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and Integrity Monitoring

Franck Li1,2, Philippe Bonnifait1 and Javier Ibañez-Guzmán2

Abstract—Navigation maps provide critical information for
Advanced Driving Assistance Systems and Autonomous Vehicles.
When these maps are refined to lane-level, ambiguities may occur
during the map-matching process, particularly when positioning
estimates are inaccurate. This paper presents a dead-reckoning
method implementing a Particle Filter to estimate a set of likely
map-matched hypotheses containing the correct solution with a
high probability. Our method uses lane-level maps that feature
dedicated attributes such as connectedness and adjacency. The
vehicle position is essentially estimated by dead-reckoning sensors
and lane detection using an intelligent camera. We also describe
an integrity monitoring method for assessing the coherence of the
set of hypotheses, using the fix of a Global Navigation Satellite
System receiver. The method provides in real-time a “Use/Don’t
Use” characterization of the vehicle positioning information that
is transmitted to safety functions, where integrity is fundamental.
The performance of the proposed map-aided dead-reckoning
method with integrity monitoring is evaluated using data ac-
quired by an experimental car on suburban public roads. The
results obtained validate the approach.

I. INTRODUCTION

Intelligent vehicles need a digital description of the world
to navigate autonomously. For this, prior information on road
network features is crucial. The information is usually stored in
georeferenced road maps providing geometric and contextual
information such as lane markings, traffic signs, etc. Map
suppliers are working intensively to produce maps that meet
the stringent requirements of intelligent vehicles in terms of
content and accuracy.

Accessing relevant information requires that a vehicle is
accurately localized with respect to these maps. For this pur-
pose, Global Navigation Satellite Systems (GNSS) receivers
provide an affordable means of acquiring the vehicle’s absolute
position on Earth. The process of associating these position
estimates to roads on a map is known as Map-Matching (MM).
Given that GNSS measurements are often subject to errors of
as much as several meters [1], matching the true position on a
lane-level map remains challenging, and GNSS technology is
often supplemented using information from the car’s sensors.
Most solutions use wheel speed sensors and low cost gyros
to improve accuracy. This is called dead-reckoning (DR).
Exteroceptive information acquired by on-board perception
sensors (e.g. cameras and lidars) can also be processed to
improve positioning estimates.

Combining the various information sources is not always
enough to remove all ambiguities on the matched positions.
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To guarantee the reliability of the information provided by
the MM, the algorithm has to be able to track multiple
hypotheses [2]. But this is only a first step in creating a
positioning system whose integrity may be relied on. To be
reliable, the positioning information needs to be unambiguous
and confirmed by a redundant information source. To comply
with this, a fault detection test can be performed on the
hypotheses tracked by the system in order to reduce the set
of hypotheses to a minimum, and ideally to a single solution
usable by client applications for which safety is particularly
important.

This paper presents a method that solves lane-level MM
using a Particle Filter (PF) and provides integrity monitoring
of the result using GNSS information. Section II reports
related work. Section III presents the lane-level map used
in this research. Section IV provides details about the PF
MM developed along with a multi-hypotheses integrity con-
sideration. Section V then develops an integrity monitoring
method to check the coherence of the positioning information.
A “Use/Don’t Use” decision strategy is defined. Finally, results
using real road data are presented in Section VI.

II. RELATED WORK

Previous works have investigated PF for MM purposes:
Oh et al. [3] included map priors with GPS positioning in
a PF-based pedestrian localization algorithm. The map data
represents a probability distribution over the test area, defining
the likelihood of the location. Positioning enhancement is the
main contribution, demonstrating the use of map data in the
filter. The particles were used only to represent the position
posterior density, and not to manage multiple hypotheses.

The same principle was applied to vehicles by Peker
et al. [4], who in addition merged odometry information.
Topology is added to the map, providing information on
the probability of a given trajectory. The results focus not
only on raw positioning but on the correctness of the MM.
Once again, even though the algorithm uses the particles to
consider multiple possible matchings, the output is still mono-
hypothesis. Choosing the hypothesis with the highest weight
can lead to errors.

Filters can also process information from exteroceptive sen-
sors, as done by Gu et al. [5], where lane marking detections
from a camera were used. Focusing on dense urban environ-
ments prone to multipath problems, the authors processed the
GNSS information using 3D maps of buildings to detect this
kind of error. This provides a cleaner GNSS position to be
integrated into the positioning system. It is then fused with
lane markings using a PF and map information.
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The most important difference between the present work
and the previously cited papers is that we retain the multi-
hypothesis ability of the PF all the way up to the output of
the system: where classic algorithms would make a choice,
our filter outputs all likely hypotheses so as to avoid having
to choose arbitrarily a hypothesis that is potentially wrong. If
the filter has enough non-ambiguous information to provide a
single hypothesis, then this hypothesis will be very reliable.
The other significant difference is that the filter is designed
to assess the coherence of the positioning information using
redundancy. GNSS positioning information is therefore used
as little as possible in the filter. Where it is used, this is mainly
to evaluate its consistency with map-aided dead-reckoning.

III. HIGH-DEFINITION MAP

Accurate road maps are useful in many intelligent vehicle
applications as providers of contextual information. Multiple
representations of the road network have been proposed, such
as clothoidal models [6], Lanelets [7]. This section gives a
description of the map structure used in this paper.

A. Lane-Level Road Maps

The road map used in this research is a mesoscale lane-
level road map [8] (see Fig. 1). Mesoscale, situated between
macroscale (e.g. a road guidance map) and microscale (e.g.
a dense point cloud from perception sensors), is the most
suitable scale for intelligent vehicles, as it carries accurate
information without being too dense for easy use [9]. The
prototype map used in this paper, produced from field survey
data acquired by a mapmaker, covers 4 km of public roads in
Compiègne with an absolute accuracy of 2 cm. The map is
stored as an SQLite database containing the following relevant
information:
• Road Geometric Information: common to all road maps

(blue lines in Fig 1). Polylines describe the geometry
of the driving lanes by their center line, using a local
Cartesian frame. The road network is split into Links
representing a segment of road on which the properties
stay constant (e.g. width, lane markings, etc).

• Lane Markings: every drivable lane has information on
the nature of its delimiting borders (orange lines in
Fig 1). A geometric description is given and additional
information is included, such as the type of marking (e.g.
a solid line). Note that not only painted markings are
referenced: for example, a pavement can be indicated if
no other delimitation is present.

• Road Connectedness: to navigate in the Links network,
information about connected links (i.e. previous and next
accessible links) is given. This gives a more efficient
way to determine which link is reachable along the track
of the current position (respecting traffic rules) without
costly distance calculation to determine nearby links. This
describes intersections, but also lane merging and forking
(a situation shown in Fig. 1).

• Lane Adjacency: similarly to Road Connectedness
(above), this gives information on lanes adjacent to the
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Figure 1. Detail of the map at a lane forking in Compiègne, France. The
centerlines of the lanes are drawn in blue and the lane markings in brown.
The upper road is drivable from east to west. The upper blue polyline of the
right lane separates into two lanes.

current lane that may be available for cross-track evolu-
tion, i.e. lane changing.

All this information is held in a relational database and
therefore available easily and at low computational cost for
any Link in the map. The filter described below relies on this
to perform efficiently.

B. Semantic Information

A digital road map can be viewed as a Geographic Informa-
tion Database, containing the coordinates of the different road
structures. This is the natural approach when dealing with a
digital map. But the most recent digital maps, such as the
one used in this article, contain richer information that allows
advanced MM processing. For instance, every link accessible
from a given matched position is easily accessible from the
database, without the need for costly computation. Using a
traditional map, when the 2D position of the car changes,
a new matching has to be performed. However, where this
additional information is present, the evolution of the map-
matching can be directly estimated: a 2D evolution can be
projected into a 1D evolution on the map links. The map thus
provides a framework relatively independent of the 2D-plane
geometry: the evolution of the MM takes place in the 1D map
space instead of the 2D plane space, providing a more efficient
evolution.

C. Adjacent Links

Another important feature of our research map is adjacency
information: every link is aware of the links on either side.
This provides a useful way of checking for matching ambi-
guities, given that adjacent links present the biggest challenge
for lane-level MM. Where this information is available directly
from the map, no costly computations are required, and the
exploration of hypotheses is greatly improved. This adds an
interesting lateral capability for map exploration in addition to
the longitudinal capability that is provided by the information
from successive links. The matching algorithm thus has a
complete framework for making efficient use of the map,
removing some of the heavy computation and taking advantage
of the efficient map design.

IV. SEQUENTIAL MAP-MATCHING USING PARTICLE
FILTERING

A. Multiple Hypotheses Approach

The goal of the method described here differs from the most
common MM methods. For instance, in classical automotive
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systems used for turn-by-turn navigation, MM should give the
user a single position estimate as a result. This corresponds to
the usual requirement of these systems: a single position must
be used to calculate a route and, in most cases, if this position
is erroneous, the user is able to notice the error, disregard the
given information and wait for a correct matching.

MM for autonomous navigation systems, on the other hand,
must not be over-confident about its results: the worst-case
scenario would be to provide an erroneous single position,
since there may be no human to detect the error and correct
it. If the matching is ambiguous, then the algorithm should
retain the ambiguity and not make a decision. In the past,
reference algorithms [10] often addressed map-matching only
via a roadway level map (i.e. where roads are described by a
single link for each direction). More recent research tends to
be oriented toward lane-level maps [11], [9], which present a
lot of ambiguities that must be taken into consideration.

This illustrates the notion of MM integrity [12], which will
be developed later in this paper. In this context, the ability to
track multiple MM hypotheses is highly relevant, hence our
choice of a PF [13]. PF is a commonly used method for map-
matching [14], [15], [16], [17]. Its ability to manage multiple
hypotheses is interesting in this context for providing a certain
level of integrity, especially in ambiguous situations, where
single hypothesis methods could lose track of the correct
solution. The PF we describe implements measures to avoid
this situation by exploring and retaining a number of likely
hypotheses, which is made possible by an efficient use of the
map. This section describes the different steps of the MM
algorithm developed in this study (see Fig. 2).

B. Particle Definition

The PF is used to estimate the posterior distribution of
the car’s position, given its sensor inputs and the map. The
particles model the car’s 2D pose Xi

p (composed of the
Cartesian 2D coordinates (xi, yi) and heading ψi), plus (mli),
the ID of the map link that it is matched to, as described
by Eq. 1. This is the state Xi that each particle possesses,
representing a single-position hypothesis together with its
map-matched solution.

Xi = (Xi
p,ml

i) = (xi, yi, ψi,mli) (1)

Additionally, each particle possesses a weight wi charac-
terizing its likelihood as a positioning solution. The complete
structure of a particle is then given by Eq. 2:

Parti = (Xi, wi) (2)

The particle’s 2D pose follows a unicycle evolution model,
using as inputs the speed and yaw rate obtained from the car’s
proprioceptive sensors: xit = xit−1 + vit ·∆t · cosψit−1

yit = yit−1 + vit ·∆t · sinψit−1
ψit = ψit−1 + ωit ·∆t

(3)

U it = [vit, ω
i
t]
T is the input vector of the ith particle, with

vit ∼ N (vraw , σ
2
v) and ωit ∼ N (ωraw, σ

2
ω), based on raw

measurements of the vehicle speed and yaw rate (vraw , ωraw )
with an added random noise. The noise, added independently
for each particle, allows them to spread as they evolve.

The matched ID mli, being a discrete value, evolves differ-
ently, without a dynamic model per se. Two approaches are
used consecutively: first, particles are map-matched once in
the filter initialization step (see Section IV-C) and, second, in
the main loop the links are followed logically using attributes
stored in the lane-level map describing connectedness and
adjacency (as described in Section IV-D). This separation
into two steps provides an optimization in terms of real-time
computation, as described in detail below.

C. Initialization Step

The first step is the map handling. SQL-based map formats
are appropriate when using large map coverage and database
size, because of the possibility they offer to make spatial
queries to a specific position. Although queries generally
execute rapidly, query formatting and returned data parsing
cause significant CPU load and consequently a long response
time. SQL should therefore be limited to one-off queries,
and the process can be made more efficient by incorporating
caching methods, as implemented by Bonnifait et al. [18]
where map information of the local area is loaded into memory
as the car moves from one position to another. The approach
presented in this paper loads the whole map directly when
initializing, as its size is relatively limited.

After loading the SQL map into an internal data structure
(i.e. directly accessible), the filter initializes its particles on the
first valid GNSS position received. This step is shown in the
red box in the top part of the PF box in Fig. 2. Particles
are generated around this position, in a circular pattern to
cover the full area corresponding to the associated Horizontal
Protection Level (HPL) (see Fig. 3), circumventing any bias
the GNSS fix might have. The HPL denotes an area in which,
at a given risk level, the true position is guaranteed to be
found. Modern receivers are now beginning to implement these
kinds of computations, as integrity is becoming an increasingly
important part of localization [19]. This step initializes the 2D
coordinates (xi, yi) part of the particle state.

Each particle is then matched to the closest link, following
a point-to-curve method that selects the link candidate with
the lowest Euclidean distance to the particle. This process
accounts for most of the computational load during the initial-
ization step, since the distance of every particle to the different
link candidates needs to be evaluated. Concerning the vehicle
heading, it is assumed that the vehicle is traveling on-road,
and that this road is present in the map. It is thus reasonable
to initialize the heading of each particle to correspond to the
bearing of its matched link. This process sets the values of the
rest of the state (ψi,mli), finalizing the initialization of the
particles.

This initialization ensures that all the links present in the
map around this position are considered, if enough particles
are provided. This is the problem of particle density: the larger
the initialization area, the more particles are needed to main-
tain an acceptable particle density, essential for an efficient
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Figure 2. Flowchart of the map-matching process. Based on a particle filter, the algorithm takes as input a GNSS fix with HPL and the car’s dead-reckoning.
The process is separated into two steps, namely a computationally intensive initialization followed by a highly efficient main loop. Exteroceptive information
is used in the computation of likelihood.

Figure 3. Particle Initialization: colors denote the matched link. The initial
heading corresponds to the matched link. Some particles are far from the
links due to the 50 m HPL (high value chosen to be conservative), but will
potentially be quickly eliminated during a resampling step.

PF. Some particles are clearly created outside the drivable
area represented in the map. This illustrates the fact that the
particles are not strongly constrained on the map and can
evolve in the 2-dimensional space, not only on the centerlines.
The filter consequently has spatial flexibility, limited only by
the decreasing likelihood of particles (for example one that
gets too far away from a link). These particles will be quickly
eliminated by the filter during the update step, following the
natural evolution of their likelihood.

D. Main Loop

This second step takes over after the filter has been initial-
ized (see the bottom part of the PF box in Fig. 2). The 2D
pose evolves using Eq. 3 (state prediction step in Fig. 2). By
design, the computations required during the matching update
step are far fewer than during the initialization step: further
iterations do not require as many distance calculations. The
matching evolves thanks to an efficient use of the map data.

A B

M1
+

M2
+

0<r<1 r>1

Figure 4. Particle at time t = 1 (M1) remains on the current segment [AB],
while at time t = 2 (M2) it has left it. This is determined by calculating the
ratio r described by Eq. 4.

A B

MAB
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MBC
MBD

MBE C
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Figure 5. Lane bifurcation where particle cloning occurs: the particle MAB

is duplicated into MBC , MBE and MBD in order to do a thorough search.

1) Nominal case: Let Mi be the position of a particle at
time step i and [AB] be the matched segment. To determine
if the matched segment needs to be updated, the ratio

r = (
−−→
AB ·

−−→
AM)/||

−−→
AB||2 (4)

is computed: if r > 1 (respectively r < 0), the particle has left
the current segment and has to be associated with the next one
(respectively the previous one) by simply using the connect-
edness information of the map. This situation is illustrated in
Fig. 4. Based on this information, the ratio r becomes the only
value requiring computation, which improves the efficiency of
the main loop.

2) Case of multiple successors: Situations can arise where
the current link has multiple successors. In this case, the
filter follows a thorough exploration strategy: when leaving the
current segment, a clone particle is created for each successor
and matched accordingly (see Fig. 5). This effectively covers
all hypotheses at the lane bifurcation. The cloned particles are
exact copies of the original, and the evolution model together
with the map data will allow a selection to be made, so that
only the most likely hypotheses among the clones are retained.
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3) Lateral lane change: Another possible evolution is a
change to an adjacent lane. This is made possible as the
particles are not constrained to evolve only on the links but
also laterally. Using lane marking information from the map
(see Section III-A), the lane width can be determined. When
a particle leaves the boundaries of its matched link, it will be
transferred to the adjacent link, if one exists.

All the information needed for the matching to evolve is
contained in the map structure, making the main loop filtering
highly efficient for the purposes of MM.

E. Likelihood Calculation and Resampling

The final step in the PF is the likelihood update and
resampling step. These are necessary to keep a consistent
particle set. The likelihood of a particle is expressed through its
weight: the higher the weight, the more likely the hypothesis.
It is updated after each iteration of the filter. Since the MM
algorithm is as independent from the GNSS as possible, the
likelihood computation is done by comparing the particle state
to the prior map information. This is the way dead-reckoning
is map-aided.

1) Map likelihood: A Sampling Importance Resampling
(SIR) PF is used, as described by Arulampalam el al. [13],
but maintaining a recursive weight calculation such that:

wit = wit−1 · p(zt|Xi
t) (5)

where zt represents the measurements, which correspond to
two metrics computed using the map. The first metric is the
heading difference (∆ψi) between the particle and the link, as
used by Merriaux et al.[20]. This metric is a good likelihood
indicator for map-matching, allowing the links whose heading
evolution does not correspond to the dead-reckoned estimate
to be eliminated quickly. A Gaussian distribution is assumed
such as

fψ(∆ψi) ∼ N (0, σψ) (6)

to represent the particle likelihood with respect to its heading.
It is centered on 0 (maximum likelihood if the particle heading
is the same as its link) with a typical standard deviation of
σψ = 15◦ (value set experimentally during the tuning stage of
the method). Note that this heading metric cannot discriminate
parallel links.

The second metric is the orthogonal distance (d⊥) to the
centerline: this takes into account that the farther a particle is
from the roadway, the less likely it is. To reflect the fact that
a car is equally likely to be located in any lateral position on
the roadway, the likelihood function is defined as

fd(d
⊥) =

{
1 if |d⊥| < L

max{1− |d
⊥|−L
m , 0} otherwise

(7)

where L is half the width of a driving lane, and m is the margin
on either side of the lane where the likelihood decreases
linearly, forming a trapezoidal distribution (see Fig. 6). We
chose this shape in order to have efficient computation in real-
time. When two lanes are adjacent, the two functions overlap
so that there is no discontinuity when a particle changes lane:
the top part of the adjacent lane’s trapezoid begins where the
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Figure 6. Trapezoidal likelihood function for orthogonal distance (based on
the French regulations relating to the width of roads). The car is equally likely
to be in any lateral position on the roadway.

current lane’s trapezoid ends. In other words, the sloping parts
only apply when there is no other lane adjacent to the current
lane, because otherwise the particle would change its matching
and apply the likelihood function of the new lane.

Given that the two errors are considered conditionally
independent, (5) can be computed as

wit = wit−1 · fψ(∆ψi) · fd(d⊥) (8)

2) Lateral information from a camera: The smart camera
used in the system is able to detect the ego-lane markings
and return them using polynomial models. For each detected
lane marking, the camera returns the coefficients of a third-
degree polynomial [21] (see Eq. 9) approximating the equation
of a clothoid, where x and y are coordinates in the camera’s
working frame (C,−→xc,−→yc) (see Fig. 7).

y =
C3

6
· x3 +

C2

2
· x2 + C1 · x+ C0 (9)

In practice, the highest coefficients (the curvature C2 and
curvature derivative C3) are often very noisy and do not
provide reliable information. Therefore, only C0 (the lateral
offset, in meters) and C1 (the line heading, in Rad.) are used,
the lane marking being considered as a straight segment. This
approximation still gives a good estimate of the line position
and orientation with respect to the car. Note that the algorithm
would also work with other sources of information (e.g. lidar-
based lane detection) that are able to provide lane detection
in a similar manner.

As presented in Sec. III-A, lane markings are additional
information included in the map. They follow the same geo-
metric representation as the centerlines (i.e. polylines). Each
driving lane directly references the lane markings (if they
exist) that delimit it, and it is therefore possible to obtain
the equation y = C1 · x + C0 for the current left and right
markings.

This exteroceptive information, if available, is used during
the update step of the filter to calculate the likelihood of
each particle on the basis of richer information [22]. Note
that the lane markings are not always detected by the camera.
This can be caused by difficult conditions for the sensor, for
instance, bad lighting, a wet road surface, faded markings,
etc. The camera also performs best when moving in a straight
line, since the marking tracking can be challenging in high-
curvature roads [23]. In these cases, the camera indicates a
low confidence level and the likelihood calculation reverts to
the map-only likelihood described previously.
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Figure 7. Reference frames used by the camera for describing lane markings.
Dashed orange lines represent lane marking data from the map. Camera
detections are represented in blue. The lane centerline is in black.

If marking detection is available, lateral positioning in
the lane is taken into account. The same procedure as the
original filter is followed but slightly modified: with marking
information, the likelihood will be centered on the relative
lateral positioning according to the detection [16]. To do
this, two position ratios are computed, describing the lateral
position of the vehicle in its lane. The first position ratio
uses the marking detection from the camera, i.e. the signed
distances C0,l and C0,r (respectively the C0 coefficients of
the left and the right lane marking detection, and respectively
negative and positive, see Fig. 7) and is defined as:

rlatcam =
C0,l

C0,l − C0,r
(10)

The second position ratio corresponds to the map data: for
each particle (i.e. position hypothesis) the theoretical ratio is
computed using the distances Lmap and Rmap of the left and
right lane markings to the centerline (both unsigned), and the
signed distance dpart of the particle to the centerline (positive
to the right):

rlatmap =
Lmap + dpart
Lmap +Rmap

(11)

The car within the limits of the lane markings will thus have
a ratio between 0 (when on the left-hand marking) and 1 (on
the right-hand marking). Absolute lane marking distances are
not used so as to address a possible scaling factor discrepancy
between the lane detection provided by the camera and the
map information. In other words, if an incorrect lane width
is stored in the map, the ratios are still valid. The physical
meaning of these ratios is a percentage of the driving lane
width. For example, a ratio of 0.1 is 10% of the width of
a lane, which might for instance correspond to a distance of
0.35 m on a lane that is 3.5 m wide.

If the camera observations are in accordance with the parti-
cle position on the map, the two ratios will be approximately

the same. To verify this, the difference between them is used
to compute the likelihood:

∆r = rlatmap − rlatcam (12)

The closer to zero the value is, the better the particle fits
the camera observation. The likelihood function is thus set
as a Gaussian distribution centered on 0 (i.e. a null difference
meaning rlatmap = rlatcam, a perfect fit), described byN (0, σdist),
with σdist = 0.1. This difference in ratio would correspond
to a 10% error (0.35 m on a 3.5 m lane). The value is set
empirically, as the camera does not provide any quantitative
indicator of accuracy.

In the same way, instead of considering the car being
aligned with the road segment, the heading coefficients from
the camera C1,r and C1,l are used to calculate the particle
heading likelihood: the mean heading C1 is computed and
serves as a reference for the particle heading. The heading
likelihood is described by N (0, σhead) with σhead = 15◦, set
empirically.

With exteroceptive lateral information, the likelihood func-
tion follows the lateral movement of the vehicle, therefore
containing the particle spread in this direction. This gives a
much better lateral distribution (tighter) and even naturally
allows lane changing maneuvers. Moreover, it allows a better
description of the car’s path in the carriageway. For instance,
if the vehicle is one meter away from the center of the lane,
the particles fitting this behavior will have the best likelihood
score.

3) GNSS Gating: This last step of the likelihood calculation
ensures that the filter stays consistent by killing particles that
stray too far from the position returned by the GNSS receiver.
It simply sets the weight of these diverging particles to 0 in
order to eliminate them from the filter during a resampling
step. To keep the influence of the GNSS fix to a minimum,
the gate radius (after which a particle is eliminated) is set
to the Horizontal Protection Level (HPL) returned by the
GNSS receiver. In this paper, the HPL has been set to a
fixed value of 50 m, commonly used for a 10−4 risk in urban
environment [19]. Note that with additional information from
the GNSS receiver (e.g. positioning residuals), a real-time
value can be computed, representing the actual GNSS status
more accurately.

F. Resampling

As noted in section IV-E1, the SIR algorithm is slightly
modified to use a recursive likelihood calculation. In the
original version a systematic resampling takes place at each it-
eration. The MM developed here relies on a certain exploration
of the possible matching hypotheses in order to avoid sample
impoverishment, which is inconsistent with a too frequent
resampling that would eliminate possible good hypotheses,
reducing the variance of the particle set. Therefore, to resample
only when necessary, the number of effective particles Neff
can be estimated as follows [24]:

Neff =
1∑

i(w
i
k)2

(13)
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If Neff falls below a given threshold (typically 2/3 of the total
number of particles), a resampling procedure is applied. The
classic resampling method used for PF draws new particles
randomly from the original set with a probability proportional
to the weight of the original particles. This randomness can
cause an impoverishment by drawing exclusively from a
subset of the particles, as successive drawings are indepen-
dent and uncontrolled. A low variance resampling [25] is
therefore preferred, since this favors a good distribution of
the retained particles. First, a correspondence between each
particle is established with the interval [0, 1] (each number
in the interval corresponds to a single particle). This is done
by summing the particle weights consecutively to create an
empirical cumulative density function (the weights sum to 1).
The principle is then to only perform a single random draw
to determine a seed s in the interval [0;N−1[, N denoting
the total number of particles and then add repetitively N−1 to
it, generating numbers corresponding to particles. Using this,
the N resampled particles P̂ arti can be determined from the
original set Part by:

P̂ arti = Partj (14)

for i = {0, ..., N − 1} with

j = argmin
k

k∑
m=0

wm ≥ (s+
i

N
) (15)

V. INTEGRITY MONITORING

A. Map-Matching Integrity

A multi-hypotheses MM (such as the one presented here)
respects an integrity level if the set of hypotheses provided as
a solution contains the correct one, with respect to a given risk.
In other words, an algorithm with a risk of 10−2 (i.e. 1%) has
to return the actual map-matched position (i.e. the matching
ground truth) 99% of the time. As advances in intelligent
vehicles continue to be made, integrity monitoring for safety
reasons is becoming an increasingly important topic in the
literature [26], [27].

Applied to an HD map described by polylines such as
the map used in this paper, where an elementary geometrical
descriptor is a segment (a link is a list of connected segments,
each delimited by two shapepoints), the map-matched segment
of the position ground truth has to be part of the set of
hypotheses returned by the MM algorithm, according to the
given risk. As a consequence, most of the time the proposed
MM algorithm returns a set of solutions describing multiple
hypotheses.

To check the integrity of the MM, redundancy is needed.
For this, the position computed by the GNSS receiver is used.
By design, the MM algorithm is quite independent of GNSS,
since GNSS is only used for gating the particles based on the
HPL which is very reliable.

The method we propose for checking the integrity is to use
the GNSS fix in a fault detection step. This approach is called
internal integrity monitoring. The fault detection method that
we use is based on a probabilistic approach using Mahalanobis

distances. This involves manipulating the covariance matrices
of the different estimates involved in the process.

B. Covariance Estimation

Manipulating the covariance of the errors of the different
estimates gives a good overview of the situation in terms of
uncertainty.

1) GNSS covariance: The covariance of the estimation
error of a GNSS fix is generally returned by the receiver itself,
giving an estimate of the uncertainty affecting the positioning
computation.

A 1-sigma uncertainty ellipsoid is in general given (e.g.
in the NMEA GST sentence) with the semi-major and semi-
minor axes and the orientation φ of the error ellipsoid. In the
ellipsoid frame, the covariance matrix is diagonal:

ΣGNSS =

[
σ2

GNSSx
0

0 σ2
GNSSy

]
(16)

To get the covariance in an east-north frame, a simple rotation
of an angle φ is applied:

Σ̂GNSS = RT .ΣGNSS.R (17)

with R the 2D rotation matrix of angle φ.
In practice the covariance matrix is generally overconfident,

since it does not take into account effects such as atmospheric
perturbations or ephemeris errors. Covariance estimates can
then be off by few meters. One way of handling this is to add
a constant variance (e.g. 1m) to the GNSS covariances before
doing the rotation to compensate for this kind of error.

2) Hypotheses covariances: Each hypothesis j being a set
of nj weighted particles, an estimate of the covariance matrix
is:

Σhypj =

[
σj2x σjxy
σjxy σj2y

]
(18)

with 
σj2x = aj .

∑nj

i=0 w
i(xi − x̄j)2

σj2y = aj .
∑nj

i=0 w
i(yi − ȳj)2

σjxy = aj .
∑nj

i=0 w
i(xi − x̄j)(yi − ȳj)

(19)

and

aj =
1

1−
∑nj

i=0(wi)2
; x̄j =

nj∑
i=0

wixi; ȳj =

nj∑
i=0

wiyi

These formulas assume normalized weights by hypothesis
(
∑nj

i=0 w
i = 1). Each hypothesis Hypj is assumed then to

follow a normal distribution, so Hypj ∼ N (X̄j ,Σhypj ) with
X̄j = [x̄j , ȳj ]

T .

C. Consistency Metric

The goal now is to find a decision variable in order
to determine whether the GNSS fix is consistent with the
hypotheses. Otherwise, it is very likely that either the GNSS
fix or the map-aided dead-reckoned hypotheses are faulty.
Since the GNSS fix and the means of the hypotheses can be
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considered independent, the Mahalanobis distance between the
two estimates can be calculated by:

DMj
(X̄j) =

√
(X̄j −XGNSS)TΣ−1(X̄j −XGNSS) (20)

with XGNSS being the GNSS fix expressed in the local Carte-
sian frame and, as a consequence of the independence error
of the GNSS with the one of the hypotheses:

Σ = Σ̂gnss + Σhypj (21)

The Mahalanobis distance is a good metric for evaluating
the consistency between two uncertain positions by taking into
account the covariances of the variables [28].

D. Fault Detection

One interesting property of the Mahalanobis distance is that
if X ∼ N (0, I) is a standardized normal distribution, then
D2
M (X) ∼ χ2

p (with p = 2 in this case, as the localization
problem is in 2D). This does not hold if the estimate X is
biased or inconsistent. We will apply this principle as a way of
detecting faults: the Mahalanobis distance is used as a decision
variable in a χ2 test in order to determine the presence of an
incoherence.

Let H0 be the null hypothesis that “the position estimate X
is not affected by any fault”. If Ho is verified, then D2

M (X)
follows a centered χ2

2 distribution. To test H0, a χ2 test
is applied using the Mahalanobis distance as the decision
variable and setting a critical value T given a significance
level, equivalent in this case to a probability of false alarm
(pfa, the probability of detecting a fault when none is present).
Here we choose pfa = 0.01, and the corresponding critical
value for 2 degrees of liberty is T = 9.2103. D2

M (X) is
compared to the critical value T : H0 is considered to be
satisfied if D2

M (X) < T , and rejected otherwise, validating
the hypothesis H1 that “a fault is detected”.

1) Testing the hypotheses: At each iteration of the filter,
the consistence of the MM is tested. For this, a χ2 test is
applied to each hypothesis Hypj separately using the GNSS
fix. Each DMj

is compared to the chosen critical value in order
to flag the hypotheses not satisfying H0 as having a fault (i.e.
either the hypothesis is wrong or the GNSS fix is biased). The
set of coherent hypotheses is then determined. Note that the
coherence is with respect to the GNSS fix, which means that
rejected matching hypotheses may in fact be correct but GNSS
errors are causing them to be rejected. The χ2 test indicates
here the coherence of the situation depicted by the filter with
the GNSS fix, not the correctness of the MM: eliminating
a hypothesis does not necessarily mean it is incorrect, but
that the situation does not allow the positioning system to be
trusted.

2) Eliminating low-weight hypotheses: Another selection is
made on the set to eliminate the least likely hypotheses. This
is to avoid having to consider low-likelihood hypotheses that
nevertheless satisfied H0. Such a situation can arise for exam-
ple when a bias suddenly affects the GNSS (e.g. multipath)
and closely matches a low-weight hypothesis, resulting in a
small Mahalanobis distance. A minimum weight (e.g. 0.1) is
chosen to eliminate the least likely hypotheses.

Figure 8. Left: test GNSS trace (in purple) over the lane map (in blue). This
4-km route is representative of a peri-urban trip (2-lane roadways, presence
of buildings in certain areas as well as open-sky conditions in others). Large
GNSS errors are clearly visible. Right: satellite view of the area (image from
Google Maps).

E. “Use/Don’t Use” Decision

The remaining solution set contains only high-likelihood
hypotheses consistent with GNSS. A prudent integrity test is
then implemented and the decision for the localization system
is set to:
• Use if the remaining set contains only one single hy-

pothesis. In this case, no ambiguity remains, the GNSS
positioning is in accordance with the MM results, and the
filter gives a high likelihood to the hypothesized position.

• Don’t Use if the remaining set contains multiple hypothe-
ses or none. Either the filter was unable to resolve every
ambiguity and cannot decide between these hypotheses,
or all hypotheses have been eliminated due to a default
detection and/or a too low likelihood.

VI. RESULTS

A. Experimental setup

A C++ implementation of the algorithm was developed
using the Pacpus framework1, providing easy integration with
the Heudiasyc Laboratory’s test vehicle and offline data replay.
An experimental vehicle was used for the acquisition of real
road data. The car was equipped with a Septentrio AsteRx2
GNSS receiver (used as single frequency, standalone receiver)
and DR information was accessible directly from the vehicle
CAN bus, as well as from a Mobileye EyeQ2 system.

The algorithm was tested using Pacpus data replay capa-
bility. The algorithm runs in real-time conditions with 2000
particles on an AMD A8-4500M CPU@1.90 GHz with 8 Go
RAM.

The 4-km test route is shown in Fig. 8. It is representative
of a peri-urban trip (2x2-lane roads, including roundabouts).
Some high-rise buildings are present, as well as open-sky
conditions at the bottom of the figure (urban bypass).

For greater clarity, the results presented in this section only
show the top 2 hypotheses. This does not affect the conclusion
of the research, since 95% of the dataset results in the MM

1developed at Heudiasyc. More info at https://pacpus.hds.utc.fr
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Figure 9. The sum of two highest weights. 95% of the time the sum is higher
than 0.95. When more hypotheses are present, they are quickly eliminated (in
the order of 10 seconds)

Table I
MATCHING METRICS ON THE SET OF MATCHING HYPOTHESES.

Metric %
Set containing the correct hypothesis 100
Set of 2 or fewer hypotheses 95.0
Correct best hypothesis 84.6

returning 2 or fewer hypotheses. The other 5% generate a
third hypothesis only momentarily and it is quickly discarded.
The weight of these discarded hypotheses is never above 0.1
(as shown in Fig. 9), and so they are eliminated by the filter
integrity check.

B. Particle Filter Performance

The filter performs quite well in these test conditions.
Fig. 10 shows the evolution of the hypothesis weights during
the test. The hypothesis corresponding to the correct matching
is shown in blue, using “+” signs. The red line denotes the 0.1
weight threshold used during the integrity checking phase.

Table I shows performance metrics of the filter: during our
tests, the MM always returned the correct matching hypothesis
included in the solution set. Moreover, for 84.6% of the time,
this hypothesis was the one with the highest weight. Note that
in cases where an incorrect hypothesis had the highest weight,
the correct hypothesis generally had a comparable weight, as
can be seen in Fig. 10 at t = [400, 460]. The filter converged
to one or two hypotheses 84.6% of the time. This percentage
takes into account the initial convergence and lane forking that
produces a larger number of hypotheses.

An interesting event occurs at t = [300, 340], where the
correct hypothesis is the only one in the solution set. This is
made possible by the use of camera information. Ambiguity is
resolved via a lane-changing detection: the filter originally has
2 hypotheses, on the left and right lane. The car is moving from
the right lane into the left lane. The filter updates accordingly
using the exteroceptive information from the camera system:
the right lane particles evolve without issue, changing to the
left lane through the adjacency information from the map. This
leads the left lane particles off road on the left of the roadway:
their weights diminish greatly in comparison to the others and
are finally eliminated from the filter.

C. Integrity Check

Fig. 11 shows the evolution of the Mahalanobis distances.
For reference, Fig. 12 shows the GNSS error throughout the
test. The statistics for the χ2 test and the weight rejection
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Figure 10. Evolution of the weights of hypotheses. The blue curve (“+” signs)
is the correct matching. For most of the time it is the most likely hypothesis.
The red line denotes a 0.1 weight threshold.
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Figure 11. Squared Mahalanobis distances for the matching hypotheses (the
correct hypothesis shown as blue “+”). The red line denotes the critical value
for pfa = 0.01.

(coherent solution rejected due to a too low weight value)
are shown in Table II. It is clear that both tests are effec-
tive in removing the wrong hypotheses, with however some
unavoidable false alerts. Note again that rejecting the correct
matching only means that the positioning system should not
be trusted, and this can be caused by a GNSS error: it is
the case at t = 127 s. The situation is described in Fig. 13.
This screenshot of the actual program running shows that the
rejection of the correct matching (violet, larger triangle) is due
to a GNSS fix jump (depicted by the arrow between points 1
and 2). The current position (point 3) is affected by a GNSS
bias and is not coherent with any matching hypothesis. At that
time step, no hypothesis remains in the solution set after the
integrity check.

The different causes of rejection are summarized in Fig. 14,
which shows the rejections happening at each time step. Each
rejection cause is plotted separately on a different line (cf.
legend). The bottom two lines show the rejections due to
the weight and to the Mahalanobis distance of the correct
hypothesis, while the top two correspond to other hypotheses.
The two center lines sum up both types of rejections to give an
overview of the situation, which confirms the higher number

Table II
REJECTIONS BASED ON χ2 TEST AND WEIGHT THRESHOLD

% rejection χ2 test Weight based
Correct matching 3.7 0.7
Other hypothesis 57.5 28.7
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Figure 12. GNSS error during the test. Spikes are clearly visible, correspond-
ing areas with poor GNSS reception (high-rise buildings nearby).

Figure 13. Screenshot of the situation at t = 127 s. A biased GNSS position
causes the two matching hypotheses to be rejected.

of rejections for incorrect matching. Finally, Fig. 15 shows
the result of the “Use/Don’t Use” classification. Table III
shows that the algorithm has an availability of 65.6% (the
amount of time during which the filter flags the correct
matching as “Use”). For 34.9% of the time the algorithm
flags the positioning as “Don’t Use”, where it has detected
a discrepancy between the map-aided dead-reckoning and the
GNSS fix. Finally, the misdetection rate is only 0.54% (the
filter classifies an incorrect position as “Use”).

Table III
USE/DON’T USE STATISTICS FOR THE INTEGRITY MONITORING METHOD

Don’t Use Correct Use Incorrect Use
% 34.9 65.6 0.54

0 100 200 300 400 500 600

Time (in s)

rej. dist (correct hyp.)

rej. weight (correct hyp.)

rej. total (correct hyp.)

rej. dist (other hyp.)

rej. weight (other hyp.)

rej. total (other hyp.)

Figure 14. Rejection classification by cause, for the correct matching and
the others. A point indicates that the corresponding hypothesis was rejected
at this time step for the given reason.
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Time (in s)

 Use Good Use Wrong Don't Use

Figure 15. “Use/Don’t Use” decisions by the integrity monitoring method. It
can be seen that misdetections (“Use Wrong”) are rare. Positioning availability
corresponds to “Use Good”.

VII. CONCLUSION

MM integrity is becoming an important topic for intelligent
vehicles that use information obtained from maps in safety
applications. In this paper we have presented a PF-based
MM algorithm developed to retain all the likely matching hy-
potheses throughout the map-aided dead-reckoning, and which
includes an integrity check procedure that uses redundant
GNSS positions to detect faults. Using real road data, the
filter was shown experimentally to respect the integrity of its
solution set (i.e. always returning a set containing the correct
matching). A new method for internal integrity monitoring was
developed using a Mahalanobis distance as decision variable
for detecting faults: the distance of the GNSS fix to each
matching hypothesis is computed in order to test the coherence
of the map-matching. The computation of the covariance
matrices of the hypotheses obtained from the particle set is
quite straightforward and well adapted to this computation.
This allows the positioning system to be flagged as either
“Use" or "Don’t Use” at a given time step. Experimentally,
this system provides only 0.54% of misdetections and has
a 65.6% availability (correct hypothesis tagged as “Use”)
with the low cost sensors used in the experiments. While
the algorithm may be over-pessimistic in difficult conditions
(e.g. a dense urban environment with multi-lane roads), it is a
good indicator for determining whether the positioning system
requires complementary information to make it reliable (e.g.
multipath detection and correction).

The integrity monitoring method currently runs in snapshot
mode (i.e. it uses data from the current time step only). Inte-
grating the temporal dimension could improve the performance
of the algorithm. For instance, the evolution of the GNSS
position and of the matching hypotheses could provide better
information on the source of an incoherence. We also intend
to improve implementation performance by parallelizing the
execution, which will include porting to graphics processing
units (GPU) to make use of the parallel nature of the PF.
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