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Abstract

This paper discusses and compares LMI results built using the S-variable approach starting from equivalent yet
different representations of uncertain systems. Using the fact that S-variable results are well suited to handle descrip-
tor systems and that descriptor system modeling is versatile, we compare results in terms of the impact of modeling on
the computational burden and on conservatism. Multi-affine representations allow reduced numerical burden while
affine representations lead to less conservative results. Numerical examples show that conservatism reduction is not
systematic, but is in some cases quite significant without major increase of the numerical burden.
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1 Introduction
During the past twenty years an efficient method for handling affine polytopic uncertainties which involves addi-
tional S-variables has been intensively used for robustness purpose. The method originated in [8, 4, 14] and has
had many derivations. The book [6] discusses many of these, including analysis/control design problems, and conser-
vatism/numerical complexity issues. Among the nice features of the approach which is noticed as soon as [20, 3, 21, 5]
is that it is well suited for systems in descriptor form, and this descriptor form is appropriate for manipulating systems
rational in the uncertainties (or non-linearities), as if affine [10, 3, 21]. Any rational in the uncertainties linear system
can be converted to a descriptor linear system with affine dependency in the parameters for which S-variable results
apply readily. Moreover, it is shown in [15] that S-variable results apply as well to models which are multi-affine in
the parameters, a modeling inspired form multi-simplex models from [12, 11], which may as well be represented using
tensors as exploited in [2] that provide related LMI results for Takagi-Sugeno fuzzy systems.

One conclusion drawn from [15] is that S-variable results apply readily to affine and to multi-affine descriptor
models. But, in case a system has a multi-affine representation it can always be converted to an affine representation.
This is usually at the expense of increasing the size of the descriptor model and hence increases the numerical burden
for the solvers in the end. If we employ a multi-affine representation, we obtain an LMI that is more conservative
but computationally less demanding, whereas if we employ an affine representation, we obtain an LMI that is less
conservative but computationally more demanding. The question addressed in this paper is whether the increase of the
numerical burden worths the effort in terms of reduced conservatism. We provide notations for handling the affine and
multi-affine models. We show the intrinsic source of conservatism in the multi-affine results and we show on examples
that it is indeed the case, but not always.

Results are compared numerically to Pólya based results for robust stability analysis ([17, 18, 13]). The compar-
ison reveals the relevance of the proposed methodology in terms of the tradeoff conservatism/complexity. For space
limitation reasons we did not perform comparions with sum-of-squares type results that may be applied as well. The
reason why we concentrated the comparison with the Pólya approach is that [16] shows that in the considered situation
S-variable results include those issued from sum-of-squares methodology.

The outline of the paper is a follows. The second section is devoted to multi-affine modeling using multi-simplex
representation of uncertainties. The third section recalls the S-variable results for descriptor systems (for the simplest
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case when the E matrix is full column rank, for more advanced results the reader is invited to consult [6]). The fourth
section is then dedicated to numerical examples which illustrate the impact of modeling on the conservatism of LMI
results.

Notation:
In stands for the identity matrix of size n. 0n,m is the zero matrix with n rows and m columns. When the size can
be deduced from the context the subscripts are avoided. AT is the transpose of the matrix A. A � B is the matrix
inequality stating that A − B is symmetric positive definite. The terminology “congruence operation of A on B” is
used to denote ATBA. If A is full column rank, and B � 0, the congruence operation of A on B gives a positive
definite matrix: ATBA � 0. A matrix inequality of the type N(X) � 0 is said to be a linear matrix inequality (LMI
for short), if N(X) is affine in the decision variables X . In the following, decision variables are highlighted using the
blue color. Ξv̄ = {ξv=1...v̄ ≥ 0,

∑v̄
v=1 ξv = 1} is the unitary simplex in Rv̄ . The elements ξ of unitary simplexes are

used to describe polytopic type uncertainties. In the following, uncertainties are highlighted using the red color. The
vertices of Ξv̄ are the v̄ vectors ξ[v] with all zeros coefficients except one equal to 1.

2 Polytopes and Multi-affine representations
We shall consider uncertain representations depending on parameters θ assumed to lie in a set Θ defined as the cross
product of p̄ polytopes:

θ ∈ Θ = {(θ1, . . . , θp̄) ∈ Θ1 × · · · ×Θp̄} . (1)

The p̄ components of θ are independent vectors θp ∈ Rmp . Each set Θp is assumed to be a polytope with v̄p vertices

from the set Vp =
{
θ

[1]
p , . . . , θ

[v̄p]
p

}
. Θp is the convex hull of the vertices, or equivalently, each θp writes as the

weighted sum of vertices with weight from unitary simplexes:

Θp = Co(Vp) =

{
θp =

v̄p∑
v=1

ξp,vθ
[v]
p : ξp ∈ Ξv̄p

}
. (2)

In the following, V = V1 × · · · × Vp̄ is the finite set of all extremal values of the parameters gathered in θ. A
generic element of V will be denoted θ[v] with v = (v1, . . . , vp̄) the vector of indices of vertices for each component.
I is the set of all vectors of indices v. θ[v] is the one to one mapping from I to V . The cardinality of V is ¯̄v =
Πp̄
p=1v̄p. Choosing any ordering of the ¯̄v components of V the set shall also be described using the notation V ={
θ[1], . . . θ[ṽ], . . . θ[¯̄v]

}
where ṽ is a scalar indexing of the ¯̄v elements.

A matrix M(θ) is said to be multi-affine in the parameters if it is affine in each θp taken independently. A multi-
affine matrix can be written as the multi-sum of weighted vertices from V denoted as

M(θ) =
∑
v∈I

ξ1,v1
· · · ξp̄,vp̄M(θ[v]) : ξp ∈ Ξv̄p (3)

As we will see on an example, it is quite trivial to notice that any such matrix belongs as well to the polytopic set
defined by

M(θ̃) =

¯̄v∑
ṽ=1

ξṽM(θ[ṽ]) : ξ ∈ Ξ¯̄v (4)

The simplest case is when the θp elements are scalars (mp = 1) defined in intervals θp ∈ [ θ
[1]
p , θ

[2]
p ], which are

polytopes of v̄p = 2 vertices. For the case when all elements are scalar, the cardinality of V is ¯̄v = 2p̄. In case of two
scalar parameters, the multi-sum reads as

M(θ) =
∑
v∈{(1,1),(1,2),(2,1),(2,2)} ξ1,v1ξ2,v2M(θ[v])

= ξ1,1ξ2,1M(θ[(1,1)]) + ξ1,1ξ2,2M(θ[(1,2)]) + ξ1,2ξ2,1M(θ[(2,1)]) + ξ1,2ξ2,2M(θ[(2,2)]).

The following fact
ξ1,1ξ2,1 + ξ1,1ξ2,2 + ξ1,2ξ2,1 + ξ1,2ξ2,2 = ξ1,1 + ξ1,2 = 1

allows to conclude that the multi-affine matrixM(θ) is included in the polytope of four verticesM(θ[(1,1)]),M(θ[(1,2)]),
M(θ[(2,1)]), M(θ[(2,2)]). The converse is not true in general. There are potentially elements in the convex hull of these
four vertices that are not in the multi-affine model. An example of this is the matrix M(θ) =

[
θ1 θ1θ2 θ2

]
with

θ1 ∈ [1, 2] and θ2 ∈ [1, 2]. The middle of vertices
[

1 1 1
]

and
[

2 4 2
]

is equal to
[

3
2

5
2

3
2

]
. It is

inside polytope (4), but since 5
2 6= ( 3

2 )2 it is not a realization (3) of M(θ).
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3 LMI S-Variable conditions
The previous section allows to conclude about the fact that multi-affine polytopes can be considered as included in
polytopes of larger size. This might bring some conservatism. To evaluate this fact we study the LMI conditions for
robust analysis of polytopic and multi-polytopic systems. To do so we consider one type of LMI conditions issued
from the S-Variable approach.

Let an uncertain descriptor systems described by the following equation:

Exx(θ)ẋ(t) + Eπx(θ)π(t) = A(θ)x(t) (5)

where x ∈ Rnx is the state and π ∈ Rnπ is some auxiliary signal linked to the state via algebraic constraints.
Neither Exx(θ) nor A(θ) are supposed to be square and have n rows. For simplicity of the presentation the matrix[
Exx(θ) Exπ(θ)

]
is assumed to be full column rank for all θ ∈ Θ. More general cases are described in [6].

For conciseness of notation denote

M(θ) =
[
Exx(θ) Eπx(θ) −A(θ)

]
the uncertain matrix which fully describes the dynamics of the system.

Proposition 1 If the system (6) is defined using a multi-affine matrix M(θ) then there exists another augmented
representation

Êxx(θ)ẋ(t) + Êπx(θ)π̂(t) = Â(θ)x(t) (6)

in which the matrix of size n̂-by-(2nx + n̂π), where n̂ ≥ n and n̂π ≥ nπ ,

M̂(θ) =
[
Êxx(θ) Êπx(θ) −Â(θ)

]
is affine in the parameters.

Rather than proving the proposition for a general representation we shall consider an illustrative example. The
proof of the general case follows the same lines. Let the system described by[

1 θ1

0 1

]
ẋ(t) =

[
−θ2 0
θ1θ2 −1

]
x(t). (7)

This multi-affine representation admits the following equivalent affine representation 1 θ1

0 1
0 0

 ẋ(t) +

 0
−θ1

1

 π̂(t) =

 −θ2 0
0 −1
θ2 0

x(t). (8)

The proof comes from the fact the last row of the affine representation gives π̂ = θ2x1, which when included in the
second row, gives exactly the multi-affine representation.

Theorem 1 The uncertain system (6) defined by a multi-affine matrixM(θ) is robustly stable if there exist ¯̄v nx-by-nx
symmetric matrices P [v] � 0 and a common to all inequalities (2nx + nπ)-by-n matrix S such that for all vertices
v ∈ I the following LMIs hold

Q(P [v]) ≺ SM(θ[v]) +MT (θ[v])ST (9)

where

Q(P [v]) =

 0nx,nx 0 P [v]

0 0nπ,nπ 0
P [v] 0 0nx,nx

 .
Proof If the inequalities of Theorem 1 hold for all vertices v ∈ I, these hold as well for all reordered vertices θ[ṽ]

with ṽ = 1 . . . ¯̄v. By convexity of matrix inequalities this implies that the inequalities hold for the convex hull of the
vertices, that is for all ξṽ ∈ Ξ¯̄v one has:

Q(P (θ̃)) ≺ SM(θ̃) +MT (θ̃)ST (10)
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for the following parameter-dependent Lyapunov matrix

P (θ̃) =

¯̄v∑
ṽ=1

ξṽP
[ṽ].

Congruence of η =
(
ẋT πT xT

)T
on inequality (10) gives that

ẋT (t)P (θ̃)x(t) + xT (t)P (θ̃)ẋT (t) < 0

holds along the trajectories of M(θ̃)η(t) = 0. Hence robust stability of the embedding polytopic uncertain system
is proved by the parameter-dependent Lyapunov function xTP (θ̃)x. The multi-affine representation M(θ) being
included inside the polytopic embedding M(θ̃), stability of the multi-affine model is proved. �

The proof is well known but is recalled here because it clarifies that these conditions for proving robust stability of
multi-affine models are equivalent to proving robust stability of a larger embedding polytopic set of models.

An alternative method to prove robust stability of the multi-affine models is to take advantage of the equivalent
augmented representation proposed in Proposition 1.

Corollary 1 The uncertain system (6) defined by a multi-affine matrixM(θ) is robustly stable if there exist ¯̄v nx-by-nx
symmetric matrices P̂ [v] � 0 and a common to all inequalities (2nx + n̂π)-by-n̂ matrix Ŝ such that for all vertices
v ∈ I the following LMIs hold

Q̂(P̂ [v]) ≺ ŜM̂(θ[v]) + M̂T (θ[v])ŜT (11)

where

Q̂(P̂ [v]) =

 0nx,nx 0 P̂ [v]

0 0n̂π,n̂π 0

P̂ [v] 0 0nx,nx

 .
At this stage here are the characteristics of the two results.

• Theorem 1 is such that:
The decision variables are the ¯̄v matrices P [v] of size nx-by-nx and a (2nx + nπ)-by-n matrix S;
The ¯̄v constraints (9) have (2nx + nπ) rows (and as many columns);
Stability also holds for a polytopic model in which the multi-affine representation is embedded.

• Corollary 1 is such that:
The decision variables are the ¯̄v matrices P [v] of size nx-by-nx and a (2nx + n̂π)-by-n̂ matrix S;
The ¯̄v constraints (11) have (2nx + n̂π) rows (and as many columns).

Theorem 1 is hence potentially more conservative than Corollary 1 but is of smaller size (both in number of
decision variables and in size of the constraints). The increase in size of LMIs of Corollary 1 compared to those of
Theorem 1 is related to the increase from nπ to n̂π . This increase is at most equal to the number of products between
parameters in the original multi-affine representation.

Since the goal of the paper is to compare results in terms of conservatism and numerical complexity, we shall
also compare these to another LMI-based approach. The comparison is done with respect to the Pólya based method
[17, 18, 13] when applied to inequality

Q(P (θ)) ≺ S(θ)M(θ) +MT (θ)S(θ)T (12)

with parameter dependent S-variables S(θ). The choice of a multi-affine P (θ) and a common to all S(θ) = S gives
exactly condition of Theorem 1. Choosing polynomial P (θ) of degree higher than one and polynomial S(θ) leads to
LMIs of decreasing conservatism. Conservatism is know to be vanishing as the order grows.

4 Numerical examples

4.1 Example 1
The LMI conditions are tested on the example (7) with θ1 ∈ [−10δ , 10δ ] and θ2 ∈ [ 1 , 1− δ ]. The LMI conditions
are tested for different values of δ and are summarized in Table 1. OK indicates that the LMIs are feasible for this
value of δ. Corollary 1 is feasible for larger values of δ thus illustrating that it is less conservative than Theorem 1. The
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Table 1: Example 1

δ 0.556 0.557 0.999 1 nb vars nb rows
Theorem 1 OK - - - 20 24
Corollary 1 OK OK OK - 27 28

last columns indicate the number of decision variables and the total number or rows of the LMI constraints (including
contraints P [v] � 0).

For θ1 = 0 and θ2 = 0, which is a possible realization when δ = 1, the system is not asymptotically stable. For
this example Theorem 1 is highly conservative while Corollary 1 is not. Conservatism reduction thanks to Corollary 1
is not at the expense of a major increase of the computation burden.

These results are now compared to those obtained using Pólya methodology. Table 2 gives the results for different
choices of parameter-dependent S-variables. In all cases P (θ) is chosen to be multi-affine in the uncertainties. Four
choices are tested:

(1a) S(θ) = S is parameter-independent;

(1b) S(θ) = S(θ1) is affine in the first uncertainty;

(1c) S(θ) = S(θ2) is affine in the second uncertainty;

(1d) S(θ) is multi-affine in the two uncertainties.

Table 2: Example 1 - Pólya method

δ 0.556 0.557 0.999 1 nb vars nb rows
(1a) OK - - - 20 24
(1b) OK - - - 28 32
(1c) OK OK OK - 28 32
(1d) OK OK OK - 44 44

Results of Table 2 illustrate that it is indeed possible to get non-conservative results starting from the multi-affine
representation by applying the Pólya methodology with parameter-dependent S-variables. But, in comparison with
our proposed strategy consisting in converting the multi-affine problem into an affine representation, the results using
parameter-dependent S-variables lead to numerically more demanding LMIs. Our interpretation of this fact is that our
proposed methodology exploits more accurately the structure of the problem while systematic methods for handling
polynomially parameter-dependent LMIs tend to over parameterize the LMIs.

4.2 Example 2
We consider now a more complex example with three uncertain parameters:

1 θ1 0 0
0 1 θ3,1 0
0 0 1 0
0 θ1θ2 θ2θ3,1 1

 ẋ =


−θ2 0 0 0
θ1θ2 −1 0 0
θ1θ3,2 0 −1 0
θ1θ2θ3,2 0 0 −1

x (13)

with θ1 ∈ Co (−10δ , +10δ ), θ2 ∈ Co ( 1 , 1− δ ) and

θ3 =

(
θ3,1

θ3,2

)
∈ Co

((
δ
0

)
,

(
0
δ

)
,

(
−δ
−δ

))
.
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Choose π1 =
[
θ1θ3,2 0 0 0

]
x−

[
0 θ1 θ3,1 0

]
ẋ to get this other multi-affine model

1 θ1 0 0
0 1 θ3,1 0
0 0 1 0
0 0 0 1
0 θ1 θ3,1 0

 ẋ+


0
0
0
θ2

1

π1 =


−θ2 0 0 0
θ1θ2 −1 0 0
θ1θ3,2 0 −1 0

0 0 0 −1
θ1θ3,2 0 0 0

x. (14)

Choose π2 =
[
θ1 0 0 0

]
x to get this third multi-affine model

1 θ1 0 0
0 1 θ3,1 0
0 0 1 0
0 θ1θ2 θ2θ3,1 1
0 0 0 0

 ẋ+


0
−θ2

−θ3,2

−θ2θ3,2

1

π2 =


−θ2 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1
θ1 0 0 0

x. (15)

Combining π1 and π2, the system has the following affine representation
1 θ1 0 0
0 1 θ3,1 0
0 0 1 0
0 0 0 1
0 θ1 θ3,1 0
0 0 0 0

 ẋ+


0 0
0 −θ2

0 −θ3,2

θ2 0
1 −θ3,2

0 1

π =


−θ2 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1
0 0 0 0
θ1 0 0 0

x. (16)

Models (13), (14) and (15) are multi-affine, and (16) is affine. The LMI results are tested for each of these models and
results are summarized in Table 3.

Table 3: Example 2

δ 0.469 0.470 0.602 0.603 nb vars nb rows
(13) OK - - - 152 144
(14) OK - - - 165 156
(15) OK OK OK - 165 156
(16) OK OK OK - 180 168

In this example the LMIs built based on models (13) and (14) give exactly the same results in terms of conservatism
but for an increased numerical burden in case of model (14). The same comment holds when comparing the LMIs built
based on models (15) and (16). This illustrates the fact that results for multi-affine representations are not necessarily
more conservative. But the results for affine representations are, as guaranteed by the theory, the less conservative
ones, and the more demanding in terms of numerical complexity.

In order to reduce further the conservatism [7] suggests to augment the model representation by including higher
derivatives of the states. See also [6] for discussions about this method. For the treated example, starting from model
(14) and including the second derivative of the state, it amounts to considering the augmented system: Ex(14)(θ) 0

0 Ex(14)(θ)
0 I

( ẍ
ẋ

)
+

 Eπ(14)(θ) 0
0 Eπ(14)(θ)
0 0

 π̃1 =

 A(14)(θ) 0
0 A(14)(θ)
I 0

( ẋ
x

)
where

Ex(14)(θ) =


1 θ1 0 0
0 1 θ3,1 0
0 0 1 0
0 0 0 1
0 θ1 θ3,1 0

 Eπ(14)(θ) =


0
0
0
θ2

1

 A(14)(θ) =


−θ2 0 0 0
θ1θ2 −1 0 0
θ1θ3,2 0 −1 0

0 0 0 −1
θ1θ3,2 0 0 0


We do not provide all the formulas, but the augmentation procedure applies the same way to all four models (13),

(14), (15), (16) and we shall denote (13-a), (14-a), (15-a), (16-a) the augmented versions of these. In the augmented
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models the last rows correspond to the fact that ẋ and ẋ are the same vectors on both sides of the equality constraint.
As discussed in [6] the method hence includes the information that the first derivatives of the uncertain parameters
are zero. The rows involved to include this key information are parameter independent and this fact can be used to
reduce partly, and without conservatism, the numerical burden (see Chapter 3 in [6]). Table 4 provides the results
for the augmented systems. The size of the LMIs and the number of decision variables are while employing this size
reduction technique.

Table 4: Example 2 with augmentation

δ 0.541 0.542 0.643 0.644 nb vars nb rows
(13-a) OK - - - 528 240
(14-a) OK - - - 572 264
(15-a) OK OK OK - 572 264
(16-a) OK OK OK - 624 288

Same conclusions apply as for Table 3. Moreover, as expected, the LMIs tested for Table 4 are less conservative
than those for Table 3 when comparing results based augmented and non-augmented models. What is more surprising
is the conservatism of results based on model (13-a) compared to those based on model (15). With less decision
variables, and without introducing the knowledge about derivatives of the parameters, the results based on (15) are
less conservative.

For comparison, we apply the Pólya methodology to the parameter-dependent inequality (12) for different choices
of parameter-dependent variables. Two cases are tested, in both of these P (θ) is taken multi-affine, and

(2a) S(θ) = S is common to all uncertainties (result coincides with conditions of Theorem 1);

(2b) multi-affine S(θ).

Results are given in Table 5 and illustrate once again that our proposed strategy has advantages in terms of the numer-
ical burden versus conservatism.

Table 5: Example 2 - Pólya method

δ 0.469 0.470 0.643 0.644 nb vars nb rows
(2a) OK - - - 152 144
(2b) OK OK OK - 504 480

To finalize the study of this example it should be said that for δ = 0.644 the vertex defined by the following values

θ1 = 6.44, θ2 = 0.3560, θ3 =

(
−0.644
−0.644

)
gives an unstable system. LMI results based on models (15-a) and (16-a) are hence non-conservative.

4.3 Example 3
Now we modify slightly Example 2 and replace the set where the θ3 parameter lies to the following polytope of four
vertices

θ3 =

(
θ3,1

θ3,2

)
∈ Co

((
δ
0

)
,

(
0
δ

)
,

(
−δ
0

)
,

(
0
−δ

))
.

Results are given in Table 6 where (13-0) indicates that the model used is (13) and no augmentation is applied; (13-1)
indicates that a first augmentation including ẍ in the equations is applied as in Example 2; (13-2) indicates that an
other augmentation including x(3) in the equations is applied. We do not give results based on equations (14) and (16)
because these are once again strictly the same as for LMIs built based on equations (13) and (15) respectively. Only
the maximal values of δ for which the LMI results are feasible are given.

For the third augmentation that involves derivatives of the state up to x(4) the LMI results provide no measurable
improvement compared to the second augmentation (at least with the precision of thee digits that we used). But,
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Table 6: Example 3 with augmentation

δ nb vars nb rows
(13-0) 0.502 192 192
(15-0) 0.659 205 208
(13-1) 0.587 672 320
(15-1) 0.841 716 352
(13-2) 0.587 1440 448
(15-2) 0.849 1533 496
(13-3) 0.587 2496 576
(15-3) 0.849 2656 640

applying results from [17, 18] on the dual variables of the LMIs obtained for (16-3) with δ = 0.850 we were able to
find a de-stabilizing worst case:

θ1 = 8.4995, θ2 = 0.15, θ3 =

(
0.3947
0.4552

)
for which the poles of the system are

0.0030± 3.4839i, −0.0124, −1.0000.

There is clearly an unstable pair of poles which indicates that the upper bound δ = 0.849 obtained at the second
relaxation is tight (at the precision of three digits that we have chosen). It should be noticed that without the results of
[17, 18] which were implemented using the methodology described in [6], it would have been quite complex to find
this worst case that is not at one of the ¯̄v = 16 vertices.

We now compare these results with Pólya methodology. 5 cases are tested:

(3a) P (θ̃) is multi-affine and S(θ̃) = S is common to all uncertainties (identical results to (13-0));

(3b) both P (θ̃) and S(θ̃) are multi-affine;

(3c) P (θ̃) is polynomial or degree 2 in all the parameters and S(θ̃) is multi-affine;

(3d) P (θ̃) and S(θ̃) are polynomial or degree 2 in all the parameters;

(3e) P (θ̃) is polynomial of degree 3 in all the parameters and S(θ̃) is polynomial of degree 2.

Results are given in Table 7 and illustrate once again that Pólya based results tend to be numerically more demanding
compared to our approach, especially in terms of the size of LMI constraints.

Table 7: Example 3 - Pólya method

δ nb vars nb rows
(3a) 0.502 192 192
(3b) 0.752 672 784
(3c) 0.809 1412 1080
(3d) 0.847 3780 2920
(3e) 0.849 6080 3840

In terms of computation, all tests have been made on a MacBook Pro 2.9 GHz Intel Core i5 with Matlab2016b.
LMIs were coded using YALMIP (R20141030 release) [9] and solved using SDPT3 (version 4.0) [19]. Solver time
for the 4 LMI problems built for models (13-3), (14-3), (15-3) and (16-3) for δ = 0.849 is about 70 seconds. The
LMIs for the comparison with Pólya based results were build using the ROLMIP toolbox [1].

The code of the examples is available on the web at:
http://homepages.laas.fr/peaucell/papers/rocond18.m
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5 Conclusions
The goal of this paper is to discuss the conservatism of S-variable LMI results when these are applied to multi-affine
representations. We have shown that at the expense of a minor augmentation of the numerical burden it is preferable
to convert the models into affine representations. Doing so does not increase much the numerical burden, but reduces
the conservatism quite significantly on examples. Yet it is not always the case, and we provide examples of the two
situations. Methods to detect beforehand if the removal of some of the products between parameters will indeed reduce
the conservatism is left as an open question.
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