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On Bernstein processes generated by hierarchies of linear parabolic systems in R d

In this article we investigate the properties of Bernstein processes generated by in…nite hierarchies of forward-backward systems of decoupled linear deterministic parabolic partial di¤erential equations de…ned in R d , where d is arbitrary. An important feature of those systems is that the elliptic part of the parabolic operators may be realized as an unbounded Schrödinger operator with compact resolvent in standard L 2 -space. The Bernstein processes we are interested in are in general non-Markovian, may be stationary or non-stationary and are generated by weighted averages of measures naturally associated with the pure point spectrum of the operator. We also introduce time-dependent trace-class operators which possess most of the attributes of density operators in Quantum Statistical Mechanics, and prove that the statistical averages of certain bounded self-adjoint observables usually evaluated by means of such operators coincide with the expectation values of suitable functions of the underlying processes. In the particular case where the given parabolic equations involve the Hamiltonian of an isotropic system of quantum harmonic oscillators, we show that one of the associated processes is identical in law with the periodic Ornstein-Uhlenbeck process.

Introduction and outline

Bernstein (or reciprocal) processes constitute a generalization of Markov processes and have played an increasingly important rôle in various areas of mathematics and mathematical physics over the years, particularly in view of the recent advances in the Monge-Kantorovitch formulation of Optimal Transport Theory and Stochastic Geometric Mechanics (see, e.g., [START_REF] Albeverio | Euclidean quantum mechanics: analytical approach[END_REF], [START_REF] Beurling | An automorphism of product measures[END_REF]- [START_REF] Cruzeiro | Malliavin calculus and Euclidean quantum mechanics, I. Functional calculus[END_REF], [START_REF] Jamison | Reciprocal processes[END_REF], [START_REF] Lassalle | Causal transport plans and their Monge-Kantorovich problems[END_REF]- [START_REF] Léonard | Reciprocal processes. A measure-theoretical point of view[END_REF], [START_REF] Roelly | A characterization of reciprocal processes via an integration by parts formula on the path space[END_REF], [START_REF] Vuillermot | Bernstein di¤ usions for a class of linear parabolic partial di¤ erential equations[END_REF]- [START_REF] Zambrini | The research program of Stochastic Deformation (with a view toward Geometric Mechanics)[END_REF] and the many references therein for a history and other works on the subject, which trace things back to the pioneering works [START_REF] Bernstein | Sur les liaisons entre les grandeurs aléatoires[END_REF] and [START_REF] Schrödinger | Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique[END_REF]). As such they may be intrinsically de…ned without any reference to partial di¤erential equations, and may take values in any topological space countable at in…nity as was shown in [START_REF] Jamison | Reciprocal processes[END_REF]. However, in this article we restrict ourselves to the consideration of Bernstein processes generated by certain systems of parabolic partial 1 di¤erential equations, whose state space is the Euclidean space R d endowed with its Borel -algebra B d . We begin with the following: De…nition 1. Let d 2 N + and T 2 (0; +1) be arbitrary. We say the R d -valued process Z 2[0;T ] de…ned on the complete probability space ( ; F; P) is a Bernstein process if

E b(Z r ) F + s _ F t = E (b(Z r ) jZ s ; Z t ) (1) 
P-almost everywhere for every bounded Borel measurable function b : R d 7 ! C, and for all r; s; t satisfying r 2 (s; t) [0; T ]. In [START_REF] Albeverio | Euclidean quantum mechanics: analytical approach[END_REF], the -algebras are

F + s = Z 1 (F ) : s; F 2 B d (2) 
and

F t = Z 1 (F ) : t; F 2 B d ; (3) 
where E (: j: ) denotes the conditional expectation on ( ; F; P).

This de…nition obviously extends that of a Markov process in the sense of a complete independence of the dynamics of Z 2[0;T ] within the interval (s; t) once Z s and Z t are known, no matter what the behavior of the process is prior to instant s and after instant t. This last property also shows that there are two time directions coming into play from the outset, since F + s may be interpreted as the -algebra gathering all available information before time s and F t as that collecting all available information after time t. It is therefore no surprise that any system of parabolic partial di¤erential equations susceptible of generating Bernstein processes should exhibit two time directions, one pointing toward the future and one toward the past. Accordingly, we introduce below hierarchies of partial di¤erential equations which we shall de…ne from adjoint parabolic Cauchy problems of the form @ t u(x; t) = 1 2 x u(x; t) V (x)u(x; t); (x; t) 2 R d (0; T ] ; u(x; 0) = ' 0 (x);

x 2 R d (4) 
and

@ t v(x; t) = 1 2 x v(x; t) V (x)v(x; t); (x; t) 2 R d [0; T ) ; v(x;T ) = T (x); x 2 R d (5) 
where x denotes Laplace's operator with respect to the spatial variable, and where ' 0 and T are real-valued functions or measures to be speci…ed below.

In the sequel we write L 2 R d and L 1 R d for the usual Lebesgue spaces of all square integrable and essentially bounded real-or complex-valued functions on R d , respectively, and L 1 loc R d for the local version of L 1 R d , without ever distinguishing notationally between the real and the complex case. It will indeed be clear from the context which case we are referring to, or else further speci…cations will be made. Finally we shall denote by (:; :) 2 the inner product in L 2 R d which we assume to be linear in the …rst argument, and by k:k 2 the corresponding norm.

Throughout this article we impose the following hypothesis regarding V , where j:j stands for the usual Euclidean norm:

(H) The real-valued function V is bounded from below and satis…es V 2 L 1 loc R d with V (x) ! +1 as jxj ! +1.

It is well known that Hypothesis (H) allows the self-adjoint realization of the elliptic operator on the right-hand side of ( 4)- [START_REF] Bernstein | Sur les liaisons entre les grandeurs aléatoires[END_REF], which is up to a sign the operator associated with the closure of the quadratic form

Q (f ) = 1 2 d X j=1 Z R d dx @f (x) @x j 2 + Z R d dxV (x) jf (x)j 2 (6) 
…rst de…ned for every complex-valued, compactly supported and smooth function f on R d (see, e.g., Section 2 in Chapter VI of [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]). Moreover the self-adjoint realization of the operator associated with [START_REF] Beurling | An automorphism of product measures[END_REF], henceforth denoted by 

H = 1 2 x + V; (7) 
for all x; y 2 R d and every t 2 (0; T ], where c 1;2 and c 1;2 are positive constants (see, e.g., Theorem 1 in [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF] and its complete proof in [START_REF] Aronson | Non-negative solutions of linear parabolic equations[END_REF]). At the same time Hypothesis (H) also implies that the resolvent of the self-adjoint realization of [START_REF] Carlen | Conservative di¤ usions[END_REF] is compact in L 2 R d . As a Schrödinger operator this means that its spectrum (E m ) m2N d is entirely discrete with E m ! +1 as jmj ! +1, and that there exists an orthonormal basis (f m ) m2N d consisting entirely of its eigenfunctions which we shall assume to be real (see, e.g., Section XIII.14 in [START_REF] Reed | Methods of Modern Mathematical Physics IV: Analysis of Operators[END_REF], which allows for more general conditions on V ). In the sequel we shall refer to the function g in (8) as the (parabolic) Green function associated with ( 4)-( 5), also called fundamental solution to (4) in references [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF] and [START_REF] Aronson | Non-negative solutions of linear parabolic equations[END_REF].

In the context of this article we also assume that

Z(t) := X m2N d exp [ tE m ] < +1 (9) 
for every t 2 (0; T ], so that the strong convergence of

g(x; t; y) = X m2N d exp [ tE m ] f m (x)f m (y) (10) holds in L 2 R d R d .
Then the construction of Bernstein processes associated with ( 4)-( 5) rests on the availability of Green's function [START_REF] Carmichael | Processus Gaussiens stationnaires réciproques sur un intervalle[END_REF] and on the existence of probability measures on B d B d whose joint densities satisfy the normalization condition Z

R d R d dxdy (x; y) = 1: (11) 
Given these facts we organize the remaining part of this article in the following way: in Section 2 we use the knowledge of g and to state a general proposition about the existence of a probability space which supports a Bernstein process Z 2[0;T ] characterized by its …nite-dimensional distributions, the joint distribution of Z 0 and Z T and the probability of …nding Z t at any time t 2 [0; T ] in a given region of space. In Section 3 we proceed with the construction of speci…c families of probability measures by introducing the hierarchies of equations we alluded to above. That is, with each level m of the spectrum of ( 7) we associate a pair of adjoint Cauchy problems of the form

@ t u(x; t) = 1 2 x u(x; t) V (x)u(x; t); (x; t) 2 R d (0; T ] ; u(x; 0) = ' m;0 (x); x 2 R d (12) 
and

@ t v(x; t) = 1 2 x v(x; t) V (x)v(x; t); (x; t) 2 R d [0; T ) ; v(x; T ) = m;T (x); x 2 R d : (13) 
To wit, we are considering as many pairs of such systems as is necessary to take into account the whole pure point spectrum of [START_REF] Carlen | Conservative di¤ usions[END_REF], and then focus our attention on the sequence of probability measures m given by the joint densities m (x; y) = ' m;0 (x)g(x; T; y) m;T (y)

where 8 > > < > > :

' m;0 (x) = (x am) g 1 2 (am;T;bm) ; m;T (x) = (x bm) g 1 2 (am;T;bm) ; (15) 
thus having

m (G) = Z G dxdy' m;0 (x)g(x; T; y) m;T (y) (16) 
for every G 2 B d B d . In the preceding expressions the points a m ; b m 2 R d are arbitrarily chosen for every m 2N d and stands for the Dirac measure so that Z

R d R d dxdy m (x; y) = 1; (17) 
in agreement with [START_REF] Galichon | Optimal Transport Methods in Economics[END_REF]. In this manner and by applying the general proposition of Section 2 we obtain a sequence of Markovian bridges Z m 2[0;T ] whose properties we analyze thoroughly. With each level of the spectrum we then associate a weight p m and consider probability measures of the form

= X m2N d p m m , p m > 0, X m2N d p m = 1; (18) 
that is, statistical mixtures of the measures m . Yet another application of the proposition of Section 2 then allows us to generate a non-stationary and non-Markovian process Z 2[0;T ] associated with . We also introduce a linear, time-dependent trace-class operator which plays the same rôle as the so-called density operator in Quantum Statistical Mechanics (see, e.g, [START_REF] Von Neumann | Mathematical Foundations of Quantum Mechanics[END_REF]), and prove that the statistical averages of certain bounded self-adjoint observables evaluated by means of that operator coincide with the expectations of suitable functions of Z 2[0;T ] . In Section 4, keeping the same notation as in Section 3 for the initial-…nal data in ( 12) and ( 13), we carry out a similar construction but this time with ' m;0 and exp [ T H] m;T forming a complete biorthonormal system in L 2 R d , thus satisfying in particular

' m;0 ; exp [ T H] n;T 2 = m;n (19) 
for all m; n 2 N d where exp [ T H] stands for the Schrödinger semigroup generated by [START_REF] Carlen | Conservative di¤ usions[END_REF] evaluated at the terminal time t = T . The simplest system of this kind is 8 < :

' m;0 (x) = f m (x); m;T (x) = exp [T E m ] f m (x) (20) 
where E m and f m are the eigenvalues and the eigenfunctions introduced above, respectively, but generally speaking a pair of initial-…nal data satisfying [START_REF] Kwakernaak | Periodic linear di¤ erential stochastic processes[END_REF] always exists provided exp [ T H] m;T is su¢ ciently close to f m for every m 2N d in some sense. This statement essentially comes from an adaptation of a result by Paley and Wiener according to Theorem XXXVII of Chapter VII in [START_REF] Paley | Fourier Transforms in the Complex Domain[END_REF], but then the corresponding measures ( 16) are signed since we impose no requirement about the positivity of ' m;0 and exp [ T H] m;T . In particular, regarding [START_REF] Lassalle | Causal transport plans and their Monge-Kantorovich problems[END_REF] the eigenfunctions f m are typically not positive on R d with the possible exception of f 0 , so that it becomes intrinsically impossible to construct a Bernstein process from each m individually in contrast to the method of Section 3. Nevertheless, the averaging procedure de…ned by [START_REF] Klein | Periodic Gaussian Osterwalder-Schrader positive processes and the two-sided Markov property on the circle[END_REF] still allows us to generate genuine probability measures on B d B d and hence other non-Markovian processes, which turns out to be particularly simple to do in the case of [START_REF] Lassalle | Causal transport plans and their Monge-Kantorovich problems[END_REF] when

p m = Z 1 (T ) exp [ T E m ] (21) 
where Z (T ) is given by [START_REF] Cruzeiro | Malliavin calculus and Euclidean quantum mechanics, I. Functional calculus[END_REF]. In Section 4 we also de…ne a linear, time-dependent trace-class operator from a pair of suitably chosen Riesz bases and prove again that the corresponding statistical averages of certain bounded self-adjoint observables coincide with the expectations of suitable functions of the processes, along with many other properties. We devote Section 5 to the application of the results of Sections 3 and 4 to the case where the operator on the right-hand side of ( 12)-( 13) is that of an isotropic system of quantum harmonic oscillators, up to a sign. That is, we consider hierarchies of the form

@ t u(x; t) = 1 2 x u(x; t) 2 2 jxj 2 u(x; t); (x; t) 2 R d (0; T ] ; u(x; 0) = ' m;0; (x); x 2 R d (22) 
and

@ t v(x; t) = 1 2 x v(x; t) 2 2 jxj 2 v(x; t); (x; t) 2 R d [0; T ) ; v(x; T ) = m;T; (x); x 2 R d (23) 
with > 0 and suitable choices of ' m;0; and m;T; , and prove that the processes constructed there are intimately tied up with various types of conditioned Ornstein-Uhlenbeck processes. In particular, we show that one of these is identical in law with the periodic Ornstein-Uhlenbeck process, which was also analyzed by means of completely di¤erent techniques by various authors in different contexts (see, e.g., [START_REF] Kwakernaak | Periodic linear di¤ erential stochastic processes[END_REF], [START_REF] Pedersen | Periodic Ornstein-Uhlenbeck processes driven by Lévy processes[END_REF] and [START_REF] Roelly | A characterization of reciprocal processes via an integration by parts formula on the path space[END_REF]). To this end we carry out explicit computations of the laws and of the covariances based on the fact that in this situation Green's function identi…es with Mehler's d-dimensional kernel, namely, g (x; t; y)

= 2 sinh ( t) d 2 exp 2 4 cosh( t) jxj 2 + jyj 2 2 (x; y) R d 2 sinh ( t) 3 5 (24) 
for all x; y 2R d and every t 2 (0; T ], where (:; :) R d stands for the usual inner product in R d . Finally, we point out that the periodic Ornstein-Uhlenbeck process we just alluded to has the same law as one of the processes used in [START_REF] H Egh-Krohn | Relativistic quantum statistical mechanics in twodimensional space-time[END_REF] to discuss properties of certain quantum systems in equilibrium with a thermal bath, and that it also identi…es with the process "indexed by the circle" and possessing the "two-sided Markov property on the circle" investigated in [START_REF] Klein | Periodic Gaussian Osterwalder-Schrader positive processes and the two-sided Markov property on the circle[END_REF]. Our work indeed shows that many of the processes investigated in those references may be viewed as belonging to a very special class of non-Markovian and stationary Bernstein processes.

for Markov processes. Since there are two time directions provided by ( 4)-( 5 

P (Z 0 2 F 0 ; Z T 2 F T ) = (F 0 F T ) (28) 
for all F 0 ; F T 2 B d , that is, is the joint probability distribution of Z 0 and Z T .

In particular we have

P (Z 0 2 F ) = F R d (29) 
and

P (Z T 2 F ) = R d F ( 30 
)
for each F 2 B d .

(b) For every n 2 N + the …nite-dimensional distributions of the process are given by

P (Z t1 2 F 1 ; :::; Z tn 2 F n ) = Z R d R d d (x; y) g(x; T; y) Z F1 dx 1 ::: Z Fn dx n n Y k=1 g (x k ; t k t k 1 ; x k 1 ) g (y; T t n ; x n ) (31) 
for all F 1 ; :::; F n 2 B d and all t 0 = 0 < t 1 < ::: < t n < T , where x 0 = x. In particular we have

P (Z t 2 F ) = Z R d R d d (x; y) g(x; T; y) Z F dzg (x; t; z) g (z; T t; y) (32) 
for each F 2 B d and every t 2 (0; T ).

(c) P is the only probability measure leading to the above properties.

There already exists a proof of an abstract version of a related statement in [START_REF] Jamison | Reciprocal processes[END_REF] as well as a more analytic version of it in [START_REF] Vuillermot | Bernstein di¤ usions for a class of linear parabolic partial di¤ erential equations[END_REF], so that we limit ourselves here to showing how the basic quantities of interest can be expressed in terms of Green's function [START_REF] Carmichael | Processus Gaussiens stationnaires réciproques sur un intervalle[END_REF]:

Proof. The existence of ( ; F; P ) and of Z 2[0;T ] is through Kolmogorov's extension theorem, with the probability P de…ned on cylindical sets by

P (Z 0 2 F 0 ; Z t1 2 F 1 ; :::; Z tn 2 F n ; Z T 2 F T ) = Z F0 F T d (x; y) Z F1 dx 1 ::: Z Fn dx n n Y k=1 q (y; T ; x k ; t k ; x k 1 ; t k 1 )
for all F 0 ; :::; F T 2 B d and all t 0 = 0 < t 1 < ::: < t n < T , where x 0 = x and q is given by [START_REF] Riesz | Functional Analysis, Dover Books on Mathematics[END_REF]. Since

n Y k=1 q (y; T ; x k ; t k ; x k 1 ; t k 1 ) = n Y k=1 g(y; T t k ; x k )g(x k ; t k t k 1 ; x k 1 ) g(y; T t k 1 ; x k 1 ) = 1 g(x; T; y) n Y k=1 g(x k ; t k t k 1 ; x k 1 ) g(y; T t n ; x n )
after n 1 cancellations in the products, we therefore obtain

P (Z 0 2 F 0 ; Z t1 2 F 1 ; :::; Z tn 2 F n ; Z T 2 F T ) = Z F0 F T d (x; y) g(x; T; y) Z F1 dx 1 ::: Z Fn dx n n Y k=1 g(x k ; t k t k 1 ; x k 1 ) g(y; T t n ; x n ); (33) 
which is [START_REF] Vuillermot | On the time evolution of Bernstein processes associated with a class of parabolic equations[END_REF] when F 0 = F T = R d . We now prove (28) by using the symmetry property in [START_REF] Carmichael | Processus Gaussiens stationnaires réciproques sur un intervalle[END_REF] along with the semigroup composition law for g to get Z

R d dx 1 ::: Z R d dx n n Y k=1 g(x k ; t k t k 1 ; x k 1 ) g(y; T t n ; x n ) = g(x; T; y) (34)
by means of an easy induction argument on n. The substitution of ( 34) into [START_REF] Zambrini | Variational processes and stochastic versions of mechanics[END_REF] with the choice F 1 = ::: = F n = R d then leads to the desired relation

P (Z 0 2 F 0 ; Z T 2 F T ) = Z F0 F T d (x; y) ;
of which ( 29) and ( 30) are obvious particular cases. Finally, ( 32) is [START_REF] Vuillermot | On the time evolution of Bernstein processes associated with a class of parabolic equations[END_REF] with n = 1.

Remark. It is plain that the only relevant conditions in the proof of the proposition are the symmetry and the positivity of Green's function [START_REF] Carmichael | Processus Gaussiens stationnaires réciproques sur un intervalle[END_REF], aside from the data of a probability measure . Furthermore, as we shall see below Bernstein processes may be stationary and Markovian but in general they are neither one nor the other, as these properties are intimately tied up with the structure of . More speci…cally, according to Theorem 3.1 in [START_REF] Jamison | Reciprocal processes[END_REF] adapted to the present situation, a Bernstein process is Markovian if, and only if, there exist positive measures 0 and T on B d such that be of the form

(G) = Z G d ( 0 T ) (x; y) g(x; T; y) (35) 
for every

G 2 B d B d , with (R d R d ) = 1.
We refer the reader for instance to [START_REF] Vuillermot | On the time evolution of Bernstein processes associated with a class of parabolic equations[END_REF], [START_REF] Vuillermot | Bernstein di¤ usions for a class of linear parabolic partial di¤ erential equations[END_REF] and some of their references for an analysis of the Markovian case in various situations. Finally, in various di¤erent forms Bernstein processes have also recently appeared in applications of Optimal Transport Theory as testi…ed for instance in [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete and Continuous Dynamical Systems[END_REF] and in the monographs [START_REF] Galichon | Optimal Transport Methods in Economics[END_REF] and [START_REF] Villani | Optimal Transport: Old and New, Grundlehren der Mathematischen Wissenschaften[END_REF], and in the developments of Stochastic Geometric Mechanics as in [START_REF] Zambrini | The research program of Stochastic Deformation (with a view toward Geometric Mechanics)[END_REF].

In the next section we carry out the program described in Section 1 starting with ( 12), ( 13) and ( 14) when the initial-…nal data are given by [START_REF] Jamison | Reciprocal processes: the stationary Gaussian case[END_REF].

On mixing Bernstein bridges in R d

Relation [START_REF] Jamison | Reciprocal processes: the stationary Gaussian case[END_REF] implies that measures ( 16) are already probability measures so that we may apply Proposition 1 directly and in this manner associate a Bernstein process Z m 2[0;T ] with each level of the spectrum. This leads to the following result where u m and v m denote the solutions to ( 12) and ( 13), respectively, that is,

u m (x; t) = Z R d dyg(x; t; y)' m;0 (y) > 0 (36) and v m (x; t) = Z R d dyg(x; T t; y) m;T (y) > 0: (37) 
Theorem 1. Assume that Hypothesis (H) holds. Then for every m 2 N d there exists a non-stationary Bernstein process Z m 2[0;T ] in R d such that the following statements are valid:

(a) The process Z m 2[0;T ] is a forward Markov process whose …nite-dimensional distributions are

P m Z m t1 2 F 1 ; :::; Z m tn 2 F n = Z R d dx m;0 (x) Z F1 dx 1 ::: Z Fn dx n n Y k=1 w m (x k 1 ; t k 1 ; x k ; t k ) ( 38 
)
for every n 2 N + , all F 1 ; :::; F n 2 B d and all 0 = t 0 < t 1 < ::: < t n < T , with x 0 = x. In the preceding expression the density of the forward Markov transition function is

w m (x; s; y; t) = g(x; t s; y) v m (y; t) v m (x; s) (39) 
for all x; y 2 R d and all s; t 2 [0; T ] with t > s, while the initial distribution of the process reads

m;0 (x) = ' m;0 (x)v m (x; 0): (40) 
(b) The process Z m 2[0;T ] may also be viewed as a backward Markov process since the …nite-dimensional distributions (38) may also be written as

P m Z m t1 2 F 1 ; :::; Z m tn 2 F n = Z R d dx m;T (x) Z F1
dx 1 :::

Z Fn dx n n Y k=1 w m (x k+1 ; t k+1 ; x k ; t k ) ( 41 
)
for every n 2 N + , all F 1 ; :::; F n 2 B d and all 0 < t 1 < ::: < t n < t n+1 = T , with x n+1 = x. In the preceding expression the density of the backward Markov transition function is

w m (x; t; y; s) = g(x; t s; y) u m (y; s) u m (x; t) (42) 
for all x; y 2 R d and all s; t 2 [0; T ] with t > s, while the …nal distribution of the process reads

m;T (x) = m;T (x)u m (x; T ): (c) We have P m (Z m 0 = a m ) = P m (Z m T = b m ) = 1 (43) 
and

P m (Z m t 2 F ) = Z F dxu m (x; t)v m (x; t) (44) 
for each t 2 (0; T ) and every

F 2 B d . (d) Finally, E m (b(Z m t )) = Z R d dxb(x)u m (x; t)v m (x; t) (45) 
for each bounded Borel measurable function b : R d 7 ! C and every t 2 (0; T ).

Proof. From (39) and the semigroup composition law for g we get Therefore W m is the transition function of a forward Markov process with density w m . In order to prove (38) we start with [START_REF] Vuillermot | On the time evolution of Bernstein processes associated with a class of parabolic equations[END_REF] into which we substitute [START_REF] H Egh-Krohn | Relativistic quantum statistical mechanics in twodimensional space-time[END_REF] to obtain

w m (x; s; y; t) = Z R d dzw m (x
P m Z m t1 2 F 1 ; :::; Z m tn 2 F n (46) = Z R d dx' m;0 (x) Z F1 dx 1 ::: Z Fn dx n n Y k=1 g (x k ; t k t k 1 ; x k 1 ) v m (x n ; t n )
where x 0 = x and t 0 = 0. Furthermore, using (39) we may rewrite the product in the preceding expression as

n Y k=1 g (x k ; t k t k 1 ; x k 1 ) v m (x n ; t n ) = n Y k=1 w m (x k 1 ; t k 1 ; x k ; t k ) v m (x; 0)
after n 1 cancellations, which eventually leads to Statement (a) by taking (40) into account. The proof of Statement (b) is similar and thereby omitted. Now, from ( 14) and ( 29) we have

P m (Z m 0 2 F ) = Z F dx' m;0 (x)v m (x; 0) = 0 if a m = 2 F 1 if a m 2 F (47)
by using the …rst relation in [START_REF] Jamison | Reciprocal processes: the stationary Gaussian case[END_REF], and similarly from (30) we get

P m (Z m T 2 F ) = Z F dxu m (x; T ) m;T (x) = 0 if b m = 2 F 1 if b m 2 F (48)
so that (43) holds. Moreover, (44) is an immediate consequence of ( 14), [START_REF] Vuillermot | Bernstein di¤ usions for a class of linear parabolic partial di¤ erential equations[END_REF] and ( 36), (37), which proves Statement (c) and thereby Statement (d). Finally, a glance at (39) shows that (38) lacks translation invariance in time so that Z m 2[0;T ] is indeed non-stationary.

Remarks.

(1) The fact that Z m 2[0;T ] is both a forward and a backward Markov process is a manifestation of its reversibility in the sense of De…nition 2 in [START_REF] Vuillermot | Bernstein di¤ usions for a class of linear parabolic partial di¤ erential equations[END_REF], which is also readily apparent in (44) since the probability density of …nding the process in a given region of space at a given time is expressed as the product of the forward solution (36) times the backward solution (37). As a matter of fact we can also obtain (44) either from (38) or from (41) when n = 1, and we have

P m Z m t 2 R d = Z R d dxu m (x; t)v m (x; t) = 1 (49)
for every t 2 [0; T ] as it should be. Indeed, substituting ( 15) into (36)-(37) and the resulting expression into (44) we get

P m (Z m t 2 F ) = 1 g(a m ; T; b m ) Z F dxg(a m ; t; x)g(x; T t; b m ),
which implies (49) thanks to the semigroup composition law for g. Finally, we stress the fact that the forward density (39) is de…ned from the backward solution (37), while the backward density (42) is de…ned from the forward solution (36), and not the other way around.

(2) We note that (46) may also be written as

P m Z m t1 2 F 1 ; :::; Z m tn 2 F n (50) = Z F1
dx 1 :::

Z Fn dx n n Y k=2 g (x k ; t k t k 1 ; x k 1 ) u m (x 1 ; t 1 )v m (x n ; t n )
by carrying out the integral over x and by taking (36) into account. Relation (50) will play an important rôle in Section 5 since the integrand determines the density of the law of the random vector (Z m t1 ; :::; Z m tn ) 2 R nd . (3) Relation (43) shows that the process Z m 2[0;T ] is pinned down at a m when t = 0 and at b m when t = T . We have therefore obtained a sequence of Markovian bridges associated with the discrete spectrum of the operator on the right-hand side of ( 12)-( 13), which we shall call Bernstein bridges in the sequel. In particular, each process Z m 2[0;T ] reduces to a Markovian loop in R d when a m = b m for every m.

It turns out that Theorem 1 is the stepping stone toward the construction of a non-Markovian process we alluded to at the beginning of this article, which we shall carry out through the averaging procedure brie ‡y sketched in the introduction. Accordingly, by mixing the Bernstein bridges constructed above we obtain the following result: Theorem 2. Assume that Hypothesis (H) holds, and for every m 2 N d let Z m 2[0;T ] be the process of Theorem 1. Let Z 2[0;T ] be the Bernstein process in the sense of Proposition 1 where the probability measure is [START_REF] Klein | Periodic Gaussian Osterwalder-Schrader positive processes and the two-sided Markov property on the circle[END_REF] with the initial-…nal conditions given by [START_REF] Jamison | Reciprocal processes: the stationary Gaussian case[END_REF]. Then the following statements are valid: (a) The process Z 2[0;T ] is non-stationary, non-Markovian and its …nitedimensional distributions are

P Z t1 2 F 1 ; :::; Z tn 2 F n = X m2N d p m P m Z m t1 2 F 1 ; :::; Z m tn 2 F n ( 51 
)
for every n 2 N + and all F 1 ; :::; F n 2 B d , where P m Z m t1 2 F 1 ; :::; Z m tn 2 F n is given either by (38) or (41).

(b) We have

P ( Z t 2 F ) = X m2N d p m P m (Z m t 2 F ) (52)
for each t 2 [0; T ] and every F 2 B d , where P m (Z m t 2 F ) is given by ( 44), ( 47) and ( 48).

(c) We have

E (b( Z t ) = X m2N d p m E m (b(Z m t )) (53) 
for each bounded Borel measurable function b : R d 7 ! C and every t 2

[0; T ], where E m (b(Z m t )
) is given by (45).

Proof. It is su¢ cient to substitute the joint density

(x; y) = g(x; T; y) X m2N d p m ' m;0 (x) m;T (y)
with ' m;0 and m;T given by ( 15) into ( 31) and [START_REF] Vuillermot | Bernstein di¤ usions for a class of linear parabolic partial di¤ erential equations[END_REF] to obtain (51) and (52), respectively, from which (53) follows. Owing to the lack of translation invariance in time of (41), it is then clear that the process Z 2[0;T ] is also non-stationary. Finally, we note that is not of the form (35) so that Z 2[0;T ] is indeed non-Markovian.

Having associated an arbitrary weight p m with each level of the spectrum of [START_REF] Carlen | Conservative di¤ usions[END_REF], it is now natural to ask whether there exists a linear bounded operator R (t) acting in L 2 R d for every t 2 (0; T ) possessing most of the attributes of a so-called density operator in Quantum Statistical Mechanics. If so, an interesting question is to know whether the averages of certain bounded selfadjoint observables computed by means of such a density operator are in one way or another related to some expectation values of the process Z 2[0;T ] . We shall see that the answer is a¢ rmative if we de…ne

R (t) f := X m2N d p m (f; u m (:; t)) 2 v m (:; t) (54) 
for each complex-valued f 2 L 2 R d and every t 2 (0; T ), where u m (:; t) and v m (:; t) are given by

u m (x; t) = g(x; t; a m ) g 1 2 (a m ; T; b m ) (55) 
and

v m (x; t) = g(x; T t; b m ) g 1 2 (a m ; T; b m ) ; (56) 
respectively, after substitution of ( 15) into (36) and (37). We begin with the following result in whose proof we write c for all the irrelevant positive constants depending only on the universal constants c 1;2 and c 1;2 in (8): 

for every t 2 (0; T ), where the right-hand side of (58) is given by (53).

Proof. We …rst prove that u m (:; t); v m (:; t) 2 L 2 R d and that there exists a constant c > 0 independent of m and depending only on t; T and on the constants in [START_REF] Carmichael | Processus Gaussiens stationnaires réciproques sur un intervalle[END_REF] such that

ku m (:; t)k 2 c < +1; (59) kv m (:; t)k 2 c < +1: (60) 
Indeed, from the right-hand side inequality [START_REF] Carmichael | Processus Gaussiens stationnaires réciproques sur un intervalle[END_REF] we have

Z R d dxg 2 (x; t; a m ) ct d Z R d dx exp " c jxj 2 t # = ct d 2 < +1
for every t 2 (0; T ) independently of m by translation invariance of the integral, and similarly Z

R d dxg 2 (x; T t; b m ) c (T t) d 2 < +1:
On the other hand, from the left-hand side inequality (8) we obtain

1 g(a m ; T; b m ) cT d 2 exp " c ja m b m j 2 T
# so that we eventually get

ku m (:; t)k 2 2 c T t d 2 exp " c ja m b m j 2 T # c T t d 2 exp h c T i := c 2 < +1
by virtue of ( 55) and (57). In a completely similar way we have

kv m (:; t)k 2 2 c T T t d 2 exp " c ja m b m j 2 T t # c 2
by changing the value of c if necessary, so that (59) and (60) hold. Therefore, series (54) converges strongly in L 2 R d and de…nes there a linear bounded operator since X

m2N d p m j(f; u m (:; t)) 2 j kv m (:; t)k 2 c 2 kf k 2 < +1
for each f 2 L 2 R d and every t 2 (0; T ). In order to prove that R (t) is trace-class, it is then necessary and su¢ cient to show that

X n2N d (R (t) h n ; h n ) 2 < +1 (61) 
for any orthonormal basis (h n ) n2N d in L 2 R d , in which case (61) will not depend on the choice of the basis (see, e.g., Theorem 8.1 in Chapter III of [START_REF] Gohberg | Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space[END_REF]). To this end let us introduce momentarily the auxiliary function

A(m; n; t) := p m (h n ; u m (:; t)) 2 (v m (:; t); h n ) 2 so that X m2N d A(m; n; t) = (R (t) h n ; h n ) 2 (62) 
for any …xed n. Moreover, for any …xed m we have X

n2N d A(m; n; t) = p m (u m (:; t); v m (:; t)) 2 = p m ( 63 
)
by virtue of (49). In addition, the preceding series converges absolutely as a consequence of the Cauchy-Schwarz inequality and estimates (59), (60) since for any positive integers N 1 ; :::; N d we have successively

X n:0 n j Nj jA(m; n; t)j p m 0 @ X n2N d j(u m (:; t); h n ) 2 j 2 1 A 1 2 0 @ X n2N d j(v m (:; t); h n ) 2 j 2 1 A 1 2 = p m ku m (:; t)k 2 kv m (:; t)k 2 c 2 p m (64) 
for any …xed m so that X

n2N d jA(m; n; t)j < +1
since the partial sums of this series remain bounded. Finally, (64) still implies

X m2N d X n2N d jA(m; n; t)j c 2 X m2N d p m = c 2 < +1:
Therefore the corresponding iterated series are equal (see, e.g., Theorem 8.43 in Chapter 8 of [START_REF] Apostol | Mathematical Analysis[END_REF]), that is,

X n2N d X m2N d A(m; n; t) = X m2N d X n2N d A(m; n; t)
or, equivalently,

Tr R (t) := X n2N d (R (t) h n ; h n ) 2 = X m2N d p m = 1
according to (62) and (63), which is (a). As for the proof of (b), arguing as above for the computation of the trace we have

Tr (R (t) B) = X n2N d X m2N d p m (h n ; bu m (:; t)) 2 (v m (:; t); h n ) 2 = X m2N d p m (bu m (:; t); v m (:; t)) 2 = E b( Z t )
where the last equality follows from (45) and (53) (note that u m (:; t) and v m (:; t) are also real-valued).

Remarks.

(1) The preceding considerations show that R(t) is not selfadjoint in general for it is easily seen that its adjoint is obtained by swapping the rôle of (55) and (56), that is,

R (t) f = X m2N d p m (f; v m (:; t)) 2 u m (:; t):
Aside from that and in addition to the conclusion of Theorem 3, (54) possesses most of the properties of a density operator. For instance, every operator P m (t) :

L 2 R d 7 ! L 2 R d de…ned by P m (t)f := (f; u m (:; t)) 2 v m (:; t)
satis…es (P m (t)) 2 = P m (t) as a consequence of (49) and thus represents an oblique projection rather than an orthogonal projection, but (54) is still a statistical mixture of the P m (t) obtained by sweeping over the whole spectrum of [START_REF] Carlen | Conservative di¤ usions[END_REF]. Moreover, we remark that (54) involves both the forward and the backward solutions to ( 12) and ( 13), again in agreement with the fact that there are two time directions in the theory from the outset.

(2) It is tempting to believe that for every linear bounded selfadjoint operator there exists a real-valued b 2 L 1 R d such that (58) holds, since such an operator is unitarily equivalent to a multiplication operator by the spectral theorem. We defer the general analysis of this question to a separate publication.

In the next section we carry out the program described in the introduction when the initial-…nal data satisfy suitable biorthogonality properties, and where we keep the same notation ' m;0 and m;T for them.

On generating Bernstein processes in R d by mixing signed measures

What we …rst need lies in the following adaptation of a result by Paley and Wiener (see the abstract form given in Section 86 of Chapter V in [START_REF] Riesz | Functional Analysis, Dover Books on Mathematics[END_REF] of Theorem XXXVII of Chapter VII in [START_REF] Paley | Fourier Transforms in the Complex Domain[END_REF]). We omit the proof as it is essentially available therein modulo trivial changes and up to the observation that the equality 

for every t 2 [0; T ] and the strongly convergent expansions

8 > > > > < > > > > : f = X m2N d f; ' m;0 2 exp [ T H] m;T ; f = X m2N d f; exp [ T H] m;T 2 ' m;0 (67) hold for every f 2 L 2 R d . (b)
The coe¢ cients in (67) satisfy the estimates

(1 + ) 1 kf k 2 0 @ X m2N d f; ' m;0 2 2 1 A 1 2
(1 )

1 kf k 2 ; (68) (1 ) kf k 2 0 @ X m2N d f; exp [ T H] m;T 2 2 1 A 1 2 (1 + ) kf k 2 :(69)
Thus the sequences exp [ T H] m;T m2N d and ' m;0 m2N d constitute Riesz bases of L 2 R d in the terminology of [START_REF] Gohberg | Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space[END_REF] and it is plain that [START_REF] Lassalle | Causal transport plans and their Monge-Kantorovich problems[END_REF] Proof. The measures are signed since there is no requirement about the positivity of ' m;0 and exp [ T H] m;T . In particular, regarding (20) the eigenfunctions f m are typically not positive on R d with the possible exception of f 0 . Moreover, expanding m;T along the orthonormal basis (f m ) m2N d we get X 19), and therefore

k2N d exp [ T E k )] ' m;0 ; f k 2 n;T ; f k 2 = m;n from (
m R d R d = X k2N d exp [ T E k )] ' m;0 ; f k 2 m;T ; f k 2 = 1
by substituting [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] into [START_REF] Jamison | Reciprocal processes[END_REF].

The fact that (18) may de…ne a probability measure in the case under consideration is then ensured by the following result: Lemma 2. Let the initial-…nal conditions form a complete biorthonormal system in the sense of Proposition 2, and let be the measure determined by 

(G) = X m2N d p m m (G) (71) for every G 2 B d B d . If (x; y) 7 ! X m2N d p m ' m;0 (x) m;T (y) (72) 
where g(x; T; y) > 0 according to [START_REF] Carmichael | Processus Gaussiens stationnaires réciproques sur un intervalle[END_REF].

Remark. It may seem abrupt to assume o¤-hand that (72) is positive as a measure. However, an important example illustrating this situation comes about when the initial-…nal data are given by [START_REF] Lassalle | Causal transport plans and their Monge-Kantorovich problems[END_REF] and the weights associated with the spectrum by [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete and Continuous Dynamical Systems[END_REF]. Indeed, in this case we have

m (x; y) = exp [T E m ] g(x; T; y)f m (x)f m (y)
and therefore

(x; y) = Z 1 (T )g(x; T; y) X m2N d f m (x)f m (y) = Z 1 (T )g(x; T; y) (x y) (74)
where the last equality is a consequence of the completeness of the orthogonal system (f m ) m2N d . It is (74) that will allow us to relate the above considerations to the periodic Ornstein-Uhlenbeck process in the next section.

Since the solutions u m and v m to ( 12) and ( 13) may now be written in terms of the Schrödinger semigroup de…ned in Section 1, namely, Theorem 4. Assume that Hypothesis (H) holds, and let Z 2[0;T ] be the Bernstein process in the sense of Proposition 1 with given by ( 73), the particular case (74) being excluded. Then the following statements are valid:

(a) The process Z 2[0;T ] is non-stationary, non-Markovian and for every n 2 N + with n 2 its …nite-dimensional distributions are

P Z t1 2 F 1 ; :::; Z tn 2 F n = X m2N d p m Z F1
dx 1 :::

Z Fn dx n n Y k=2 g (x k ; t k t k 1 ; x k 1 ) exp [ t 1 H] ' m;0 (x 1 ) exp [ (T t n ) H] m;T (x n )
for all F 1 ; :::; F n 2 B d and all 0 < t 1 < ::: < t n < T . (b) We have

P Z t 2 F = X m2N d p m Z F dx exp [ tH] ' m;0 (x) exp [ (T t) H] m;T (x)
for each F 2 B d and every t 2

[0; T ]. (c) We have E b( Z t ) (77) = X m2N d p m Z R d dxb (x) exp [ tH] ' m;0 (x) exp [ (T t) H] m;T (x)
for each bounded Borel measurable function b : R d 7 ! C and every t 2 [0; T ].

Proof. The substitution of (73) into [START_REF] Vuillermot | On the time evolution of Bernstein processes associated with a class of parabolic equations[END_REF] gives

P (Z t1 2 F 1 ; :::; Z tn 2 F n ) = X m2N d p m Z F1 dx 1 ::: Z Fn dx n n Y k=2 g (x k ; t k t k 1 ; x k 1 ) Z R d R d
dxdy' m;0 (x) m;T (y)g (x 1 ; t 1 ; x) g (y; T t n ; x n ) for all F 1 ; :::; F n 2 B d and all 0 < t 1 < ::: < t n < T , where we have used the fact that t 0 = 0 and x 0 = x. This proves (a) since

exp [ t 1 H] ' m;0 (x 1 ) = Z R d dxg (x 1 ; t 1 ; x) ' m;0 (x)
and

exp [ (T t n ) H] m;T (x n ) = Z R d dxg (x n ; T t n ; x) m;T (x):
The proof of (b) is similar by using ( 73) in [START_REF] Vuillermot | Bernstein di¤ usions for a class of linear parabolic partial di¤ erential equations[END_REF]. It is also plain that (c) follows from (b) and that Z 2[0;T ] is non-stationary and non-Markovian for the same reasons as those given in the proof of Theorem 2 of the preceding section.

When is given by (74) the associated process remains stationary and it is useful to discuss its properties separately by writing out the various quantities of interest in view of the applications discussed in the next section: Corollary 1. Assume that Hypothesis (H) holds, and let Z 2[0;T ] be the Bernstein process in the sense of Proposition 1 with given by (74). Then the following statements are valid:

(a) The process Z 2[0;T ] is stationary, non-Markovian and for every n 2 N + with n 2 its …nite-dimensional distributions are

P Z t1 2 F 1 ; :::; Z tn 2 F n = Z 1 (T ) Z F1 dx 1 ::: Z Fn dx n (78) n Y k=2 g (x k ; t k t k 1 ; x k 1 ) g (x 1 ; T (t n t 1 ); x n )
for all F 1 ; :::; F n 2 B d and all 0 < t 1 < ::: < t n < T . (b) We have

P Z t 2 F = Z 1 (T ) Z F dxg (x; T; x) (79) 
for each F 2 B d and every t 2 Proof. Relation (78) follows from the substitution of (74) into (31) and from the semigroup composition law for g, while (79) is a consequence of (74) into ( 32) and (80) a consequence of (79) since the density of the law of the process is x 7 ! Z 1 (T )g (x; T; x). Now for any > 0 su¢ ciently small such that 0 < t 1 + < ::: < t n + < T we have P Z t1+ 2 F 1 ; :::; Z tn+ 2 F n = P Z t1 2 F 1 ; :::; Z tn 2 F n from (78) and therefore Z 2[0;T ] is stationary, which entails the fact that both (79) and (80) are independent of t. Finally the process is non-Markovian since (74) is not of the form (35).

[0; T ]. (c) We have E b( Z t ) = Z 1 (T ) Z R d dxb(x)g (x; T; x) (80 
As in the preceding section we can now de…ne a linear transformation in L 2 R d which will play the rôle of a density operator. Let us set

R(t)f := X m2N d p m (f; u m (:; t)) 2 v m (:; t) (81) 
for each f 2 L 2 R d and every t 2 [0; T ], where u m and v m are given by ( 75) and ( 76), respectively. We begin with the following: 

Lemma 3. Assume that m;T m2N d is an arbitrary bounded sequence in L 2 R d ,
for some …nite constant c T > 0 depending only on T (and on the lower bound in question). Moreover, by choosing f = ' n;0 in the …rst inequality in (69) and by using the biorthogonality relation [START_REF] Kwakernaak | Periodic linear di¤ erential stochastic processes[END_REF], we see that for each 2 [0; 1) there exists a …nite constant c > 0 such that ' m;0 2 c for every m 2 N d . Combining this with the boundedness of m;T m2N d and with (82), (83) we obtain

ku m (:; t)k 2 c < +1; kv m (:; t)k 2 c < +1
where c depends only on T , the lower bound of V and . Therefore we have X

m2N d p m j(f; u m (:; t)) 2 j kv m (:; t)k 2 c 2 kf k 2 < +1
for each f 2 L 2 R d and every t 2 [0; T ], so that (81) converges strongly in L 2 R d with the desired properties.

Remark. It is essential that the sequence m;T m2N d be bounded for the above argument to hold, but this does not follow from the …rst inequality in (68) as the boundedness of ' m;0 m2N d followed from the …rst inequality in (69). Indeed, the …rst inequality in (68) along with the biorthogonality relation [START_REF] Kwakernaak | Periodic linear di¤ erential stochastic processes[END_REF] only shows that there exists a …nite constant c > 0 such that exp [ T H] m;T 2 c for every m 2 N d , but that does not entail the boundedness of m;T m2N d .

In fact we have much more than the conclusion of Lemma 3: Theorem 5. The hypothesis is the same as in Lemma 3. Then the following statements hold:

(a) Expression (81) de…nes a linear trace-class operator in 

L 2 R d with Tr R(t) = X m2N d p m = 1; (84) Tr R 2 (t) = X m2N d p 2 m 1 (85 
R(t)v m (:; t) = p m v m (:; t); (86) R (t)u m (:; t) = p m u m (:; t) (87) 
hold for every m 2 N d and every t 2 [0; T ], where

R (t)f = X m2N d p m (f; v m (:; t)) 2 u m (:; t) (88) 
is the adjoint of R(t).

(c) Let us consider the linear bounded self-adjoint multiplication operator on L 2 R d given by Bf = bf for every

f 2 L 2 R d , where b 2 L 1 R d is real-valued. If Z 2[0;T ] denotes the Bernstein process of Theorem 4 then we have Tr (R (t) B) = E b( Z t ) (89) 
for every t 2 [0; T ], where the right-hand side of (89) is given by (77).

Proof. The proof of (84) is quite similar to that of Statement (a) in Theorem 3 and is thereby omitted, while that of (85) follows from the biorthogonality of u m (:; t) and v m (:; t). Equations ( 86), (87) are an immediate consequence of (81), (88) and of the biorthogonality relation (66), while the proof of (c) is identical to that of the last statement of Theorem 3.

Remark. It follows directly from (66) and (86) that

X m2N d (R (t) v m (:; t); u m (:; t)) 2 = X m2N d p m = 1:
Nevertheless, the fact that the preceding expression holds true is not speci…c to the problem at hand, but is a general property of trace-class operators whose trace may be computed by means of Lidskii's theorem using biorthogonal systems generated by Riesz bases (see, e.g., Theorems 5 and 6 in Section 2, Chapter I, of [START_REF] Gel'fand | Generalized Functions IV: Applications of Harmonic Analysis[END_REF]). Finally, at the end of this article we will dwell a bit more on the meaning of (85).

If the initial-…nal conditions are given by ( 20) we note that (81) reduces to the self-adjoint, positive, trace-class time-independent operator

Rf = X m2N d p m (f; f m ) 2 f m : (90) 
In this case we have the following:

Corollary 2. Let B : L 2 R d 7 ! L 2 R d
be the same operator as in (c) of Theorem 5, and let Z 2[0;T ] be the Bernstein process of Corollary 1. Then we have

Tr (RB) =E (b Z t ) = Z 1 (T ) X m2N d exp [ T E m ] Z R d dxb(x) jf m (x)j 2 (91) 
for every t 2 [0; T ].

Proof. It is easily veri…ed that

Tr (RB) = X m2N d p m Z R d dxb(x) jf m (x)j 2
whenever p m > 0 satis…es the normalization condition in [START_REF] Klein | Periodic Gaussian Osterwalder-Schrader positive processes and the two-sided Markov property on the circle[END_REF], while if the probabilities associated with the spectrum are given by [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete and Continuous Dynamical Systems[END_REF] we have

E b Z t = Z 1 (T ) Z R d dxb(x)g (x; T; x) = Z 1 (T ) X m2N d exp [ T E m ] Z R d dxb(x) jf m (x)j 2
for every t 2 [0; T ] according to [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] and (80).

In the …nal section of this article we apply some of the above results to the class of Bernstein processes generated by ( 22) and ( 23).

On the periodic Ornstein-Uhlenbeck process and related processes

We begin by recalling that the eigenvalue equation

1 2 x + 2 2 jxj 2 h m; (x) =E m; h m; (x)
holds for every m 2 N d , with

E m; : = 0 @ d X j=1 m j + d 2 1 A (92) 
and

h m; (x) := d Y j=1 h mj ; (x j ):
In these expressions m j is the j th component of m, x j the j th component of x and h m; denotes the one-dimensional, suitably scaled Hermite function

h m; (x) := 4 p h m p x
where

h m (x) = ( 1) m 1 2 2 m m! 1 2 e x 2 2 d m dx m e x 2 .
Furthermore we have

Z (T ) := X m2N d exp [ T E m; ] = (2 (cosh( T ) 1)) d 2 (93) 
by summing the series explicitly, so that Mehler's kernel (24) may be expanded as g (x; t; y) = X valid with k 1:086435 uniformly in all x; y and m (see, e.g., Section 10.18 in [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] for the one-dimensional case). We …rst illustrate some of the consequences of Theorem 1 by considering the initial-…nal data 8 < :

' m;0 (x) = N m; (x) ; m;T (x) = N m; (x b m ) (94) 
where A glance at [START_REF] Pedersen | Periodic Ornstein-Uhlenbeck processes driven by Lévy processes[END_REF] shows that (94) is a particular case of (15) when a m = 0 for every m. The corresponding solutions to [START_REF] Léonard | Reciprocal processes. A measure-theoretical point of view[END_REF] and [START_REF] Paley | Fourier Transforms in the Complex Domain[END_REF] given by ( 55) and ( 56) then read

(b m ) m2N d R d is
u m; (x; t) = N m; sinh d 2 ( t) exp " (t) jxj 2 2 # (95) 
and

v m; (x; t) = N m; exp " (T t) jb m j 2 2 # sinh d 2 ( (T t)) exp 1 2 (T t) jxj 2 2 (b m ; x) R d sinh ( (T t)) ; (96) 
respectively, where we have de…ned

(t) := coth ( t) (97) 
for every t 2 (0; T ] and N m; := sinh ( T ) 2 (c) We have

E m b(Z m; t ) = (2 (t)) d 2 Z R d dxb(x) exp " jx b m; (t)j 2 2 (t) # ( 103 
)
for each bounded Borel measurable function b : R d 7 ! C and every t 2 (0; T ).

Proof. We begin by proving (98). Using ( 95) and ( 96) we …rst have

u m; (x; t)v m; (x; t) = sinh( T ) 2 sinh ( (T t)) sinh( t) d 2 exp " ( (T ) (T t)) jb m j 2 2 # exp 1 2 ( (t) + (T t)) jxj 2 2 (b m ; x) R d sinh ( (T t)) (104) 
after regrouping terms, and furthermore

(T ) (T t) = sinh( t) sinh ( (T t)) sinh( T ) ( 105 
) (t) + (T t) = sinh( T ) sinh ( (T t)) sinh( t) (106) 
from (97). The substitution of (105) and ( 106) into (104) then leads to

u m; (x; t)v m; (x; t) = sinh( T ) 2 sinh ( (T t)) sinh( t) d 2 exp " sinh( t) jb m j 2 2 sinh ( (T t)) sinh( T ) # exp " 2 sinh( T ) jxj 2 2 sinh( t) (b m ; x) R d sinh ( (T t)) sinh( t) !# : (107) 
Now, for the numerator of the argument in the second exponential of the preceding expression we have

sinh( T ) jxj 2 2 sinh( t) (b m ; x) R d = sinh( T ) jx b m; (t)j 2 sinh 2 ( t) jb m j 2 sinh( T ) (108) 
by virtue of (99). Therefore, taking (100) and (108) into account in (107) we get

u m; (x; t)v m; (x; t) = (2 (t)) d 2 exp " jx b m; (t)j 2 2 (t)
# following the cancellation of two exponential factors, which proves Statement (a) according to (44). We also remark that (101) is a particular case of (43), and that (103) holds according to (45).

We now turn to the proof of (102). According to (50) we note that the density of the law of (Z m; t1 ; :::

; Z m; tn ) 2 R nd is n Y k=2 g (x k ; t k t k 1 ; x k 1 ) u m; (x 1 ; t 1 )v m; (x n ; t n ) = (2 ) nd 2 n sinh( T ) sinh ( (T t n )) sinh( t 1 ) d 2 n Y k=2 sinh ( (t k t k 1 )) ! d 2 exp 1 2 ( (T ) (T t n )) jb m j 2 exp 2 4 2 n X k=2 cosh( (t k t k 1 )) jx k j 2 + jx k 1 j 2 2 x k ; x k 1 R d sinh ( (t k t k 1 )) 3 5 exp 1 2 (t 1 ) jx 1 j 2 + (T t n ) jx n j 2 exp (b m ; x n ) R d sinh ( (T t n ))
for every n 2. Therefore, the tridiagonal matrix C 1 corresponding to the quadratic part when d = 1 is identi…ed as

C 1 ;k;k = 8 > > > > > < > > > > > : sinh( t2) sinh( (t2 t1)) sinh( t1) for k = 1; sinh( (t k+1 t k 1 )) sinh( (t k+1 t k )) sinh( (t k t k 1 ))
for k = 2; :::; n 1; sinh( (T tn 1)) sinh( (T tn)) sinh( (tn tn 1))

for k = n (the second line not being there if n = 2), and

C 1 ;k;k 1 = C 1 ;k 1;k = sinh ( jt k t k 1 j)
for k = 2; :::; n:

Consequently, inverting the matrix and using numerous identities among hyperbolic functions we eventually get

C ;k;l = 8 > < > : sinh( (T t k )) sinh( t l ) sinh( T )
for k l;

sinh( (T t l )) sinh( t k ) sinh( T )

for k l;

which leads to (102) by standard arguments.

Remarks. (1) Corollary 3 thus describes a sequence of random curves all pinned down at the origin when t = 0 and at b m when t = T , with probability one. We also remark that the Gaussian law is not centered unless b m = o, and that the process is clearly non-stationary and Markovian since (98) depends explicitly on time and (102) factorizes as the product of a function of s times a function of t. Moreover, we note that the curve : [0; T ] 7 ! R + 0 given by (100) is concave aside from satisfying (0) = (T ) = 0, and that it takes on the maximal value at the midpoint of the time interval, namely,

T 2 = sinh 2 T 2 sinh( T ) ;
thereby retaining the main features of a Brownian bridge. In fact, Z m; 2[0;T ] does reduce to a Brownian bridge in the limit ! 0 

+ since lim !0+ E m (Z m; ;i s b i m; (s))(Z m; ;j t b j m; (t)) = 8 
P Z 0 = o = 1;
whose variance and covariance are given by 8 > < > :

(t) = sinh( t) exp[ t] ; E Z ;i s Z ;j t = exp[ (s+t)] 2 (exp [2 (s ^t)] 1) i;j
respectively, in other words a process identical in law with a d-dimensional Ornstein-Uhlenbeck process conditioned to start at the origin. We omit the details of the computations that led to the above formulae, which are quite similar to those carried out above.

Finally, we still have the following consequence of Theorem 3, where the density operator is de…ned by

R (t) f := X m2N d p m (f; u m; (:; t)) 2 v m; (:; t)
for each complex-valued f 2 L 2 R d and every t 2 (0; T ), where u m; (:; t) and v m; (:; t) are given by ( 95) and (96), respectively: If B is the multiplication operator of Theorem 3, then we have

Tr (R (t) B) = (2 (t)) d 2 X m2N d p m Z R d dxb(x) exp " jx b m; (t)j 2 2 (t) 
# for each t 2 (0; T ) and every p m > 0 satisfying the normalization condition in [START_REF] Klein | Periodic Gaussian Osterwalder-Schrader positive processes and the two-sided Markov property on the circle[END_REF].

The situation is quite di¤erent from that we just described if we consider the hierarchy [START_REF] Léonard | Reciprocal processes. A measure-theoretical point of view[END_REF], [START_REF] Paley | Fourier Transforms in the Complex Domain[END_REF] with the initial-…nal data

' m;0; (x) = h m; (x); m;T; (x) = exp [T E m; ] h m; (x) (109) 
and with [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete and Continuous Dynamical Systems[END_REF] for the probabilities associated with each level of the spectrum, thus having

R f := Z 1 (T ) X m2N d exp [ T E m; ] (f; h m; ) 2 h m; (110) 
for the density operator (90). Then we have: Theorem 6. For every > 0 the Bernstein process Z 2[0;T ] associated with the in…nite hierarchy ( 22)- [START_REF] Paley | Fourier Transforms in the Complex Domain[END_REF] in the sense of Corollary 1 is a stationary, non-Markovian Gaussian process such that the following statements are valid:

(a) We have 

P Z t 2 F = (2 ) d 2 Z F dx exp " jxj 2 2 # ( 
E Z ;i s Z ;j t = cosh jt sj T 2 2 sinh T 2 i;j (113) 
for all s; t 2 [0; T ] and all i; j 2 f1; :::; dg.

(c) For every linear bounded self-adjoint multiplication operator B on L 2 R d as de…ned in Theorem 5 we have 2)

Tr (R B) =E (b Z t ) = (
d 2 Z R d dxb(x) exp " jxj 2 2 # for every t 2 [0; T ].
Proof. The process Z 2[0;T ] is Gaussian by virtue of (78) with Green's function [START_REF] Pedersen | Periodic Ornstein-Uhlenbeck processes driven by Lévy processes[END_REF]. Furthermore we have

g (x; T; x) = 2 sinh ( T ) d 2 exp " (cosh( T ) 1) jxj 2 sinh ( T )
# so that (111) with (112) follows immediately from (79) and (93). We now turn to the proof of (113) by determining the Gaussian density of Z t1 ; :::; Z tn in R nd for any n 2 N + by substituting ( 24) and (93) into (78). We obtain

(2 (cosh( T ) 1)) d 2 n Y k=2 g (x k ; t k t k 1 ; x k 1 ) g (x 1 ; T (t n t 1 ); x n ) = (2 ) nd 2 2 n (cosh( T ) 1) sinh ( (T (t n t 1 ))) d 2 n Y k=2 (sinh( (t k t k 1 )) d 2 exp 2 4 2 n X k=2 cosh( (t k t k 1 )) jx k j 2 + jx k 1 j 2 2 x k ; x k 1 R d sinh ( (t k t k 1 )) 3 5 exp 2 4 2 cosh( (T (t n t 1 ))) jx 1 j 2 + jx n j 2 2 (x 1 ; x n ) R d sinh ( (T (t n t 1 ))) 3 5 : 
For the sake of clarity we identify the inverse of the covariance matrix C by considering the case n = 2 separately from the case n 3. For n = 2 we obtain

C 1 ;k;k = sinh( T ) sinh ( (t 2 t 1 )) sinh ( (T (t 2 t 1 )))
for k = 1; 2 and C 1 ;2;1 = C 1 ;1;2 = sinh ( jt 2 t 1 j) sinh ( (T jt 2 t 1 j)) ;

while for n 3 we get

C 1 ;k;k = 8 > > > > > < > > > > > :
sinh( (T (tn t2))) sinh( (t2 t1)) sinh( (T (tn t1)))

for k = 1; sinh( (t k+1 t k 1 )) sinh( (t k+1 t k )) sinh( (t k t k 1 )) for k = 2; :::; n 1; Remarks. (1) It turns out that the process of Theorem 6 identi…es in law with the d-dimensional periodic Ornstein-Uhlenbeck process. In order to see this we de…ne 

where W 2[0;T ] is a given Wiener process in R d , and where the integrals in (114) are both forward Itô integrals. It is known from a particular case of Theorem 2.1 in [START_REF] Kwakernaak | Periodic linear di¤ erential stochastic processes[END_REF], or from a direct computation using the rules of Itô calculus (see also Section 5 in [START_REF] Roelly | A characterization of reciprocal processes via an integration by parts formula on the path space[END_REF] for the case d = 1), that (114) may be viewed as a way of writing the forward Ornstein-Uhlenbeck integral equation with random periodic boundary conditions X t = e t X 0 + Z t 0 e (t ) dW ; t 2 [0; T ] ;

X 0 = X T (115) 
when E (X 0 ) = 0, whose covariance is precisely (113). Therefore, our analysis shows that the periodic Ornstein-Uhlenbeck process may be viewed as a very special example of a stationary and non-Markovian Bernstein process. Incidentally, that process happens to be quite relevant to the mathematical investigation of certain quantum systems in equilibrium with a thermal bath when the inverse temperature is interpreted as the period. This is indeed a consequence of the fact that it also identi…es in law with the Gaussian process of mean zero used in Theorem 2.1 of [START_REF] H Egh-Krohn | Relativistic quantum statistical mechanics in twodimensional space-time[END_REF] when the positive matrix therein is chosen as A = I d with I d the identity in R d . This, in turn, follows immediately from (113) which may also be written as valid for every t 2 [0; T ]. Finally, we observe that the de…nition of a periodic process "indexed by the circle" that satis…es the "two-sided Markov property on the circle" given in Section 4 of [START_REF] Klein | Periodic Gaussian Osterwalder-Schrader positive processes and the two-sided Markov property on the circle[END_REF] is a very special case of our de…nition of a Bernstein process given at the beginning of this paper. Indeed, a standard argument shows that Relation (1) is equivalent to the statement that F + s _ F t is conditionally independent of the -algebra F [s;t] := Z 1 (F ) : 2 [s; t] ; F 2 B d when F fs;tg = Z 1 s (F ) ; Z 1 t (F ) : F 2 B d is given. In this respect we also refer the reader to [START_REF] Carmichael | Processus Gaussiens stationnaires réciproques sur un intervalle[END_REF] and [START_REF] Jamison | Reciprocal processes: the stationary Gaussian case[END_REF] for the stationary Gaussian case when d = 1. More generally, we remark that Problem (115) falls into the realm of a much more general class of periodic linear stochastic di¤erential equations which were investigated by several authors, including [START_REF] Kwakernaak | Periodic linear di¤ erential stochastic processes[END_REF] where some of the multidimensional time-periodic processes considered there were useful regarding the resolution of …ltering, smoothing and prediction problems.

E Z ;
(2) We complete this article with an observation concerning the interpretation of (85). Following the analogy with Quantum Statistical Mechanics, we may say that the operator R(t) represents a so-called pure state when Tr R 2 (t) = 1 and a mixed state when Tr R 2 (t) < 1 (see, e.g., [START_REF] Von Neumann | Mathematical Foundations of Quantum Mechanics[END_REF] for explanations regarding this terminology). In view of the …rst part of Theorem 5, it is therefore legitimate to say that the non-Markovian Bernstein processes that we constructed from the method of Section 4 correspond to mixed states in the above sense. Similar considerations hold for operator (110), which satis…es the inequalities 0 R 2 R I in the sense of quadratic forms since R is self-adjoint, where I stands for the identity in L 2 R d . In this case we always have Tr R 2 (t) < 1 by virtue of ( 21), and the only process that would correspond to a pure state in this context is the Markovian process generated by the measure which is of the form (35), where g is Mehler's kernel (24) and ' 0;0; , 0;T ; are given by ( 109) with m = 0. There are, however, many other interesting Markovian Bernstein processes associated with ( 22)-( 23) (see, e.g., [START_REF] Zambrini | The research program of Stochastic Deformation (with a view toward Geometric Mechanics)[END_REF]).

Theorem 3 .

 3 Let us assume that the sequences of points a m ; b m in (15) satisfy sup m2N d ja m b m j < +1: (57) Then the following statements hold: (a) Formula (54) de…nes a linear trace-class operator in L 2 R d for every t 2 (0; T ) and we have Tr R (t) = X m2N d p m = 1. (b) Let us consider the linear bounded self-adjoint multiplication operator on L 2 R d given by Bf = bf for every complex-valued f 2 L 2 R d , where b 2 L 1 R d is real-valued. If Z 2[0;T ] denotes the Bernstein process of Theorem 2 then we have Tr (R (t) B) = E b( Z t )

  exp [ tH] ' m;0 ; exp [ (T t) H] n;T 2 = ' m;0 ; exp [ T H] n;T 2 holds for every t 2 [0; T ] as a consequence of the symmetry of the semigroup exp [ tH]. In the following statement all functions are supposed to be realvalued with (f m ) m2N d the orthonormal basis of Section 1: Proposition 2. Let m;T m2N d be an arbitrary sequence in L 2 R d and let us assume that there exists 2 [0; 1) such that the estimate X m2I m f m exp [ T H] sequence ( m ) m2N d of real numbers, where the sums in (65) run over the same …nite set I N d which may be chosen arbitrarily. Then there exists a sequence ' m;0 m2N d L 2 R d such that the following statements are valid: (a) We have exp [ tH] ' m;0 ; exp [ (T t) H] n;T 2 = m;n

  corresponds to = 0 in Proposition 2, in which case (67) reduces to the usual Fourier expansion of f along the orthonormal basis (f m ) m2N d and (68), (69) to Parseval's equality. The reason why we have to consider exp [ T H] m;T rather than just m;T lies in Relation (70) of the following result: Lemma 1. Let ' m;0 and exp [ T H] m;T be as in Proposition 2 and let us again de…ne the density m by m (x; y) = ' m;0 (x)g(x; T; y) m;T (y). Then the induced measures m on B d B d are signed and we have m R d R d = 1 (70) for every m 2N d .

  is a positive measure on R d R d then is a probability measure on B d B d . Proof. We have (R d R d ) = 1 because of Lemma1 and the fact that P m2N d p m = 1. On the other hand, the joint density associated with (71) reads (x; y) = g(x; T; y) X m2N d p m ' m;0 (x) m;T (y)

  u m (:; t) = exp [ tH] ' m;0 (75) and v m (:; t) = exp [ (T t)H] m;T ;(76)respectively, then by mixing the measures m as in Lemma 2 we obtain:

)

  for each bounded Borel measurable function b : R d 7 ! C and every t 2 [0; T ].

) for every t 2

 2 [0; T ]. In particular we have Tr R 2 (t) = 1 if, and only if, p m = 1 for exactly one m , thus having p m = 0 for every m 6 = m . (b) The eigenvalue equations

  m2N d exp [ tE m; ] h m; (x)h m; (y) according to the considerations of Section 1, where the series is now convergent for every t 2 (0; T ] uniformly in all x; y 2R d . This last property is a consequence of the Cramér-Charlier inequality jh m; (x)h m; (y)j

  an arbitrary sequence of points associated with (

Corollary 3 . 2 F

 32 The Bernstein process Z m; 2[0;T ] associated with[START_REF] Léonard | Reciprocal processes. A measure-theoretical point of view[END_REF],[START_REF] Paley | Fourier Transforms in the Complex Domain[END_REF] and (94) in the sense of Theorem 1 is a non-stationary Gaussian and Markovian process such that the following properties are valid: (a) We have P m Z m; t for each t 2 (0; T ) and every F 2 B d , where b m; (t) = sinh( t)) sinh( s) sinh( T ) i;j for t s; sinh( (T s)) sinh( t) sinh( T ) i;j for t s (102) for all s; t 2 [0; T ] and all i; j 2 f1; :::; dg, where b i m; denotes the i th component of b m; .

Corollary 4 .

 4 Let Z 2[0;T ] be the Bernstein process in the sense of Proposition 1 corresponding to the joint probability density (x; y) = g (x; T; y) (x) X m2N d p m N 2 m; (y b m ) generated from (94), where (b m ) m2N d R d is an arbitrary sequence such that sup m2N d jb m j < +1:

  111) for each t 2 [0; T ] and every F 2 B d , where = sinh ( T ) 2 (cosh( T ) 1) : (112) (b) The components of Z 2[0;T ] satisfy the relation

2 2 sinh T 2 ;

 22 sinh( (T (tn 1 t1))) sinh( (tn tn 1)) sinh( (T (tn t1)))for k = n , C 1 ;k;k 1 = C 1 ;k 1;k = sinh ( jt k t k 1 j)for k = 2; :::; n; and C 1 ;n;1 = C 1 ;1;n = sinh ( (T jt n t 1 j)) ;all the remaining matrix elements being zero. In both cases we then obtain by inversionC ;k;l = sinh ( jt k t l j) sinh ( (jt k t l j T )) 2 (cosh( T ) 1)for all k; l 2 f1; :::; ng or, equivalently, C ;k;l = cosh jt k t l j T so that (113) eventually follows. Finally, Statement (c) follows from Corollary 2 by taking (111) into account. Note that independently of the considerations of the preceding section a glance at (111) and (113) shows directly that Z 2[0;T ] is stationary, as well as non-Markovian since (113) does not factorize as the product of a function of s times a function of t.

e

  (t ) dW ; t 2 [0; T ]

  0; (G) = Z G dxdy' 0;0; (x)g (x; T; y) 0;T ; (y)

  and that ' m;0 m2N d is the sequence associated with m;T m2N d in the sense of Proposition 2. Then (81) de…nes a linear bounded operator in L 2 R d .

	Proof. Since the function V is bounded from below according to Hypothesis
	(H) we …rst have		
	ku m (:; t)k 2	c T ' m;0 2 ;	(82)
	kv m (:; t)k 2	c T	m;T 2

On the existence of Bernstein processes in R dAside from a probability measure on B d B d that satis…es[START_REF] Galichon | Optimal Transport Methods in Economics[END_REF], the typical construction of a Bernstein process requires a transition function as is the case
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