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Abstract

Suitable shape representations as well as their temporal
evolution, termed trajectories, often lie to non-linear mani-
folds. This puts an additional constraint (i.e., non-linearity)
in using conventional machine learning techniques for the
purpose of classification, event detection, prediction, etc.
This paper accommodates the well-known Sparse Coding
and Dictionary Learning to the Kendall’s shape space and
illustrates effective coding of 3D skeletal sequences for ac-
tion recognition. Grounding on the Riemannian geometry of
the shape space, an intrinsic sparse coding and dictionary
learning formulation is proposed for static skeletal shapes
to overcome the inherent non-linearity of the manifold. As
a main result, initial trajectories give rise to sparse code
functions with suitable computational properties, including
sparsity and vector space representation. To achieve ac-
tion recognition, two different classification schemes were
adopted. A bi-directional LSTM is directly performed on
sparse code functions, while a linear SVM is applied after
representing sparse code functions using Fourier temporal
pyramid. Experiments conducted on three publicly avail-
able datasets show the superiority of the proposed approach
compared to existing Riemannian representations and its
competitiveness with respect to other recently-proposed ap-
proaches. When the benefits of invariance are maintained
from the Kendall’s shape representation, our approach not
only overcomes the problem of non-linearity but also yields
to discriminative sparse code functions.

1. Introduction
The availability of cost-effective and real-time human

body skeletal data estimation solutions [33] has pushed re-
searchers to study their shape as well as their temporal evo-
lution. In particular, the problem of action recognition from
3D skeletons has received a particular attention with the
availability of several datasets and end-users applications
as gaming, Human Machine Interaction, and physical per-
formance assessment, to cite a few. However, human ac-

tions observed from visual sensors are often subject to view
variations. Considering this problem, an efficient way for
analyzing 3D skeleton motions takes into account view-
invariance properties, giving rise to shape representations
often lying to non-linear shape spaces [2, 3, 25]. For in-
stance, Kendall [25] defines the shape as the geometric in-
formation that remains when location, scale, and rotational
effects are filtered out from an object. Accordingly, we rep-
resent 3D skeletons as points in the Kendall’s shape space,
considering skeletal sequences as trajectories [2]. However,
inferencing such a shape representation remains a challeng-
ing problem due to the non-linearity of the manifold of in-
terest. For example, the use of standard data coding (e.g.,
sparse coding, PCA, etc.) and machine learning techniques
(e.g., dictionary learning, SVM, deep learning, etc.) is not
straightforward. The problem is even more acute with the
introduction of the temporal dimension, i.e., analyzing tra-
jectories in Kendall’s shape space. In the literature, two
alternatives have been proposed to overcome these prob-
lems for different Riemannian manifolds – they are either
Extrinsic [17, 20, 23, 27] or Intrinsic [4, 5, 21, 22]. When
the first family is based on the embedding into high dimen-
sional Hilbert spaces, the second maps points on the man-
ifold to a fixed tangent space attached to the manifold at a
reference point. In the second family, the main issue is that
distortions are introduced when points are not close to the
reference point [1, 2, 35]. In this work, we propose an in-
trinsic solution to overcome the problem of non-linearity of
the Kendall’s shape space while avoiding mapping points to
a fixed tangent space at a reference point.

Motivated by the success of sparse representations in
several recognition tasks [6, 11, 17, 21], we propose to
represent human actions using an intrinsic formulation of
sparse coding and dictionary learning of skeletal shapes in
the Kendall’s shape space. Specifically, a 3D skeletal shape
is coded on its attached tangent space where the dictionary
of shapes is mapped. Hence, for each trajectory, this rep-
resentation gives rise to a function of sparse codes lying in
Euclidean space. By doing so, we handle the problem of
non-linearity of the manifold without mapping points to a



reference tangent space. Furthermore, we propose to learn
a dictionary grounding on the Riemannian geometry of the
Kendall’s shape space, with a novel initialization step al-
lowing an automatic inference on the number of atoms. In
the context of action recognition, our approach brings two
main advantages: (1) Sparse coding of skeletal shapes is
performed with respect to a Riemannian dictionary. Hence,
the resulting sparse code functions are expected to be more
discriminative than the data themselves [21]; (2) Using se-
quences of sparse codes as discriminative features allows us
to perform classification in vector space, avoiding the more
difficult task of classification on the manifold. The contri-
butions of this work are: 1) A novel human actions rep-
resentation based on an intrinsic sparse coding of skeletal
shape trajectories on the Kendall’s shape space. This allows
to map skeletal trajectories from a non-linear space to sparse
time-series in Euclidean space. 2) The dictionary of shapes
is learned with respect to the geometry of the manifold and
is preceded by a novel initialization step based on Bayesian
clustering of shapes and principal geodesic analysis, to au-
tomatically infer on the number of atoms. 3) Classification
of the sparse time-series using two different classification
schemes. Experiments are conducted on three commonly-
used datasets to show the competitiveness of the proposed
approach in the context of 3D action recognition.

The rest of the paper is organized as follows. In sec-
tion 2, we briefly review existing solutions of sparse coding
and dictionary learning in non-linear manifolds, in addition
to recent achievements in 3D action recognition using skele-
tal data, with a particular focus on Riemannian approaches.
Section 3 introduces the sparse coding and dictionary learn-
ing method with a review of the geometric properties of the
Kendall’s shape space. In section 4, we describe the adopted
temporal modeling and classification pipelines. Experimen-
tal results and discussions are reported in section 5, and sec-
tion 6 concludes the paper.

2. Prior Work
In this section, we firstly focus on the extension of sparse

coding and dictionary learning (SCDL) to non-linear Rie-
mannian manifolds. Then, we briefly review some recent
works in action recognition using 3D skeletal data.

2.1. SCDL on Riemannian manifolds

Sparse representations have proved to be successful in
various computer vision tasks [11] which explains the sig-
nificant interest in the last decade [6, 17, 21]. Based on a
learned dictionary, each data point can be represented as a
linear combination of a few dictionary elements (atoms),
so that a squared Euclidean loss is minimized. This as-
sumes that the data points as well as the dictionary atoms
are defined in vector space (to allow speaking on linear
combination). However, most suitable image features of-

ten lie to non-linear manifolds [30]. Thus, to sparsely
code these data while exploiting the invariance properties
of Riemannian manifolds, the classical problem of SCDL
needs to be extended to its non-linear counterpart. Previous
works addressed this problem [6, 16, 17, 18, 21, 27, 46].
For instance, a straightforward solution was proposed in
[16, 43] by embedding the manifolds of interest into Eu-
clidean space via a fixed tangent space at a reference point.
However, this solution does not take advantage of the en-
tire Riemannian structure as in this tangent space, only dis-
tances to the reference point are equal to true geodesic dis-
tances. To overcome this problem, Ho et al. [21] proposed a
general framework for SCDL in Riemannian manifolds by
working on the tangent bundle. Here, each point is coded on
its attached tangent space into which the atoms are mapped.
By doing so, only distances to the tangent point are needed.
Their proposed dictionary learning method includes an iter-
ative update of the atoms using a gradient descent approach
along geodesics. This general solution essentially relies on
mappings to tangent spaces using the logarithm map op-
erator. Although it is well defined for several manifolds,
analytic formulation of the logarithm map is not available
or difficult to compute for others. Therefore, some studies
[17, 18, 20, 27] proposed to embed the Riemannian man-
ifold into a Reproducing Kernel Hilbert Space (RKHS).
These are Euclidean spaces where linear SCDL becomes
possible. Recently, Harandi et al. [17] proposed to map the
Grassmann manifolds into the space of symmetric matrices
to overcome the latter problem and preserve several prop-
erties of the Grassmann structure. They also proposed ker-
nelized versions of the SCDL algorithms to handle the non-
linearity of the data, similarly proposed in [19] for Symmet-
ric Positive Definite matrices.

2.2. Action recognition from 3D skeletal sequences

Several recent approaches include the use of temporal
state-space model to classify action sequences without any
manifold assumptions on the data representation. Consider-
ing a human action as transitions between body poses over
time, G. Hernando et al. [13] proposed a forest-based classi-
fier called transition forests to discriminate both static pose
information and temporal transitions between pairs of two
independent frames. Another work [40] modeled a human
action as a set of semantic parts called motionlets obtained
by tracking then segmenting the trajectory of each joint. By
combining the motionlets and their spatio-temporal correla-
tions, they proposed an undirected complete labeled graph
to represent a video, and a subgraph-pattern graph kernel
to measure the similarity between graphs, then to classify
videos. More recently, two kernel-based tensor representa-
tions named sequence compatibility kernel (SCK) and dy-
namics compatibility kernel (DCK) were introduced in [26].
These can capture the higher-order relationships between



the joints. The first captures the spatio-temporal compat-
ibility of joints between two sequences, while the second
models a sequence dynamics as the spatio-temporal co-
occurrences of the joints. Tensors are then formed from
these kernels to train SVM. On the other hand, recurrent
neural networks (RNNs) have showed promising perfor-
mance when applied to 3D action recognition. For instance,
HBRNN-L [10] applied bidirectional RNNs hierarchically
by dividing a skeleton into five parts of neighboring joints.
Then, each is separately fed into a bidirectional RNN before
fusing their outputs to form the upper-body and the lower-
body. Similarly, these latter were fed into different RNNs
and their outputs fusion form the global body representa-
tion. More recently, the spatio-temporal LSTM (ST-LSTM)
[29] extended LSTM to spatio-temporal domains. To this
end, the analysis of a 3D skeleton joint considers spatial
information from neighboring joints and temporal infor-
mation from previous frames. In addition, a tree-structure
based method allows to better describe the adjacency prop-
erties among the joints. This method is further improved by
a gating mechanism to handle noise and occlusion.

Other approaches exploited some basics of the Rieman-
nian geometry to analyze skeletal sequences. In [35], the
authors proposed to represent skeletal motions as trajecto-
ries in the Special Euclidean (Lie) group SE(3)n (respec-
tively SO(3)n). These representations are then mapped into
the correspondent Lie algebra se(3)n (respectively so(3)n)
which is a vector space, the tangent space attached to
the Lie group at the identity, where they are processed
and classified. Exploiting the same representation on Lie
Groups, Anirudh et al. [1] used the framework of Trans-
ported Square-Root Velocity Fields (TSRVF) [34] to encode
trajectories lying on Lie groups. They extended existing
coding methods such as PCA, KSVD, and Label Consis-
tent KSVD to these Riemannian trajectories. Another ap-
proach [2] proposed a different solution by extending the
Kendall’s shape theory to trajectories. Accordingly, trans-
lation, rotation, and global scaling are first filtered out from
each skeleton to quantify the shape. Then based on the
TSRVF, they defined an elastic metric to jointly align and
compare trajectories. Here, trajectories are transported to
a reference tangent space attached to the Kendall’s shape
space at a fixed point. A common major drawback of these
approaches is mapping trajectories to a reference tangent
space which may introduce distortions. Conscious of this
limitation, the authors in [36] proposed a mapping of tra-
jectories on Lie groups combining the usual logarithm map
with a rolling map that guarantees a better flattening of tra-
jectories on Lie groups. In our work, we represent the mo-
tion of skeletal shapes as trajectories in the Kendall’s shape
space, as in [2]. To overcome the problem of non-linearity
of the manifold, we propose to code trajectories using an in-
trinsic formulation of SCDL that avoids distortions caused

by tangent space approximations.

3. Coding Kendall’s skeletal shapes
We propose to adapt a general intrinsic formulation of

Riemannian SCDL to the case of Kendall’s shape space.
This allows to represent a 3D skeletal shape lying on
Kendall’s space as a sparse vector encoded with respect to
a dictionary of shapes. In what follows, we start by briefly
reviewing the geometry of the manifold of interest. Then,
we describe the SCDL framework.

3.1. Geometry of the Kendall’s shape space

A skeleton is represented using a finite number of salient
points or landmarks (points in R3). To quantify skele-
tal shapes, Kendall [25] proposed to establish equivalences
with respect to shape invariant transformations that are
translations, rotations, and global scaling of configurations.
Let Z ∈ Rn×3 represent a skeleton, i.e., a configuration of
n landmarks in R3. To remove the translation variability, we
follow [8] and introduce the notion of Helmert sub-matrix,
a (n − 1) × n sub-matrix of a commonly used Helmert
matrix, to perform centering of configurations. For any
Z ∈ Rn×3, the product HZ ∈ R(n−1)×3 represents the
Euclidean coordinates of the centered configuration. Let C0
be the set of all such centered configurations of n landmarks
in R3, i.e., C0 = {HZ ∈ R(n−1)×3|Z ∈ Rn×3}. C0 is a
3(n − 1) dimensional vector space and can be identified
with R3(n−1). To remove the scale variability, we define
the pre-shape space to be: C = {Z ∈ C0|‖Z‖F = 1}; C
is a unit sphere in R3(n−1) and, thus, is (3n − 4) dimen-
sional. The tangent space at any pre-shape Z is given by:
TZ(C) = {V ∈ C0|trace(V TZ) = 0}. To remove the ro-
tation variability, for any Z ∈ C, we define an equivalence
class: Z̄ = {ZO|O ∈ SO(3)} that represents all rotations
of a configuration Z. The set of all such equivalence classes,
S = {Z̄|Z ∈ C} = C/SO(3) is called the shape space of
skeletons. The tangent space at any shape Z̄ is TZ̄(S) =
{V ∈ C0|trace(V TZ) = 0, trace(V TZU) = 0} , where
U is any 3 × 3 skew-symmetric matrix. The first condition
makes V tangent to C and the second makes V perpendicu-
lar to the rotation orbit. Together, they force V to be tangent
to the shape space S . Assuming standard Riemannian met-
ric on S, the geodesic between two points Z̄1, Z̄2 ∈ S is
defined as:

α(t) =
1

sin(θ)
(sin((1− t)θ)Z1 + sin(tθ)Z2O

∗), (1)

where θ = cos−1(〈Z,Z2O
∗〉) and O∗ is the optimal rota-

tion that aligns Z2 with Z1: O∗ = argminO∈SO(3)‖Z1 −
Z2O‖2F . This θ is also the geodesic distance between Z̄1

and Z̄2 in the shape space S, representing the amount of the
optimal deformation of Z̄1 into Z̄2. For t = 0, α(0) = Z̄1

and for t = 1 we have α(1) = Z̄2. Note that Kendall’s



shape space is a complete Riemannian manifold such that
logZ̄ is defined for all Z̄ ∈ S . As a consequence, the
geodesic distance between two configurations Z̄1 and Z̄2

can be computed as dS(Z̄1, Z̄2) = ‖ logZ̄1
(Z̄2)‖Z̄1

, where
‖.‖Z̄1

denotes the norm induced by the Riemannian metric
at TZ̄1

(S). In view of the spherical structure of C, analytic
expressions of the exponential and logarithm maps are well
defined [8, 25] and can be easily adapted to S. In summary,
we have analytical expressions for computing exponential
map, logarithm map, and intrinsic mean [24] of shapes on
S. We refer the reader to [2] for definitions.

3.2. Sparse coding of skeletal shapes

In this section, we propose to adapt the Riemannian for-
mulation of sparse coding proposed in [21] to the case of
Kendall’s shape space. To this end, we start by studying the
formulation of the problem in Euclidean space.

In Euclidean space, let D = {d1, d2, ..., dN} be a set of
vectors in Rk denoting a given dictionary of N elements
or atoms, and z ∈ Rk a query data point. The problem of
sparse coding z with respect to D can be expressed as

lE(z,D) = min
w
‖z −

N∑
i=1

[w]i di‖
2
2 + λf(w), (2)

where w ∈ RN denotes the vector of codes comprised of
{[w]i}Ni=1, f : RN → R is the sparsity inducing function
defined as the `1 norm, and λ is the sparsity regularization
parameter. Eq. (2) seeks to optimally approximate z (by ẑ)
as a linear combination of atoms, i.e., ẑ =

∑N
i=1 [w]i di,

while tacking into account a particular sparsity constraint
on the codes, f(w) = ‖w‖1. This sparsity function has the
role of forcing z to be represented as only a small number
of atoms.

Moving to the case of Kendall’s shape space, D =
{d̄1, d̄2, ..., d̄N} is now a dictionary on S, and similarly
the query Z̄ is a point on S. Accordingly, the problem of
sparse coding involves the geodesic distance defined on S
and, thus, becomes

lS(Z̄,D) = min
w

(dS(Z̄, C(D, w))2 + λf(w)). (3)

Here, C : SN × RN → S denotes an encoding function
that generates the approximated point ˆ̄Z on S by combin-
ing atoms with codes. Note that in the special case of Eu-
clidean space, C(D, w) would be a linear combination of
atoms. However, in the Riemannian manifold S, we have
forsaken the structure of vector space which makes the lin-
ear combination of atoms lying on S no longer applicable,
as the approximated ˆ̄Z may lie out of the manifold. An in-
teresting alternative is the intrinsic formulation of Eq. (3),
when considering that S is a complete Riemannian mani-
fold, thus, the geodesic distance dS(Z̄, d̄) = ‖ logZ̄(d̄)‖Z̄

Algorithm 1 Kendall Sparse Coding
Input: Dictionary D = {d̄i}Ni=1, d̄i ∈ S; Z̄ ∈ S (query)
Output: Sparse codes vector w∗of the query Z̄.

1: for i = 1 to N do
2: Vi ← logZ̄(d̄i) //Projection of D into TZ̄(S)
3: end for
4: w∗ = argminw ‖

∑N
i=1 [w]i Vi‖22 + λf(w)

(as explained in section 3.1). As a consequence, the cost
function in (3) can be written as

lS(Z̄,D) = min
w
‖

N∑
i=1

[w]i logZ̄(d̄i)‖
2
Z̄ + λf(w), (4)

where logZ̄ denotes the logarithm map operator that maps
each atom d̄ ∈ S to the tangent space TZ̄(S) at the point
Z̄ being coded, and ‖.‖Z̄ is the norm induced by the Rie-
mannian metric at TZ̄(S). Mathematically, this allows to
partially compensate the lack of vector space structure on
S, as illustrated in Fig. 1. To avoid the solution w = 0, we
imposed in Eq. (4) an important additional affine constraint
defined as

∑N
i=1 [w]i = 1. In algorithm 1, we provide a

summary of the SC approach on Kendall’s shape space.

Figure 1. Pictorial of the sparse coding approach on the pre-shape
space C. The approximation of x ∈ C could be viewed as a
weighted Karcher mean of the atoms of a dictionary D = {di}Ni=1.

3.3. Dictionary Learning on Kendall’s Space

Learning a discriminative dictionary D typically yields
accurate reconstruction of training samples and produces
discriminative codes with the desired structure, e.g., spar-
sity. In this section, we propose to learn D using the geom-
etry of S. Before describing our approach, it is important to
note that the performance of D is sensitive to the number of
atoms N . To the best of our knowledge, all previous meth-
ods opted for an empiric choice of N , which tends to be
highly time consuming, especially when it comes to large
datasets. As a solution, we propose an elegant initialization
step enabling a fully automatic inference on N . Moreover,
it remarkably accelerates the convergence of the dictionary
learning algorithm, as illustrated in the right panel of Fig. 2.



Dictionary initialization – Given m training skeletons
on S, the idea is to select N relevant atoms to initialize the
dictionary. This is done in two main steps: (1) Clustering
of skeletal shapes; (2) Generating atoms from each cluster
such that they well describe the intra-cluster variability. In
the first step, we adapted the Bayesian clustering of shapes
of curves method proposed in [45] to cluster skeletal shapes
in the Kendall’s shape space. Following [45], an inner prod-
uct matrix is calculated from the data, i.e., skeletal shapes
in our case. Then, it is modeled using a Wishart distribu-
tion. To allow for an automatic inference on the number of
clusters, prior distributions are assigned to the parameters of
the Wishart distribution. Then, posterior is sampled using
a Markov chain Monte Carlo procedure. For more details
about the clustering algorithm, we refer the reader to [45].
At this point, we suppose having h clusters on S. The next
step is to process each cluster independently to generate ini-
tial atoms.

For each cluster, an immediate atom candidate would
be the Karcher mean shape µ̄ ∈ S . However, µ̄ is not
sufficient to summarize the intra-cluster variability. Thus,
we propose to perform principal geodesic analysis (PGA),
first proposed by [12], to generate the most representative
atoms of the cluster. More specifically, we map all cluster
elements to the tangent space of the Karcher mean shape
Tµ̄(S) using logarithm map, overcoming the lack of vec-
tor structure on S. Then, we perform principal component
analysis (PCA) in this vector space. Finally, the resulting
vectors are mapped to the manifold S using exponential
map to become shapes on S and constitute initial atoms of
D. Atoms generated from all clusters are then gathered to-
gether to define the initial dictionary D. Note an important
advantage of performing PGA in each cluster and not in the
whole training set is that in a cluster, elements on S are
relatively close to each others, i.e., pairwise geodesic dis-
tances between them are relatively small. Therefore, when
mapping them to Tµ̄(S), we avoid the problematic case of
having points that are in the cut locus of µ̄.

Dictionary optimization – We present a dictionary
learning algorithm based on the sparse coding framework
described above. First, we recall the formulation of the
problem in Euclidean space. Given a finite set of training
observations {z1, z2, ..., zm} in Rk, learning Euclidean dic-
tionary is defined as to jointly minimize the coding cost over
all choices of atoms and codes according to:

lE(D) = min
D,w

m∑
i=1

∥∥∥∥∥∥zi −
N∑
j=1

[wi]jdj

∥∥∥∥∥∥
2

2

+ λf(wi). (5)

To solve this non-convex problem, a common approach al-
ternates between the two sets of variables, D and w, such
that: (1) Minimizing over w while D is fixed is a convex
problem (i.e., sparse coding). (2) Minimizing Eq. (5) over

D while w is fixed is similarly a convex problem.
Moving to the case of Kendall’s shape space, D =

{d̄1, d̄2, ..., d̄N} is now a dictionary on S, and similarly
{Z̄1, Z̄2, ..., Z̄m} is a set of training samples on S. Sim-
ilarly to the Kendall sparse coding problem, we introduce
in Eq. (5) the geodesic distance defined on S computed as
dS(Z̄, d̄) = ‖ logZ̄(d̄)‖Z̄ . As a consequence, the problem
of dictionary learning on Kendall’s shape space is written
as

min
D,w

m∑
i=1

∥∥∥∥∥∥
N∑
j=1

[wi]j logZ̄i
d̄j

∥∥∥∥∥∥
2

Z̄i

+ λf(wi), (6)

with the important affine constraint
∑N

j=1 [w]j = 1. Sim-
ilar to the Euclidean case, the optimization problem can be
solved by iteratively performing sparse coding while fixing
D, and optimizing D while fixing the sparse codes. In Al-
gorithm 2, we provide a summary of the dictionary learning
approach on Kendall’s shape space.

Algorithm 2 Kendall Dictionary Learning.
Input: Training set Z = {Z̄i}mi=1, where Z̄i ∈ S;

nIter: number of iterations
Output: Kendall dictionary D = { ¯dj}

N

j=1, d̄j ∈ S
1: Dictionary initialization (Clustering - PGA)
2: for k = 1 to nIter do
3: Sparse Coding using Algorithm 1 while D is fixed,

{w∗
i }mi=1 are the output sparse codes.

4: Updating atoms using line-search algorithm to solve
Eq. (6) while {w∗

i }mi=1 are fixed.
5: end for

4. Temporal modeling and classification
Let {Z̄1, Z̄2, ..., Z̄L} be a sequence of skeletons repre-

senting a trajectory on S. As described in section 3.2,
we code each skeleton Z̄i into a sparse vector of codes
wi ∈ RN with respect to a dictionaryD (D is given a partic-
ular structure described later on in this section). As a con-
sequence, each trajectory is mapped to an N -dimensional
function of sparse codes and the problem of classifying tra-
jectories on S is turned to classifying N -dimensional sparse
codes functions in Euclidean space, where any traditional
operation on Euclidean time-series (e.g., standard machine
learning techniques) could be directly applied. Several
methods in the literature tend to process and classify time
series [1, 2, 35, 36]. In our work, we adopt two different
classification schemes to perform action classification: (1)
A pipeline of dynamic time warping (DTW), Fourier tem-
poral pyramid (FTP), and one-vs-all linear SVM, as in [35].
Thus, we handle rate variability, temporal misalignment and
noise, and classify final features, respectively. We refer to
[35] for details; (2) Long short-term memory (LSTM) [7],



which is a variant of recurrent neural networks (RNN) that
brings the advantage of learning long-term temporal depen-
dencies. Moreover, we explored the use of bidirectional
LSTM (Bi-LSTM), an extension of the traditional LSTM
that presents each sequence backwards and forwards to two
separate recurrent networks, providing context both from
the future and past, respectively [14].

Dictionary structure – In the context of classification,
one may exploit the important information of data labels
to construct more discriminative feature vectors. To this
end, we propose to build class-specific dictionaries, simi-
larly to [15]. Formally, let S be a set of labeled sequences
on S belonging to q different classes {c1, c2, ..., cq}, we aim
to build q class-specific dictionaries {D1, D2, ..., Dq} in S
such that each Dj is learned using skeletons belonging to
training sequences from the corresponding class cj . In this
scenario, coding a query skeletal shape Z̄ ∈ S is done with
respect to each Dj,1≤j≤q , independently. As a result, q vec-
tors of codes are obtained. These vectors are then concate-
nated to form a global feature vector W . As discussed in
section 5, this yields to more discriminative feature vectors
for classification.

5. Experiments
In this section, we evaluate the proposed skeletal repre-

sentation using three benchmark datasets presenting differ-
ent challenges: Florence3D-Action [32], UTKinect-Action
[42], and MSR-Action 3D [28]. The obtained recognition
accuracies are discussed in section 5.2 with respect to Rie-
mannian approaches, other recent approaches that used 3D
skeletal data, and to a kernel-based SCDL approach that we
implemented. Additional experiments were conducted to
evaluate the main properties of our proposed approach.

Florence3D-Action [32] dataset consists of 9 actions
performed by 10 subjects. Each subject performed every
action two or three times for a total of 215 action sequences.
The 3D locations of 15 joints collected using the Kinect sen-
sor are provided. The challenges of this dataset consist of
the similarity between some actions and also the high intra-
class variations as same action can be performed using left
or right hand.

UTKinect-Action [42] dataset consists of 10 actions
performed twice by 10 different subjects for a total of 199
action sequences. The 3D locations of 20 different joints
captured with a stationary Kinect sensor are provided. The
main challenge of this dataset is the variations in the view
point.

MSR-Action 3D [28] dataset consists of 20 actions per-
formed by 10 different subjects. Each subject performed
every action two or three times for a total of 557 sequences.
The 3D locations of 20 different joints captured with a depth
sensor similar to Kinect are provided with the dataset. This
is a challenging dataset because of the high similarity be-

tween many actions (e.g., hammer and hand catch).

5.1. Experiments Settings and Parameters

For all datasets, we followed the cross-subject test set-
ting of [38], in which half of the subjects was used for
training and the remaining half was used for testing. Re-
ported results were averaged over ten different combina-
tions of training and test data. For Florence3D-Action and
UTKinect-Action datasets, we followed an additional set-
ting for each: Leave-one-actor-out (LOAO) [32, 37] and
Leave-one-sequence-out (LOSO) [42], respectively. For
MSR-Action3D dataset, we also followed [28] and divided
the dataset into three subsets AS1, AS2, and AS3, each
consisting of 8 actions, and performed recognition on each
subset separately, following the cross-subject test setting of
[38]. The subsets AS1 and AS2 were intended to group ac-
tions with similar movements, while the subset AS3 was
intended to group complex actions together. In all ex-
periments, we performed recognition based on two clas-
sification schemes, as explained in section 4, to evaluate
the performance of our proposed representation and its in-
dependency to a specific classifier. In the first scheme, we
used a pipeline of DTW, FTP, and one-vs-all linear SVM as
in [35]. In all experiments, we used a six-level Fourier tem-
poral pyramid and fixed the value of SVM parameter C to
1. In the second scheme, we train the network with one Bi-
LSTM layer. The minimization is performed using Adam
optimizer and the applied probability of dropout is 0.3, for
all experiments. Due to variations in terms of the num-
ber of joints and sequence length for different datasets, the
value of neuron size was chosen based on cross-validation
for each dataset.

5.2. Results and discussion

A. Comparison to existing Riemannian representations
Table 1 reports recognition accuracies for different Rieman-
nian skeletal representations. Conforming to other methods,
we compare results obtained using the evaluation protocol
of [38] for Florence3D, UTKinect, and MSR-Action, in ad-
dition to the protocol of [28] for MSR-Action. Moreover, as
in [2] human actions are also first represented as trajectories
in the Kendall’s shape space, we report additional results of
[2] on Florence3D and UTKinect datasets to give more in-
sights about the strength of our coding approach compared
to the method of [2]. In Table 1, it can be seen that we obtain
better results than all Riemannian approaches on the three
datasets. We recall that one drawback of these methods is to
map trajectories on manifolds to a reference tangent space,
which may introduce distortions in the case points are not
close to the reference point. Our method avoids such a non-
trivial problem as coding of each shape is performed locally,
on its attached tangent space. First, we discuss our results
obtained with the first classification scheme, i.e., FTP repre-



sentation with linear SVM, similarly used in [1, 35, 36]. In
the three datasets, it is clearly seen that our approach outper-
forms existing approaches when using the same classifica-
tion pipeline, which shows the effectiveness of our skeletal
representation. For instance, we highlight an improvement
of 1.73% on MSR-Action 3D (following protocol [28]) and
1.45% on Florence3D-Action.

Now, we discuss the results we obtained using Bi-LSTM.
Note that although we do not perform any preprocess-
ing on the sequences of codes when using this classifier,
our approach still outperforms existing approaches on Flo-
rence3D, with 1.64% higher accuracy. However, it per-
forms less well on UTKinect yielding an average accuracy
of 96.89% against 97.08% obtained in [35]. In MSR-Action
3D, our approach performs better than the method of [1] us-
ing the first protocol. Note that in [1], results were averaged
over all 242 possible combinations. However, our average
accuracy is lower than other approaches following both pro-
tocols on this dataset (around 3.5% in the first and 0.62% in
the second). Here, it is important to mention that data pro-
vided in MSR-Action 3D are noisy [31]. As a consequence,
using Bi-LSTM without any additional processing step to
handle the noise (e.g., FTP) could not achieve state-of-the-
art results on this dataset.

Table 1. Comparison to Riemannian representations.
Method MSR3D1 Florence UTK MSR3D2

T-SRVF Lie group [1] 85.16 89.67 94.87 –
T-SRVF on S [2] 89.9 70.40* 89.82* –
Lie Group [35] 89.48 90.8 97.08 92.46

Rolling rotations [36] – 91.4 – –
Kernel-based SCDL* – 85.76* 88.94* –
Ours (FTP-SVM) 90.01 92.85 97.39 94.19
Ours (Bi-LSTM) 86.18 93.04 96.89 91.84

1 Average accuracy following protocol of [39].
2 Average accuracy following protocol of [28].
* Experiments were conducted as part of our work.

B. Comparison to State-of-the-art We discuss our re-
sults with respect to recent non Riemannian approaches. In
all datasets, our approach achieved competitive results.

Florence3D-Action – On this dataset, our method out-
performs other methods using Bi-LSTM in the case of
LOAO protocol, as shown in Table 2. However, using the
second protocol, it is 2.19% lower than [26]. The authors
of [26] combine two kernel representations: sequence com-
patibility kernel (SCK) and dynamics compatibility kernel
(DCK) which separately achieved 92.98% and 92.77%, re-
spectively. The proposed approach achieves good perfor-
mance for most of the actions. However, the main confu-
sions concern very similar actions, e.g., Drink from a bottle
and answer phone.

UTKinect – Results are reported in table 3. Following
the LOSO setting, our approach achieves the best recog-

Table 2. Florence3D: comparison with state-of-the-art.
Method LOAO prot. of [38]

Graph-based [40] 91.63 –
T-Forest [13] 94.16 –

SCK+DCK [26] – 95.23
Ours (FTP-SVM) 92.27 92.85
Ours (Bi-LSTM) 94.48 93.04

nition rate with each of the adopted classifiers, yielding to
an improvement of 2.49% compared to the method of [29],
which is based on an extended version of LSTM. For the
second protocol, our best result is competitive to the accu-
racy of 98.2% obtained in [26]. Considering the main chal-
lenge of this dataset, i.e., variations in the view point, our
approach confirms the importance of the invariance prop-
erties gained by adopting the Kendall’s representation of
shape, hence, the relevance of the resulting functions of
codes generated using the geometry of the manifold.

Table 3. UTKinect: comparison with state-of-the-art.
Method LOSO prot. of [38]

ST-LSTM [29] 97.0 95.0
JLd+RNN [44] – 95.96

Graph-based [40] – 97.44
SCK+DCK [26] – 98.2

Ours (FTP-SVM) 97.50 97.39
Ours (Bi-LSTM) 98.49 96.89

MSR-Action 3D – For the experimental setting of [28],
our best result is competitive to recent approaches. In par-
ticular, on AS3, we report the highest accuracy of 100%.
This result shows the efficiency of our approach in recogniz-
ing complex actions, as AS3 was intended to group complex
actions together. On AS1, we achieved one of the highest
accuracies (95.87%). However, our result on AS2 is about
8.9% lower than state-of-the-art best result. This shows that
our approach performs less well when recognizing similar
actions, as AS2 was intended to group similar actions to-
gether. Although our best result is slightly higher than [26],
it is lower than the same method when following the ex-
perimental setting of [39]. This shows that our approach
performs better in recognition problems with less classes.

Table 4. MSR-Action 3D: comparison with state-of-the-art.
Method AS1 AS2 AS3 Avg1 Avg2

SCK+DCK [26] – – – 93.96 91.45
HBRNN-L [10] 93.33 94.64 95.50 94.49 –

T-Forest [13] 96.10 90.54 97.06 94.57 –
ST-NBNN [41] 91.5 95.6 97.3 94.8 –

Ours (FTP-SVM) 95.87 86.72 100 94.19 90.01
Ours (Bi-LSTM) 92.72 84.93 97.89 91.84 86.18

1 Average accuracy for AS1, AS2, and AS3 following [28].
2 Average accuracy following protocol of [39].

C. Comparison to an extrinsic SCDL method To fur-
ther evaluate the strength of the proposed intrinsic ap-
proach, we compare it to a kernel-based SCDL method



that we implemented. Several works studied kernels on the
2D Kendall manifold. However, to our knowledge, none
of them has proved the existence of valid positive definite
(PD) kernels on the 3D Kendall manifold. In [23], for 2D
shapes, the authors proved the positive definiteness of the
Procrustes Gaussian kernel (PGk) which is based on the full
Procrustes distance (fPd). For 3D shapes, we adapted the
general kernel-based SCDL formulation of [17] by apply-
ing the PGk of [23] in which we also adapted the fPd to
3D shapes as dFP ([z1], [z2]) = sin(θ) (see section 4.2.1
of [9]) (θ is the geodesic distance defined in section 3.1).
Experimentally, we checked the positive definiteness of the
adapted PGk and found out that it is only PD for some val-
ues of σ. We empirically chose 0.1 for Florence3D and 0.3
for UTKinect as to have valid PD kernels. Results reported
in Table 1 show superiority of our method.

D. Additional Experiments We evaluate some properties
of the proposed SCDL approach. In addition, we compare
the performance of using Bi-LSTM against a traditional
LSTM. These experiments were conducted on the Florence-
3D dataset.

Sparsity regularization – In this experiment, we evalu-
ate the effect of the sparsity regularization parameter λ (in
Eq. (3) and Eq. (6)) on recognition accuracies obtained us-
ing both of the adopted classifiers. To do so, we used half
of a training set for learning the dictionary and training the
classifiers and the other half for validation. The first graph
of Fig. 2 shows the impact of increasing λ from 10−4 to
1 at steps of 10−2. Further, we report the average sparsity
percentage (i.e., number of non-zero codes divided by the
total number of codes) for some values of λ to show the co-
herence of the obtained codes with the proposed theory. As
expected, the sparsity percentage increases when increas-
ing λ. We remark that the accuracy reached a maximum
value at λ = 0.01 (37% of sparsity) and λ = 0.02 (49%
of sparsity) for SVM and Bi-LSTM, respectively. Note that
in all previous experiments, λ was chosen empirically so to
correspond to these latter percentages of sparsity.
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Figure 2. Left: Accuracy when varying the sparsity regularization
parameter λ (% values in the x-axis represent the average spar-
sity). Right: Dictionary learning objective over iterations for: (1)
Random initialization; (2) Our proposed initialization based on
Bayesian clustering and PGA.

.

Dictionary structure – As described in section 4, we

build class-specific dictionaries. To show the relevance of
this structure in the context of classification, we compare it
to the case of using a global dictionary, e.g., when labels
are not taken into account. The obtained recognition ac-
curacies using Bi-LSTM and following the LOAO setting
are 94.48% and 91.53% for class-specific and global dic-
tionary, respectively. These results clearly prove that the
adopted structure is better in classifying actions.

Dictionary initialization – In this experiment, we eval-
uate the performance of our proposed initialization step
based on Bayesian clustering of shapes and PGA. To this
end, we compare it to the case of random initialization,
where atoms are randomly selected from the training set.
We train a class-specific dictionary (for class tight lace in
Florence3D dataset) with the same training data in both
cases. For the case of random initialization, we set the
number of atoms N to 41 to be equal to that of our pro-
posed initialization. Recall that in our approach, N is auto-
matically inferred to avoid its empiric choice, especially as
we build class-specific dictionaries. In Fig. 2, on the right
graph, we plot the two corresponding dictionary learning
objectives over iterations. As it is expected, the proposed
initialization shows faster convergence, dividing the overall
dictionary learning processing time by approximately two
times, when taking into account the execution time of our
initialization step.

Performance of Bi-LSTM – We compared average ac-
curacies yielded by Bidirectional LSTM and a traditional
LSTM. Following LOAO experimental setting, using Bi-
LSTM shows an improvement of around 0.7%, indicating
the positive effect of learning both future and past contexts
to recognize actions.

6. Conclusion
In this paper, we represented a 3D human skeleton as

a point in the Kendall’s shape space, hence a human ac-
tion as a trajectory in this space, to consider important in-
variance properties for shape analysis. Due to the inher-
ent non-linearity of this manifold, we proposed to sparsely
code each skeletal shape on its attached tangent space with
respect to a trained dictionary, avoiding the problematic
mapping of points to a fixed tangent space attached to the
manifold. We initialized the dictionary by clustering skele-
tal shapes and principal geodesic analysis in the clusters.
This step not only accelerated the dictionary learning algo-
rithm but also inferred automatically the number of atoms.
We learned the initial dictionary using the geometry of the
Kendall’s shape space. Our coding scheme yielded to rep-
resent trajectories as sparse code functions allowing to di-
rectly process and classify them in vector space. This was
illustrated on the problem of 3D action recognition using
two different classifiers and achieved competitive results
with respect to the literature.
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