sets are disjoint. In fact, they are a partition
of the binary relations containing b in Cϕ. We now show that (4) holds for T in any of these
sets of relations.

(a) Let us first asume that T is of the type (a). The following are direct consequences of the
equality (5) above.
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By the hypothesis of no repeated joins, for every element a of Cϕ there is at most
one b in Cϕ so that (a, b) ∈ TCϕ or (b, a) ∈ TCϕ . Therefore, by definition of
dom(exp(Cϕ, ā[1])) [resp. dom(exp(Cϕ, ā[2]))] there are no more than #ΣT [i → j]
(and thus no more than k) elements (b′, w′) so that w ∼1 w

′ and (b, b′) ∈ TCϕ in
exp(Cϕ, ā[1]) [resp. exp(Cϕ, ā[2])].
The images of the interpretation of binary relations of exp(Cϕ, ā[1]) and of exp(Cϕ, ā[2])
are disjoint, due to the acyclicity of Cϕ and the assumption (3) that ā[1] 6= ā[2]. In
particular, there is no element present simultaneously in T exp(Cϕ,ā[1]) and T exp(Cϕ,ā[2]).

Thus, there are no more than k elements (w′, b′) in A so that (b, b′) ∈ TCϕ with w′ ∼1 w.
(b) If T is of type (b), then there is at most one element (w′, b′) so that (b, b′) ∈ TCϕ and

(w ∼1 w
′ ∨ w = w′), which is the case where (w, b) = (w′, b′).

(c) If T = R, then there is at most one element (w′, b′) so that (b, b′) ∈ TCϕ and (w ∼1
w′ ∨ w = w′), which is when b = ā[1], b′ = ā[2] (or viceversa), and w = w′ = ε.

Thus, we have that (4) holds, which proves the statement. J

I Claim 6. Q(A′) = 0.

Proof. Note that there is no homomorphism h : Cϕ → A′ since otherwise the homomorphic
image of ā would need to verify h(ā) ∈ RA′ , while we know by construction that RA′ = ∅.
Then, there is no b̄ in A′ so that A′ |= ϕ[b̄] and thus |ϕ(A′)| = 0. J

I Claim 7. For every b̄ = ((w1, b1), . . . , (wn, bn)) so that (wi, bi) ∈ A and bi = xi for all i ∈ n
we have that A |= ϕ[b̄].

Proof. Given b̄ as above, we define the homomorphism h : Cϕ → A as follows. We define
h(ā[1]) = (ε, ā[1]), h(ā[2]) = (ε, ā[2]). For every b lying in the (unique) simple path of A′
between ā[1] and bi for some i, we define h(b) = (w, b), where w is a prefix of wi. Note that
there is only one such w for a given b due to Observation 5.

Finally, we define inductively all the remaining elements. For every b′ already defined,
and for every b with distCϕ

(b, b′) = 1, we define h(b) = (w, b), where h(b′) = (w′, b′) and
w = w′1.

It is not hard to see that h is indeed a homomorphism from Cϕ to A, and that
(h(x1), . . . , h(xn)) = b̄. Hence, A |= ϕ[b̄]. J

I Claim 8. There are ∆−Σ(Q) many tuples of the form ((w1, b1), . . . , (wn, bn)) ∈ An with
bi = xi for all i ∈ n.

Proof. Let i ∈ n, and let r ∈ {1, 2} be so that there is a path from ā[r] to xi in C′ϕ, let
pi : ā[r] Cϕ

xi and let t = |pi|. The number of elements (w, xi) in A is then given by the
cardinality of

S = {v ∈ Nt | pi[j] = (T, s, a, s′, b) ∧
1 ≤ v[j] ≤ #ΣT [s→ s′] for all j ∈ t},

which is equal to #Σ(pi). Thus, the number of tuples of the form above is given by
N

def=
∏
i∈n #Σ(pi).

I Observation 6. Note that if we would take p′i : ā[3 − r]  Cϕ xi then #Σ(pi) ≤ #Σ(p′i).
Thus, #Σ(pi) = minp:ā Cϕxi

#Σ(p).
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By the previous Observation 6, we have

N = min
p1,...,pn s.t. pi:ā A{xi} for all i

(∏
i

#Σ(pi)
)

and by hypothesis on R and ā we obtain

N = max
R∈σ

max
ā∈RA

 min
p1,...,pn s.t.

pi:ā A{xi} for all i

(∏
i

#Σ(pi)
)

which proves the statement. J

Therefore, by Claims 7 and 8 we have that Q(A) ≥ ∆−Σ(Q), and due to Claim 6 we then
obtain that Q(A′)−Q(A) ≥ ∆−Σ(Q). Hence, by Claim 5 with Observation 4 we obtain that
GS∼1
CΣ (Q) ≥ ∆−Σ(Q).
Finally, if ā[1] 6= ā[2] [resp. if R is unary] we define A′ = exp(C′ϕ, ā[1]) and A as the

result of adding ((ε, ā[1]), (ε, ā[1])) [resp. (ε, ā[1])] to RA′ . It is easy to check that the same
argument works in this case. J

Proof of Corollary 38. Note that ∆STR(Q) ≥ ∆+
Σ(Q) for Σ = ∅. Indeed, if ∆STR(Q) = 1

this means that every free variable x ∈ free(ϕ) is included in every tuple. Therefore,
minp:ā Cϕx #Σ(p) = 1 for every free variable x and tuple ā and thus ∆+

Σ(Q) = 1. Thus, since
∆STR(Q) ∈ {1,∞}, the above Lemma 37 implies that ∆STR(Q) ≥ ∆+

Σ(Q) ≥ GS∼1
CΣ (Q) =

GS∼1
STR(Q) since CΣ = STR, concluding the proof of Theorem 1. J
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