
HAL Id: hal-01713193
https://hal.science/hal-01713193

Submitted on 20 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing real-time systems with runtime enforcement
Jean-Luc Béchennec, Matthias Brun, Sébastien Faucou, Louis-Marie Givel,

Olivier H. Roux

To cite this version:
Jean-Luc Béchennec, Matthias Brun, Sébastien Faucou, Louis-Marie Givel, Olivier H.
Roux. Testing real-time systems with runtime enforcement. IEEE Design & Test, 2018,
�10.1109/MDAT.2018.2791801�. �hal-01713193�

https://hal.science/hal-01713193
https://hal.archives-ouvertes.fr


IEEE D&T, SPECIAL ISSUE ON TIME-CRITICAL SYSTEMS DESIGN, 2017 1

Testing real-time systems with runtime enforcement
Jean-Luc Béchennec∗, Matthias Brun†, Sébastien Faucou∗, Louis-Marie Givel∗† and Olivier H. Roux∗

∗ CNRS, École Centrale de Nantes, Université de Nantes
Laboratoire des Sciences du Numérique de Nantes

F-4400 Nantes, FR
† ESEO-TRAME, Groupe ESEO, Angers, FR

Abstract—When testing a time-critical system, some scenarios
can be hard to run when acting only on the input sequence.
The proper execution of a given scenario might require for
instance a minimal execution time for a given piece of software.
Execution times are notoriously difficult to control because they
depend not only on the inputs, but also on the state of the
micro-architecture. In this paper, we propose a method, based
on runtime enforcement, which forces a system to run such a
scenario. We also describe an implementation in the context of
a RTOS for embedded control systems.

Our method starts with a parametric formal model of the
system where the parameters are delays that can be added
to simulate longer execution times. The domain of acceptable
parameter values to run the target scenario is computed offline.
Online, a framework plugged in the RTOS observes the execution
of the system and injects delays when needed.

Index terms—real-time systems, formal methods, runtime en-
forcement, real-time testing, model-based testing, RTOS, para-
metric timed model.

I. INTRODUCTION

THe Design and verification of modern SoCs requires a
system-level approach encompassing both hardware and

software [1]. Their increasing complexity makes it difficult
to achieve a high level of test coverage with a black box
approach based only on the control of the input sequence. It is
sometimes mandatory to act on the internal behaviour as well.
This is for instance required to test safety mechanisms used
to handle timing faults, as found in mixed criticality real-time
systems [2]. In the domain of formal methods, this problem is
known as runtime enforcement. An enforcer is a (hardware or
software) component that forces a running system to conform
to a specified behaviour or policy. It is automatically generated
from the specifications.

In this paper, we investigate the case for runtime enforcement
in the test of time-critical systems. We focus on embedded
control systems hosting a complex software layer typically
built on top of a multitask RTOS, as found in automotive or
avionics. We describe the design and implementation of an
enforcer inserted at the interface between the application and
the RTOS to inject delays in order to mimic longer execution
times or to delay the notification of hardware events. We
also briefly outline the model-based technique used offline to
compute the delays in order to run a given test scenario.

A. Contribution
The problem solved in this paper is the following: given

a multitask embedded control system and a test scenario

that assumes a specific internal timed behaviour, provide a
component to enforce this assumption at runtime. Starting with
a model describing the real-time behavior of the system and
a set of states that we want to reach, we briefly outline how
to compute the set of lower bounds on timing parameters to
enforce the reachability. Then, at runtime, delays are injected to
enforce these bounds. We have introduced the overall approach
in [3]. In this paper, we describe an implementation and we
evaluate its performance for a system built with a Cortex-M4
based microcontroller running Trampoline RTOS [11]. The
implementation is seamlessly integrated in the system, at the
boundary between the application and the RTOS.

B. Related Works

A number of works deal with the test and the runtime
enforcement of time-critical hardware-software systems. To
the best of our knowledge, all these works assume a closed
system: they only act upon its inputs (and outputs in the case
of runtime enforcement) to produce the expected behaviour.
In this paper, we give ourselves the possibility to act upon
the internal behaviour of the system as well. Our goal is to
increase the testability of safety functions used to handle rare
or faulty timing behaviours. As a counterpart, our approach
produces artificial runs of the system in the sense that these
runs integrate artifical delays.

In [4], Briand et al. describe a stress testing strategy for
real-time systems based on the seeding time of aperiodic tasks.
The purpose of our offline phase is similar. In addition to the
seeding time of aperiodic or sporadic tasks, our offline phase
also computes constraints on the execution time of the tasks
to enforce the execution of the scenario. Moreover, we use
formal methods, while [4] use a genetic algorithm.

The work reported in [5] on the runtime enforcement of
timed properties is also close from our offline phase. Our offline
technique assumes a weaker enforcer that can only introduce
delays but not shorten interval between events nor suppress
events. However, their technique is based on timed automata,
a formalism that does not allow to model general preemptive
scheduling policy. In our application domain, we have to use
a more expressive formalism to handle preemption.

In [6], Mueller and Wegener describe a method to compute
input data to trigger a specific execution time for a task. This
method could be used as a replacement of the online phase of
our method with the benefit of running a concrete execution
of the system rather than an enforced execution. Compared



IEEE D&T, SPECIAL ISSUE ON TIME-CRITICAL SYSTEMS DESIGN, 2017 2

to this approach, our online phase is easier to use because it
requires no further computation. It also provides the possibility
to enforce faulty behaviours, which is important for testing
safety functions.

Lastly, as noted in [7], “the research area lack implemen-
tation in practice”. Their study covers the broad area of
testability and software performance, that includes issues related
to timeliness and response time. As explained above, the main
contribution of this paper is the description and evaluation of
an actual implementation.

C. Outline of the paper

In Section II we briefly outline the offline phase (modeling
and analysis). We present in Section III the online phase
(runtime enforcement) and its implementation in Trampoline
RTOS. We showcase the whole approach on a simple case
study in Section IV. We conclude in Section V.

II. OFFLINE ANALYSIS

A. System modeling with piTPN

The goal of the offline step is to compute a runtime enforcer
to drive the system toward a set of target states by adding
delays. The corresponding workflow is shown in figure 1.

The computation is based on tools for the formal analysis
of time Petri nets (TPN). More specifically, it is based on
the analysis of parametric TPN with inhibitor arcs (piTPN).
Inhibitor arcs [8] add to TPN the capacity to suspend and
resume clocks. They can be used to model fixed priority
preemptive scheduling policy typically used in embedded
control systems. Parameter synthesis [9] can be used to compute
delays that should be enforced at runtime. The tool ROMEO [10]
supports both the modeling and the analysis of piTPN.

As an illustration, consider the model of figure 2. It is
composed of two tasks. Task1 is activated with an offset of 3
t.u. (time units) with regards to the start time of the system. Its
execution time is within 6 and 9 t.u.. Task2 is activated when
the system starts. Its execution time is within 5 and 9 t.u.. The
arc between the place Ready1 and the transition Run2 is an
inhibitor arc: the transition Run2 is frozen (the corresponding
clock is paused) while the place Ready1 has at least one token.
In other words, in this model, the priority of Task1 is greater
than the priority of Task2. Parameters a and b are introduced
to model lower bounds on the execution times of the tasks.
Their values are implicitly positive and constrained by the
width of the execution time interval: 0 ≤ a ≤ 3 ∧ 0 ≤ b ≤ 4.

Parametric 
Application model

Enforcement 
datastructures

Modified OS code
(Trampoline RTOS)

Application 
code

Compilation 
/ linking

Binary 
executable 

with 
enforcement

Analysis and 
parameters synthesis

(ROMEO tool)

Figure 1. Workflow of the offline analysis.

Task1

Offset
[3, 3]

Ready1

Run1
[6 + a, 9]

Task2

Run2
[5 + b, 9]

Figure 2. piTPN model of a system of two tasks using a fixed priority
preemptive scheduling policy

Parameter synthesis can be used to compute the values of a
and b such that a given state is reachable, for instance Task2
terminates at least 12 t.u. after the start time. The result is
(a+ b) ≥ 1 ∧ 0 ≤ a ≤ 3 ∧ 0 ≤ b ≤ 4.

B. Modeling a system for runtime enforcement

The single action of the enforcer on the behaviour of a
task is to simulate a longer execution time by adding delays.
From the point of view of the enforcer, the execution time
of a task is observed as the duration between two subsequent
system calls. Indeed, the behaviour between two system calls
is internal to the task and difficult to act upon without invasive
instrumentation. The model built for the offline analysis reflects
this point of view.

In this model, the behaviour of each task is an alternation
between system calls and internal actions. A system call
SysCall is modeled by a transition SysCall of duration [0, 0].
An internal action is modeled by an ε-transition of duration
[BCET,WCET] where BCET and WCET are respectively the best
and the worst case execution time for this action. A branching
is modeled as a non deterministic alternative (a fork) if at least
one branch includes a system call. Otherwise it is abstracted
by an ε-transition of duration [BCET,WCET] encompassing both
branches.

Inhibitor arcs are used to represent the priority between the
tasks. Given a pair of tasks t1 and t2 such that t1 has a highest
priority, inhibitor arcs are added between each place of t1 and
each transition of t2.

At last, parameters are introduced in the time interval
associated with transitions that can be delayed by the enforcer:
the execution time of internal actions and the notification of
hardware events to the application by the RTOS.

The domain of the parameters such that the target is reached
for all the executions is computed by ROMEO.

III. RUNTIME ENFORCEMENT

A. Principles

At runtime, the enforcer tracks the behavior of each task and
insert delays if the observed behaviour does not conform to
the required behaviour. To do so, data structures are generated
from the offline model to describe the behaviour of each task
independently from the others. The time used by the enforcer
to update the data structure associated with a task is local to



IEEE D&T, SPECIAL ISSUE ON TIME-CRITICAL SYSTEMS DESIGN, 2017 3

alt

Task1 Task2 System Call 
wrapper 

Kernel

Startup
Reset
clock

System Call Get EFT
Update model
Slow down task if 
needed
Kernel System Call

Possible 
context 
switch

Reset
clock

Prio(Task2) ≥ 
Prio(Task1)

Prio(Task2) < 
Prio(Task1) Reset

clock

Kernel modeUser mode

RTOSApplication

Figure 3. Interaction diagram of the control solution. When a task emits a
System Call, the enforcer may delay this call while in user mode.

this task: it runs when the task is running and stops when the
task is put back in the ready list because of a preemption or
enters a waiting state because of a synchronization. This is
consistent with the system-level analysis because preemption
is modeled by the inhibitor arcs that are removed to obtain the
local models [3].

Calls to the enforcer are inserted in system call wrappers1,
before the actual system call. The delays are added while the
processor is still in user-mode to simulate a longer execution
time of the tasks. It means that the task can be preempted
while being delayed by the enforcer. As explained below, slight
modifications of the kernel code are also required.

Thanks to the integration of the enforcer in the system call
wrappers, it is possible to test systems without modifying the
code of the tasks. In the context of a static RTOS where the
software is composed of a single binary obtained by linking
the object code of the tasks and the object code of the RTOS, it
is even possible to test a task for which the source code is not
provided. Trampoline, the RTOS used for this implementation,
is static.

The detailed behaviour of the enforcer is described in figure 3.
At system startup, the data structures are initialized. Then, the
enforcer is triggered whenever a task emits a system call, ie.
at the end of an internal action of the task. Most of the work
is done in the wrapper before the kernel system call.

1) Identification of the transition: given the current state of
the calling task and the information allowing to identify
the call site, the transition in the local model is identified.

1The user mode function that embeds the code performing the actual system
call according to the platform application binary interface.

In the current implementation, the identification of the
call site can be based on the identity of the wrapper,
which is sufficient if there is no state with two outgoing
transitions labelled with the same system call, or based on
the identity of the wrapper and the value of the arguments.
Once the transition is identified, its Earliest Firing Time
(EFT) is known. The EFT is computed offline as the
sum between the BCET of the transition and the value
picked for the parameter associated with this transition.

2) Slow task: the enforcer enters a busy loop as long as the
execution time of the internal action is lower than the
EFT.

3) Update model: the current state of the task is updated to
the target state of the identified transition.

4) Kernel system call: the system call is passed to the kernel.
If a task is activated during this call, its current state is
set to its initial state and the execution time spent in this
state is set to 0.

5) Timer reset: the timer used to measure the execution
time spent in the new state of the elected task is reset.
Please notice that during the previous step, a scheduling
decision can trigger a context switch. Thus, the task
elected at step 5 can be a different task than the one
running at steps 1, 2, 3.

Handling asynchronous preemption: Besides system call, a
task can be preempted asynchronously by the occurrence of
a hardware event. In this case, the current value of the timer
used to account for the execution time of this task is saved.
Symmetrically, when a task is elected for running, this value
is restored before to dispatch the task. Implementation of these
steps requires to slightly modify the code of the kernel.

B. Implementation
The framework has been implemented on Trampoline RTOS,

for the STM32F4Discovery board.
Trampoline RTOS: Trampoline [11] is an open-source

implementation of the AUTOSAR OS standard. AUTOSAR
OS defines the API of a static real-time operating system for
automotive embedded systems. All objects are created and
initialized at compile time. This configuration is described
either in ArXML, a dedicated XML dialect, or in OIL, a plain
text format. The kernel provides basic services for real-time
control applications: static priority preemptive scheduling, inter-
task communication and synchronization, real-time resource
sharing protocol, time management.

STM32F4Discovery: this board developed by STMicroelec-
tronics is built around a STM32F407VGT6 micro-controller
with a 32 bit ARM Cortex-M4 core running at 168MHz. It
hosts 1Mbyte of Flash Memory and 192Kbyte of (S)RAM
on-board.

Configuration: the OIL compiler provided with Trampoline
has been extended to support the description of the embedded
model for each task. The model is given as a set of states with
their outgoing transitions. Each transition is composed of a
trigger (the system call and optionnaly its arguments), its EFT,
and its target state.

According to this description, the OIL compiler generates
the code to declare and initialize the following data structures.



IEEE D&T, SPECIAL ISSUE ON TIME-CRITICAL SYSTEMS DESIGN, 2017 4

• An array of the current state of each task.
• An array of the execution time already spent by a task in

its current state in case of asynchronous preemption.
• An array of pointers to the transition table of each task.

If a task is not enforced, the pointer is null.
• For each task, a transition table given as an array of

pointers to transition sets. It is indexed by task states.
• For each state of each task, a set of outgoing transitions.

Constant data are stored in flash to minimize the RAM
overhead and variable data not needed when the enforcement
code executes in user mode are stored in kernel space RAM
to benefit from memory protection if available.

Runtime mechanism: The enforcer uses a 32 bit timer (TIM5).
This timer is configured with a 1 microseconds granularity. At
any time, the value of this timer reflects the execution time
spent by the running task in its current state.

In Trampoline, the wrappers of the system calls are auto-
matically generated from templates during the configuration of
the system. The templates have been extended to insert calls
to the enforcer before and after the actual kernel system call.

• Before: the enforcer searches the data structure to identify
the transition and extract the EFT; then it loops while
the value of the timer is lower than the EFT; at last, it
changes the current state of the task to the target state of
the transition.

• After: the enforcer resets the timer.

The scheduling service of the kernel has also been mod-
ified to account for task activation (reset of the timer) and
asynchronous preemption (load/save the value of the timer).

Performances: Since the enforcement mechanism is inserted
in the system call wrapper, it slows down each system call
even if no delay is added. Table I gives the overhead of the
enforcement mechanism and compare it to the execution time of
some services of Trampoline. The application and Trampoline
are compiled in EXTENDED configuration with GCC 5.4.1
and -O3 optimization level. The overhead is between 11% (task
is not enforced) and 50% (task is enforced). It is possible to
take this overhead into account during the offline analysis by
updating the implicit constraints on the parameter as follow:
α ≤ p ≤ (WCET − BCET ) − α, where p is a parameter
and α is the overhead.

Service Case Cycles
ActivateTask lower or equal priority task 466
ActivateTask higher priority task (preemption) 844
SetEvent non waiting task 346
SetEvent waiting task of ≤ priority 546
SetEvent waiting task of > priority (preempt.) 886
Overhead when the task is not enforced 104
Overhead when the task is enforced 229

Table I
OVERHEAD OF THE ENFORCEMENT MECHANISM IN CPU CYCLES. The
target is as described in III-B and has no cache nor branch prediction. A
GPIO output is switched before and after the service call. Each service

execution time has been executed and measured ten times with an
oscilloscope and the variability of the execution time is lower than the

measurement precision.

Task1

e1

Alarm1

WaitEvent(e1)
[0, 0]

Ready1

ε(Run1)
[6 + d, 9]

end1

Task2

ε(Run2)
[5 + b, 9]

e2 Task3

SetEvent(e2)
[12 + c, 12 + c]
with c ≤ 6

Alarm2

P2

CancelAlarm2

[0, 0]

end2

TerminateTask2
[0, 0]

WaitEvent(e2)
[0, 0]

Goal

ε(Run3)
[2, 2]

end3

TerminateTask3
[0, 0]

SetEvent(e1)
[3 + a, 3 + a]

TerminateTask1
[0, 0]

Figure 4. piPTN for tasks scheduling with fault tolerance

IV. APPLICATION TO AN EXAMPLE

A. Description of the application

To illustrate the whole approach, we have developed a small
application with Trampoline RTOS.

It is composed of 3 tasks:
• Task1 is activated by alarm Alarm1 with an offset greater

than or equal to 3ms. It runs for 6 to 9ms and terminates.
• Task2 is activated at system startup. It runs for 5 to 9ms

then tries to cancel alarm Alarm2 before to terminate.
• Task3 is activated by alarm Alarm2 with an offset greater

than or equal to 12ms. It runs for 2ms and terminates.
The complete model is given in figure 4. For briefness’s

sake, we define a shorthand notation between dashed box for
inhibition between tasks: an inhibitor between two dashed
boxes means that there is an inhibitor arc from each place of
the source dashed box to each transition of the target dashed
box. We also use reset arcs (also called flush arcs) represented
by an arc with a black diamond. Those arcs empty their source
places when their destination transition is fired. They are used
here to model the cancellation of the timer. Parameters are
introduced in the model on each transition that can be enforced
at runtime.

B. Test scenario

In the scenario, we want to trigger the execution of Task3.
More precisely, we want to reach a state where the marking
of place Goal is not null. For this scenario, ROMEO computes
the set of parameter values: d ≤ 3

b > 7
b− c > 7

∪

 d ≤ 3
b > a− 2
b− c+ d > 1

Any point in this polyhedron allows to run the scenario. We
choose the following : a = 0, b = 0, c = 0, d = 2. At this
point, the OIL file of the application is extended with the local
model of each task integrating the chosen parameter values.



IEEE D&T, SPECIAL ISSUE ON TIME-CRITICAL SYSTEMS DESIGN, 2017 5

C. Results

The application has been built for the STM32F4Discovery
board. The code of the application and the modified version of
Trampoline are both available as open-source software at [12].

To visualize the execution of the application, waveforms
have been plotted. The corresponding signal is produced by a
slight instrumentation of the code of the system such that the
signal is high when the task is executing, and low otherwise.
In figure 5, each waveform corresponds to the execution of a
tasks. From top to bottom, we have Task1, Task2 and Task3.

At system startup, Task2 runs for 3ms. Then it is preempted
by Task1. The enforcer delays the internal action ε(Run1) of
Task1, with an EFT equal to 8ms (6+ d, with d = 2). Task2
is resumed but too late to cancel Alarm2 before that it triggers
the execution of Task3. Thus, 12ms after the startup, Task3
is released, preempts Task2, runs for 2ms and terminates. At
last, Task2 resumes and terminates its execution. This is the
expected result.

Figure 5. Enforcement of the execution of Task3.

V. CONCLUSION

We have described a technique to enforce the execution of
a test scenario assuming a specific internal timed behaviour
of the system. In an offline phase, a model-based approach is
used to compute a set of delays. Then in an online phase, a
component observe the execution of the application and inserts
the delays when needed to enforce the expected behaviour.

Concerning the offline phase, an existing modeling and
analysis technique well suited for the domain of embedded
control systems is used. However, the analysis is limited to
the enforcement of reachability properties. The case for more
complex properties, e.g. liveness, should be studied in the
future.

Concerning the online phase, we have shown how to
seamlessly integrate the enforcer in an AUTOSAR compliant
RTOS. The corresponding code is available as open-source
software. The measured overhead on the target hardware is
compatible with the typical dynamics of embedded control
systems. This overhead can also be accounted for during the
analysis. Future works should investigate the indirect overhead
caused by microarchitectural sideeffects (cache thrashing and
other pollution of predictive execution mechanisms).

REFERENCES

[1] W. Chen, S. Ray, M. Abadir, J. Bhadra, and L. C. Wang, “Challenges
and trends in modern soc design verification,” IEEE Design Test, vol. PP,
2017.

[2] R. Ernst and M. D. Natale, “Mixed criticality systems; a history of
misconceptions?” IEEE Design Test, vol. 33, no. 5, pp. 65–74, 2016.

[3] L.-M. Givel, J.-L. Béchennec, M. Brun, S. Faucou, and O. H. Roux,
“Testing real-time embedded software using runtime enforcement,” in
Industrial Embedded Systems (SIES), 2016 11th IEEE Symposium on.
IEEE, 2016, pp. 1–6.

[4] L. C. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms
for early schedulability analysis and stress testing in real-time systems,”
Genetic Programming and Evolvable Machines, vol. 7, no. 2, pp.
145–170, Jun 2006. [Online]. Available: https://doi.org/10.1007/s10710-
006-9003-9

[5] Y. Falcone, T. Jéron, H. Marchand, and S. Pinisetty, “Runtime enforce-
ment of regular timed properties by suppressing and delaying events,”
Science of Computer Programming, vol. 123, pp. 2–41, 2016.

[6] F. Mueller and J. Wegener, “A comparison of static analysis and evolu-
tionary testing for the verification of timing constraints,” in Proceedings.
Fourth IEEE Real-Time Technology and Applications Symposium (Cat.
No.98TB100245), Jun 1998, pp. 144–154.

[7] M. M. Hassan, W. Afzal, B. Lindström, S. M. A. Shah, S. F. Andler, and
M. Blom, “Testability and software performance: A systematic mapping
study,” in Proceedings of the 31st Annual ACM Symposium on Applied
Computing, 2016, pp. 1566–1569.

[8] B. Berthomieu, D. Lime, O. H. Roux, and F. Vernadat, “Reachability
problems and abstract state spaces for time Petri nets with stopwatches,”
Discrete Event Dynamic Systems, vol. 17, no. 2, 2007.

[9] L.-M. Traonouez, D. Lime, and O. H. Roux, “Parametric model-checking
of stopwatch petri nets,” Journal of Universal Computer Science, vol. 15,
no. 17, pp. 3273–3304, 2009.

[10] D. Lime, O. H. Roux, C. Seidner, and L.-M. Traonouez, “Romeo: A
parametric model-checker for Petri nets with stopwatches,” in TACAS
2009, ser. LNCS, vol. 5505. Springer, 2009, pp. 54–57.

[11] J.-L. Bechennec, M. Briday, S. Faucou, and Y. Trinquet, “Trampoline
an open source implementation of the osek/vdx rtos specification,” in
IEEE Conference on Emerging Technologies and Factory Automation
(ETFA), 2006.

[12] J.-L. Béchennec, S. Faucou, and O. H. Roux. Testing of a
real-time Application - Trampoline with runtime enforcer. [Online].
Available: https://github.com/TrampolineRTOS/trampoline/tree/temporal-
enforcement

Jean-Luc Béchennec earned a PhD degree in computer science at University
of Paris VI in 1989. He is a full time researcher at CNRS (France) in the
Laboratory of Digital Sciences of Nantes (LS2N, UMR 6004). He works in
the field of system and RTOS implementation, runtime monitoring, modeling
and verification.

Matthias Brun earned a PhD degree in Computer Science at University of
Nantes (France) in 2010. He is associate professor at ESEO (France) in the
Department of Software and Systems. He works on model driven software
engineering with a particular interest in model transformation and model
interpretation for real-time embedded systems.

Sébastien Faucou earned a PhD degree in Computer Science at University
of Nantes (France) in 2002. He is associate professor at Université de Nantes.
He is member of the laboratory of digital sciences of Nantes (LS2N, UMR
6004). He works on real-time embedded software systems: WCET analysis,
runtime verification, and RTOS design.

Louis-Marie Givel defended his PhD at Ecole Centrale Nantes (France) in
2016. He works at Technology & Strategy company as an embedded systems
engineer and does consulting for Magneti Marelli.

Olivier H. Roux earned a PHD degree in 1994. He is full Professor at Ecole
Centrale Nantes (France) in the LS2N CNRS laboratory. His work deals with
the verification and the control of timed systems. He has a particular interest
in time Petri nets and their stopwatch and parametric extensions.


